Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020

Electronic Supporting Information

Rh(III)-Catalyzed Diamidation of Olefins via Amidorhodation and Further Amidation

Jinlei Wang, Guangfan Zheng, Xingwei Li*

School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062,

China

Contents

Table of Contents	
1. General Considerations	
2. Synthesis and Characterization of starting materials	
3. General procedure for the catalysis	
4. Mechanistic studies	
5. NMR Analytical data for new compounds	
6. X-Ray Crystallographic Data	
7. References	
8. NMR Spectral for new compounds	

1. General Considerations

All the reactions were carried out using standard Schlenk technique. The ¹H NMR spectra were recorded on a 400 MHz or 600 MHz NMR spectrometer. The ¹³C NMR spectra were recorded at 100 MHz or 150 MHz. The residual solvent signals were used as references and the chemical shifts were converted to the TMS scale (CDCl₃: δ H = 7.26 ppm, δ C = 77.16 ppm). The chemical shifts were reported as s (singlet), d (doublet), t (triplet), dd (doublets of doublet), dt (doublets of triplet), and m (multiplet). The coupling constants *J* were given in Hz. HRMS data were obtained using a ESI mode. The conversion of starting materials was monitored by thin layer chromatography (TLC) using silica gel plates (silica gel 60 F254 0.25 mm), and components were visualized under UV light (254 and 365 nm). Column chromatography was performed on silica gel 200-300 mesh. Unless otherwise noted below, all other compounds have been reported in the literature or are commercially available. Commercial reagents were used without further purification.

2. Synthesis and Characterization of starting materials

a. Method A: Preparation of the Substrates 1 (Synthesis of 1a is representative)

Step A.¹ To a stirred suspension of methyltriphenylphosphonium bromide (3.0 equiv) in THF (1.0 M), potassium *tert*-butoxide (3.0 equiv) was added at 0 °C and stirred for 0.5 hour under Ar. A solution of 2-ketobenzoic acid (1.0 equiv) in THF (3 M) was added dropwise. Until the reaction was completed, as monitored by TLC, the resulting mixture was quenched with water, basified with aqueous NaOH (3.0 M) and washed with diethyl ether. The resulting aqueous phase was acidified with aqueous HCl (2.0 M) until pH 1-2 and extracted twice with ethyl acetate. The combined organic layers were washed with water, brine, dried over with Na₂SO₄, filtered and concentrated in vacuo. The resulting crude product was purified by flash column chromatography to afford the desired unsaturated benzoic acid derivatives.

Step B.² To a solution of unsaturated benzoic acid derivative (1.0 equiv) in anhydrous DCM (0.25 M) were added 2-aminopyridine (1.1 equiv), *N*,*N*-dimethyl-4-aminopyridine (DMAP, 0.1 equiv) at 0 °C. Then 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI, 1.2 equiv) in DCM (20 mL) was dropwise added to the solution under an argon atmosphere. After the addition, the reaction was then warmed to room temperature, stirred for 10 hours and quenched with water (30 mL). The reaction mixture was extracted with DCM (3×20 mL) and the combined organic solvent was dried over Na₂SO₄, filtered and concentrated under reduced pressure. The resulting residue was purified by column chromatography to give pure **1a** as a white solid.

b. Method B: Preparation of the Substrate 1j and 1k.³

Phthalicacidanhydrid (1.0 equiv), copper bromide (5 mmol%) and anhydrous THF were added to a flame-dried flask and cooled to -20 °C under N₂ atmosphere. RMgBr (1.1 equiv) was added dropwise to the mixture over 1 h. The reaction mixture was stirred overnight at -20 °C, then allowed to warm to room temperature, quenched with water, basified with aqueous NaOH (3.0 M) until pH = 12-14 and washed with diethyl ether. The resulting aqueous phase was acidified with aqueous HCl (2.0 M) until pH 1-2 and extracted twice with ethyl acetate. The combined organic layers were washed with water, brine, dried over Na₂SO₄, filtered and concentrated in vacuo. The crude product was dissolved in DCM and the solid was filtered off. The crude benzoic acid derivative was used for the next step without further purification. From benzoic acid derivative, the corresponding benzamide derivate was synthesized by the same **method A**.

c. Method C: Preparation of the Substrate 1m.

d. Preparation of the Substrate 2.4

To a solution of hydroxamic acid derivatives (5.0 mmol) in anhydrous DCM (50 mL), 1,1'carbonyldiimidazole (CDI) (0.85 g, 5.25 mmol) was added slowly at room temperature and stirred for 30 min. The reaction mixture was quenched with 1 N HCl (30 mL) and extracted with anhydrous DCM (50 mL) for 3 times. The combined organic layer was evaporated under reduced pressure and purified by flash column chromatography on a silica gel column by using hexane/ethylacetate eluent to afford 3- substituted-1,4,2-dioxazol-5-one derivatives **2**. The compound **2** decomposes in column on performing the column chromatography over a prolonged time period (> 20 min).

c. Characterization of Starting Substrates 1

2-(prop-1-en-2-yl)-N-(pyridin-2-yl)benzamide (1a). white solid. ¹H NMR (600 MHz, CDCl₃) δ 9.73 (s, 1H), 8.37 (d, J = 8.4 Hz, 1H), 7.72 – 7.62 (m, 2H), 7.60 – 7.54 (m, 1H), 7.46 – 7.43 (m, 1H), 7.36 – 7.34 (m, 1H), 7.27 (d, J = 7.7 Hz, 1H), 6.89 – 6.87 (m, 1H), 5.23 (s, 1H), 5.05 (s,

1H), 2.06 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 168.3, 151.9, 147.6, 145.0, 142.1, 138.4, 134.5, 130.6, 129.0, 128.3, 127.5, 119.6, 116.5, 114.1, 23.9. HRMS (ESI): m/z: [M + Na]⁺ calculated for C₁₅H₁₄N₂NaO: 261.0998, found: 221.1006.

2-(1-phenylvinyl)-N-(pyridin-2-yl)benzamide (1b). white solid. ¹H NMR (600 MHz, CDCl₃) δ 8.84 (s, 1H), 7.97 – 7.84 (m, 2H), 7.71 (d, J = 6.8 Hz, 1H), 7.56 – 7.53 (m, 2H), 7.49 – 7.39 (m, 2H), 7.20 – 7.10 (m, 5H), 6.93 – 6.86 (m, 1H), 5.75 (s, 1H), 5.43 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 167.3, 151.4, 149.2, 147.5, 140.2, 138.1, 135.6, 131.0, 130.9,

128.7, 128.3, 128.1, 128.1, 128.0, 127.1, 119.6, 116.4, 113.8. HRMS (ESI): m/z: $[M + Na]^+$ calculated for C₂₀H₁₆N₂NaO: 323.1155, found: 323.1152.

2-(1-([1,1'-biphenyl]-4-yl)vinyl)-N-(pyridin-2-yl)benzamide (1c). off white solid. ¹H NMR (600 MHz, CDCl₃) δ 9.13 (s, 1H), 7.90 (d, *J* = 8.4 Hz, 1H), 7.75 (d, *J* = 4.9 Hz, 1H), 7.70 (d, *J* = 7.6 Hz, 1H), 7.53 – 7.43 (m, 2H), 7.44 (t, *J* = 7.4 Hz, 4H), 7.38 – 7.33 (m, 4H), 7.28 (t, *J* = 7.3 Hz, 1H), 7.24 (d, *J* = 7.9 Hz, 2H), 6.83 (t, *J* = 6.1 Hz, 1H), 5.77 (s, 1H), 5.40

(s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 167.5, 151.6, 148.7, 147.5, 140.7, 140.6, 140.2, 139.2, 138.1, 135.8, 131.0, 130.9, 128.7, 128.6, 128.3, 127.6, 127.3, 127.0, 126.9, 119.6, 116.4, 113.9. HRMS (ESI): m/z: [M + Na]⁺ calculated for C₂₆H₂₀N₂NaO: 399.1468, found: 399.1466.

2-(1-(4-chlorophenyl)vinyl)-N-(pyridin-2-yl)benzamide (1d). yellow solid. ¹H NMR (600 MHz, CDCl₃) δ 9.13 (s, 1H), 7.92 (d, J = 8.4 Hz, 1H), 7.75 (d, J = 3.3 Hz, 1H), 7.69 (d, J = 7.6 Hz, 1H), 7.58 – 7.55 (m, 1H), 7.53 – 7.51 (m, 1H), 7.46 – 7.43 (m, 1H), 7.39 (d, J = 8.2 Hz, 1H), 7.11 – 7.04 (m, 4H), 6.90 – 6.85 (m, 1H), 5.68 (s, 1H), 5.38 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 167.3, 151.5, 148.1, 147.5, 139.8, 138.8,

138.2, 135.7, 133.8, 130.9, 129.0, 128.5, 128.5, 128.3, 128.2, 119.7, 116.8, 113.8. HRMS (ESI): m/z: [M + Na]⁺ C₂₀H₁₅ClN₂NaO: 357.0765, found: 357.0763.

2-(1-([1,1'-biphenyl]-4-yl)vinyl)-N-(4-methylpyridin-2-yl)benzamide (1e). white solid. ¹H NMR (600 MHz, CDCl₃) δ 8.61 – 8.51 (m, 1H), 7.92 – 7.89 (m, 1H), 7.77 – 7.70 (m, 2H), 7.56 – 7.53 (m, 1H), 7.49 – 7.44 (m, 4H), 7.40 – 7.35 (m, 4H), 7.29 – 7.23 (m, 3H), 6.75 (d, *J* = 5.0 Hz, 1H), 5.83 (s, 1H), 5.47 (s, 1H), 2.20 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.1, 151.3,

149.5, 148.7, 147.2, 140.7, 140.5, 140.1, 139.1, 135.6, 131.0, 131.0, 128.7, 128.4, 128.0, 127.5, 127.3, 126.9, 126.8, 120.9, 116.4, 114.2, 21.2. HRMS (ESI): m/z: [M + Na]⁺ C₂₇H₂₂N₂NaO: 413.1624, found: 413.1625.

N-(4-chloropyridin-2-yl)-2-(prop-1-en-2-yl)benzamide (1f). white solid. ¹H NMR (600 MHz, CDCl₃) δ 9.36 (s, 1H), 8.47 (s, 1H), 7.71 – 7.64 (m, 2H), 7.49 – 7.46 (m, 1H), 7.39 – 7.37 (m, 1H), 7.29 (d, *J* = 7.6 Hz, 1H), 6.96-6.94 (m, 1H), 5.28 (s, 1H), 5.09 (s, 1H), 2.08 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 168, 152.6, 148.4, 146, 145.1, 142.2, 133.7, 131.0,

129.1, 128.5, 127.6, 120.2, 116.7, 114.2, 24.1. HRMS (ESI): m/z: [M + Na]⁺ C₁₅H₁₃ClN₂NaO: 295.0609, found: 295.0609.

N-(4-methylpyridin-2-yl)-2-(prop-1-en-2-yl)benzamide (1g). white solid. ¹H NMR (600 MHz, CDCl₃) δ 10.78 (s, 1H), 8.26 (s, 1H), 7.63 – 7.50 (m, 1H), 7.42 – 7.39 (m, 1H), 7.35 – 7.20 (m, 2H), 6.94 – 6.81 (m,

1H), 6.56 (s, 1H), 5.16 (s, 1H), 4.95 (s, 1H), 2.30 (s, 3H), 2.03 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 169.0, 152.3, 149.8, 146.8, 144.4, 142.0, 135.4, 130.1, 128.71, 128.0, 127.3, 120.6, 116.1, 114.7, 23.7, 21.3. HRMS (ESI): m/z: [M + Na]⁺ C₁₆H₁₆N₂NaO: 275.1155, found: 275.1153.

N-(5-methylpyridin-2-yl)-2-(prop-1-en-2-yl)benzamide (1h). white solid. ¹H NMR (600 MHz, CDCl₃) δ 10.43 (s, 1H), 8.28 (d, *J* = 8.0 Hz, 1H), 7.60 (d, *J* = 7.9 Hz, 1H), 7.51 – 7.39 (m, 2H), 7.40 – 7.30 (m, 1H), 7.26 (t, *J* = 7.1 Hz, 1H), 6.86 (s, 1H), 5.15 (s, 1H), 4.93 (s, 1H), 2.07 (s, 1H), 7.26 (t, *J* = 7.1 Hz, 1H), 6.86 (s, 1H), 5.15 (s, 1H), 4.93 (s, 1H), 2.07 (s, 1H), 5.15 (s, 1H), 5.15 (s, 1H), 5.15 (s, 1H), 5.17 (s, 1H), 5.17 (s, 1H), 5.17 (s, 1H), 5.18 (

3H), 2.00 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 168.7, 150.1, 147.3, 144.5, 142.1, 138.9, 135.4, 130.1, 128.7, 128.7, 128.1, 127.3, 116.2, 113.7, 23.7, 17.7. HRMS (ESI): m/z: [M + Na]⁺ C₁₆H₁₆N₂NaO: 275.1155, found: 275.1156.

CF₃ ²⁻ W H H H H

2-(prop-1-en-2-yl)-N-(4-(trifluoromethyl)pyridin-2-yl)benzamide (1i). white solid. ¹H NMR (600 MHz, CDCl₃) δ 9.77 (s, 1H), 8.69 (s, 1H), 7.75 - 7.64 (m, 2H), 7.50 - 7.47 (m, 1H), 7.40 - 7.37 (m, 1H), 7.30 (d, J = 7.7 Hz, 1H), 7.12 (d, J = 4.9 Hz, 1H), 5.27 (s, 1H), 5.07 (s, 1H), 2.07 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 168.3, 152.7, 148.7, 144.9, 142.3, 140.6 (q, *J* = 33.9 Hz), 133.8, 131.1, 129.1, 128.5, 127.7, 122.7 (q, *J* = 273.5 Hz), 116.7, 115.3 (q, *J* = 3.4 Hz), 110.1 (q, *J* = 3.9 Hz), 24.0. HRMS (ESI): m/z: [M + Na]⁺ C₁₆H₁₃F₃N₂NaO: 329.0872, found: 329.0873.

2-(but-1-en-2-yl)-N-(pyridin-2-yl)benzamide (1j). white solid. ¹H NMR (600 MHz, CDCl₃) δ 9.60 – 8.89 (m, 1H), 8.35 (d, J = 8.4 Hz, 1H), 7.98 – 7.83 (m, 1H), 7.77 – 7.64 (m, 2H), 7.46 – 7.43(m, 1H), 7.38 – 7.36 (m, 1H), 7.30 – 7.20 (m, 1H), 7.06 – 6.88 (m, 1H), 5.49 – 5.14 (m,

1H), 5.15 - 5.13(m, 1H), 2.41 - 2.37(m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 167.8, 151.8, 151.5, 147.8, 141.8, 138.3, 134.2, 130.7, 129.6, 128.6, 127.5, 119.7, 114.5, 114.0, 30.6, 12.6. HRMS (ESI): m/z: m/z: [M + Na]⁺ C₁₆H₁₆N₂NaO: 275.1155, found: 275.1152.

2-(1-cyclohexylvinyl)-N-(pyridin-2-yl)benzamide (1k). white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.77 (s, 1H), 8.32 (d, *J* = 8.4 Hz, 1H), 8.22 – 8.21(m, 1H), 7.83 – 7.81 (m, 1H), 7.75 – 7.64 (m, 1H), 7.48 – 7.34 (m, 2H), 7.19 (dd, *J* = 7.4, 1.4 Hz, 1H), 7.03 – 7.00 (m, 1H), 5.32 – 5.31 (m, 1H), 5.20 (s, 1H), 2.17 – 2.10 (m, 1H), 1.78 – 1.74 (m, 2H), 1.66 – 1.65 (m, 2H), 1.61 - 1.59 (m, 1H), 1.15 - 1.08 (m, 5H). ¹³C NMR (100MHz, CDCl₃) δ 167.4, 156.2, 151.6, 148.1, 142.1, 138.4, 133.4, 130.9, 130.4, 129.3, 127.7, 119.9, 113.9, 113.6, 45.3, 32.2, 26.6, 26.2. HRMS (ESI): m/z: m/z: [M + Na]⁺ C₂₀H₂₂N₂NaO: 329.1624, found: 392.1624.

N-(pyridin-2-yl)-2-vinylbenzamide (11). white solid. ¹H NMR (400 MHz, CDCl₃) δ 9.30 (s, 1H), 8.37 (d, J = 8.4 Hz, 1H), 7.78 (s, 1H), 7.73 – 7.67 (m, 1H), 7.59 – 7.55 (m, 2H), 7.46 – 7.42 (m, 1Hz), 7.33 – 7.29 (m, 1H), 7.09 (dd, J = 17.4, 11.0 Hz, 1H), 6.95 – 6.92 (m, 1H), 5.70 (dd,

 $J = 17.4, 0.8 \text{ Hz}, 1\text{H}, 5.37 \text{ (dd}, J = 11.0, 0.9 \text{ Hz}, 1\text{H}). {}^{13}\text{C} \text{ NMR} (100\text{MHz}, \text{CDCl}_3) \delta 168.1,$ 151.7, 147.7, 138.5, 136.4, 135.1, 134.2, 130.8, 127.9, 127.6, 126.7, 119.9, 117.4, 114.3. HRMS (ESI): m/z: m/z: [M + Na]⁺ C₁₄H₁₂N₂NaO: 247.0842, found:247.0844.

2-(but-2-en-2-yl)-N-(pyridin-2-yl)benzamide (1m). white solid (*E*:*Z* = 3:1). ¹H NMR (600 MHz, CDCl₃) δ 9.19 (s, 1H), 8.36 (d, *J* = 8.3 Hz, 1H), 8.07 - 8.06 (m, 1H), 7.89 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.72 - 7.68 (m, *J* = 8 1H), 7.49 - 7.46 (m, 1H), 7.38 - 7.36 (m, 1H), 7.16 - 7.15 (m, 1H), 6.99 - 6.97 (m, 1H), 5.78 (dddd, *J* = 8.4, 6.9, 5.3, 1.6 Hz, 1H), 2.09 - 2.00 (m, 3H), 1.55 - 1.54 (m, 3H). ¹³C NMR (150MHz, CDCl₃) δ 166.9, 151.9, 148.0, 140.5, 138.2, 136.9, 133.7, 131.2, 129.8, 129.2, 127.3, 124.5, 119.7, 114.1, 25.7, 14.9. HRMS (ESI): m/z: m/z: [M + Na]⁺ C₁₆H₁₆N₂NaO: 275.1155, found: 275.1157.

Entry	DG	additive	<i>T</i> (°C)	Yield (%) ^b (3aa/3aa')
1	OMe	PivOH	50	-/74
2	OMe	AgOAc	50	-/54
3	OMe	-	50	-/84
4	NHPh	-	100	-/37
5	NHPh	Zn(OAc) ₂	100	-/24
6	2-Py	PivOH	100	40/18
7	2-Py	Zn(OAc) ₂	100	35/24
8	2-Py	-	100	44/-

"Reaction conditions: **1a** (0.1 mmol), **2a** (0.2 mmol), [Cp*RhCl₂]₂ (4 mol %), Acid (2.0 equiv), DCE (1.5 mL), *T* °C, 16 h under air in a sealed tube. ^bYield was determined by ¹H NMR spectroscopy using 1,3,5-trimethoxybenzene as internal standard.

Table S2. Optimization Studies on Rh-Catalyzed Amidation With Dioxazolones ^a.

entry	catalyst (mol%)	solvent	<i>T</i> (°C)	yield (%) ^b
1	$[Cp*Rh(MeCN)_3](SbF_6)_2(8)$	DCE^d	30	
2	$[Cp*Rh(MeCN)_3](SbF_6)_2(8)$	DCE^d	40	
3	$AgSbF_6(16)$	DCE^d	30	-
4	$[Cp*RhCl_2]_2(4)$	DCE^d	30	
5	$[Cp*RhCl_2]_2(4)/AgSbF_6(16)$	DCE^d	30	47
6	$[Cp*RhCl_2]_2(4)/AgSbF_6(16)$	DCE	30	62
7	$[Cp*RhCl_2]_2(4)/AgSbF_6(16)$	DCE	50	90 (83 ^c)
8	$[Cp*RhCl_2]_2(4)/AgSbF_6(16)$	DCE	70	52
9	$[Cp*RhCl_2]_2(4)/AgSbF_6(16)$	DCM	50	80

10	$[Cp*RhCl_2]_2(4)/AgSbF_6(16)$	DCM^d	50	80
11	$[Cp*RhCl_2]_2(4)/AgSbF_6(16)$	DMF	50	76
12	$[Cp*RhCl_2]_2(4)/AgSbF_6(16)$	MeOH	50	-
13	$[Cp*RhCl_2]_2(4)/AgSbF_6(16)$	THF	50	58
14	$[Cp*RhCl_2]_2(4)/AgSbF_6(16)$	MeCN	50	-
15	$[Cp*RhCl_2]_2(4)/AgBF_4(16)$	DCE	50	67
16	$[Cp*RhCl_2]_2(4)/AgPF_6(16)$	DCE	50	-
17	[Cp*RhCl ₂] ₂ (4)/AgOTf(16)	DCE	50	83
18	$[Cp*RhCl_2]_2(4)/AgNTf_2(16)$	DCE	50	-

^{*a*}Unless otherwise noted, all reactions were carried out using **1a** (0.1 mmol), and **2a** (0.2 mmol) in a solvent (1.5 mL) for 16 h under air. ^{*b*}Yield was determined by ¹H NMR spectroscopy. ^{*c*}Isolated yield in parenthesis. ^{*d*}Under N₂.

Table S3. Optimization Studies on Co-Catalyzed Amidation With Dioxazolones ^a.

0 () 1a	N = N + $N = 0Ph O = 02a$	catalyst, additive solvent, 70-100 °		N Sa	-Py -NH a O
entry	catalyst (mol%)	Additive (equiv)	solvent	<i>T</i> (℃)	yield(%) ^b
1	$Cp*Co(CO)I_2(8) + AgSbF_6(16)$	AgOAc (0.2)	DCE	70	32
2	$Cp*Co(CO)I_2(8) + AgSbF_6(16)$	PivOH (0.5)	DCE	70	22
3	$Cp*Co(CO)I_2(8) + AgSbF_6(16)$	AgOAc (1.0)	DCE	70	23
4	$Cp*Co(CO)I_2(8) + AgSbF_6(16)$	AgOAc (1.0)	DCE	100	43
5	$Cp*Co(CO)I_2(8) + AgSbF_6(16)$	PivOH (1.0)	DCE	100	27
6	$Cp*Co(CO)I_2(8) + AgSbF_6(16)$	PivOH (2.0)	DCE	100	42
7	$Cp*Co(CO)I_2(8) + AgSbF_6(16)$	$Zn(OAc)_2$ (2.0)	DCE	100	52
8	$Cp*Co(CO)I_2(8) + AgSbF_6(16)$	PivOH (2.0)	TFE	100	78
9	$Cp*Co(CO)I_2(8) + AgSbF_6(16)$	$Zn(OAc)_2$ (2.0)	TFE	100	84(76 ^c)
10	$Cp*Co(CO)I_2(8) + AgSbF_6(16)$	$Zn(OAc)_2$ (2.0)	MeCN	100	73
11	$Cp*Co(CO)I_2(8) + AgBF_4(16)$	$Zn(OAc)_2$ (2.0)	TFE	100	-

12	$Cp*Co(CO)I_2(8)+AgPF_6(16)$	$Zn(OAc)_2$ (2.0)	TFE	100	-
13	$Cp*Co(CO)I_2(8) + AgOTf(16)$	Zn(OAc) ₂ (2.0)	TFE	100	-

^{*a*}Unless otherwise noted, all reactions were carried out using **1a** (0.1 mmol), and **2a** (0.2 mmol) in a solvent (1.5 mL) for 16 h. ^{*b*}Yield was determined by ¹H NMR spectroscopy. ^{*c*}Isolated yield.

b. Cp*Rh(III)-Catalyzed Pyridine-Directed Amidation With Dioxazolones

An oven-dried 35 mL round bottom pressure tube was equipped with a magnetic stir bar and was charged with the substrate **1** (0.1 mmol, 1.0 equiv), substrate **2** (0.2 mmol, 2.0 equiv), catalyst [Cp*RhCl₂]₂ (2.5 mg, 0.004 mmol, 4.0 mol %), and AgSbF₆ (5.5 mg, 0.016 mmol, 16.0 mol %) under air atmosphere, then the mixture was dissolved in dry 1,2-dichloroethane (DCE, 1.5 mL). Then the mixture was heated to 50 °C under air atmosphere. After stirring for 16 hours, the reaction mixture was cooled to room temperature, and the solvent was removed by rotary evaporation. The residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to give the desired product.

c. Cp*Co(III)-Catalyzed Pyridine-Directed Amidation With Dioxazolones (3c)

An oven-dried 35 mL round bottom pressure tube was equipped with a magnetic stir bar and was charged with olefin **1** (0.1 mmol, 1.0 equiv), substrate **2** (0.2 mmol, 2.0 equiv), catalyst Cp*Co(CO)I₂ (3.8 mg, 0.008 mmol, 8.0 mol %), AgSbF₆ (5.5 mg, 0.016 mmol, 16.0 mol %), and Zn(OAc)₂ (36.7mg, 0.2 mmol, 2.0 equiv) under air atmosphere. The mixture was dissolved in dry 2,2,2-trifluoroethanol (TFE, 1.5 mL). Then the mixture was heated to 100 °C under air

atmosphere. After stirring for 16 hours, the reaction mixture was cooled to room temperature, and the solvent was removed by rotary evaporation. The residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to give the desired product.

d. Cp*Rh(III)-Catalyzed Pyridine-Directed Amidation With Sulfonamide (3d)

An oven-dried 35 mL round bottom pressure tube was equipped with a magnetic stir bar and was charged with the substrate 1 (0.1 mmol, 1.0 equiv), sulfonamide (0.1 mmol, 1.0 equiv), $PhI(OAc)_2(0.15 \text{ mmol}, 1.5 \text{ equiv})$, and catalyst $[Cp*Rh(MeCN)_3][SbF_6]_2$ (6.7 mg, 0.008 mmol, 8.0 mol %) under air atmosphere. Then the mixture was dissolved in dry 1,2-dichloromethane (DCM, 1.5 mL). Then the mixture was stirred at room temperature under air atmosphere. After stirring for 16 hours, the solvent of the reaction mixture was removed by rotary evaporation. The residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to give the desired product.

4. Mechanistic Studies.

a. Preparation of the Rh(III)-Complex 5

To an oven-dried 35 mL round bottom pressure tube was equipped with a magnetic stir bar was added substrate **1** (0.1 mmol, 1.0 equiv), catalyst $[Cp*RhCl_2]_2$ (30.9 mg, 0.05mmol, 0.5 equiv), and NaOAc (98.4 mg, 12.0 equiv) in dichloromethane (DCM, 3 mL). After the addition, the reaction was then stirred at r.t. until the reaction was completed, as monitored by TLC. Then the reaction mixture was filtered and the filtrate was concentrated under reduced pressure to afford the Rh(III)-complex as a red solid (92 mg, 90% yield).

(dd, J = 9.1, 3.5 Hz, 1H), 1.33 (s, 15H), 1.24 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 166.7, 155.3, 154.2, 152.4, 138.2, 133.7, 128.1, 127.5, 124.2, 122.1, 120.9, 119.9, 94.5 (d, J = 6.6 Hz), 67.1, 30.9 (d, J = 26.6 Hz), 25.7, 8.6. HRMS (ESI): m/z: [M-Cl]⁺ calculated for C₂₅H₂₈N₂ORh: 475.1251, found: 475.1257.

b. Catalytic activity of complex 5

An oven-dried 35 mL round bottom pressure tube, which was equipped with a magnetic stir bar and charged with the substrate **1a** (0.1 mmol, 1.0 equiv), the substrate **2a** (0.2 mmol, 2.0 equiv), Complex **5** (4.1 mg, 0.008 mmol, 8.0 mol %), and AgSbF₆ (5.5 mg, 0.016 mmol, 16.0 mol %) under air atmosphere. To the mixture was added dry 1,2-dichloroethane (DCE, 1.5 mL). Then the mixture was heated to 50 °C under air atmosphere. After stirring for 16 hours, the reaction mixture was cooled to room temperature, and the solvent was removed by rotary evaporation. The residue was purified by flash column chromatography on silica gel (petroleum ether/EtOAc = 3/1) to give the desired product (22.8 mg, 64% yield).

5. NMR Analytical data for new compounds

N-((1-methyl-3-oxo-2-(pyridin-2-yl)isoindolin-1yl)methyl)benzamide (3aa)

The title compound **3aa** was synthesized according to the **3b** and **3c**. The product **3aa** was isolated as white solid. Yield: **3b**: 83%

(29.1 mg); and **3c**: 76% (26.5 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.51 (d, J = 3.8 Hz, 1H), 8.15 (s, 1H), 8.05 (d, J = 8.2 Hz, 1H), 7.89 (d, J = 7.6 Hz, 1H), 7.85 (t, J = 7.1 Hz, 1H), 7.69 – 7.64 (m, 2H), 7.65 (d, J = 7.5 Hz, 2H), 7.53 – 7.48 (m, 1H), 7.45 (t, J = 7.3 Hz, 1H), 7.38 (t, J = 7.5 Hz, 2H), 7.25 – 7.21 (m, 1H), 4.42 (dd, J = 14.1, 6.2 Hz, 1H), 4.06 (dd, J = 14.1, 6.0 Hz, 1H), 1.63 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 168.4, 167.4, 150.9, 149.1, 147.8, 138.5, 134.8, 133.3, 131.3, 130.3, 128.9, 128.5, 126.9, 124.0, 122.1, 121.2, 120.5, 68.9, 47.4, 21.9. HRMS (ESI): m/z: [M + Na]⁺ calculated for C₂₂H₁₉NaN₃O₂:380.1369, found:380.1375.

4-chloro-N-((1-methyl-3-oxo-2-(pyridin-2-yl)isoindolin-1yl)methyl)benzamide (3ab)

The title compound **3ab** was synthesized according to the **3b** and **3c**. The product **3ab** was isolated as white solid. Yield: **3b**:

90% (35.3 mg); and **3c**: 47% (18.4 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.49 (d, *J* = 3.4 Hz, 1H), 8.24 (s, 1H), 8.02 (d, *J* = 8.3 Hz, 1H), 7.90 – 7.82 (m, 2H), 7.67 (d, *J* = 4.2 Hz, 2H), 7.58 (d, *J* = 8.5 Hz, 2H), 7.51 – 7.48 (m, 1H), 7.34 (d, *J* = 8.9 Hz, 2H), 7.25 – 7.23 (m, 1H), 4.38 (dd, *J* = 14.1, 6.1 Hz, 1H), 4.04 (dd, *J* = 14.1, 6.0 Hz, 1H), 1.61 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 168.4, 166.344, 150.844, 149.0, 147.8, 138.6, 137.5, 133.4, 133.1, 130.3, 128.9, 128.8, 128.3, 124.0, 122.1, 121.4, 120.7, 68.8, 47.4, 21.8. HRMS (ESI): m/z: [M + Na]⁺ calculated for C₂₂H₁₈CINaN₃O₂: 414.0980, found: 414.0988.

4-methyl-N-((1-methyl-3-oxo-2-(pyridin-2-yl)isoindolin-1yl)methyl)benzamide (3ac)

The title compound **3ac** was synthesized according to the **3b** and **3c**. The product **3ac** was isolated as white solid. Yield: **3b**:

71% (26.4 mg); and **3c**: 65% (24.1 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.52 – 8.50 (M, 1H), 8.11 (s, 1H), 8.05 (d, J = 8.3 Hz, 1H), 7.88 (d, J = 7.6 Hz, 1H), 7.86 – 7.82 (m, 1H), 7.71 – 7.65 (m, 2H), 7.55 (d, J = 8.1 Hz, 2H), 7.50 – 7.47 (m, 1H), 7.24 – 7.20 (m, 1H), 7.18 (d, J = 7.9 Hz, 2H), 4.42 (dd, J = 14.1, 6.2 Hz, 1H), 4.04 (dd, J = 14.1, 5.9 Hz, 1H), 2.36 (s, 3H), 1.62 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 168.4, 167.3, 151.0, 149.2, 147.8, 141.7, 138.5, 133.3, 131.9, 130.3, 129.2, 128.8, 126.9, 123.9, 122.1, 121.2, 120.4, 68.9, 47.3, 21.9, 21.4. HRMS (ESI): m/z: [M + Na]⁺ calculated for C₂₃H₂₁N₃NaO₂: 394.1526, found: 394.1532

N-((1-methyl-3-oxo-2-(pyridin-2-yl)isoindolin-1yl)methyl)-4-(trifluoromethyl)benzamide (3ad)

The title compound **3ad** was synthesized according to the **3b** and **3c**. The product **3ad** was isolated as white solid.

Yield: **3b**: 71% (30.2 mg); and **3c**: 28% (11.9 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.49 (d, J = 3.1 Hz, 1H), 8.38 (s, 1H), 8.03 (d, J = 8.2 Hz, 1H), 7.91 – 7.84 (m, 2H), 7.75 (d, J = 8.1 Hz, 2H), 7.69 – 7.67 (m, 2H), 7.65 (d, J = 8.1 Hz, 2H), 7.52 – 7.50 (m, 1H), 7.27 – 7.23 (m, 1H), 4.40 (dd, J = 14.1, 6.1 Hz, 1H), 4.06 (dd, J = 14.1, 6.0 Hz, 1H), 1.63 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 168.3, 166.1, 150.8, 148.9, 147.7, 138.6, 138.1, 133.4, 133.1 (q, J = 32.6 Hz), 130.3, 128.9, 127.3, 125.5 (q, J = 3.1 Hz), 124.0, 123.6 (q, J = 272.5 Hz), 122.1, 121.4, 120.8, 68.7, 47.5, 21.8. HRMS (ESI): m/z: [M + Na]⁺ calculated for C₂₃H₁₈F₃N₃NaO₂: 448.1243, found: 448.1252

4-methoxy-N-((1-methyl-3-oxo-2-(pyridin-2-yl)isoindolin-1-yl)methyl)benzamide (3ae)

The title compound **3ae** was synthesized according to the **3b** and **3c**. The product **3ae** was isolated as white solid. Yield:

3b: 84% (32.5 mg); and **3c**: 28% (14.7 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.54 – 8.49 (m, 1H), 8.05 (d, *J* = 8.1 Hz, 1H), 8.00 (s, 1H), 7.88 (d, *J* = 7.3 Hz, 1H), 7.86 – 7.82 (m, 1H), 7.70 – 7.65 (m, 2H), 7.62 (d, *J* = 8.8 Hz, 2H), 7.50 – 7.47 (m, 1H), 7.24 – 7.21 (m, 1H), 6.87 (d, *J* = 8.8 Hz, 2H), 4.40 (dd, *J* = 14.1, 6.2 Hz, 1H), 4.05 (dd, *J* = 14.1, 6.0 Hz, 1H), 3.81 (s, 3H), 1.62 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 168.4, 166.8, 162.1, 151.0, 149.2, 147.8, 138.5, 133.3, 130.3, 128.8, 128.6, 127.1, 123.9, 122.1, 121.2, 120.5, 113.7, 68.9, 55.4, 47.3, 21.9. HRMS (ESI): m/z: [M + Na]⁺ calculated for C₂₃H₂₁N₃NaO₃: 410.1475, found: 410.1481.

N-((1-methyl-3-oxo-2-(pyridin-2-yl)isoindolin-1-

yl)methyl)-4-nitrobenzamide (3af)

The title compound **3af** was synthesized according to the **3b** and **3c**. The product **3af** was isolated as white solid.

Yield: **3b**: 32% (13.0 mg); and **3c**: <5% (trace). ¹H NMR (600 MHz, CDCl₃) δ 8.53 – 8.46 (m, 2H), 8.24 (d, *J* = 8.8 Hz, 2H), 8.02 (d, *J* = 8.2 Hz, 1H), 7.92 – 7.86 (m, 2H), 7.80 (d, *J* = 8.8 Hz, 2H), 7.72 – 7.68 (m, 2H), 7.54 – 7.49 (m, 1H), 7.29 – 7.25 (m, 2H), 4.38 (dd, *J* = 14.1, 6.1 Hz, 1H), 4.06 (dd, *J* = 14.1, 6.0 Hz, 1H), 1.63 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 168.3, 165.3, 150.8, 148.8, 147.7, 140.4, 138.7, 133.4, 130.2, 129.1, 128.0, 124.1, 123.8, 122.1, 121.5, 121.0, 68.6, 47.7, 21.8. HRMS (ESI): m/z: [M + Na]⁺ calculated for C₂₂H₁₈N₄NaO₄: 425.1220, found: 425.1228.

methyl-4-(((1-methyl-3-oxo-2-(pyridin-2-yl)isoindolin-1-yl)methyl)carbamoyl)benzoate (3ag)

The title compound **3ag** was synthesized according to the **3b** and **3c**. The product **3ag** was isolated as white solid.

Yield: **3b**: 72% (30.0 mg); and **3c**: 34% (14.1 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.49 (d, J = 3.3 Hz, 1H), 8.45 (s, 1H), 8.06 – 8.04 (m, 3H), 7.89 (d, J = 7.6 Hz, 1H), 7.87 – 7.84 (m, 1H), 7.71 (d, J = 8.2 Hz, 2H), 7.69 (d, J = 4.4 Hz, 2H), 7.52 – 7.50 (m, 1H), 7.25-7.23 (m, 1H), 4.44 (dd, J = 14.1, 6.3 Hz, 1H), 4.00 (dd, J = 14.1, 5.6 Hz, 1H), 3.92 (s, 3H), 1.63 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 168.3, 166.5, 166.3, 150.9, 149.0, 147.7, 138.8, 138.6, 133.4, 132.6, 130.3, 129.8, 128.9, 126.1, 124.1, 122.1, 121.3, 120.6, 68.7, 52.3, 47.6, 21.7. HRMS (ESI): m/z: [M + Na]⁺ calculated for C₂₄H₂₁N₃NaO₄: 438.1424, found: 438.1432.

4-(tert-butyl)-N-((1-methyl-3-oxo-2-(pyridin-2-

yl)isoindolin-1-yl)methyl)benzamide (3ah)

The title compound **3ah** was synthesized according to the **3b** and **3c**. The product **3ah** was isolated as white solid. Yield:

3b: 65% (27.0 mg); and **3c**: 64% (26.5 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.54 – 8.53 (m, 1H), 8.06 – 8.03 (m, 2H), 7.89 (d, J = 7.6 Hz, 1H), 7.86 – 7.83 (m, 1H), 7.71 – 7.65 (m, 2H), 7.59 (d, J = 8.4 Hz, 2H), 7.50 – 7.48 (m, 1H), 7.39 (d, J = 8.4 Hz, 2H), 7.25 – 7.23 (m, 1H), 4.41 (dd, J = 14.1, 6.1 Hz, 1H), 4.07 (dd, J = 14.1, 6.1 Hz, 1H), 1.62 (s, 3H), 1.30 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 168.4, 167.2, 154.8, 150.9, 149.2, 147.9, 138.5, 133.3, 131.8, 130.3, 128.8, 126.7, 125.4, 124.0, 122.1, 121.2, 120.5, 68.9, 47.2, 34.9, 31.2, 21.9. HRMS (ESI): m/z: [M + Na]⁺ calculated for C₂₆H₂₇N₃NaO₂: 436.1995, found: 436.2000.

4-fluoro-N-((1-methyl-3-oxo-2-(pyridin-2-yl)isoindolin-1yl)methyl)benzamide (3ai).

The title compound **3ai** was synthesized according to the **3b** and **3c**. The product **3ai** was isolated as white solid. Yield: **3b**: 85%

(31.7 mg); and **3c**: 74% (27.8 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.50 – 8.49 (m, 1H), 8.14 (s, 1H), 8.02 (d, J = 8.3 Hz, 1H), 7.92 – 7.83 (m, 2H), 7.68 (d, J = 4.1 Hz, 2H), 7.66 – 7.63 (m, 2H), 7.51 – 7.47 (m, 1H), 7.25 – 7.23 (m, 1H), 7.05 (t, J = 8.6 Hz, 2H), 4.37 (dd, J = 14.1, 6.1 Hz, 1H), 4.07 (dd, J = 14.1, 6.2 Hz, 1H), 1.62 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 168.4, 166.3, 164.1 (d, J = 251.6 Hz), 150.9, 149.0, 147.8, 138.6, 133.3, 130.9 (d, J = 3.1 Hz), 130.3, 129.1 (d, J = 8.9 Hz), 128.9, 124.0, 122.1, 121.3, 120.7, 115.5 (d, J = 21.9 Hz), 68.83, 47.39, 21.85. HRMS (ESI): m/z: [M + Na]⁺ calculated for C₂₂H₁₈FN₃NaO₂: 398.1275, found: 398.1284.

3-fluoro-N-((1-methyl-3-oxo-2-(pyridin-2-yl)isoindolin-1yl)methyl)benzamide (3aj)

The title compound **3aj** was synthesized according to the **3b** and **3c**. The product **3aj** was isolated as white solid. Yield: **3b**: 97%

(36.5 mg); and **3c**: 52% (19.5 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.50 (d, J = 3.7 Hz, 1H), 8.39 (s, 1H), 8.04 (d, J = 8.2 Hz, 1H), 7.89 (d, J = 7.6 Hz, 1H), 7.87 – 7.84 (m, 1H), 7.71 – 7.66 (m, 2H), 7.52 – 7.49 (m, 2H), 7.44 – 7.39 (m, 1H), 7.26 – 7.24 (m, 2H), 7.17 – 7.13 (m, 1H), 4.44 (dd, J = 14.1, 6.2 Hz, 1H), 4.02 (dd, J = 14.1, 5.7 Hz, 1H), 2.36 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 168.3, 166.1, 162.7 (d, J = 247.5 Hz), 150.8, 149.0, 147.7, 138.6, 137.1 (d, J = 6.8 Hz), 133.4, 130.2 (d, J = 5.2 Hz), 130.1, 128.9, 124.1, 122.3 (d, J = 3.0 Hz), 122.1, 121.3, 120.6, 118.3 (d, J = 21.3 Hz), 114.3 (d, J = 22.8 Hz), 68.7, 47.6, 21.7. HRMS (ESI): m/z: [M + Na]⁺ calculated for C₂₂H₁₈FN₃NaO₂: 398.1275, found: 398.1275.

3-methyl-N-((1-methyl-3-oxo-2-(pyridin-2-yl)isoindolin-1yl)methyl)benzamide (3ak)

The title compound **3ak** was synthesized according to the **3b** and **3c**. The product **3ak** was isolated as white solid. Yield: **3b**:

82% (30.5 mg); and **3c**: 57% (21.2 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.50 (d, *J* = 3.2 Hz, 1H), 8.15 (s, 1H), 8.06 (d, *J* = 8.3 Hz, 1H), 7.89 (d, *J* = 7.6 Hz, 1H), 7.86 – 7.83 (m, 1H), 7.71 – 7.66

(m, 2H), 7.51 - 7.48 (m, 2H), 7.44 - 7.39 (m, 1H), 7.28 - 7.24 (m, 2H), 7.24 - 7.21 (m, 1H), 4.44 (dd, J = 14.1, 6.2 Hz, 1H), 4.02 (dd, J = 14.1, 5.7 Hz, 1H), 2.36 (s, 3H), 1.63 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 168.3, 167.5, 151.0, 149.2, 147.7, 138.5, 138.3, 134.8, 133.3, 132.0, 130.3, 128.9, 128.4, 127.7, 124.0, 123.7, 122.1, 121.1, 120.4, 68.9, 47.4, 21.9, 21.4. HRMS (ESI): m/z: [M + Na]⁺ calculated for : C₂₃H₂₁NNaO₂: 394.1526, found: 394.1525.

3-chloro-N-((1-methyl-3-oxo-2-(pyridin-2-yl)isoindolin-1yl)methyl)benzamide (3al)

The title compound **3al** was synthesized according to the **3b** and **3c**. The product **3al** was isolated as white solid. Yield: **3b**: 74%

(29.1 mg); and **3c**: 36% (14.1 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.55 – 8.52 (m, 2H), 8.05 (d, J = 8.3 Hz, 1H), 7.90 (d, J = 7.6 Hz, 1H), 7.87 – 7.83 (m, 1H), 7.72 – 7.65 (m, 3H), 7.55 – 7.49 (m, 2H), 7.45 – 7.41 (m, 1H), 7.33 (t, J = 7.8 Hz, 1H), 7.25 – 7.23 (m, 1H), 4.43 (dd, J = 14.2, 6.5 Hz, 1H), 3.92 (dd, J = 14.2, 5.3 Hz, 1H), 1.61 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 168.3, 166.0, 150.8, 149.0, 147.7, 138.6, 136.6, 134.7, 133.4, 131.3, 130.2, 129.8, 129.0, 127.3, 124.9, 124.1, 122.1, 121.3, 120.6, 68.7, 47.8, 21.6. HRMS (ESI): m/z: [M + Na]⁺ calculated for C₂₂H₁₈ClN₃NaO₂: 414.0980, found: 414.0976.

2-methoxy-N-((1-methyl-3-oxo-2-(pyridin-2-yl)isoindolin-1yl)methyl)benzamide (3am)

The title compound **3am** was synthesized according to the **3b** and **3c**. The product **3am** was isolated as white solid. Yield: **3b**: 74%

(29.1 mg); and **3c**: 36% (14.1 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.50 – 8.49 (m, 1H), 8.20 (d, J = 8.3 Hz, 1H), 7.99 (s, 1H), 7.93 (dd, J = 7.8, 1.9 Hz, 1H), 7.86 (d, J = 7.6 Hz, 1H), 7.81 – 7.78 (m, 1H), 7.65 – 7.64 (m, 2H), 7.49 – 7.42 (m, 1H), 7.32 – 7.29 (m, 1H), 7.18 – 7.15 (m, 1H), 6.95 – 6.88 (m, 1H), 6.79 (d, J = 8.3 Hz, 1H), 4.53 – 4.48 (m, 2H), 3.61 (s, 3H), 1.77 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 164.80, 157.38, 149.22, 147.99, 137.87, 133.17, 132.47 , 131.96, 130.72, 128.64, 123.66, 121.81, 121.27, 120.89, 120.58, 118.91, 111.18, 68.75, 55.55, 46.35, 23.30. HRMS (ESI): m/z: [M + Na]⁺ calculated for C₂₃H₂₁N₃NaO₃: 410.1475, found: 410.1475.

N-((1-methyl-3-oxo-2-(pyridin-2-yl)isoindolin-1-

yl)methyl)furan-2-carboxamide (3an)

The title compound **3an** was synthesized according to the **3b** and **3c**. The product **3an** was isolated as white solid. Yield: **3b**: 87% (30.1 mg); and **3c**: 30% (10.3 mg). ¹H NMR (600 MHz, **CDCl**₃) δ 8.60 – 8.58 (m, 1H), 8.42 (s, 1H), 8.12 (d, *J* = 8.2 Hz, 1H), 7.89 (d, *J* = 7.6 Hz, 1H), 7.87 – 7.81 (m, 1H), 7.68 (d, *J* = 6.9 Hz, 2H), 7.54 – 7.48 (m, 1H), 7.42 (s, 1H), 7.23 – 7.21 (m, 1H), 7.01 (d, *J* = 3.4 Hz, 1H), 6.45 – 6.44 (m, 1H), 4.49 (dd, *J* = 14.2, 6.8 Hz, 1H), 3.94 (dd, *J* = 14.2, 5.7 Hz, 1H), 1.62 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 168.2, 158.2, 150.9, 149.1, 148.1, 147.6, 143.8, 138.4, 133.3, 130.3, 128.8, 124.1, 122.0, 120.9, 119.8, 114.1, 112.0, 68.7, 46.8, 21.9. HRMS (ESI): m/z: [M + Na]⁺ calculated for C₂₀H₁₇N₃NaO₃: 370.1162, found: 370.1163.

N-((1-methyl-3-oxo-2-(pyridin-2-yl)isoindolin-1yl)methyl)thiophene-2-carboxamide (3ao)

The title compound **3ao** was synthesized according to the **3b** and **3c**. The product **3ao** was isolated as white solid. Yield: **3b**: 93%

(33.9 mg); and **3c**: 25% (9.1 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.58 (d, J = 3.1 Hz, 1H), 8.28 (s, 1H), 8.08 (d, J = 8.3 Hz, 1H), 7.89 (d, J = 7.6 Hz, 1H), 7.86 – 7.83 (m, 1H), 7.71 – 7.64 (m, 2H), 7.53 – 7.48 (m, 1H), 7.46 (d, J = 3.2 Hz, 1H), 7.42 (d, J = 4.9 Hz, 1H), 7.24 – 7.22 (m, 1H), 7.06 – 7.01 (m, 1H), 4.44 (dd, J = 14.2, 6.7 Hz, 1H), 3.89 (dd, J = 14.2, 5.2 Hz, 1H), 1.61 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 168.2, 161.7, 150.9, 149.2, 147.7, 139.0, 138.5, 133.4, 130.2, 129.5, 128.9, 128.2, 127.5, 124.1, 122.1, 121.1, 120.3, 68.7, 47.6, 21.7. HRMS (ESI): m/z: [M + Na]⁺ calculated for C₂₀H₁₇N₃NaO₂S: 386.0934, found: 386.0936.

N-((1-methyl-3-oxo-2-(pyridin-2-yl)isoindolin-1-yl)methyl)-3-(trifluoromethyl)benzamide (3ap)

The title compound **3ap** was synthesized according to the **3b** and **3c**. The product **3ap** was isolated as white solid. Yield: **3b**:

59% (25.0 mg); and **3c**: <5% (trace). ¹H NMR (600 MHz, CDCl₃) δ 8.70 (s, 1H), 8.50 – 8.49 (m, 1H), 8.05 (d, *J* = 8.3 Hz, 1H), 7.99 (s, 1H), 7.90 (d, *J* = 7.6 Hz, 1H), 7.88 – 7.85 (m, 2H), 7.73 (d, *J* = 7.8 Hz, 1H), 7.71 – 7.68 (m, 2H), 7.57 – 7.51 (m, 2H), 7.26 – 7.24 (m, 1H), 4.46 (dd, *J* = 14.2, 6.6 Hz, 1H), 3.92 (dd, *J* = 14.2, 5.2 Hz, 1H), 1.62 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 168.3, 165.9, 150.8, 149.0, 147.6, 138.7, 135.7, 133.4, 131.1 (q, *J* = 32.7 Hz), 130.2, 130.1, 129.2, 129.0, 127.9 (q, *J* = 3.5 Hz), 124.1, 124.0 (q, *J* = 3.8 Hz), 123.7(q, *J* = 272.5 Hz),

122.1, 121.3, 120.7, 68.67, 47.92, 21.57. HRMS (ESI): m/z: [M + Na]⁺ calculated for C₂₃H₁₈F₃N₃NaO₂: 448.1243, found: 448.1244.

3,5-dichloro-N-((1-methyl-3-oxo-2-(pyridin-2-yl)isoindolin-1yl)methyl)benzamide (3aq)

The title compound **3aq** was synthesized according to the **3b** and **3c**. The product **3aq** was isolated as white solid. Yield: **3b**: 66%

(28.2 mg); and **3c**: 42% (17.2 mg). ¹H NMR (600 MHz, CDCl₃) δ 9.01 (s, 1H), 8.54 – 8.53 (m, 1H), 8.05 - 8.04(m, 1H), 7.92 (d, J = 7.6 Hz, 1H), 7.88 - 7.85 (m, 1H), 7.72 - 7.70 (m, 1H), 7.67 (d, J = 7.7 Hz, 1H), 7.61 (d, J = 2.0 Hz, 2H), 7.55 – 7.53 (m, 1H), 7.46 (t, J = 1.9 Hz, 1H), 7.28 - 7.25 (m, 2H), 4.45 (dd, J = 14.2, 7.1 Hz, 1H), 3.76 (dd, J = 14.2, 4.6 Hz, 1H), 1.60 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 168.3, 164.7, 150.7, 148.9, 147.5, 138.8, 137.7, 135.4, 133.5, 131.2, 130.1, 129.1, 125.6, 124.2, 122.1, 121.4, 120.7, 68.6, 48.3, 21.3. HRMS (ESI): m/z: $[M + Na]^+$ calculated for C₂₂H₁₇Cl₂N₃NaO₂: 448.0590, found: 448.0589.

N-((1-methyl-3-oxo-2-(pyridin-2-yl)isoindolin-1-yl)methyl)-3phenylpropanamide (3ar)

-Bn The title compound **3ar** was synthesized according to the **3b** and **3c**. The product **3ar** was isolated as white solid. Yield: **3b**: 47% (17.5 mg); and **3c**: 39% (14.5 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.12 – 8.11 (m, 1H), 7.96 (d, J = 8.3 Hz, 1H), 7.84 (d, J = 7.5 Hz, 1H), 7.76 – 7.73 (m, 1H), 7.63 (t, J = 7.5 Hz, 1H), 7.57 (d, J = 7.6 Hz, 1H), 7.48 (t, J = 7.4 Hz, 1H), 7.25 – 7.19 (m, 3H), 7.10 – 7.08 (m, 1H), 6.98 – 6.92 (m, 2H), 6.49 (s, 1H), 4.15 (dd, J = 14.0, 5.4 Hz, 1H), 4.03 (dd, J = 14.0, 7.3 Hz, 1H), 3.38 – 3.31 (m, 2H), 1.56 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 170.68, 167.98, 150.82, 148.96, 147.69, 138.05, 134.64, 133.12, 130.39, 129.22, 128.88, 128.67, 127.07, 123.79, 122.03, 120.69, 119.54, 68.62, 46.06, 43.71, 22.55. HRMS (ESI): m/z: $[M + Na]^+$ calculated for $C_{23}H_{21}N_3NaO_2$: 394.1526, found: 394.1528.

N-((1-methyl-3-oxo-2-(pyridin-2-yl)isoindolin-1yl)methyl)octanamide (3as)

 C_7H_{15} -*n* The title compound **3as** was synthesized according to the **3b** and 3c. The product 3as was isolated as white solid. Yield: 3b: 88%

(33.4 mg); and **3c**: 71% (26.9 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.50 – 8.49 (m, 1H), 8.03 (d,

J = 8.2 Hz, 1H), 7.87 (d, J = 7.6 Hz, 1H), 7.83 – 7.81 (m, 1H), 7.67 – 7.64 (m, 1H), 7.62 (d, J) = 7.6 Hz, 1H), 7.49 (t, J = 7.3 Hz, 1H), 7.22 – 7.19 (m, 1H), 6.54 (s, 1H), 4.21 – 4.13 (m, 2H), 2.00 - 1.95 (m, 1H), 1.92 - 1.87 (m, 1H), 1.59 (s, 3H), 1.31 (m, 2H), 1.28 - 1.20 (m, 2H), 1.18 -1.12 (m, 4H), 1.06 - 0.96 (m, 2H), 0.86 (t, J = 7.2 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 172.7, 168.4, 151.1, 148.9, 147.9, 138.2, 133.1, 130.5, 128.7, 123.7, 122.2, 121.0, 120.1, 68.9, 45.9, 36.8, 31.6, 28.9, 28.8, 25.7, 22.6, 22.4, 14.1. HRMS (ESI): m/z: [M + Na]⁺ calculated for C₂₃H₂₉N₃NaO₂: 402.2152, found: 402.2152.

N-((1-([1,1'-biphenyl]-4-yl)-3-oxo-2-(pyridin-2-yl)isoindolin-1-

 $\begin{array}{c} \begin{array}{c} & & \\$ **3c**: 24% (11.9 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.48 (s, 1H), 8.30 –

8.29 (m, 1H), 8.12 (d, J = 8.3 Hz, 1H), 7.93 (d, J = 7.5 Hz, 1H), 7.77 - 7.80 (m, 1H), 7.61 -7.56 (m, 3H), 7.50 - 7.41 (m, 7H), 7.39 - 7.28 (m, 7H), 7.11 - 7.09 (m, 1H), 4.98 (dd, J = 14.0), 7.56 (m, 3H), 7.50 - 7.41 (m, 7H), 7.39 - 7.28 (m, 7H), 7.11 - 7.09 (m, 1H), 4.98 (dd, J = 14.0), 7.50 - 7.50 (m, 2H), 7.50 (m, 2H),5.5 Hz, 1H), 4.65 (dd, J = 14.0, 6.1 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 169.3, 167.7, 150.9, 149.1, 147.7, 140.5, 134.0, 138.5, 137.3, 134.9, 133.6, 131.3, 129.7, 128.9, 128.8, 128.7, 128.5, 127.5, 127.4, 126.9, 126.5, 124.3, 123.2, 121.2, 120.3, 73.4, 45.7.

HRMS (ESI): m/z: $[M + Na]^+$ calculated for $C_{33}H_{25}N_3NaO_2$: 518.1839, Found: 518.1842.

3c: 35% (15.9 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.38 (s, 1H), 8.27 –

8.25 (m, 1H), 8.14 (d, J = 8.2 Hz, 1H), 7.91 (d, J = 7.6 Hz, 1H), 7.80 - 7.76 (m, 1H), 7.59 -7.54 (m, 3H), 7.47 - 7.41 (m, 2H), 7.39 (d, J = 7.8 Hz, 1H), 7.35 (t, J = 7.6 Hz, 2H), 7.19 (s, 4H), 7.11 - 7.09 (m, 1H), 4.96 (dd, J = 14.0, 5.6 Hz, 1H), 4.56 (dd, J = 14.0, 5.9 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 169.1, 167.6, 150.7, 148.7, 147.6, 138.6, 137.0, 134.7, 133.8, 133.7, 131.4, 129.6, 129.1, 129.0, 128.5, 127.5, 126.9, 124.1, 123.1, 121.1, 119.8, 72.9, 45.7. HRMS (ESI): m/z: $[M + Na]^+$ calculated for $C_{27}H_{20}CIN_3NaO_2$: 476.1136, Found: 476.1146.

N-((1-([1,1'-biphenyl]-4-yl)-2-(4-methylpyridin-2-yl)-3-oxoisoindolin-1-yl)methyl)benzamide (4da)

The title compound **4da** was synthesized according to the **3b** and **3c**. The product **4da** was isolated as white solid. Yield: **3b**: 94% (47.7 mg); and **3c**: 41% (20.9 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.73 (s, 1H), 8.14 (d, *J* =

5.1 Hz, 1H), 7.95 – 7.89 (m, 2H), 7.62 (d, J = 7.0 Hz, 2H), 7.56 (t, J = 7.5 Hz, 1H), 7.50 – 7.40 (m, 7H), 7.38 – 7.27 (m, 7H), 6.92 (d, J = 5.1 Hz, 1H), 4.96 (dd, J = 14.0, 5.6 Hz, 1H), 4.59 (dd, J = 14.0, 5.9 Hz, 1H), 2.39 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 169.3, 167.6, 150.8, 150.0, 149.2, 147.3, 140.4, 140.0, 137.3, 135.0, 133.6, 131.3, 129.7, 128.9, 128.8, 128.5, 127.5, 127.4, 126.9, 126.5, 124.0, 123.2, 122.5, 120.9, 73.4, 45.9, 21.4. HRMS (ESI): m/z: [M + Na]⁺ calculated for C₃₄H₂₇N₃NaO₂: 532.1995, found: 532.2002.

N-((3-oxo-1-phenyl-2-(pyridin-2-yl)isoindolin-1- \bigvee yl)methyl)benzamide (4ea)

The title compound **4ea** was synthesized according to the **3b** and **3c**. The product **4ea** was isolated as white solid. Yield: **3b**: 84% (35.0 mg); and **3c**: 22% (9.2 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.38 (s, 1H), 8.27

-8.26 (m, 1H), 8.09 (d, J = 8.3 Hz, 1H), 7.91 (d, J = 7.6 Hz, 1H), 7.79 -7.76 (m, 1H), 7.58 -7.54 (m, 3H), 7.46 -7.39 (m, 3H), 7.34 (t, J = 7.6 Hz, 2H), 7.27 -7.21 (m, 4H), 7.20 -7.16 (m, 1H), 7.10 -7.07 (m, 1H), 4.94 (dd, J = 13.9, 5.4 Hz, 1H), 4.65 (dd, J = 13.9, 6.2 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 169.3, 167.6, 150.9, 149.2, 147.7, 138.4, 138.4, 134.9, 133.6, 131.3, 129.7, 128.9, 128.9, 128.5, 127.8, 126.9, 126.1, 124.0, 123.2, 121.1, 120.3, 73.5, 45.6. HRMS (ESI): m/z: [M + Na]⁺ calculated for C₂₇H₂₁N₃NaO₂: 442.1526, found: 442.1533.

N-((2-(4-chloropyridin-2-yl)-1-methyl-3-oxoisoindolin-1yl)methyl)benzamide (4fa)

The title compound **4fa** was synthesized according to the **3b** and **3c**. The product **4fa** was isolated as white solid. Yield: **3b**: 84% (33.0 mg); and **3c**: 42% (16.5 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.37 (d, *J* = 5.4 Hz,

1H), 8.29 (s, 1H), 7.88 (d, J = 7.6 Hz, 1H), 7.70 – 7.63 (m, 3H), 7.57 (d, J = 7.3 Hz, 2H), 7.51 – 7.47 (m, 1H), 7.43 (t, J = 7.4 Hz, 1H), 7.35 (t, J = 7.6 Hz, 2H), 7.20 – 7.19 (m, 1H), 4.53 (dd, J = 14.1, 6.0 Hz, 1H), 4.09 (dd, J = 14.1, 6.1 Hz, 1H), 1.69 (s, 3H). ¹³C NMR (150 MHz, CDCl₃)

 δ 168.3, 167.5, 152.1, 149.1, 148.1, 145.9, 134.6, 133.7, 131.4, 129.9, 129.0, 128.5, 126.8, 124.1, 122.1, 121.3, 119.4, 69.3, 47.1, 22.1. HRMS (ESI): m/z: [M + Na]⁺ calculated for C₂₂H₁₈ClN₃NaO₂: 414.0980, found: 414.0985.

N-((1-methyl-2-(4-methylpyridin-2-yl)-3-oxoisoindolin-1yl)methyl)benzamide (4ga)

The title compound **4ga** was synthesized according to the **3b** and **3c**. The product **4ga** was isolated as white solid. Yield: **3b**: 44% (16.4 mg); and **3c**: 20% (7.4 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.39 (s,

1H), 8.36 (d, J = 5.1 Hz, 1H), 7.88 (d, J = 7.5 Hz, 1H), 7.80 (s, 1H), 7.71 – 7.65 (m, 4H), 7.51 – 7.44 (m, 1H), 7.45 (t, J = 7.4 Hz, 1H), 7.38 (t, J = 7.6 Hz, 2H), 7.06 (d, J = 5.0 Hz, 1H), 4.36 (dd, J = 14.1, 6.3 Hz, 1H), 4.02 (dd, J = 14.1, 5.9 Hz, 1H), 2.44 (s, 3H), 1.59 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 168.3, 167.3, 150.8, 150.1, 149.1, 147.5, 134.8, 133.2, 131.3, 130.4, 128.8, 128.5, 126.9, 123.9, 122.6, 122.1, 121.4, 68.8, 47.5, 21.8, 21.3. HRMS (ESI): m/z: [M + Na]⁺ calculated for C₂₃H₂₁N₃NaO₂: 394.1526, found: 394.1531.

N-((1-methyl-2-(5-methylpyridin-2-yl)-3-oxoisoindolin-1-

yl)methyl)benzamide (4ha)

The title compound **4ha** was synthesized according to the **3b** and **3c**. The product **4ha** was isolated as white solid. Yield: **3b**: 86% (32.0 mg); and **3c**: 36% (13.4 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.33 (d, *J* = 2.4

Hz, 1H), 8.23 (s, 1H), 7.87 (d, J = 7.6 Hz, 1H), 7.84 (d, J = 8.3 Hz, 1H), 7.71 – 7.61 (m, 5H), 7.47 – 7.49 (m, 1H), 7.44 (t, J = 7.4 Hz, 1H), 7.37 (t, J = 7.6 Hz, 2H), 4.30 (dd, J = 14.1, 6.0 Hz, 1H), 4.08 (dd, J = 14.0, 6.3 Hz, 1H), 2.38 (s, 3H), 1.59 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 168.3, 167.3, 149.0, 148.4, 148.1, 139.2, 134.8, 133.1, 131.3, 131.2, 130.5, 128.8, 128.5, 126.9, 123.9, 122.1, 120.5, 68.6, 47.2, 21.9, 18.0. HRMS (ESI): m/z: [M + Na]⁺ calculated for C₂₃H₂₁N₃NaO₂: 394.1526, found: 394.1531.

N-((1-methyl-3-oxo-2-(4-(trifluoromethyl)pyridin-2-yl)isoindolin-1-yl)methyl)benzamide (4ia)

The title compound **4ia** was synthesized according to the **3b** and **3c**. The product **4ia** was isolated as white solid. Yield: **3b**: 86% (32.0 mg); and **3c**: 36% (13.4 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.67 – 8.60 (m, 2H), 7.90 (d, J = 7.6 Hz, 1H), 7.67-7.71 (m, 2H), 7.50-7.52 (m, 3H), 7.42 (t, J = 7.4 Hz, 1H), 7.38 (d, J = 3.8 Hz, 1H), 7.34 (t, J = 7.6 Hz, 2H), 7.19 (s, 1H), 4.63 (dd, J = 14.1, 6.0 Hz, 1H), 4.17 (dd, J = 14.1, 6.5 Hz, 1H), 1.75 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 168.5, 167.4, 152.3, 149.0, 148.5, 140.5 (q, J = 33.9 Hz), 134.5, 133.8, 131.4, 129.8, 129.1, 128.5, 126.7, 125.3, 124.1, 122.6 (q, J = 273.5 Hz), 115.9 (q, J = 3.2 Hz), 114.7 (q, J = 3.9 Hz), 69.4, 46.8, 22.2. HRMS (ESI): m/z: [M + Na]⁺ calculated for C₂₃H₁₈F₃N₃NaO₂: 448.1243, found: 448.1249.

N-((1-ethyl-3-oxo-2-(pyridin-2-yl)isoindolin-1-

yl)methyl)benzamide (4ja).

The title compound **4ja** was synthesized according to the **3b** and **3c**. The product **4ja** was isolated as white solid. Yield: **3b**: 84% (31.2 mg); and **3c**: 37% (13.4 mg).¹H NMR (600 MHz, CDCl₃) δ 8.50 – 8.49 (m,

1H), 8.07 (d, J = 8.3 Hz, 1H), 7.98 (s, 1H), 7.89 (d, J = 7.6 Hz, 1H), 7.87 – 7.84 (m, 1H), 7.73 – 7.58 (m, 4H), 7.50 – 748 (m, 1H), 7.46 – 7.40 (m, 1H), 7.37 – 7.35 (m, 2H), 7.23 – 7.21 (m, 1H), 4.44 (dd, J = 14.0, 6.0 Hz, 1H), 4.15 (dd, J = 14.0, 6.3 Hz, 1H), 2.28 (dd, J = 14.6, 7.3 Hz, 1H), 2.02 (dd, J = 14.6, 7.3 Hz, 1H), 0.42 (t, J = 7.3 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 169.0, 167.3, 151.0, 147.8, 147.0, 138.5, 134.8, 133.3, 131.4, 131.3, 128.8, 128.5, 126.8, 123.9, 122.2, 121.1, 120.3, 72.9, 47.2, 26.4, 7.1. HRMS (ESI): m/z: [M + Na]⁺ calculated for C₂₃H₂₁N₃NaO₂: 394.1526, found: 394.1527.

N-((1-cyclohexyl-3-oxo-2-(pyridin-2-yl)isoindolin-1-

yl)methyl)benzamide (4ka)

The title compound **4ka** was synthesized according to the **3b** and **3c**. The product **4ka** was isolated as white solid. Yield: **3b**: 67% (28.5 mg); and **3c**: <5%.¹H NMR (600 MHz, CDCl₃) δ 8.53 – 8.51 (m, 1H), 8.07 (s, 0H),

7.92 – 7.82 (m, 3H), 7.73 (d, J = 7.8 Hz, 1H), 7.64 – 7.62 (m, 1H), 7.58 – 7.53 (m, 2H), 7.48 – 7.45 (m, 1H), 7.43 – 7.37 (m, 1H), 7.34 – 7.31 (m, 2H), 7.29 – 7.24 (m, 2H), 4.52 (dd, J = 13.8, 7.5 Hz, 1H), 4.26 (dd, J = 13.8, 4.9 Hz, 1H), 2.10 – 2.01 (m, 1H), 1.96 – 1.91 (m, 1H), 1.83 – 1.72 (m, 1H), 1.61 – 1.44 (m, 3H), 1.43 – 1.35 (m, 1H), 1.20 – 1.05 (m, 1H), 1.03 – 0.75 (m, 2H), 0.34 – 0.27 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 169.1, 167.2, 151.1, 148.3, 145.8, 138.6, 135.0, 132.6, 131.7, 131.2, 128.7, 128.4, 126.8, 123.8, 123.7, 121.9, 121.7, 75.4, 44.8,

42.6, 27.7, 26.8, 26.6, 26.1, 26.0. HRMS (ESI): m/z: [M + Na]⁺ calculated for C₂₇H₂₇N₃NaO₂: 448.1995, found: 448.1995.

N-((1-methyl-3-oxo-2-(pyridin-2-yl)isoindolin-1yl)methyl)-4-(trifluoromethyl)benzenesulfonamide (4aa) The title compound 4aa was synthesized according to the 3d. The product 4aa was isolated as white solid. Yield: 88%

(40.7 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.41 – 8.37 (m, 1H), 7.99 (d, J = 8.3 Hz, 1H), 7.81 – 7.77 (m, 2H), 7.68 (d, J = 8.2 Hz, 2H), 7.58 – 7.53 (m, 3H), 7.45 (t, J = 7.4 Hz, 1H), 7.37 (d, J = 7.6 Hz, 1H), 7.20 – 7.16 (m, 1H), 6.67 (t, J = 6.5 Hz, 1H), 4.18 (dd, J = 13.4, 6.8 Hz, 1H), 3.51 (dd, J = 13.4, 6.3 Hz, 1H), 1.55 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.7, 150.5, 148.3, 147.5, 144.0, 138.5, 133.7(q, *J* = 32.8 Hz), 133.3, 130.5, 129.1, 127.1, 126.0(q, *J* = 3.7 Hz), 124.4, 123.2(q, *J* = 272.7 Hz), 121.1, 121.0, 119.7, 67.8, 51.1, 22.1. HRMS (ESI): m/z: [M + Na]⁺ calculated for C₂₂H₁₈F₃N₃NaSO₃: 484.0913, found: 484.0915.

4-methyl-N-((1-methyl-3-oxo-2-(pyridin-2-yl)isoindolin-1yl)methyl)benzenesulfonamide (4ab)

The title compound **4ab** was synthesized according to the **3d**. The product **4ab** was isolated as white solid. Yield: 95% (38.7

mg). ¹H NMR (600 MHz, CDCl₃) δ 8.33 – 8.24 (m, 1H), 7.95 (d, *J* = 8.3 Hz, 1H), 7.76 (d, *J* = 7.5 Hz, 1H), 7.72 – 7.68 (m, 1H), 7.50 (t, *J* = 7.1 Hz, 1H), 7.46 – 7.37 (m, 3H), 7.33 (d, *J* = 7.6 Hz, 1H), 7.11 – 7.03 (m, 3H), 6.51 (s, 1H), 3.94 (d, *J* = 13.1 Hz, 1H), 3.32 (d, *J* = 13.1 Hz, 1H), 2.29 (s, 3H), 1.49 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.9, 150.5, 148.6, 147.4, 142.9, 138.4, 133.3, 130.5, 129.5, 128.9, 126.8, 126.4, 124.3, 121.3, 120.8, 119.6, 67.9, 51.1, 22.2, 21.5. HRMS (ESI): m/z: [M + Na]⁺ calculated for C₂₂H₂₁N₃NaSO₃: 430.1196, found: 430.1197.

4-chloro-N-((1-methyl-3-oxo-2-(pyridin-2-yl)isoindolin-1yl)methyl)benzenesulfonamide (4ac)

The title compound **4ac** was synthesized according to the **3d**. The product **4ac** was isolated as white solid. Yield: 98% (41.8

mg). ¹H NMR (600 MHz, CDCl₃) δ 8.38 – 8.36 (m, 1H), 8.01 (d, J = 8.3 Hz, 1H), 7.86 – 7.76 (m, 3H), 7.59 – 7.56 (m, 1H), 7.52 – 7.48 (m, 3H), 7.38 (d, J = 7.6 Hz, 1H), 7.28 (d, J = 2.0 Hz, 1H), 7.18 – 7.16 (m, 1H), 6.54 (t, J = 6.6 Hz, 1H), 4.13 (dd, J = 13.2, 6.9 Hz, 1H), 3.46 (dd, J

= 13.3, 6.3 Hz, 1H), 1.56 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.8, 148.4, 147.5, 138.6, 138.4, 133.4, 130.5, 129.3, 129.1, 129.0, 128.2, 127.9, 124.4, 121.1, 121.0, 119.6, 67.8, 51.0, 22.2. HRMS (ESI): m/z: [M + Na]⁺ calculated for C₂₁H₁₈ClN₃NaSO₃: 450.0650, found: 450.0654.

4-cyano-N-((1-methyl-3-oxo-2-(pyridin-2-yl)isoindolin-1yl)methyl)benzenesulfonamide (4ad)

The title compound **4ad** was synthesized according to the **3d**. The product **4ad** was isolated as white solid. Yield: 71% (29.8

mg). ¹H NMR (600 MHz, CDCl₃) δ 8.39 – 8.38 (m, 1H), 7.99 (d, J = 8.3 Hz, 1H), 7.84 – 7.78 (m, 2H), 7.66 (d, J = 8.4 Hz, 2H), 7.62 – 7.56 (m, 3H), 7.51 – 7.48 (m, 1H), 7.41 (d, J = 7.6 Hz, 1H), 7.21 – 7.18 (m, 1H), 6.85 (t, J = 6.4 Hz, 1H), 4.18 (dd, J = 13.5, 7.0 Hz, 1H), 3.50 (dd, J = 13.4, 5.9 Hz, 1H), 1.56 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.6, 150.4, 148.2, 147.4, 144.7, 138.6, 133.4, 132.6, 130.5, 129.2, 127.2, 124.4, 121.2, 121.1, 119.7, 117.3, 115.8, 67.8, 51.2, 22.0. HRMS (ESI): m/z: [M + Na]⁺ calculated for C₂₂H₁₈N₄NaSO₃: 441.0992, found: 441.0995.

4-cyano-N-((3-oxo-1-phenyl-2-(pyridin-2-yl)isoindolin-1yl)methyl)benzenesulfonamide (4ae)

The title compound **4ae** was synthesized according to the **3d**. The product **4ae** was isolated as white solid. Yield: 88% (40.7

mg). ¹H NMR (600 MHz, CDCl₃) δ 8.19 – 8.17 (m, 1H), 8.01 (d, J = 8.3 Hz, 1H), 7.85 – 7.83 (m, 1H), 7.76 – 7.73 (m, 1H), 7.66 (d, J = 8.3 Hz, 2H), 7.60 (d, J = 8.4 Hz, 2H), 7.51 – 7.43 (m, 2H), 7.24 – 7.13 (m, 6H), 7.10 – 7.05 (m, 1H), 6.70 (t, J = 6.4 Hz, 1H), 4.90 (dd, J = 13.0, 6.2 Hz, 1H), 4.14 (dd, J = 13.0, 6.6 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 168.5, 150.4, 148.4, 147.5, 144.5, 138.4, 137.9, 133.6, 132.6, 130.0, 129.1, 128.9, 128.0, 127.3, 125.8, 124.4, 122.2, 121.0, 119.6, 117.3, 115.8, 72.1, 49.3. HRMS (ESI): m/z: [M + Na]⁺ calculated for C₂₇H₂₀N₄NaSO₃: 503.1148, found: 503.1151.

4-chloro-N-((3-oxo-1-phenyl-2-(pyridin-2-yl)isoindolin-1yl)methyl)benzenesulfonamide (4af)

The title compound **4af** was synthesized according to the **3d**. The product **4af** was isolated as white solid. Yield: 88% (40.7 mg). ¹H NMR (600 MHz, CDCl₃) δ 8.20 – 8.13 (m, 1H), 8.04 (d, J = 8.3 Hz, 1H), 7.90 – 7.83 (m, 1H), 7.78 – 7.70 (m, 1H), 7.54 – 7.49 (m, 2H), 7.49 – 7.43 (m, 2H), 7.29 (d, J = 2.7 Hz, 2H), 7.24 – 7.15 (m, 5H), 7.14 – 7.11 (m, 1H), 7.06 – 7.04 (m, 1H), 6.36 (t, J = 6.6 Hz, 1H), 4.84 (dd, J = 12.8, 6.0 Hz, 1H), 4.12 (dd, J = 12.8, 7.0 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 168.6, 156.8, 150.4, 148.5, 147.5, 138.7, 138.5, 138.2, 133.5, 130.0, 129.1, 128.9, 128.8, 128.3, 127.9, 125.8, 124.4, 122.1, 120.9, 119.5, 72.1, 49.0. HRMS (ESI): m/z: [M + Na]⁺ calculated for C₂₆H₂₀ClN₃NaSO₃: 512.0806, found: 512.0803.

6. X-Ray Crystallographic Data of the Complex 5

Table S2 Crystal data and structure refinement for CCDC 1957959.

Identification code	CCDC 1957959
Empirical formula	$C_{25}H_{28}ClN_2ORh$
Formula weight	510.85

Temperature/K	153.02
Crystal system	orthorhombic
Space group	Pbca
a/Å	11.9749(4)
b/Å	15.7608(5)
c/Å	23.8262(7)
α/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	4496.8(2)
Ζ	8
$\rho_{calc}g/cm^3$	1.509
μ/mm^{-1}	7.375
F(000)	2096.0
Crystal size/mm ³	0.5 imes 0.4 imes 0.3
Radiation	$CuK\alpha (\lambda = 1.54178)$
2Θ range for data collection/°	7.42 to 136.596
Index ranges	$-14 \le h \le 14, -18 \le k \le 18, -28 \le l \le 28$
Reflections collected	76351
Independent reflections	4120 [$R_{int} = 0.0405, R_{sigma} = 0.0133$]
Data/restraints/parameters	4120/41/373
Goodness-of-fit on F ²	1.100
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0237, wR_2 = 0.0577$
Final R indexes [all data]	$R_1 = 0.0241, wR_2 = 0.0580$
Largest diff. peak/hole / e Å ⁻³	0.40/-0.71

7. References

1. X. Kou, Y. Li, L. Wu, X. Zhang, G. Yang and W. Zhang, Org. Lett. 2015, 17, 5566.

2. X. Hao, B. Chen, L. Ren, L. Li, X. Yang, J. Gong, J. Niu and M. Song, *Org. Lett.* 2014, 16, 1104.

3. a) Yang, G.; Shen, C.; Zhang, W. *Angew. Chem. Int. Ed.* 2012, **51**, 9141. b) Bunescu, A.; Wang, Q.; Zhu, J. *Chem.-Eur. J.* 2014, **20**, 14633.

4. J. Park, J. Lee and S. Chang, Angew. Chem., Int. Ed. 2017, 56, 4256.

8. NMR Spectral for new compounds

¹H NMR Spectra of Compound 1a

¹³C NMR Spectra of Compound **1a**

¹H NMR Spectra of Compound 1b

¹³C NMR Spectra of Compound 1b

¹H NMR Spectra of Compound 1c

¹³C NMR Spectra of Compound 1c

¹H NMR Spectra of Compound 1d

¹³C NMR Spectra of Compound 1d

¹H NMR Spectra of Compound 1e

¹³C NMR Spectra of Compound 1e

¹H NMR Spectra of Compound **1f**

¹³C NMR Spectra of Compound **1f**

 $^1\mathrm{H}$ NMR Spectra of Compound $\mathbf{1g}$

¹³C NMR Spectra of Compound **1g**

 $^1\mathrm{H}$ NMR Spectra of Compound 1h

¹³C NMR Spectra of Compound 1h

¹H NMR Spectra of Compound 1i

¹³C NMR Spectra of Compound 1i

¹H NMR Spectra of Compound 1j

¹³C NMR Spectra of Compound 1j

¹H NMR Spectra of Compound 1k

¹³C NMR Spectra of Compound 1k

¹H NMR Spectra of Compound 11

¹³C NMR Spectra of Compound 11

¹H NMR Spectra of Compound **1m**

¹³C NMR Spectra of Compound 1m

¹H NMR Spectra of Rh(III)-Complex 5

¹³C NMR Spectra of Rh(III)-Complex 5

¹H NMR Spectra of Compound **3aa**

¹³C NMR Spectra of Compound **3aa**

¹H NMR Spectra of Compound **3ab**

¹³C NMR Spectra of Compound **3ab**

¹H NMR Spectra of Compound **3ac**

¹³C NMR Spectra of Compound **3ac**

¹H NMR Spectra of Compound **3ad**

¹³C NMR Spectra of Compound **3ad**

¹H NMR Spectra of Compound 3ae

¹³C NMR Spectra of Compound **3ae**

¹H NMR Spectra of Compound **3af**

¹³C NMR Spectra of Compound **3af**

¹H NMR Spectra of Compound **3ag**

¹³C NMR Spectra of Compound **3ag**

¹H NMR Spectra of Compound **3ah**

¹³C NMR Spectra of Compound **3ah**

¹H NMR Spectra of Compound **3ai**

¹³C NMR Spectra of Compound **3ai**

¹H NMR Spectra of Compound **3aj**

¹³C NMR Spectra of Compound **3aj**

 $^1\mathrm{H}$ NMR Spectra of Compound $\mathbf{3ak}$

¹³C NMR Spectra of Compound **3ak**

¹H NMR Spectra of Compound **3al**

¹³C NMR Spectra of Compound **3al**

¹H NMR Spectra of Compound **3am**

¹³C NMR Spectra of Compound **3am**

¹H NMR Spectra of Compound **3an**

¹³C NMR Spectra of Compound **3an**

¹H NMR Spectra of Compound **3ao**

¹³C NMR Spectra of Compound **3ao**

¹H NMR Spectra of Compound **3ap**

¹³C NMR Spectra of Compound **3ap**

¹H NMR Spectra of Compound **3aq**

¹³C NMR Spectra of Compound **3aq**

¹H NMR Spectra of Compound **3ar**

¹³C NMR Spectra of Compound **3ar**

¹H NMR Spectra of Compound **3as**

¹³C NMR Spectra of Compound **3as**

¹H NMR Spectra of Compound 4ba

¹³C NMR Spectra of Compound **4ba**

¹H NMR Spectra of Compound 4ca

¹³C NMR Spectra of Compound 4ca

¹H NMR Spectra of Compound 4da

¹³C NMR Spectra of Compound 4da

¹H NMR Spectra of Compound 4ea

¹³C NMR Spectra of Compound **4ea**

¹H NMR Spectra of Compound 4fa

¹³C NMR Spectra of Compound **4fa**

¹H NMR Spectra of Compound 4ga

¹³C NMR Spectra of Compound 4ga

¹H NMR Spectra of Compound 4ha

¹³C NMR Spectra of Compound 4ha

¹H NMR Spectra of Compound 4ia

¹³C NMR Spectra of Compound 4ia

¹H NMR Spectra of Compound 4ja

¹³C NMR Spectra of Compound 4ja

¹H NMR Spectra of Compound 4ka

¹H NMR Spectra of Compound 4aa

¹³C NMR Spectra of Compound **4aa**

¹H NMR Spectra of Compound 4ab

¹³C NMR Spectra of Compound 4ab

¹H NMR Spectra of Compound 4ac

¹³C NMR Spectra of Compound 4ac

¹H NMR Spectra of Compound 4ad

¹³C NMR Spectra of Compound 4ad

¹H NMR Spectra of Compound 4ae

¹³C NMR Spectra of Compound 4ae

 $^{^1\}mathrm{H}$ NMR Spectra of Compound $\mathbf{4af}$

¹³C NMR Spectra of Compound **4af**

