Supporting Information for

Metal ion adaptive self-assembly of photoactive lanthanide-based supramolecular hosts

Xiao-Zhen Li,^a Li-Peng Zhou,^a Shao-Jun Hu,^{a,b} Li-Xuan Cai,^a Xiao-Qing Guo,^{a,b} Zhuo Wang,^{a,b} and Qing-Fu Sun*^{a,b}

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter,

Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China.

^b University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.

*Correspondence to: <u>qfsun@fjirsm.ac.cn</u>

Contents

1. General

- 2. Synthesis and characterization of Ln_6L_3 and Ln_8L_6 cages
- 3. Host-guest chemistry
- 4. Single crystal X-ray diffraction studies
- 5. NMR and ESI-TOF-MS spectra
- 6. UV-Vis, CD and FL spectra
- 7. Crystal data and structures
- 8. Reference

Supplementary Methods

1. General

Unless otherwise stated, all chemicals and solvents were purchased from commercial companies and used without further purification. Deuterated solvents were purchased from Admas, J&K scientific and Sigma-Aldrich. 1D and 2D-NMR spectra were measured on a Bruker Biospin Avance III (400 MHz) spectrometer and JEOL ECZ600S (600 MHz) spectrometer. ¹H-NMR chemical shifts were determined with respect to residual signals of the deuterated solvents used. ESI-TOF-MS spectra were recorded on an Impact II UHR-TOF mass spectrometry from Bruker, with tuning mix as the internal standard. Data analysis was conducted with the Bruker Data Analysis software (Version 4.3) and simulations were performed with the Bruker Isotope Pattern software and Thermo Xcalibur Qual Browser software (Thermo Foundation 2.0). Some ESI-MS spectra were recorded on LC-QTOF-MS (G6520B). CD spectra were recorded on a MOS-450 circular dichroism spectrometer. Excitation and emission spectra were recorded on the FS5 and FLSP980 spectrofluorometer from Edinburg Photonics. Spectra were corrected for the experimental functions. Melting points were measured using a SGW Melting Point thermometer (X-4). Molecular-mechanical structure modeling was performed on Material Studio 6.0 by Accelrys Software, Inc.

Caution! Perchlorate salts are potentially explosive and should be handled carefully in small quantities.

2. Synthesis and characterization of La₆L₃ and Ln₈L₆ (Ln=Eu^{III}, Yb^{III})

Synthesis and characterization of ligands

(R/S)-6-(1-phenylethylcarbamoyl) picolinic acid (C1^{R/S}) and 6-(isopropylcarbamoyl)picolinic acid (C2) were synthesized according to previous procedures.¹ **3** and **Zn-3** were synthesized according to reported literature.²

Scheme S1. Chemical structures of C1^{*R/S*}, C2, 3, and Zn-3.

Scheme S2. Chemical structures of ligands $1^{R/S}$ and $Zn-1^{R/S}$.

Synthesis of 1^{*R/S*}

Chiral acid C1^{*R/S*} (247.5 mg, 0.9191 mmol, 4.5 equiv.), Et₃N (186.0 mg, 1.838 mmol, 9 equiv.) and HATU (698.9 mg, 1.838 mmol, 9 equiv.) were dissolved in DMF (40 mL) and stirred at room temperature for 20 min. **3** (200.0 mg, 0.2042 mmol, 1 equiv., in 10 mL DMF) was then added to the reaction system. The resulting solution was stirred at 60°C for 20 h and monitored by TLC analysis. When the reaction was completed, the solvent was removed under reduced pressure and the resulting residue was washed with water. After dried under vacuum, the solid was purified by silica chromatography (CH₂Cl₂ : CH₃OH = 100:1 to 50:1) to give $1^{R/S}$ as claret-colored powder (270.0 mg, 0.1358 mmol, 66.50% yield). m.p. > 250 °C. ¹H NMR (400 MHz, d_6 -DMSO, 298K) δ 11.06 (s, 1H), 9.68 (d, *J* = 8.3 Hz, 1H), 8.92 (s, 2H), 8.47 – 8.39 (m, 1H), 8.30 (ddd, *J* = 16.2, 10.7, 3.9 Hz, 4H), 8.11 (d, *J* = 6.7 Hz, 6H), 7.52 (d, *J* = 7.4 Hz, 2H), 7.39 (t, *J* = 7.6 Hz, 2H), 7.28 (t, *J* = 7.3 Hz, 1H), 5.41 – 5.31 (m, 1H), 1.70 (d, *J* = 7.0 Hz, 3H), -2.81 (s, 0.5H). ESI-MS: calcd. for C₁₂₈H₉₈N₁₆O₈ [M+2H]²⁺: 994.8965, found 994.9022.

Zn-1^{*R/S*} was synthesized through the above procedure with the replacement of **3** with **Zn-3** (63.00% yield). m.p. > 250 °C.

Zn-1^{*R*}: ¹H NMR (400 MHz, d_6 -DMSO, 298K) δ 11.06 (s, 1H), 9.68 (d, J = 8.3 Hz, 1H), 8.92 (s, 2H), 8.47 – 8.39 (m, 1H), 8.30 (ddd, J = 16.2, 10.7, 3.9 Hz, 4H), 8.11 (d, J = 6.7 Hz, 6H), 7.52 (d, J = 7.4 Hz, 2H), 7.39 (t, J = 7.6 Hz, 2H), 7.28 (t, J = 7.3 Hz, 1H), 5.41 – 5.31 (m, 1H), 1.70 (d, J = 7.0 Hz, 3H). ESI-MS: calcd. for C₁₂₈H₉₆N₁₆O₈Zn [M+2H]²⁺: 1026.3532, found 1026.3543.

Zn-1^{*S*}: ¹H NMR (400 MHz, *d*₆-DMSO, 298K) δ 11.08 (s, 1H), 9.71 (d, J = 8.6 Hz, 1H), 8.93 (s, 2H), 8.42 (d, J = 6.8 Hz, 1H), 8.30 (m, 4H), 8.13 (m, 6H), 7.52 (d, J = 7.6 Hz, 2H), 7.40 (t, J = 7.6 Hz, 2H), 7.28 (t, J = 7.3 Hz, 1H), 5.41 – 5.28 (m, 1H), 1.69 (d, J = 7.0 Hz, 3H).

Scheme S3. Chemical structures of ligands 2.

2 was synthesized in similar procedures as above, starting from C2 and 3.

2: ¹H NMR (400 MHz, d_6 -DMSO, 298K) δ 11.04 (s, 1H), 9.19 (d, J = 8.2 Hz, 1H), 8.94 (s, 2H), 8.41 (d, J = 7.0 Hz, 1H), 8.31 (m, 4H), 8.15 (m, 6H), 4.25 (q, J = 6.3 Hz, 1H), 1.36 (d, J = 6.6 Hz, 6H). ESI-MS: calcd for $C_{108}H_{90}N_{16}O_8$ [M+2H]²⁺: 870.8652, found 870.8603. m.p. > 250 °C.

Synthesis of La₆L₃

To a suspension of Zn-1^{*R/S*} (3.7 mg, 1.8 µmol) in 360 µL CD₃CN, a solution of La(OTf)₃ (2.1 mg, 3.6 µmol) in 240 µL CD₃OD was added and the reaction system was stirred at 45°C for 2 h. The turbid suspension turned clear quickly, giving a homogeneous purple solution as the final product La₆(Zn-1^{*R/S*})₃(OTf)₁₈. The self-assembled complex was characterized without further purification.

 $La_6(1^{R/S})_3(OTf)_{18}$ was synthesized in the same method as $La_6(Zn-1^{R/S})_3(OTf)_{18}$.

La₆(Zn-1^{*R*})₃(OTf)₁₈: ¹H NMR (400 MHz, CD₃CN/CD₃OD) δ 8.83-7.26 (broad, aromatic H), 5.59 (br, CH), 5.38 (br, CH), 1.81 (br, CH₃), 1.58 (br, CH₃). The severe line-broadening and over-lapping of the proton signals hindered the assignment of the ¹H NMR spectrum. ESI-TOF-MS for La₆(Zn-1^{*R*})₃(OTf)₁₈: the following signals are those at the highest intensities. m/z calcd. for [La₆(Zn-1^{*R*})₃(OTf)₁₂]⁴⁺ 2268.7094, found 2268.4550; calcd. for [La₆(Zn-1^{*R*})₃(OTf)₁₃]⁵⁺ 1785.1770, found 1785.1746; calcd. for [La₆(Zn-1^{*R*})₃(OTf)₁₂]⁶⁺ 1462.8221, found 1462.6537; calcd. for [La₆(Zn-1^{*R*})₃(OTf)₁₁]⁷⁺ 1232.5686, found 1232.5677; calcd. for [La₆(Zn-1^{*R*})₃(OTf)₁₀]⁸⁺ 1059.8785, found 1059.8785.

La₆(1^{*R*})₃(OTf)₁₈: ¹H NMR (400 MHz, CD₃CN/CD₃OD) δ 8.84-7.31 (br, aromatic H), 5.63 (br, CH), 5.44 (br, CH), 1.83 (br, CH₃), 1.61 (br, CH₃). It should also be noted that proton signals of the self-assembled complexes at around -3 ppm can not be detected because of the proton exchange between the active pyrrole- β H atoms and methanol-*d*₄. ESI-TOF-MS for La₆(1^{*R*})₃(OTf)₁₈: the following signals are those at the highest intensities. m/z calcd. for [La₆(1^{*R*})₃(OTf)₁₃]⁵⁺ 1747.0298, found 1747.0311; calcd. for [La₆(1^{*R*})₃(OTf)₁₂]⁶⁺ 1431.1997, found 1431.2020; calcd. for [La₆(1^{*R*})₃(OTf)₁₁]⁷⁺ 1205.3206, found 1205.3230; calcd. for [La₆(1^{*R*})₃(OTf)₁₀]⁸⁺ 1036.0365, found 1036.0397; calcd. for [La₆(1^{*R*})₃(OTf)₉]⁹⁺ 904.3711, found 904.3752.

La₆(1^{*S*})₃(OTf)₁₈: ¹H NMR (400 MHz, CD₃CN/CD₃OD) δ 8.81-7.14 (br, aromatic H), 5.57 (br, CH), 5.38 (br, CH), 1.82 (br, CH₃), 1.59 (br, CH₃).

Synthesis of Ln₈(L)₆ (Ln^{III} = Pr^{III}, Nd^{III} and Eu^{III})

 $Eu_8(Zn-1^{R/S})_6(OTf)_{24}$: To a suspension of $Zn-1^{R/S}$ (3.7 mg, 1.8 µmol) in 360 µL CD₃CN, a solution of Eu(OTf)₃ (1.56 mg, 2.6 µmol) in 240 µL CD₃OD was added and the reaction system was stirred at 45°C for 12 h. The turbid suspension turned clear gradually, giving a homogeneous purple solution as the final product. The self-assembled complex was characterized without further purification.

 $Ce_8(Zn-1^{R/S})_6(OTf)_{24}$, $Pr_8(Zn-1^{R/S})_6(OTf)_{24}$, $Nd_8(Zn-1^{R/S})_6(OTf)_{24}$ and $Eu_8(1^{R/S})_6(OTf)_{24}$ can be synthesized through the similar procedure as $Eu_8(Zn-1^{R/S})_6(OTf)_{24}$.

 $Eu_8(Zn-1^{R/S})_6(OTf)_{24}$ complexes can also be synthesized through the addition of Eu^{III} (4 equiv) to the prepared solution of $La_6(Zn-1^R)_3$.

Eu₈(Zn-1^{*R*})₆(OTf)₂₄: ¹H NMR (400 MHz, CD₃CN/CD₃OD) δ 9.34 (s, 8H), 8.92 (s, 8H), 8.44 (d, *J* = 3.6 Hz, 8H), 8.25-7.91 (br, 56H), 7.23 (s, 8H), 7.02 (br, 48H), 6.56 (br, 16H), 5.87 (br, 8H), 1.91 (d, *J* = 1.6 Hz, 24H). The signals of amide proton (assigned as k) disappeared in the ¹H NMR spectrum possibly due to the proton exchange between amide proton and methanol-*d*₄. ESI-TOF-MS for Eu₈(Zn-1^{*R*})₆(OTf)₂₄: the following signals are those at the highest intensities. m/z calcd. for [Eu₈(Zn-1^{*R*})₆(OTf)₁₅]⁹⁺ 1751.1987, found 1751.1948; calcd. for [Eu₈(Zn-1^{*R*})₆(OTf)₁₄]¹⁰⁺ 1561.1835, found 1561.1815; calcd. for [Eu₈(Zn-1^{*R*})₆(OTf)₁₃]¹¹⁺ 1405.6257, found 1405.6245; calcd. for [Eu₈(Zn-1^{*R*})₆(OTf)₁₂]¹²⁺ 1276.0775, found 1276.0760; calcd. for [Eu₈(Zn-1^{*R*})₆(OTf)₁₁]¹³⁺ 1166.5366; calcd. for [Eu₈(Zn-1^{*R*})₆(OTf)₁₀]¹⁴⁺ 1072.5018, found 1072.5017.

Eu₈(1^{*R*})₆(OTf)₂₄: ¹H NMR (400 MHz, CD₃CN/CD₃OD) δ 9.41 (br, 8H), 8.90 (br, 8H), 8.53 (br, 8H), 8.16-7.87 (br, 56H), 7.27-7.05 (br, 56H), 6.53 (br, 16H), 5.83 (br, 8H), 5.12 (br, 8H). ESI-TOF-MS for Eu₈(1^{*R*})₆(OTf)₂₄: the following signals are those at the highest intensities. m/z calcd. for [Eu₈(1^{*R*})₆(OTf)₁₆]⁸⁺ 1941.1586, found 1941.1565 calcd. for [Eu₈(1^{*S*})₆(OTf)₁₅]⁹⁺ 1709.0353, found 1709.1457; calcd. for [Eu₈(1^{*R*})₆(OTf)₁₄]¹⁰⁺ 1523.1364, found 1523.1367; calcd. for [Eu₈(1^{*R*})₆(OTf)₁₃]¹¹⁺ 1371.1283, found 1371.3103; calcd. for [Eu₈(1^{*R*})₆(OTf)₁₂]¹²⁺ 1244.4549, found 1244.4559; calcd. for [Eu₈(1^{*R*})₆(OTf)₁₁]¹³⁺ 1137.2698, found 1137.3505.

Ce₈(Zn-1^{*R*})₆(OTf)₂₄: ¹H NMR (400 MHz, CD₃CN/CD₃OD) δ 13.84 (br), 12.77 (br), 9.10-6.04 (br), 2.02 (br), 1.36 (br), 1.27 (br), 0.86 (br). The self-assembly of Ce^{III} with **Zn-1**^{*R*/s} was conducted in a similar procedure as Eu₈(Zn-1^{*R*})₆(OTf)₂₄. A series of multi-charged species corresponding to [Ce₈(Zn-1^{*R*})₆(OTf)_{24-n}]ⁿ⁺ complexes were obtained. ESI-MS for Ce₈(Zn-1^{*R*})₆(OTf)₂₄: the following signals are those at the highest intensities. m/z calcd. for [Ce₈(Zn-1^{*R*})₆-13H]¹¹⁺ 1219.7537, found 1219.7549; calcd. for [Ce₈(Zn-1^{*R*})₆-14H]¹⁰⁺ 1341.6281, found 1341.4290; calcd. for [Ce₈(Zn-1^{*R*})₆-15H]⁹⁺ 1490.5860, found 1490.3628; calcd. for [Ce₈(Zn-1^{*R*})₆-16H]⁸⁺ 1676.7833, found 1676.6614; calcd. for [Ce₈(Zn-1^{*R*})₆-17H]⁷⁺ 1916.1799, found 1916.6018. MS peaks corresponding to Ce₆(Zn-1^{*R*})₃(OTf)₁₈ were also observed in the MS spectra, but in a low intensity. We used Ce₈(Zn-1^{*R*})₆(OTf)₂₄ for the representation of the self-assembled complexes of Ce^{III} with **Zn-1^{***R***}**. Pr₈(Zn-1^{*R*})₆(OTf)₂₄: ¹H NMR (400 MHz, CD₃CN/CD₃OD) δ 10.07 (br), 8.53 (br), 8.22 (br), 7.64 (br), 7.58 (br), 7.38 (br), 7.12 (br), 6.58 (br), 6.03 (br), 1.14 (br). ESI-MS for Pr₈(Zn-1^{*R*})₆(OTf)₂₄: the following signals are those at the highest intensities. m/z calcd. for [Pr₈(Zn-1^{*R*})₆-13H]¹¹⁺ 1220.3002, found 1220.2111; calcd. for [Pr₈(Zn-1^{*R*})₆-14H]¹⁰⁺ 1342.2295, found 1342.1325; calcd. for [Pr₈(Zn-1^{*R*})₆-15H]⁹⁺ 1491.2543, found 1491.3677; calcd. for [Pr₈(Zn-1^{*R*})₆-16H]⁸⁺ 1677.5351, found 1677.5398; calcd. for [Pr₈(Zn-1^{*R*})₆-17H]⁷⁺ 1917.0391, found 1916.4652.

Nd₈(Zn-1^{*R*})₆(OTf)₂₄: ¹H NMR (400 MHz, CD₃CN/CD₃OD) δ 11.13 (s), 10.71 (s), 10.06 (s), 9.-6.54 (br), 5.02 (br), 2.62 (br), 2.24 (br), 1.67 (br). The severe overlapping and broadening of the ¹H NMR spectrum hindered the assignment and integration of the proton signals. ESI-MS for Nd₈(Zn-1^{*R*})₆(OTf)₂₄: the following signals are those at the highest intensities. m/z calcd. for [Nd₈(Zn-1^{*R*})₆-13H]¹¹⁺ 1222.5753, found 1222.5794; calcd. for [Nd₈(Zn-1^{*R*})₆-14H]¹⁰⁺ 1344.7321, found 1344.7371; calcd. for [Nd₈(Zn-1^{*R*})₆-15H]⁹⁺ 1494.0349, found 1494.0379; calcd. for [Nd₈(Zn-1^{*R*})₆-16H]⁸⁺ 1680.6633, found 1680.6672.

General protocols of transmetalation self-assembly of Yb_8L_6 (L = $1^{R/S}$ or Zn- $1^{R/S}$)

Yb(OTf)₃ (2.4 µmol) was added to a solution of pre-prepared $Ln_8L_6(OTf)_{24}$ ($Ln^{III} = Pr^{III}$, Nd^{III} and Eu^{III}) (0.3 µmol) in CD₃CN/CD₃OD and the reaction system was stirred at 45°C for 6 h. Yb₈L₆(OTf)₂₄ was formed as the final thermodynamically stable product. When CHCl₃ (1mL) was added to the solution of Yb₈L₆(OTf)₂₄ (CH₃CN/CH₃OH, 0.5mL), the self-assembled complexes were precipitated. The amaranth precipitation was centrifuged and dried for further characterization (yield, 78%).

Yb(OTf)₃ (2.4 µmol) was added to a solution of pre-prepared $La_6L_3(OTf)_{18}$ (0.4 µmol) in CD₃CN/CD₃OD and stirred at 45°C for 1 h. Yb₈L₆(OTf)₂₄ complexes were formed as the final thermodynamically stable product. The product can be used for characterization without further purification. Also, amaranth precipitation appeared with the addition of CHCl₃ to the self-assembled solution and the precipitation was centrifuged and dried for further characterization (yield, 78%).

Except for the above mentioned one-step transmetalation reaction, $Yb_8L_6(OTf)_{24}$ can also be synthesized in a cascade metalion metathesis method, starting from $La_6L_3(OTf)_{18}$ to $Eu_8L_6(OTf)_{24}$ and to the final $Yb_8L_6(OTf)_{24}$.

Direct self-assembly of Yb(OTf)₃ with L in CD₃OD/CD₃CN (v/v=2:3) was not successful as the solution never turned clear and no signals was observed in the ¹H NMR spectrum upon prolonged reaction time (> 1 week), from which we speculated that dynamically trapped oligomers were formed in this case.

Reaction of L (3 equiv) with a mixture of La^{III} and Yb^{III} (2 equiv and 4 equiv, respectively) in CD₃OD/CD₃CN (v/v=2:3) also results in the formation of Yb₈L₆(OTf)₂₄ complexes, but needs a much longer reaction time (3 days) compared with the transmetalation self-assembly process.

Yb₈(1^{*R*})₆(OTf)₂₄: ¹H NMR (400 MHz, CD₃CN/CD₃OD) δ 10.67-8.85 (br, aromatic H), 7.35-6.50 (br, aromatic H), 3.00 (br, CH₃). The severe lien-broadening of the ¹H NMR spectrum caused by the paramagnetism of Yb^{III} ions hindered the accurate integration and assignment of the proton signals. ESI-TOF-MS for Yb₈(1^{*R*})₆(OTf)₂₄: the following signals are those at the highest intensities. m/z calcd. for [Yb₈(1^{*R*})₆-15H]⁹⁺ 1477.5624, found

1477.5613; calcd. for $[Yb_8(1^R)_6-14H]^{10+}$ 1330.0007, found 1330.2067; calcd. for $[Yb_8(1^R)_6-13H]^{11+}$ 1209.0978, found 1209.0988; calcd. for $[Yb_8(1^R)_6-12H]^{12+}$ 1108.5071, found 1108.5064 (Prepared through the transmetalation from $Eu_8(1^R)_6(OTf)_{24}$).

Yb₈(1^{*R*})₆(OTf)₂₄: ¹H NMR (400 MHz, CD₃CN/CD₃OD) δ 10.09-8.85 (br, aromatic H), 7.35-6.50 (br, aromatic H), 2.99 (br, CH₃). ESI-TOF-MS for Yb₈(1^{*R*})₆(OTf)₂₄: the following signals are those at the highest intensities. m/z calcd. for [Yb₈(1^{*R*})₆-16H]⁸⁺ 1662.2570, found 1662.2605; [Yb₈(1^{*R*})₆-15H]⁹⁺ 1477.5624, found 1477.5627; calcd. for [Yb₈(1^{*R*})₆-14H]¹⁰⁺ 1330.0007, found 1329.8082; calcd. for [Yb₈(1^{*R*})₆-13H]¹¹⁺ 1209.0978, found 1209.0973 (Prepared through the transmetalation from La₆(1^{*R*})₃(OTf)₁₈).

Yb₈(Zn-1^{*R*})₆(OTf)₂₄: ¹H NMR (400 MHz, CD₃CN) δ 10.59-8.83 (br, aromatic H), 7.30-6.51 (br, aromatic H), 2.95 (br, CH₃). The severe broadening of the ¹H NMR spectrum caused by the paramagnetism of Yb^{III} ions hindered the accurate integration and assignment of the proton signals. ESI-TOF-MS for Yb₈(Zn-1^{*R*})₆(OTf)₂₄: the following signals are those at the highest intensities. m/z calcd. for [Yb₈(Zn-1^{*R*})₆(OTf)₉-7H]⁸⁺ 1878.3955, found 1878.6445; calcd. for [Yb₈(Zn-1^{*R*})₆(OTf)₈-7H]⁹⁺ 1653.1346, found 1653.1319; calcd. for [Yb₈(Zn-1^{*R*})₆(OTf)₇-7H]¹⁰⁺ 1473.9259, found 1473.4284; calcd. for [Yb₈(Zn-1^{*R*})₆(OTf)₆-7H]¹¹⁺ 1325.4824, found 1325.5763; calcd. for [Yb₈(Zn-1^{*R*})₆(OTf)₅-7H]¹²⁺ 1202.6128, found 1202.6150; calcd. for [Yb₈(Zn-1^{*R*})₆(OTf)₅-6H]¹³⁺ 1110.1047, found 1110.1046.

Synthesis of Eu₈(2)₆(ClO₄)₂₄

To a suspension of **2** (3.1 mg, 1.8 μ mol) in 360 μ L CD₃CN, a solution of Eu(ClO₄)₃·6H₂O (1.45 mg, 2.6 μ mol) in 240 μ L CD₃OD was added and the reaction system was stirred at 45°C for 12 h. The turbid suspension turned clear gradually, giving a homogeneous purple solution as the final product. The self-assembled complex was characterized without further purification.

Eu₈(**2**)₆(ClO₄)₂₄: ¹H NMR (400 MHz, CD₃CN) δ 9.46 (d, J = 4.0 Hz, 8H), 8.94 (d, J = 4.3 Hz, 8H), 8.58 (d, J = 6.8 Hz, 8H), 8.47 – 8.02 (br, 32H), 7.91 (br, 16H), 7.29 (br, 16H), 6.59 (br, 16H), 4.49 (br, 8H), 1.71 (br, 24H), 1.02 (br, 24H).

The ¹³C NMR spectra of ligands L (L = $1^{R/S}$ or Zn- $1^{R/S}$), La₆L₃ and Ln₈L₆ (Ln = Eu^{III} and Yb^{III}) complexes were not successfully obtained due to their low solubility.

3. Host-guest chemistry

PAH molecules of naphthalene, anthracene, phenanthrene, perylene, 1,12-benzoperylene, coronene, tetraphenylethylene, rubrene and nonplanar (S/R)2,2'-dimethoxy-1,1'-binaphthyl were used as guests for the host-guest investigation.

Excess guest molecules were added to the solution of prepared $Ln_8(Zn-1^R)_6$ (Ln = Eu^{III} and Yb^{III}) in CD₃CN/CD₃OD. After stirring at 45°C for 2h, excess guest molecules were removed through centrifuge and the clear solution was characterized without further purification.

¹H-¹H NOESY NMR spectra of the host-guest complexes were tested. But not all the cross-peaks between the signals of the encapsulated guests and the hosts can be observed due to the high molecule weight and the paramagnetism of the lanthanide ions.

It should be noted that, the preparation of $La_6(Zn-1^R)_3$ and $Eu_8(Zn-1^R)_6$ should be conducted in a mixture solution of CD_3CN/CD_3OD . Once formed, the $Eu_8(Zn-1^R)_6$ complexes can be dissolved in CH_3CN (the solubility is not very good), but the $La_6(Zn-1^R)_3$ complexes are only soluble in CD_3CN/CD_3OD (3/2, v/v). As the encapsulated signals of perylene tend to overlap with the signals of CD_3OD at ca. 3.28ppm, the host-guest complexes were dried under reduced pressure and redissolved in CD_3CN for NMR characterization.

4. Single crystal X-ray diffraction studies

Suitable single crystals of $Eu_8(2)_6$ were obtained by slow vapor diffusion of acetone into the acetonitrile solution of $Eu_8(2)_6(ClO_4)_{24}$. The X-ray diffraction data was collected at the BL17B macromolecular crystallography beamline in Shanghai Synchrotron Facility. The collected diffraction data were processed with the HKL3000 software program.³ The structures were solved by direct methods and refined by full-matrix least-squares on *F2* with anisotropic displacement using the SHELX software package.⁴ The crystals diffract weakly due to the large amounts of solvent molecules and anions. Details on crystal data collection and refinement are summarized in Table S1.

Crystal data for Eu₈(2)₆ (CCDC-1939386): Space group P4/n, a = 38.200(5) Å, b = 38.200(5) Å, c = 46.770(9) Å, $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$, V = 68249(24) Å³, Z = 2, T = 293(2) K. Anisotropic least-squares refinement for the cubic framework and isotropic refinement for the other fragments on 20682 independent merged reflections (*R*int = 0.0937) converged at residual *w*R2 = 0.2962 for all data; residual *R*1 = 0.0857 for 13439 observed data [*I*> $2\sigma(I)$], and goodness of fit (GOF) = 1.118.

Data availability

X-ray crystal structure of compounds $Eu_8(2)_6(ClO_4)_{24}$ reported in this paper has been deposited in the Cambridge Crystallographic Data Centre under accession numbers CCDC: 1939386. These data can be obtained free of charge via <u>http://www.ccdc.cam.ac.uk/data_request/cif</u>). All other data supporting the findings of this study are available in the article and its Supplementary Information files and from the corresponding authors on request.

5. NMR and ESI-TOF-MS spectra

Figure S1. ¹H NMR spectrum of Zn-1^{*R*} (400 MHz, d_6 -DMSO, 298K).

Figure S2. ¹H-¹H COSY NMR spectrum of Zn- 1^R (600 MHz, d_6 -DMSO, 298K).

Figure S4. ¹H NMR spectrum of 1^R (400 MHz, d_6 -DMSO, 298K).

Figure S6. ¹H NMR spectrum of **2** (400 MHz, *d*₆-DMSO, 298K).

Figure S7. ¹H NMR spectrum of La₆(Zn-1^{*R*})₃(OTf)₁₈ (400 MHz, CD₃CN/CD₃OD, 298K).

Figure S8. ¹H-¹H COSY NMR spectrum of La₆(Zn-1^{*R*})₃(OTf)₁₈ (600 MHz, CD₃CN/CD₃OD, 298K).

Figure S9. ¹H-DOSY NMR spectrum of $La_6(Zn-1^R)_3(OTf)_{18}$ (log D = -9.498, r = 18.60Å, 400 MHz, CD₃CN/CD₃OD, 298 K).

Figure S10. ESI-TOF-MS spectra of $La_6(Zn-1^R)_3(OTf)_{18}$ with insets showing the observed and simulated isotopic patterns of the +6 peaks.

Figure S11. ¹H NMR spectra of the self-assembled complexes of $Zn-1^{R}$ with La^{III} at different metal/ligand (M/L) ratios (600 MHz, CD₃CN/CD₃OD, 298K).

Figure S12. ¹H NMR spectrum of $La_6(Zn-1^S)_3(OTf)_{18}$ (400 MHz, CD₃CN/CD₃OD, 298K). The integration ratio of the proton signals of l is not always the same. This may be ascribed to the perturbation of the coordination symmetry of La^{III} ions caused by the irregular coordination of solvent molecules or H₂O to the La^{III} ions.

Figure S13. ¹H NMR spectrum of La₆(1^{*R*})₃(OTf)₁₈ (400 MHz, CD₃CN/CD₃OD, 298K).

Figure S14. ESI-TOF-MS spectra of $La_6(1^R)_3(OTf)_{18}$ with insets showing the observed and simulated isotopic patterns of the +7 peaks.

Figure S15. ¹H NMR spectrum of Eu₈(Zn-1^{*R*})₆(OTf)₂₄ (400 MHz, CD₃CN/CD₃OD, 298K).

Figure S16. ¹H-¹H COSY NMR spectrum of Eu₈(Zn-1^{*R*})₆(OTf)₂₄ (400 MHz, CD₃CN/CD₃OD, 298K).

Figure S17. ¹H-¹H NOESY NMR spectrum of Eu₈(Zn-1^{*R*})₆(OTf)₂₄ (400 MHz, CD₃CN/CD₃OD, 298K).

Figure S18. ¹H-DOSY NMR spectrum of $Eu_8(Zn-1^R)_6(OTf)_{24}$ (log D=-9.510, r = 19.21Å, 400 MHz, CD₃CN/CD₃OD, 298 K).

Figure S19. ESI-TOF-MS spectra of $Eu_8(Zn-1^R)_6(OTf)_{24}$ with insets showing the observed isotopic patterns of the +11 peaks.

Figure S20. Comparison of the observed and simulated signals of $[Eu_8(Zn-1^R)_6(OTf)_{13}]^{11+}$.

Figure S21. ¹H NMR spectra of $Eu_8(Zn-1^R)_6(OTf)_{24}$ self-assembled through transmetalation from $La_6(Zn-1^R)_3(OTf)_{18}$ (400 MHz, CD₃CN, 298K).

Figure S22. ¹H NMR spectra of Eu₈(1^{*R*})₆(OTf)₂₄ (400 MHz, CD₃CN/CD₃OD, 298K).

Figure S23. ESI-TOF-MS spectra of $Eu_8(1^R)_6(OTf)_{24}$ with insets showing the observed and simulated isotopic patterns of the +10 peaks.

Figure S24. ¹H NMR spectrum of the self-assembled complexes of Ce^{III} with Zn-1^{*R*} (400 MHz, CD₃CN/CD₃OD, 298K).

Figure S25. ¹H-DOSY NMR spectrum of $Ce_6(Zn-1^R)_3(OTf)_{24}$ (log D=-9.508, r = 19.12Å, 400 MHz, CD₃CN/CD₃OD, 298 K).

Figure S26. ESI-TOF-MS spectra of $Ce_8(Zn-1^R)_6(OTf)_{24}$ with insets showing the observed isotopic patterns of the +10 peaks.

Figure S27. Comparison of the observed and simulated signals of [Ce₈(Zn-1^{*R*})₆-14H]¹⁰⁺.

Figure S28. ¹H NMR spectrum of Pr₈(Zn-1^{*R*})₆(OTf)₂₄ (400 MHz, CD₃CN/CD₃OD, 298K).

Figure S29. ¹H-DOSY NMR spectrum of $Pr_8(Zn-1^R)_6(OTf)_{24}$ (log D=-9.499, r = 18.73Å, 400 MHz, CD₃CN/CD₃OD, 298 K).

Figure S30. ESI-TOF-MS spectra of $Pr_8(Zn-1^R)_6(OTf)_{24}$ with insets showing the observed isotopic patterns of the +9 peaks.

Figure S31. Comparison of the observed and simulated signals of $[\Pr_8(\mathbb{Z}n-1^R)_6-15H]^{9+}$.

Figure S32. ¹H NMR spectrum of Nd₈(Zn-1^{*R*})₆(OTf)₂₄ (400 MHz, CD₃CN/CD₃OD, 298K).

Figure S33. ¹H-DOSY NMR spectrum of $Nd_8(Zn-1^R)_6(OTf)_{24}$ (log D=-9.501, r = 18.80Å, 400 MHz, CD₃CN/CD₃OD, 298 K).

Figure S34. ESI-TOF-MS spectra of $Nd_8(Zn-1^R)_6(OTf)_{24}$ with insets showing the observed isotopic patterns of the +10 peaks.

Figure S35. Comparison of the observed and simulated signals of $[Nd_8(Zn-1^R)_6-14H]^{10+}$.

Figure S36. ¹H NMR spectrum of direct self-assembly of $Zn-1^{R}$ with Yb(OTf)₃ (400 MHz, CD₃CN/CD₃OD, 298K).

Figure S37. ¹H NMR spectrum of $Yb_8(Zn-1^R)_6(OTf)_{24}$ self-assembled through transmetalation from $La_6(Zn-1^R)_3(OTf)_{18}$ (400 MHz, CD₃CN, 298K).

Figure S38. ¹H-¹H COSY NMR spectrum of **Yb**₈(**Zn-1**^{*R*})₆(**OTf**)₂₄ self-assembled through transmetalation from La₈(**Zn-1**^{*R*})₆(**OTf**)₂₄ (600 MHz, CD₃CN/CD₃OD, 298K).

Figure S39. ¹H-DOSY NMR spectrum of $Yb_8(Zn-1^R)_6(OTf)_{24}$ self-assembled through transmetalation from $La_8(Zn-1^R)_6(OTf)_{24}$ (log D=-9.502, r = 18.80Å, 400 MHz, CD₃CN/CD₃OD, 298 K).

Figure S40. ESI-TOF-MS spectra of $Yb_8(Zn-1^R)_6(OTf)_{24}$ self-assembled through transmetalation from $La_6(Zn-1^R)_3(OTf)_{18}$, with insets showing the observed isotopic patterns of the +10 peaks.

Figure S41. Comparison of the observed and simulated signals of [Yb₈(Zn-1^{*R*})₆(OTf)₇-7H]¹⁰⁺.

Figure S42. ¹H NMR spectra of $Yb_8(Zn-1^R)_6(OTf)_{24}$ self-assembled through transmetalation from $Eu_8(Zn-1^R)_6(OTf)_{24}$ (400 MHz, CD₃CN/CD₃OD, 298K).

Figure S43. ESI-TOF-MS spectra of $Yb_8(Zn-1^R)_6(OTf)_{24}$ self-assembled through transmetalation from $Eu_8(Zn-1^R)_6(OTf)_{24}$ with insets showing the observed isotopic patterns of the +10 peaks.

Figure S44. Comparison of the observed and simulated signals of $[Yb_8(Zn-1^R)_6(OTf)_{14}]^{10+}$.

Figure S45. ¹H NMR spectrum of Yb₈(Zn-1^s)₆(OTf)₂₄ self-assembled through transmetalation from Eu₈(Zn-1^s)₆(OTf)₂₄ (400 MHz, CD₃CN, 298K).

Figure S46. ESI-TOF-MS spectra of $Yb_8(Zn-1^S)_6(OTf)_{24}$ self-assembled through transmetalation from $Eu_8(Zn-1^S)_6(OTf)_{24}$ with insets showing the observed isotopic patterns of the +10 peaks.

Figure S47. Comparison of the observed and simulated signals of [Yb₈(Zn-1^s)₆(OTf)₁₄]¹⁰⁺.

Figure S48. ¹H NMR spectra of $Yb_8(1^R)_6(OTf)_{24}$ self-assembled through transmetalation from $La_6(1^R)_3(OTf)_{18}$ (400 MHz, CD₃CN/CD₃OD, 298K).

Figure S49. ESI-TOF-MS spectra of $Yb_8(1^R)_6(OTf)_{24}$ self-assembled through transmetalation from $La_6(1^R)_3(OTf)_{18}$, with insets showing the observed and simulated isotopic patterns of the +10 peaks.

Figure S50. Comparison of the observed and simulated signals of $[Yb_8(1^R)_6-14H]^{10+}$.

Figure S51. ¹H NMR spectrum of $Yb_8(1^R)_6(OTf)_{24}$ self-assembled through transmetalation from $Eu_8(1^R)_6(OTf)_{24}$ (400 MHz, CD₃CN/CD₃OD, 298K).

Figure S52. ESI-TOF-MS spectra of $Yb_8(1^R)_6(OTf)_{24}$ self-assembled through transmetalation from $Eu_8(1^R)_6(OTf)_{24}$, with insets showing the observed isotopic patterns of the +10 peaks.

Figure S53. Comparison of the observed and simulated signals of $[Yb_8(1^R)_6-14H]^{10+}$.

Figure S54. ¹H NMR spectrum of $Yb_8(1^R)_6(OTf)_{24}$ self-assembled through cascade transmetalation reaction from $La_6(1^R)_3(OTf)_{18}$ (400 MHz, CD₃CN/CD₃OD, 298K).

Figure S56. ¹H-¹H COSY NMR spectrum of Eu₈(2)₆(ClO₄)₂₄ (400 MHz, CD₃CN/CD₃OD, 298K).

Figure S57. ¹H NMR spectra of post-synthetic metal-ion metathesis experiments with the addition of Eu^{III} toward La₆(Zn-1^{*R*})₃ systems (400 MHz, CD₃CN/CD₃OD, 298K).

According to the ¹H NMR spectra, the La^{III} ions in La₆(Zn-1^{*R*})₃ were substituted by Eu^{III} ions, leading to the formation of Eu₈(Zn-1^{*R*})₆ complexes.

Figure S58. ¹H NMR spectra of post-synthetic metal-ion metathesis experiments with the addition of Yb^{III} toward $La_6(Zn-1^R)_3$ systems (400 MHz, CD₃CN/CD₃OD, 298K).

According to the ¹H NMR spectra, the La^{III} ions in La₆(Zn-1^{*R*})₃ were substituted by Yb^{III} ions, leading to the formation of Yb₈(Zn-1^{*R*})₆ complexes.

Figure S59. ¹H NMR spectra of post-synthetic metal-ion metathesis experiments with the addition of Yb^{III} toward $Ce_8(Zn-1^R)_6$ systems (400 MHz, CD₃CN/CD₃OD, 298K).

According to the ¹H NMR spectra, the Ce^{III} ions in Ce₈(Zn-1^{*R*})₆ were substituted by Yb^{III} ions, leading to the formation of Yb₈(Zn-1^{*R*})₆ complexes.

Figure S60. ¹H NMR spectra of post-synthetic metal-ion metathesis experiments with the addition of Yb^{III} toward $Pr_8(Zn-1^R)_6$ systems (400 MHz, CD₃CN/CD₃OD, 298K).

According to the ¹H NMR spectra, the Pr^{III} ions in $Pr_8(Zn-1^R)_6$ were substituted by Yb^{III} ions, leading to the formation of $Yb_8(Zn-1^R)_6$ complexes.

Figure S61. ¹H NMR spectra of post-synthetic metal-ion metathesis experiments with the addition of Yb^{III} toward $Nd_8(Zn-1^R)_6$ systems (400 MHz, CD₃CN/CD₃OD, 298K).

According to the ¹H NMR spectra, the Nd^{III} ions in $Nd_8(Zn-1^R)_6$ were substituted by Yb^{III} ions, leading to the formation of $Yb_8(Zn-1^R)_6$ complexes.

According to the ¹H NMR spectra, the Eu^{III} ions in $Eu_8(Zn-1^R)_6$ were substituted by Yb^{III} ions, leading to the formation of Yb₈(Zn-1^R)₆ complexes.

Figure S63. ¹H NMR spectra of perylene, perylene₃@ $Eu_8(Zn-1^R)_6$ and $Eu_8(Zn-1^R)_6$ (400 MHz, CD₃CN/CD₃OD, 298K).

Figure S64. ¹H NMR spectra of $Eu_8(Zn-1^R)_6$ with different equivalents of perylene (400 MHz, CD₃CN, 298K) (• denotes the signals of $Eu_8(Zn-1^R)_6$ that undergo sever broadening during the host-guest complexation process, • denotes the signals of the encapsulated guests, • denotes the signals of free guests).

Figure S65. ¹H-¹H NOESY NMR spectrum of perylene₃@ $Eu_8(Zn-1^R)_6$ (400 MHz, CD₃CN/CD₃OD, 298K). ¹H-¹H NOESY NMR spectra of the host-guest complexes were tested. But not all the cross-peaks between the signals of the encapsulated guests and the hosts can be observed due to the high molecule weight and the paramagnetism of the lanthanide ions.

Figure S66. ¹H-DOSY NMR spectrum of perylene₃@ $Eu_8(Zn-1^R)_6$ (log D=-9.505, r = 18.92Å, 400 MHz, CD₃CN/CD₃OD, 298 K).

Figure S67. ESI-TOF-MS spectra of perylene₃@ $Eu_8(Zn-1^R)_6$ with insets showing the observed isotopic patterns of the +10 peaks.

Figure S68. Comparison of the observed and simulated signals of $[perylene_3@Eu_8(Zn-1^R)_6(OTf)_{14}]^{10+}$.

Figure S69. ¹H NMR spectra of 1,12-benzoperylene, 1,12-benzoperylene₃@ $Eu_8(Zn-1^R)_6$ and $Eu_8(Zn-1^R)_6$ (400 MHz, CD₃CN, 298K).

Figure S70. ¹H NMR spectra of $Eu_8(Zn-1^R)_6$ with different equivalents of 1,12-benzoperylene (400 MHz, CD₃CN, 298K) (• denotes the signals of $Eu_8(Zn-1^R)_6$ that undergo sever broadening during the host-guest complexation process, **a** denotes the signals of the encapsulated guests, **b** denotes the signals of free guests).

Figure S71. ¹H-¹H NOESY NMR spectrum of 1,12-benzoperylene₃@Eu₈(Zn-1^{*R*})₆ (400 MHz, CD₃CN/CD₃OD, 298K).

¹H-¹H NOESY NMR spectra of the host-guest complexes were tested. But not all the cross-peaks between the signals of the encapsulated guests and the hosts can be observed due to the high molecule weight and the paramagnetism of the lanthanide ions.

Figure S72. ¹H-DOSY NMR spectrum of 1,12-benzoperylene₃@Eu₈(Zn-1^{*R*})₆ (log D=-9.523, r = 19.72Å, 400 MHz, CD₃CN/CD₃OD, 298 K).

Figure S73. ESI-TOF-MS spectra of 1,12-benzoperylene₃@ $Eu_8(Zn-1^R)_6$ with insets showing the observed isotopic patterns of the +11 peaks.

Figure S74. Comparison of the observed and simulated signals of [1,12-benzoperylene₃@Eu₈(Zn-1^{*R*})₆(OTf)₁₃]¹¹⁺.

Figure S75. ¹H NMR spectra of coronene, coronene₁@ $Eu_8(Zn-1^R)_6$ and $Eu_8(Zn-1^R)_6$ (400 MHz, CD₃CN, 298K).

Figure S76. ¹H NMR spectra of $Eu_8(Zn-1^R)_6$ with different equivalents of coronene (400 MHz, CD₃CN, 298K) (• denotes the signals of $Eu_8(Zn-1^R)_6$ that undergo sever broadening during the host-guest complexation process, • denotes the signals of the encapsulated guests).

Figure S77. ¹H-¹H NOESY NMR spectrum of coronene₁@ $Eu_8(Zn-1^R)_6$ (400 MHz, CD₃CN/CD₃OD, 298K). ¹H-¹H NOESY NMR spectra of the host-guest complexes were tested. But not all the cross-peaks between the signals of the encapsulated guests and the hosts can be observed due to the high molecule weight and the paramagnetism of the lanthanide ions.

Figure S78. ¹H-DOSY NMR spectrum of coronene₁@ $Eu_8(Zn-1^R)_6$ (log D=-9.512, r = 19.20Å, 400 MHz, CD₃CN/CD₃OD, 298 K).

Figure S79. ESI-TOF-MS spectra of coronene₁@ $Eu_8(Zn-1^R)_6$ with insets showing the observed isotopic patterns of the +10 peaks.

Figure S80. Comparison of the observed and simulated signals of [coronene1@Eu8(Zn-1R)6(OTf)14]¹⁰⁺

Figure S81. ¹H NMR spectra of $Eu_8(Zn-1^R)_6$ (bottom) and $Eu_8(Zn-1^R)_6$ with different guest molecules (400 MHz, CD₃CN, 298K, the empty circles denote signals of free guests).

Figure S82. ¹H NMR spectra of perylene, perylene₃@ $Yb_8(Zn-1^R)_6$ and $Yb_8(Zn-1^R)_6$ (400 MHz, CD₃CN/CD₃OD, 298K).

Figure S83. ESI-TOF-MS spectra of perylene₃@ $Yb_8(Zn-1^R)_6$ with insets showing the observed isotopic patterns of the +13 peaks.

Figure S84. Comparison of the observed and simulated signals of [perylene₃@Yb₈(Zn-1^{*R*})₆(OTf)₄-7H]¹³⁺. The molecular weight of perylene₃@Yb₈(Zn-1^{*R*})₆ complex is too large to simulate using Bruker Data Analysis software (Version 4.3) and Bruker Isotope Pattern software. So the simulations were performed with the Thermo Xcalibur Qual Browser software (Thermo Foundation 2.0).

Figure S85. ¹H NMR spectra of 1,12-benzoperylene, 1,12-benzoperylene₃@ $Yb_8(Zn-1^R)_6$ and $Yb_8(Zn-1^R)_6$ (400 MHz, CD₃CN/CD₃OD, 298K).

Figure S86. ESI-TOF-MS spectra of 1,12-benzoperylene₃@Yb₈(Zn-1^{*R*})₆ with insets showing the observed isotopic patterns of the +11 peaks.

Figure S87. Comparison of the observed and simulated signals of [1,12-benzoperylene₃@Yb₈(Zn-1^{*R*})₆(OTf)₁₃]¹¹⁺.

Figure S88. ¹H NMR spectra of coronene, coronene₁@ $Yb_8(Zn-1^R)_6$ and $Yb_8(Zn-1^R)_6$ (400 MHz, CD₃CN/CD₃OD, 298K).

Figure S89. ESI-TOF-MS spectra of $Yb_8(Zn-1^R)_6$ and coronene₁@ $Yb_8(Zn-1^R)_6$ with insets showing the observed isotopic patterns of the +10 peaks.

Figure S90. Comparison of the observed and simulated signals of $[Coronene_1@Yb_8(Zn-1^R)_6(OTf)_{14}]^{10+}$ and $[Yb_8(Zn-1^R)_6(OTf)_{14}]^{10+}$.

Valence	Molecular formula	Observed	Simulated
+9	$Yb_8(C_{128}H_{96}N_{16}O_8Zn)_6(CF_3SO_3)_{15}$	1769.8779	1769.8811
+9	$Yb_8(C_{128}H_{96}N_{16}O_8Zn)_6(CF_3SO_3)_{15}(C_{24}H_{12})_1\\$	1803.2252	1803.2250
+10	$Yb_8(C_{128}H_{96}N_{16}O_8Zn)_6(CF_3SO_3)_{14}$	1578.3001	1577.9978
+10	$Yb_8(C_{128}H_{96}N_{16}O_8Zn)_6(CF_3SO_3)_{13}-H$	1563.0039	1563.0018
+10	$Yb_8(C_{128}H_{96}N_{16}O_8Zn)_6(CF_3SO_3)_{14}(C_{24}H_{12})_1\\$	1608.0054	1608.0072
+11	$Yb_8(C_{128}H_{96}N_{16}O_8Zn)_6(CF_3SO_3)_{13}\\$	1421.0057	1421.0023
+11	$Yb_8(C_{128}H_{96}N_{16}O_8Zn)_6(CF_3SO_3)_{12}\text{-}H$	1407.4646	1407.2786
+11	$Yb_8(C_{128}H_{96}N_{16}O_8Zn)_6(CF_3SO_3)_{13}(C_{24}H_{12})_1$	1448.1952	1448.1926
+11	$Yb_8(C_{128}H_{96}N_{16}O_8Zn)_6(CF_3SO_3)_{12}(C_{24}H_{12})_1\text{-}H$	1434.6550	1434.6509
+12	$Yb_8(C_{128}H_{96}N_{16}O_8Zn)_6(CF_3SO_3)_{10}\hbox{-}2H$	1265.0988	1265.0961
+12	$Yb_8(C_{128}H_{96}N_{16}O_8Zn)_6(CF_3SO_3)_9\text{-}3H$	1252.5998	1252.5994
+12	$Yb_8(C_{128}H_{96}N_{16}O_8Zn)_6(CF_3SO_3)_{10}(C_{24}H_{12})_1\hbox{-}2H$	1290.1006	1290.1039
+12	$Yb_8(C_{128}H_{96}N_{16}O_8Zn)_6(CF_3SO_3)_9(C_{24}H_{12})_13H$	1277.6005	1277.6073
+13	$Yb_8(C_{128}H_{96}N_{16}O_8Zn)_6(CF_3SO_3)_9\text{-}2H$	1156.4036	1156.3231
+13	$Yb_8(C_{128}H_{96}N_{16}O_8Zn)_6(CF_3SO_3) \ _9(C_{24}H_{12})_1-2H$	1179.4071	1179.4073

Figure S91. Comparison of the observed and simulated signals in the ESI-TOF-MS spectra of $coronene_1@Yb_8(Zn-1^R)_6$.

Figure S92. ¹H NMR spectra of of the Eu^{III} ion induced structural transformation and guest encapsulation, from top to bottom: perylene (CDCl₃), $La_6(Zn-1^R)_3$, $La_6(Zn-1^R)_3$ with perylene and perylene₃@Eu₈(Zn-1^R)₆ (400 MHz, CD₃CN/CD₃OD, 298K, the solid and empty circle denote encapsulated and free guests).

The preparation of $La_6(Zn-1^R)_3$, $Eu_8(Zn-1^R)_6$ and the host-guest complexation of $Eu_8(Zn-1^R)_6$ with perylene were conducted in a mixture solution of CD₃CN/CD₃OD (2/1, v/v). Considering the overlap between the signals of encapsulated perylene and CD₃OD, the host-guest complexes were dried under reduced pressure and redissolved in CD₃CN for ¹H NMR characterization. The host-guest complexation of $Eu_8(Zn-1^R)_6$ with perylene molecules was further confirmed through ESI-TOF-MS analysis.

Figure S93. ESI-TOF-MS spectra of $La_6(Zn-1^R)_3(OTf)_{18}$ in the existence of perylene with insets showing the observed and simulated isotopic patterns of the +6 peaks.

Figure S94. ESI-TOF-MS spectra of perylene₃@ $Eu_8(Zn-1^R)_6$ with insets showing the observed isotopic patterns of the +10 peaks.

Figure S95. Comparison of the observed and simulated signals of [perylene₃@Eu₈(Zn-1^R)₆(OTf)₁₅]⁹⁺.

Figure S96. ¹H NMR spectra of of the Eu^{III} ion induced structural transformation and guest encapsulation, from top to bottom: 1,12-benzoperylene (CDCl₃), $La_6(Zn-1^R)_3$, $La_6(Zn-1^R)_3$ with 1,12-benzoperylene and 1,12-benzoperylene₃@ $Eu_8(Zn-1^R)_6$ (400 MHz, CD₃CN/CD₃OD, 298K, the solid and empty circle denote encapsulated and free guests).

Figure S97. ESI-TOF-MS spectra of $La_6(Zn-1^R)_3(OTf)_{18}$ in the existence of 1,12-benzoperylene with insets showing the observed and simulated isotopic patterns of the +6 peaks.

Figure S98. ESI-TOF-MS spectra of 1,12-benzoperylene₃@ $Eu_8(Zn-1^R)_6$ with insets showing the observed isotopic patterns of the +10 peaks.

Figure S99. Comparison of the observed and simulated signals of [1,12-benzoperylene₃@Eu₈(Zn-1^{*R*})₆(OTf)₁₄]¹⁰⁺.

Figure S100. ¹H NMR spectra of of the Eu^{III} ion induced structural transformation and guest encapsulation, from top to bottom: coronene (CDCl₃), $La_6(Zn-1^R)_3$, $La_6(Zn-1^R)_3$ with coronene and coronene₁@ $Eu_8(Zn-1^R)_6$ (400 MHz, CD₃CN/CD₃OD, 298K, the solid circle denotes encapsulated guests).

Figure S101. ESI-TOF-MS spectra of $La_6(Zn-1^R)_3(OTf)_{18}$ in the existence of coronene with insets showing the observed and simulated isotopic patterns of the +6 peaks.

Figure S102. ESI-TOF-MS spectra of coronene₁@ $Eu_8(Zn-1^R)_6$ with insets showing the observed isotopic patterns of the +10 peaks.

Figure S103. Comparison of the observed and simulated signals of [coronene₁@Eu₈(Zn-1^R)₆(OTf)₁₄]¹⁰⁺.
6. UV-Vis, CD and FL spectra

Figure S104. UV-vis ($[1^{R}] = 2.5 \times 10^{-6} \text{ M}$) and CD ($[1^{R}] = 5.0 \times 10^{-5} \text{ M}$) spectra of 1^{R} in DMSO.

Figure S105. Excitation (black, $\lambda_{em} = 656$ nm) and emission (red, $\lambda_{ex} = 420$ nm, blue, $\lambda_{ex} = 554$ nm) spectra of 1^{*R*} in DMSO (slits = 2 nm, [1^{*R*}] = 5.0×10⁻⁶ M).

Figure S106. UV-vis ($[Zn-1^{R}] = 2.5 \times 10^{-6} \text{ M}$) and CD ($[Zn-1^{R}] = 5.0 \times 10^{-5} \text{ M}$) spectra of Zn-1^{*R*} in DMSO.

Figure S107. Excitation (black, $\lambda_{em} = 656$ nm) and emission (red, $\lambda_{ex} = 422$ nm, blue, $\lambda_{ex} = 558$ nm) spectra of **Zn-1**^{*R*} in DMSO (slits = 2 nm, [**Zn-1**^{*R*}] = 5.0×10⁻⁶ M).

Figure S108. UV-vis ($[1^{R}] = 2.5 \times 10^{-6} \text{ M}$) and CD ($[1^{R}] = 1.0 \times 10^{-5} \text{ M}$) spectra of La₆(1^R)₃ in CH₃CN.

Figure S109. Excitation (black, $\lambda_{em} = 660 \text{ nm}$) and emission (red, $\lambda_{ex} = 400 \text{ nm}$, blue, $\lambda_{ex} = 556 \text{ nm}$) spectra of La₆(1^{*R*})₃ in CH₃CN (slits = 2 nm, [1^{*R*}] = 5.0×10⁻⁶ M).

Figure S110. UV-vis ([Zn-1^{*R*}] =2.5×10⁻⁶ M) and CD ([Zn-1^{*R*}] =1.0×10⁻⁵ M) spectra of La₆(Zn-1^{*R*})₃ in CH₃CN.

Figure S111. Excitation (black, $\lambda_{em} = 656$ nm) and emission (red, $\lambda_{ex} = 406$ nm, blue, $\lambda_{ex} = 556$ nm) spectra of La₆(Zn-1^{*R*})₃ in CH₃CN (slits = 2 nm, [Zn-1^{*R*}] = 5.0×10⁻⁶ M).

Figure S112. UV-vis ($[1^{R}] = 2.5 \times 10^{-6} \text{ M}$) and CD ($[1^{R}] = 1.0 \times 10^{-5} \text{ M}$) spectra of Eu₈(1^{R})₆ in CH₃CN.

Figure S113. Excitation (black, $\lambda_{em} = 654$ nm) and emission (red, $\lambda_{ex} = 402$ nm, blue, $\lambda_{ex} = 552$ nm) spectra of Eu₈(1^{*R*})₆ in CH₃CN (slits = 2 nm, [1^{*R*}] = 5.0×10⁻⁶ M).

Figure S114. UV-vis ([Zn-1^{*R*}] =2.5×10⁻⁶ M) and CD ([Zn-1^{*R*}] =1.0×10⁻⁵ M) spectra of Eu₈(Zn-1^{*R*})₆ in CH₃CN.

Figure S115. Excitation (black, $\lambda_{em} = 654$ nm) and emission (red, $\lambda_{ex} = 404$ nm, blue, $\lambda_{ex} = 554$ nm) spectra of Eu₈(Zn-1^{*R*})₆ in CH₃CN (slits = 2 nm, [Zn-1^{*R*}] = 5.0×10⁻⁶ M).

Figure S116. UV-vis ($[1^{R}] = 2.5 \times 10^{-6} \text{ M}$) and CD ($[1^{R}] = 1.0 \times 10^{-5} \text{ M}$) spectra of Yb₈(1^{*R*})₆ in CH₃CN.

Figure S117. Excitation (black, $\lambda_{em} = 650$ nm) and emission (red, $\lambda_{ex} = 398$ nm, blue, $\lambda_{ex} = 548$ nm) spectra of **Yb**₈(1^{*R*})₆ in CH₃CN (slits = 2 nm, [1^{*R*}] = 5.0×10⁻⁶ M).

Figure S118. Excitation (a), emission spectra (b) and emission decay curve (c) of $\mathbf{Yb_8}[1^R]_6$ ($\lambda_{em} = 980$ nm, $\lambda_{ex} = 395$ nm, slits = 10 nm, $[1^R] = 7.5 \times 10^{-6}$ M, in CH₃CN). The emission at 980nm corresponds to the ${}^{5}F_{5/2} \rightarrow {}^{2}F_{7/2}$ transition of Yb^{III} ions.

Figure S119. UV-vis ([Zn-1^{*R*}] =2.5×10⁻⁶ M) and CD ([Zn-1^{*R*}] =1.0×10⁻⁵ M) spectra of Yb₈(Zn-1^{*R*})₆ in CH₃CN.

Figure S120. Excitation (black, $\lambda_{em} = 654$ nm) and emission (red, $\lambda_{ex} = 404$ nm, blue, $\lambda_{ex} = 554$ nm) spectra of **Yb**₈(**Zn-1**^{*R*})₆ in CH₃CN (slits = 2 nm, [**Zn-1**^{*R*}] = 5.0×10⁻⁶ M).

Figure S121. Excitation (a), emission (b, d) spectra and emission decay curve of $\mathbf{Yb_8}[\mathbf{Zn-1}^R]_6$ ($\lambda_{em} = 980$ nm, ($\lambda_{ex} = 405$ nm, slits = 10 nm, [$\mathbf{Zn-1}^R$] = 1.0×10⁻⁵ M, in CH₃CN).

The emission at 980nm corresponds to the ${}^{5}F_{5/2} \rightarrow {}^{2}F_{7/2}$ transition of Yb^{III} ions.

Figure S122. UV-vis spectrum (a, $[\mathbb{Z}\mathbf{n}-\mathbf{1}^R] = 2.5 \times 10^{-6} \text{ M}$), excitation (black, $\lambda_{em} = 655 \text{ nm}$) and emission (b, red, $\lambda_{ex} = 403 \text{ nm}$, blue, $\lambda_{ex} = 555 \text{ nm}$, cyan, $\lambda_{ex} = 595 \text{ nm}$, slits = 2.5 nm, $[\mathbb{Z}\mathbf{n}-\mathbf{1}^R] = 5.0 \times 10^{-6} \text{ M}$) spectra of Ce₈[Zn-1^R]₆ in CH₃CN.

Figure S123. UV-vis spectrum (a, $[\mathbb{Z}\mathbf{n}-\mathbf{1}^R] = 2.5 \times 10^{-6} \text{ M}$), excitation (black, $\lambda_{em} = 655 \text{ nm}$) and emission (b, red, $\lambda_{ex} = 404 \text{ nm}$, blue, $\lambda_{ex} = 555 \text{ nm}$, cyan, $\lambda_{ex} = 595 \text{ nm}$, slits = 2.5 nm, $[\mathbb{Z}\mathbf{n}-\mathbf{1}^R] = 5.0 \times 10^{-6} \text{ M}$) spectra of $\mathbf{Pr_8}[\mathbb{Z}\mathbf{n}-\mathbf{1}^R]_6$ in CH₃CN.

Figure S124. UV-vis spectrum (a, $[\mathbb{Z}\mathbf{n}-\mathbf{1}^R] = 2.5 \times 10^{-6} \text{ M}$), excitation (black, $\lambda_{em} = 655 \text{ nm}$) and emission (b, red, $\lambda_{ex} = 404 \text{ nm}$, blue, $\lambda_{ex} = 555 \text{ nm}$, cyan, $\lambda_{ex} = 596 \text{ nm}$, slits = 2.5 nm, $[\mathbb{Z}\mathbf{n}-\mathbf{1}^R] = 5.0 \times 10^{-6} \text{ M}$) spectra of Nd₈[Zn-1^{*R*}]₆ in CH₃CN.

Figure S125. Excitation (a), emission (b) spectra and emission decay curve of $Nd_8[Zn-1^R]_6$ ($\lambda_{em} = 1054$ nm, $\lambda_{ex} = 402$ nm, slits = 10 nm, $[Zn-1^R] = 1.0 \times 10^{-5}$ M, in CH₃CN).

The NIR emission in the range of 890 nm – 1350 nm corresponds to the ${}^{4}F_{3/2} \rightarrow {}^{4}I_{J}$ (J = 9/2, 11/2, 13/2) transitions of Nd^{III} ions.

Figure S126. Absorption spectra of $Eu_8(Zn-1^R)_6$ with the addition of different equivalents of perylene (a), 1,12-benzoperylene (b) and coronene (c) molecules ($[Zn-1^R]=2.5\times10^{-6}$ M, in CH₃CN).

Figure S127. NIR emission spectra (a) and excited-state lifetime analysis (b) of $Yb_8(Zn-1^R)_6$ ([Zn-1^R]=1.0×10⁻⁵ M) with different equivalents of perylene molecules (λ_{ex} = 405 nm, in CH₃CN).

Figure S128. NIR emission spectra (a) and excited-state lifetime analysis (b) of $Yb_8(Zn-1^R)_6$ ([Zn-1^{*R*}]=1.0×10⁻⁵ M) with different equivalents of 1,12-benzoperylene molecules (λ_{ex} = 405 nm, in CH₃CN).

Figure S129. NIR emission spectra (a) and excited-state lifetime analysis (b) of $Yb_8(Zn-1^R)_6$ ([Zn-1^{*R*}]=1.0×10⁻⁵ M) with different equivalents of coronene molecules (λ_{ex} = 405 nm, in CH₃CN). 7. Crystal data and structures

Figure S130. Ortep-drawing for the asymmetric unit in the crystal structure of $Eu_8(2)_6$ at 30 % ellipsoids level.

Figure S131. Ortep drawing of the crystal structure of $Eu_8(2)_6$ (ClO₄⁻ salt) at 30% probability level.

Figure S132. Cavity Volume of $Eu_8(2)_6(ClO_4)_{24}$ calculated by using 3V webserver.⁵ Coordination of crystal structure of $Eu_8(2)_6(ClO_4)_{24}$ (CCDC 1939386), the outer probe radius 8.0 Å and the inner probe radius of 1.25 Å were used. The framework of $Eu_8(2)_6(ClO_4)_{24}$ are represented as stick and the cavity is shown as purple surface. The cavity volume was estimated as 1291 Å³ and graphics were generated with UCSF Chimera.⁶

Figure S133. Simulated structures of perylene₃@ $Eu_8(2)_6$ (a), 1,12-benzoperylene₃@ $Eu_8(2)_6$ (b) and coronene₁@ $Eu_8(2)_6$ (c).

Figure S134. Energy-minimized structure of $La_6(1^R)_3$. For clarity, only the cubic cage framework is shown.

A triangular prism and triple-decker structures are assumed for Ln_6L_3 complexes. The latter structure can be excluded since it needs two Ln^{III} ions sandwiched by adjacent ligands which is impossible in $Ln_6(Zn-1R^{/S})_3$ complexes. In the triangular prism, six Ln^{III} ions sit on the vertices and three ligands span the quadrilateral planes. The Ln^{III} atoms are six-coordinated with two pcam chelating moieties from two different ligands, with residual coordination sites available for solvent molecules and/or counter-ions. The ligands endure less distortion on the triangular prism compared with the strong twisting conformation observed on the crystal structure of the cubic cage. Thus when the coordination bonds of lanthanide ions, i.e. La^{III} , are not strong enough to compensate the torsional stress in constructing a cube, triangular prisms are formed as thermodynamic stable products. Based on the mechanical coupling effect in the self-assembly process of high-nuclearity lanthanide-organic polyhedral, the La centres are predicted to adopt the same Λ or Λ configurations.¹

Figure S135. Aerial view of the structure of $Eu_8(2)_6$ (a), $La_6(1^R)_3$ (c) and side view of the structure of the ligands in $Eu_8(2)_6$ (b), $La_6(1^R)_3$ (d). For clarity, only the framework is shown. Table S1. Crystal data and structure refinement for $Eu_8(2)_6$ (ClO₄- salt).

Identification code	p4n_sq	
Empirical formula	C648 H540 Cl0 Eu8 N96 O48	
Formula weight	11655.41	
Temperature	293(2) K	
Wavelength	0.65253 Å	
Crystal system	Tetragonal	
Space group	P4/n	
Unit cell dimensions	a = 38.200(5) Å	$\Box = 90^{\circ}.$

	b = 38.200(5) Å	$\Box = 90^{\circ}.$
	c = 46.770(9) Å	$\Box = 90^{\circ}.$
Volume	68249(24) Å ³	
Ζ,	2	
Calculated density	0.567 Mg/m ³	
Absorption coefficient	0.394 mm ⁻¹	
F(000)	11976	
Crystal size	0.35 x 0.3 x 0.2 mm ³	
Theta range for data collection	0.435 to 17.225°.	
Limiting indices	-31<=h<=31, -31<=k<=31, -	
	38<=l<=38	
Reflections collected	158163	
Independent reflections	20682 [R(int) = 0.0937]	
Completeness to theta = 17.225	99.8 %	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	20682 / 1975 / 1531	
Goodness-of-fit on F^2	1.118	
Final R indices [I>2sigma(I)]	R1 = 0.0857, wR2 = 0.2564	
R indices (all data)	R1 = 0.1177, wR2 = 0.2962	
Extinction coefficient	n/a	
Largest diff. peak and hole	1.057 and -0.366 e. Å ⁻³	

8. Supplementary References

- 1. (a) X.-Z. Li, L.-P. Zhou, L.-L. Yan, D.-Q. Yuan, C.-S. Lin and Q.-F. Sun, J. Am. Chem. Soc. 2017, 139, 8237; (b)
- L.-L. Yan, C.-H. Tan, G.-L. Zhang, L.-P. Zhou, J.-C. Bunzli and Q.-F. Sun, J. Am. Chem. Soc. 2015, 137, 8550.
- 2. A. Tsuda, E. Hirahara, Y.-S. Kim, H. Tanaka, T. Kawai and T. Aida, Angew. Chem. 2004, 116, 6487.
- 3. Z. Otwinowski and W. Minor, Macromolecular Crystallography, Pt A 1997, 276, 307.
- 4. G. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112.
- 5. N. R.Voss, and M, Gerstain, Nucleic acid Res. 2010, 38, W555.

6. E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S.Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin, J. Comput. Chem. 2004, 13, 1605.