Supporting Information

An efficient and facile strategy for trifluoromethylation and perfluoroalkylation of isoquinolines and heteroarenes

Yang Pan^{[a],[b]}, Jiangtao Li^{[a],[b]}, Zhefeng Li^[c], Feng Huang,^a Xiaofeng, Ma^[a], Wei Jiao^{*[a]} and Huawu Shao^{*[a]}

^a Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China ^b University of Chinese Academy of Sciences, China ^c School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China.

*Correspondence author: E-mail: shaohw@cib.ac.cn Fax: (+86) 028-82890288

Table of contents

1.	General information	S3
2.	Optimization of the reaction conditions	S3
3.	General procedure for the trifluoromethylation of isoquinolines	S5
4.	Gram-scale synthesis of 3c and 3k	S6
5.	The study on the mechanism	S7
6.	References	S49
7.	Characterization data for the products	S51
8.	¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra of the products	S63

1. General information

All commercially sourced reagents were used as supplied unless otherwise stated. The ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on a Bruker Avance 400 spectrometer (400 MHz, 101 MHz or 376 MHz, respectively). ¹H NMR chemical shifts are reported in ppm (δ) relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard (CDCl₃, δ 7.26 ppm). ¹³C NMR chemical shifts were determined relative to the solvent: CDCl₃ at δ 77.16 ppm. High resolution mass spectroscopy data of the products were collected on a BioTOF Q instrument. Visualization on TLC was achieved by UV light (254 nm). Flash chromatography was performed on silica gel 90, 200-300 mesh.

2. Optimization of the reaction conditions

Table S1.Screening reaction conditions for trifluoromethylation ofisoquinoline.a

		+ TMSCF ₃	Oxidant fluoride source solvent, temp., 24h		
	1a	2a		3a	
Enter	Oridant	E-	Temp.	Colvert	\mathbf{V}_{i}
Entry	Oxidant	F	(°C)	Solvent	$r = 100^{\circ} (\%)$
1	PIFA	KF	r.t.	CH ₃ CN	trace
2	PIFA	KF	r.t.	dioxane	n.r.
3	PIFA	KF	r.t.	MeOH	n.r.
4	PIFA	KF	r.t.	toluene	n.r.
5	PIFA	KF	r.t.	THF	trace
6	PIFA	KF	r.t.	DMF	10
7	PIFA	KF	r.t.	NMP	57
8	PIDA	KF	r.t.	NMP	6
9	TBHP	KF	r.t.	NMP	n.r.
10	$K_2S_2O_8$	KF	r.t.	NMP	n.r.

11	PIFA	CsF	r.t.	NMP	52
12	PIFA	TBAF	r.t.	NMP	trace
13	PIFA	AgF	r.t.	NMP	n.r.
14	PIFA	KF	0	NMP	73
15	PIFA	KF	-10	NMP	66
16 ^{<i>c</i>}	PIFA	KF	0	NMP	42
17^d	PIFA	KF	0	NMP	65

^{*a*} Reaction conditions: **1a** (0.2 mmol), TMSCF₃ (3.0 equiv.), oxidant (3.0 equiv.), fluoride source (4.0 equiv.) in 2.0 mL anhydrous solvent for 24 h under Ar. ^{*b*} Isolated yield. n.r. = no reaction. ^{*c*} TMSCF₃ (2.0 equiv.), PIFA (2.0 equiv.), KF (2.0 equiv.). ^{*d*}TMSCF₃ (4.0 equiv.), PIFA (4.0 equiv.), KF (4.0 equiv.).

 Table S2. Screening of hypervalent iodine reagents (HIRs) under optimized

 condition.

Entry	HIRs	Temp. (°C)	Solvent	Yield (%) ^a
1	Koser's reagent	0	NMP	4
2	Togni's reagent	0	NIMD	
2	II	0	INIVIP	п.г.
3	BI-OH	0	NMP	n.r.
4	BI-OAc	0	NMP	n.r.
5	PhIO	0	NMP	7
6	PhIO ₂	0	NMP	n.r.
7	IBX	0	NMP	n.r.
8	DMP	0	NMP	n.r.
9	Koser's reagent	r.t.	NMP	3

10	PhIO	r.t.	NMP	5
11	PhIO	0	CH ₃ CN	n.r.
12	PhIO	0	DMF	n.r.
13	PhIO	0	MeOH	n.r.
14	PhIO	0	DCM	n.r.

^{*a*} Reaction conditions: **1a** (0.2 mmol), TMSCF₃ (3.0 equiv.), HIRs (3.0 equiv.), KF (4.0 equiv.) in 2.0 mL anhydrous solvent for 24 h under Ar. ^{*b*} Isolated yield. n.r. = no reaction.

3. General procedure for the trifluoromethylation of isoquinolines

In an argon glovebox, isoquinoline **1a** (0.2 mmol, 23.5 μ L), PIFA (3.0 equiv., 258 mg), and KF (4.0 equiv., 46.5 mg) weighed into an oven-dried glass vial equipped with a stir bar. The vial was sealed with a septum and brought outside of the glovebox. Under Ar, anhydrous NMP (2.0 mL) and TMSCF₃ (3.0 equiv, 90 μ L) were added in quick succession to the glass vial by syringe. The mixture was then allowed to stir at 0 °C for 24 hours. After complete consumption of substrates (monitored by TLC), the resulting mixture was diluted with EtOAc and washed by saturated NaHCO₃ solution (×2). The organic layer was dried over Na₂SO₄ and concentrated under vacuum. The crude product was purified by silica gel column chromatography using 5% EtOAc/petroleum ether as the eluent (The reaction of **1a** as an example).

4. Gram-scale synthesis of 3c and 3k

Scheme S1. Gram-scale synthesis of 3c

In an argon glovebox, 6-methoxyisoquinoline **1c** (10 mmol, 1.59 g), PIFA (3.0 equiv., 12.9 g), and KF (4.0 equiv., 3.4 g) weighed into an oven-dried glass vial equipped with a stir bar. The vial was sealed with a septum and brought outside of the glovebox. Under Ar, anhydrous NMP (200 mL) and TMSCF₃ (3.0 equiv., 4.4 mL) were added in quick succession to the round-bottomed flask by syringe. The mixture was then allowed to stir at 0 °C for 24 hours. After complete consumption of substrates (monitored by TLC), the resulting mixture was diluted with EtOAc and washed by saturated NaHCO₃ solution (×2). The organic layer was dried over Na₂SO₄ and concentrated under vacuum. The crude product was purified by silica gel column chromatography using 5% EtOAc/petroleum ether as the eluent to give the product **3c** (1.79 g, 79%).

Scheme S2. Gram-scale synthesis of 3k

In an argon glovebox, 4-bromoisoquinoline **1k** (10 mmol, 2.07 g), PIFA (3.0 equiv., 12.9 g), and KF (4.0 equiv., 3.4 g) weighed into an oven-dried glass vial equipped with a stir bar. The vial was sealed with a septum and brought outside of the glovebox. Under Ar, anhydrous NMP (200 mL) and TMSCF₃ (3.0 equiv., 4.4 mL) were added in quick succession to the round-bottomed flask by syringe. The mixture was then allowed to stir at 0 °C for 24 hours. After complete consumption of substrates (monitored by TLC), the resulting mixture was diluted with EtOAc and washed by saturated NaHCO₃ solution (×2). The organic layer was dried over Na₂SO₄

and concentrated under vacuum. The crude product was purified by silica gel column chromatography using 5% EtOAc/petroleum ether as the eluent to give the product **3k** (1.34 g, 49%).

5. The study on the mechanism

5.1 The control experiments of mechanism study (Scheme S3):

Scheme S3 The control experiments of mechanism study

In order to gain preliminary mechanism information about this reaction, several control experiments were conducted using **1a** as a substrate.

- a) In an argon glovebox, isoquinoline 1a (0.2 mmol, 23.5 μL), PIFA (3.0 equiv, 258 mg), KF (4.0 equiv, 46.5 mg) and 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) (0.2 mmol, 31.2 mg) weighed into an oven-dried glass vial equipped with a stir bar. Under Ar, NMP (2.0 mL) and TMSCF₃ (3.0 equiv, 90 μL) were added in quick succession to the glass vial by syringe. The vial was sealed with a septum and brought outside of the glovebox. The mixture was then allowed to stir at 0 °C for 24 hours. After the reaction, the mixture was then analyzed directly by LC-MS, and TEMPO-CF₃ adduct was detected. Finally, the product 3a was isolated in 7% yield.
- b) In an argon glovebox, isoquinoline 1a (0.2 mmol, 23.5 μL), PIFA (3.0 equiv., 258 mg), KF (4.0 equiv., 46.5 mg) and 2,6-di-*tert*-butyl-4-methylphenol (BHT) (0.2 mmol, 44 mg) weighed into an oven-dried glass vial. Under Ar, NMP (2.0 mL) and TMSCF₃ (3.0 equiv., 90 μL) were added in quick succession to the glass vial by syringe equipped with a stir bar. The vial was sealed with a septum and brought

outside of the glovebox. The mixture was then allowed to stir at 0 °C for 24 hours. After the reaction, no **3a** was detected.

We then used high resolution electrospray ionization mass spectra (HRMS-ESI) to detect the possibility of active intermediate $[Ph-I-CF_3]^+$ in the reaction process.¹ Samples were taken at 5 minutes, 30 minutes and 60 minutes respectively after the beginning of the reaction and diluted with MeCN prior to the injection into the mass spectrometer. However, the possible intermediate $[Ph-I-CF_3]^+$ don't be detected. The results are as follows: the intermediate $[Ph-I-CF_3]^+$ (C₇H₅F₃I) did not be observed.

5 mins

30 mins

	Formula	Neutral mass (Da)	Observed m/z	Mass error (mDa)	Mass error (ppm)	Response	Adducts	Identification status
1	C ₇ H ₅ F ₃ I	272.93880						Not Observed

Channel name: Time NaN +/- 0.0500 minutes

60 mins

Channel name: Time NaN +/- 0.0500 minutes

In conclusion, based on the radical trap experiments and detected results of HRMS-ESI, the CF₃ radical addition process was probably involved in our system.

5.2 Density functional theory (DFT) calculations

All geometries were fully optimized at the B3LYP² functional level of density functional theory and 6-31G(d) basis set,³ using the SDD pseudopotential⁴ for the considering Grimme's DFT empirical dispersion correction with iodine. Becke-Johnson damping scheme (D3BJ).⁵ Solvation effects were accounted for polarisable continuum model (PCM)⁶ with solvent parameters of NMP including static dielectric constant (298 K) and dynamic dielectric constant. Vibrational frequencies were calculated at the same level to identify stationary points as local minima (no imaginary frequency) or transition states (only one imaginary frequency) which were checked by the calculations of intrinsic reaction coordinate (IRC).⁷ The wave function stability of broken-symmetry singlet states was verified. The single-point energy calculations were performed based on optimized structures, employing the 6-311+G (d, p) basis set for all atoms in combination with the SDD pseudopotential for iodine, considering also DFT-D3BJ empirical dispersion correction and PCM solvation model. The Gibbs free energy was determined according to the single-point energy and the thermal correction to the Gibbs free energy obtained from the vibrational frequency analysis at the experimental reaction temperature (0 °C), together with DFT-D3BJ empirical dispersion correction. All DFT calculations were carried out with Gaussian 16 program.⁸

The polarization parameter function $(\zeta)^9$ was calculated by Multiwfn¹⁰ and then

plotted on the electron density isosurface.

$$\zeta(\mathbf{r}) = \left(\rho^{\alpha}(\mathbf{r}) - \rho^{\beta}(\mathbf{r})\right) / \left(\rho^{\alpha}(\mathbf{r}) + \rho^{\beta}(\mathbf{r})\right)$$

 ρ^{α} : α electron density

 ρ^{β} : β electron density

This function shows the ratio of unpaired electrons to total electrons on the molecule.

5.2.1 The Description for DFT Calculations

The most preferred reaction pathway was presented in Figure S1. From the energy profile, the trifluoromethylation process and the whole SET (single electron transfer) step was shown (Figure S1). Theoretical calculations indicated that the net reaction leading to **3a** had a large thermodynamic driving force of ca. 120.3 kcal/mol. The N atom of isoquinoline **1a** firstly formed a stable complex with PIFA and caused little energy increase (0.7 kcal/mol). The structure of complex was predicted by the potential energy scanning and conformer search. Further, the decarboxylation and participation of CF_3^- happened to get the stable **INT1**. The subsequent homolysis resulted in the broken-symmetry singlet state **INT2** with the rise of energy (19.3 kcal/mol). The broken-symmetry singlet state **TS** with 7-membered ring generated to produce the final 1a, PhI and TFA. The energy barrier was 3.5 kcal/mol from **INT2** to **TS**. The detailed transformation process of transient state **TS** was shown in the IRC plot (Figure S2).

As seen in the intrinsic reaction coordinate (IRC) plot, the process of the **INT2** to go over the energy barrier was displayed clearly. There were two main parts for this transformation, the first one was the single electron transfer (SET) (the curve colored with red) and dehydrogenation (the curve colored with blue). After homolysis of **INT2**, the single electron was distributed on the iodine of PhICOOCF₃ named α electron and on the trifluoromethyl radical named β electron with the opposite spin direction. At the transition state on the top of energy barrier, the β electron "flowed" to the PhICOOCF₃ gradually, which reflected by the shrink of the isosurface for the polarization parameter function (ζ) on iodine. Meantime, the energy also declined dramatically. When the bond formed between the C-1 and CF₃ group, the β single electron was localized on C-3 mainly and finally transferred to PhICOOCF₃. Then the CF₃COO⁻ left form PhICOOCF₃ and captured the hydrogen at C-1 to end up the charge transfer with the energy down.

We also tried to find the transition states on the C-3 position, but no reasonable result was obtained for the trifluoromethyl radical. Thus, it is believed that trifluoromethylation of C-3 in current reaction condition is not favorable. Furthermore, for explaining the selectivity and providing the prediction profile, the electron localization function (ELF), average Local ionization energy (ALIE), total electrostatic potential (ESP) and atomic charge (NPA charge) were evaluated for 1a-1 π and 3a-3 π , and showed as graphical representation for distinguishing the differences easily (only the figures of $1a-1\pi$ and 3a was attached for the space limitations in this article). There were significant features at C-1 comparing to other position in the isoquinolines. For C-1, the values showed the weak localization of electron in the ELF map, difficult to participate in the electrophilic reaction comparing to other position in the ALIE map, and relative low electronegativity on the Van der Waals surface in ESP map. From these different four aspects, they suggested that relative deficiency for electron at C-1 and unbalance of electron distribution on the aromatic ring. This should be the driving force for the SET mechanism. From the representative product 3a, the whole N-system was electron deficient due to the electron withdrawing of CF_3 group, but the electron distribution is not be changed. This is a main reason for the stop of trifluoromethylation of C-3 in the SET mechanism. In the different methods, readily available NPA charge is recommended for developing to prediction of this kind of reaction.

Figure S1. DFT-calculated energy profile of the trifluoromethylation of 1a

Figure S2. IRC plot of the key transition state TS with representative structures; carbon: gray, hydrogen: white, oxygen: red, nitrogen: blue, fluorine: yellow and iodine: purple. The single electron transfer showed by isosurface maps of polarization

parameter function on the structures (isovalue 0.3): green: α electron, blue: β electron. The red curve is the process of the electron transfer, and the blue curve is dehydrogenation process.

5.2.2. Characteristics related with the wave function of $1a-1\pi$

All geometry optimizations and single-point energy calculations for the N electron systems were performed at the B3LYP/6-311+G (d,p) theoretical levels. All the optimizations met the "very tight" convergence criteria setting in the Gaussian 16 software. Characteristics related with the wave function were calculated using Multiwfn.

1) Color-filled map of ELF (Electron Localization Function) of 1a-1 π at 1.4 Å above the N ring plane¹¹

The ELF function can be represented in three-dimensional real space to show electron localization at different positions. The Large ELF value means that electrons are greatly localized.

1c

1f

1r

1t

8.31

5.54

2.77

0.00

-2.77

-5.54

-8.31

-11.29

2) Isosurface maps of ALIE (Average Local Ionization Energy) of $1a-1\pi$ (isovalue 0.001)¹²

Average local ionization energy is written as

$$\bar{I}(r) = \frac{\sum_{i} \rho_{i}(r) |\varepsilon_{i}|}{\rho(r)}$$

Where $\rho_i(\mathbf{r})$ and ε_i are the electron density function and orbital energy of the molecular orbital, respectively. Lower value of $\overline{I}(r)$ indicates that the favored sites for reaction with electrophiles.

S19

S20

3) Color-filled map with contour lines of total ESP (Electrostatic Potential) at 1.8

Å below the N ring plane¹³

The molecule electrostatic potential $V(\mathbf{r})$ is defined by the electronic density $\rho(\mathbf{r})$ and the charges and positions of nuclei, which are assumed by be fixed in space. This function measures the electrostatic interaction between a unit point charge placed at \mathbf{r} and a positive (negative) value implies that current position is dominated by nuclear (electronic) charges.

-0.015

-0.035

-3.89 0.00 3.89 Length unit: Bohr

-2.72

-5.43

-8.15

-11.66

1f

-0.015

-0.035

7.77

11.66

-3.13 0.00 3.13 6.25 9.38 Length unit: Bohr

-9.38 -6.25

1i

1q

1r

1s

S23

4) NPA charges for prediction of products¹⁴

Population analysis was carried out on the basis of optimized structure with NBO 3.1 in Gaussian 16 program. The population analysis was performed on the *N* electron system, which values are per atom charge density. And these population values equivalent to their atomic partial charges. For example, the value of +0.10 in isoquinoline indicates a partial positive charge of 10% of a proton's charge, whereas the value of -0.22 indicates a partial negative charge of 22% of an electron's charge.

Figure S3. Partial charges distribution of *N*-heteroarenes.

We tried to conduct density functional theory (DFT) calculations to support our hypothesis for the high selective C-H trifluoromethylation of these electron-deficient substrates. The population analysis was performed on the N electron system, which values are per atom charge density. And these population values equivalent to their atomic partial charges. For example, the value of +0.10 in isoquinoline indicates a partial positive charge of 10% of a proton's charge, whereas the value of -0.22 indicates a partial negative charge of 22% of an electron's charge (Figure S1).

As with our calculated results in these electron-deficient heteroarenes, the most positive site of isoquinolines and pyridines are consistent with the regioselectivity observed in reaction. Therefore, the positive site identified on less electron rich N-heteroarenes via the partial charge analysis that are most reactive position toward attack by nucleophilic CF₃ radicals. All substrates (**1a-1** π) were computed and the regioselectivity of experimental observations that closely fits with partial charges distribution.

Population Analysis for $1a-1\pi$

Atom: the corresponding atom in the numbering molecule;

 $\rho(N)$: the natural population for the N electron system calculated by NBO;

 $\delta(N)$: the partial charge $\delta(N)$ of every atom in the molecule with *N* electrons was calculated by subtracting $\rho(N)$ from the normal electron count of corresponding atom.

	$ \begin{array}{c} 5 & 4 \\ 4a \\ 7 & 4a \\ 8a \\ 1 \\ 1 \end{array} $ 1a		$ \begin{array}{c} 4' \\ 5' \\ 6' \\ 1' \\ 2' \\ 5 \\ 4 \\ 3 \\ 6 \\ N \\ 2 \\ 1 \\ 1q \end{array} $			
Atom	<i>ρ</i> (<i>N</i>)	δ(N)	Atom	<i>ρ</i> (<i>N</i>)	$\delta(N)$	
1	5.90030	0.09970	1	7.45518	-0.45518	
2	7.45351	-0.45351	2	5.94341	0.05659	
3	5.96847	0.03153	3	6.23510	-0.23510	
4	6.21894	-0.21894	4	6.01326	-0.01326	
4a	6.04109	-0.04109	5	6.23510	-0.23510	
5	6.18410	-0.18410	6	5.94341	0.05659	
6	6.18522	-0.18522	1'	6.06307	-0.06307	
7	6.10248	-0.20535	2'	6.18524	-0.18524	
8	6.16572	-0.16572	3'	6.19666	-0.19666	
8a	6.10248	-0.10248	4′	6.19877	-0.19877	
			5'	-0.19666	-0.19666	
			6'	-0.18524	-0.18524	

	$\begin{array}{c} 5 & 4 \\ S & 4a \\ 7 & 7a \\ 1 \\ 1 \\ 1 \\ \end{array}$			$ \begin{array}{c} 5 & 4 \\ 6 & N & 4a \\ 7 & 5a \\ 8 & 1 \end{array} $ 1w	
Atom	<i>ρ</i> (<i>N</i>)	δ(N)	Atom	<i>ρ</i> (<i>N</i>)	$\delta(N)$
1	5.91404	0.08596	1	5.90158	0.09842
2	7.45763	-0.45763	2	7.44892	-0.44892
3	5.95712	0.04288	3	5.96157	0.03843
4	6.25227	-0.25227	4	5.81700	-0.22321
4a	6.16230	-0.16230	4a	6.13661	0.18300

5	15.59713	0.40287	5	7.44564	-0.18410
6	6.35064	-0.35064	6	5.91260	0.08740
7	6.23483	-0.23483	7	6.25004	-0.25004
7a	6.13339	-0.13339	8	6.12837	-0.12837
			8a	6.13661	-0.13661

9 M	$1e \xrightarrow{5} 4$ $4a$ $7 \xrightarrow{8} 1$ $1b$	≥) ³ .N ₂	$10 \xrightarrow{9}{5} \xrightarrow{4}{4a} \xrightarrow{3}{7} \xrightarrow{8}{8} \xrightarrow{1}$			
Atom	ρ(N)	δ(N)	Atom	$\rho(N)$	δ(N)	
1	5.90100	0.09900	1	5.89622	0.10378	
2	7.45763	-0.45763	2	7.46509	-0.46509	
3	5.96767	0.03233	3	5.96605	0.03395	
4	6.22109	-0.22109	4	6.22683	-0.22683	
4a	6.03135	-0.03135	4a	6.23590	-0.23590	
5	6.19188	-0.19188	5	6.02489	-0.02489	
6	6.01148	-0.01148	6	6.23590	-0.23590	
7	6.20263	-0.20263	7	5.66000	0.34000	
8	6.15842	-0.15842	8	6.27812	-0.27812	
8a	6.10735	-0.10735	8a	6.14472	-0.14472	
9	6.59051	-0.59051	4a	6.12285	-0.12285	
			9	8.53697	-0.53697	
			10	6.20893	-0.20893	

Atom	<i>ρ</i> (<i>N</i>)	δ(N)	Atom	<i>ρ</i> (<i>N</i>)	δ(N)
1	5.89773	0.10227	1	5.90278	0.09722
2	7.45165	-0.45165	2	7.44422	-0.44422
3	5.96206	0.03794	3	5.96866	0.03134
4	6.22006	-0.22006	4	6.20905	-0.20905
4a	6.02689	-0.02689	4a	6.05200	-0.05200
5	6.21255	-0.21255	5	6.11456	-0.11456
6	6.02219	-0.02219	6	6.14769	-0.14769
7	6.22586	-0.22586	7	6.17500	-0.17500
8	6.14827	-0.14827	8	6.16661	-0.16661
8a	6.10619	-0.10619	8a	6.08882	-0.08882
9	16.98845	0.01155	9	5.20246	0.79754
			9a	8.59691	-0.59691
			10	6.21341	-0.21341

Atom	ρ(N)	δ(N)	Atom	ρ(N)	δ(N)
1	5.90236	0.09764	1	5.89748	0.10252
2	7.45236	-0.45236	2	7.44830	-0.44830
3	5.96714	0.03286	3	5.95397	0.04603
4	6.21723	-0.21723	4	6.22953	-0.22953
4a	6.04632	-0.04632	4a	6.01377	-0.01377
5	6.13425	-0.13425	5	6.15538	-0.15538
6	6.13654	-0.13654	6	6.11801	-0.11801

7	6.16953	-0.16953	7	6.20911	-0.20911
8	6.16408	-0.16408	8	6.13667	-0.13667
8a	6.09918	-0.09918	8a	6.09248	-0.09248
9	5.91376	0.08624	9	5.58486	0.41514
10	6.01913	-0.01913	10	8.52986	-0.52986
1'	6.14697	-0.14697			
2'	6.14715	-0.14715			
3'	6.21068	-0.21068			
4'	6.19365	-0.19365			
5'	6.21067	-0.21067			
6'	6.14724	-0.14724			

$ \begin{array}{c} 10 \\ 0 \\ 9 \\ 6 \\ 4a \\ 7 \\ 8a \\ 1 \\ 1h \end{array} $			$ \begin{array}{c} 9 & 5 & 4 \\ 11 & & & 4a & 3 \\ 12 & & & & 4a & 3 \\ 0 & 7 & & & & 8a & N_2 \\ 10 & 8 & 1 & & 1 \\ 1 & & & & 1 \\ \end{array} $		
Atom	ρ(N)	δ(N)	Atom	ρ(N)	δ(N)
1	5.90419	0.09581	1	5.91354	0.08646
2	7.45184	-0.45184	2	7.46205	-0.46205
3	5.96996	0.03004	3	5.97447	0.02553
4	6.21466	-0.21466	4	6.22715	-0.22715
4a	6.06937	-0.06937	4a	6.03557	-0.03557
5	5.65258	0.34742	5	6.28203	-0.28203
6	6.28912	-0.28912	6	5.67573	0.32427
7	6.18433	-0.18433	7	5.69692	0.30308
8	6.20031	-0.20031	8	6.25641	-0.25641
8a	6.08972	-0.08972	8a	6.10277	-0.10277
9	8.53922	-0.53922	9	8.51829	-0.51829
10	6.20722	-0.20722	10	8.52201	-0.52201

	11	6.20892	-0.20892
	12	6.20851	-0.20851

$ \begin{array}{c} 9\\ Cl\\ 6\\ 4a\\ 7\\ 8a\\ N_2\\ 8\\ 1\mathbf{k} \end{array} $			$ \begin{array}{c} 9\\ Br\\ 6\\ 4a\\ 7\\ 8a\\ N_{2}\\ 8a\\ 1\\ 1I \end{array} $		
Atom	ρ(N)	δ(N)	Atom	<i>ρ</i> (<i>N</i>)	δ(N)
1	5.90321	0.09679	1	5.90151	0.09849
2	7.43854	-0.43854	2	7.43825	-1.43825
3	5.98866	0.01134	3	5.98953	0.01047
4	6.04988	-0.04988	4	6.11318	-0.11318
4a	6.06780	-0.06780	4a	6.07168	-0.07168
5	6.18510	-0.18510	5	6.18429	-0.18429
6	6.17651	-0.17651	6	6.17594	-0.17594
7	6.20048	-0.20048	7	6.20027	-0.20027
8	6.16370	-0.16370	8	6.16378	-0.16378
8a	6.09013	-0.09013	8a	6.08944	-0.08944
9	16.99133	0.00867	9	34.92886	0.07114

$ \begin{array}{c} 10 \\ 9 \\ 6 \\ 4a \\ 7 \\ 8a \\ 1 \\ 1m \end{array} $				$ \begin{array}{c} 4' \\ 5' \\ 6' \\ 1' \\ 2' \\ 6' \\ 4a \\ 7 \\ 8a \\ N \\ 8a \\ 1n \\ 1n \end{array} $	2
Atom	ρ(N)	δ(N)	Atom	ρ(N)	δ(N)
1	5.92859	0.07141	1	5.90690	0.09310
2	7.43851	-0.43851	2	7.44797	-0.44797
3	6.06732	-0.06732	3	5.95229	0.04771

4	5.68477	0.31523	4	6.06670	-0.06670
4a	6.07128	-0.07128	4a	6.02412	-0.02412
5	6.17994	-0.17994	5	6.19263	-0.19263
6	6.18809	-0.18809	6	6.18347	-0.18347
7	6.20284	-0.20284	7	6.20450	-0.20450
8	6.16867	-0.16867	8	6.17132	-0.17132
8a	6.09095	-0.09095	8a	6.08567	-0.08567
9	8.54047	-0.54047	1′	6.05553	-0.05553
10	6.20708	-0.20708	2'	6.18947	-0.18947
			3'	6.19725	-0.19725
			4′	6.20341	-0.20341
			5'	6.19929	-0.19929
			6'	6.19342	-0.19342

$\begin{array}{c} 5 & 4 \\ 6 & 4a \\ 7 & 8a \\ 8 & 1 \\ Br \\ 9 \end{array}$
1m

Atom	<i>ρ</i> (<i>N</i>)	$\delta(N)$	Atom	$\rho(N)$	$\delta(N)$
1	5.89955	0.10045	1	5.90442	0.09558
2	7.44503	-0.44503	2	7.45340	-0.45340
3	5.96303	0.03697	3	5.96712	0.03288
4	6.21682	-0.21682	4	6.21899	-0.21899
4a	6.02777	-0.02777	4a	6.03676	-0.03676
5	6.18334	-0.18334	5	6.18595	-0.18595
6	6.17404	-0.17404	6	6.18001	-0.18001
7	6.22894	-0.22894	7	6.19303	-0.19303
8	6.06253	-0.06253	8	5.96712	0.03288

8a	6.13469	-0.13469	8a	6.09241	-0.09241
9	34.92659	0.07341	1′	6.05781	-0.05781
			2'	6.19200	-0.19200
			3'	6.19760	-0.19760
			4′	6.20224	-0.20224
			5'	6.19717	-0.19717
			6'	6.19069	-0.19069

$ \begin{array}{c} 4'\\ 5'\\ 6'\\ 1'\\ 4\\ 5\\ 6\\ 3\\ 2'\\ N_{1}\\ 1r \end{array} $			$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$		
Atom	<i>ρ</i> (<i>N</i>)	$\delta(N)$	Atom	<i>ρ</i> (<i>N</i>)	$\delta(N)$
1	7.44753	-0.44753	1	7.42834	-0.42834
2	5.95271	0.04729	2	5.83179	0.16821
3	6.23845	-0.23845	3	5.96692	0.03308
4	6.15731	-0.15731	4	7.41172	-0.41172
5	6.08656	-0.08656	5	5.99717	0.00283
6	5.93186	0.06814	6	5.97618	0.02382
1′	6.05731	-0.05731	1′	6.08274	-0.08274
2'	6.18884	-0.18884	2'	6.18373	-0.18373
3'	6.19621	-0.19621	3'	6.20116	-0.20116
4′	6.20255	-0.20255	4′	6.19351	-0.19351
5'	6.19682	-0.19682	5'	6.19890	-0.19890
6'	6.19033	-0.19033	6'	6.16847	-0.16847

$ \begin{array}{c} 5 & 4 \\ 6 & & \\ S & 7 \\ 7 & 1 \\ 1 \\ 1 \\ \end{array} $			$ \begin{array}{c} 5 & 4 \\ 6 & 4a \\ 7 & 8a \\ 8 & 1 \\ 1\pi \end{array} $		
Atom	<i>ρ</i> (<i>N</i>)	$\delta(N)$	Atom	<i>ρ</i> (<i>N</i>)	$\delta(N)$
1	5.94691	0.05309	1	7.46438	-0.46438
2	7.45208	-0.45208	2	5.72317	0.27683
3	5.96452	0.03548	3	7.47978	-0.47978
4	6.22198	-0.22198	4	5.86913	0.13087
4a	6.06851	-0.06851	4a	6.13608	-0.13608
5	6.24644	-0.24644	5	6.16783	-0.16783
6	6.33960	-0.33960	6	6.20043	-0.20043
7	15.59343	0.40657	7	6.17785	-0.17785
7a	6.22406	-0.22406	8	6.18928	-0.18928
			8a	5.81890	0.18110

$ \begin{array}{c} 2 \\ 3 \\ 9 \\ 8 \\ 7 \\ 6 \\ 3 \\ 3 \\ 9 \\ 8 \\ 7 \\ 6 \\ 3 \\ 9 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$			$ \begin{array}{c} \begin{array}{c} 10 \\ 9 \\ 8 \\ 7 \\ 6 \\ 3z \end{array} $		
Atom	ρ(N)	δ(N)	Atom	ρ(N)	$\delta(N)$
1	6.18638	-0.18638	1	7.41513	-0.41513
2	6.19371	-0.19371	2	5.93152	0.06848
3	6.20018	-0.20018	3	6.24004	-0.24004
4	6.17897	-0.17897	4	6.14608	-0.14608
5	7.44619	-0.44619	5	6.17525	-0.17525
6	5.87413	0.12587	6	6.17462	-0.17462
7	6.15246	-0.15246	7	6.14602	-0.14602
8	6.21332	-0.21332	8	6.24003	-0.24003

9	6.18033	-0.18033	9	5.93160	0.06840
10	6.18463	-0.18463	10	7.41651	-0.41651

Cartesian coordinates for the optimized structures

			С	-2.70129981	-0.96360565	0.00000010
-1.26737808	-1.35866773	-0.00000015	Н	0.31203035	2.74494950	-0.0000027
-0.00843699	-0.69843430	-0.00000005	Н	-2.15672677	2.25558561	0.00000063
-0.00995714	0.72728619	0.00000005	С	0.51196087	1.67834006	-0.00000012
-1.27146137	1.37378550	0.00000007	С	1.03278771	-1.07522959	0.00000003
-2.41774306	0.61788459	0.00000000	Н	-1.29176899	-2.57097252	-0.0000008
1.21573165	-2.48276411	-0.00000013	Н	-3.57282793	-1.61054415	0.00000031
-1.29020911	-2.44725695	-0.00000019	С	2.08361819	-0.18413577	0.00000029
1.22451463	-1.39775057	-0.00000005	С	1.80198283	1.21188781	0.00000000
1.23197216	1.41347333	0.00000012	Н	1.22756719	-2.14327617	-0.00000000
-1.32810763	2.45688295	0.00000014	Н	2.62979700	1.91379555	-0.00000015
-3.39397250	1.09198532	0.00000000	N	-2.96335250	0.37117622	0.00000003
2.41305176	0.70980910	0.00000011	С	3.51704783	-0.65166731	0.00000001
2.41236002	-0.70649343	0.00000002	Н	4.05085965	-0.28028653	-0.88054185
1.23638025	2.49822341	0.00000019	Н	4.05085953	-0.28028701	0.88054218
3.35520889	-1.24125709	0.00000000	Н	3.58263016	-1.74103499	-0.0000033
-2.42786576	-0.74312417	-0.00000011				
3.35849720	1.24069942	0.00000016	1c			
			С	2.31005743	1.22871681	-0.00000011
			С	0.96710153	0.76675689	-0.00000000
-1.93435052	1.18965880	0.00000006	С	0.74347381	-0.64319562	0.00000005
-0.57782009	0.77114701	-0.00000011	С	1.89657112	-1.47321196	0.00000011
-0.31405162	-0.62830138	-0.00000022	С	3.14232397	-0.89900502	0.00000012
	-1.26737808 -0.00843699 -0.00995714 -1.27146137 -2.41774306 1.21573165 -1.29020911 1.22451463 1.23197216 -1.32810763 -3.39397250 2.41305176 2.41236002 1.23638025 3.35520889 -2.42786576 3.35520889 -2.42786576 3.35849720 -1.93435052 -0.57782009 -0.31405162	-1.26737808-1.35866773-0.00843699-0.69843430-0.009957140.72728619-1.271461371.37378550-2.417743060.61788459-1.29020911-2.482764111.22451463-1.397750571.231972161.41347333-1.328107632.45688295-3.393972501.091985322.41236002-0.706493431.236380252.498223413.35520889-1.24125709-2.42786576-0.743124173.358497201.18965880-0.577820090.77114701-0.31405162-0.62830138	-1.26737808-1.35866773-0.00000015-0.00843699-0.69843430-0.0000005-0.009957140.727286190.00000007-1.271461371.373785500.00000001-2.417743060.617884590.000000111.21573165-2.48276411-0.00000111.22451463-1.39775057-0.000000121.231972161.413473330.000000121.328107632.456882950.000000112.41236002-0.706493430.000000112.412360252.498223410.000000113.355208891.241257090.000000113.358497201.240699420.0000006-1.934350521.189658800.0000006-0.577820090.77114701-0.0000011-0.31405162-0.62830138-0.0000022	C-1.26737808-1.35866773-0.0000015H-0.00843699-0.69843430-0.0000005H-0.009957140.727286190.0000007C-1.271461371.373785500.0000007H-2.417743060.617884590.00000013H-1.2902091-2.48276411-0.0000013H-1.2902091-2.44725695-0.0000013H-1.231972161.413473330.0000012H-1.328107632.456882950.0000001H-1.3293972501.091985320.0000001H-1.3353072500.706493430.0000001H1.236380252.498223410.0000001H-1.2427865760.7431247-0.0000011H-2.427865761.241025090.0000001H-2.427865761.24069420.0000001H-1.934350521.189658800.0000006C-1.934350521.189658800.0000006C-1.934350521.189658800.0000006C-1.934350521.189658800.0000006C-1.934350521.189658800.0000006C-1.934350521.189658800.0000006C-1.934350521.189658800.0000006C-1.934350521.189658800.0000006C-1.934350521.189658800.0000006C-1.934305160.0028118CC-1.934305160.0028118CC-1.934305160.0028118C<	C-2.70129981-1.26737808-1.35866773-0.0000015H0.31203035-0.00843699-0.69843430-0.0000005C0.51196087-0.009957140.727286190.0000007C1.03278771-1.271461371.373785500.0000000H1.29176899-2.417743060.617884590.0000001H-1.291768991.215731652.48276411-0.0000013H3.572827931.22451463-2.447256950.0000001C1.801982831.231972161.413473330.0000012H1.22756719-1.328107632.456882950.0000014H2.62979700-3.393972051.091985320.0000014H2.629797032.412360020.706493430.0000011C3.517047831.235848970.0000011C3.517047832.44225670.0000011H4.050859533.355208891.24125700.0000011H3.58263162.427865760.74312470.0000011H3.58263162.427865761.4969420.0000016H1.21057433.558497201.24069420.0000016HC3.558497201.189658800.0000006C0.96710153-1.934350521.189658800.0000006C0.74347381-1.934350520.71147010.0000011C3.68657112-1.934405160.71147010.0000011C3.64263714-1.934405160.71147010.0000011C<	C-2.70129981-0.96360565-1.26737808-1.35866773-0.0000015H0.31203052.74494950-0.00843699-0.69843430-0.0000005H-2.156726772.25558561-0.009957140.727286190.0000007C1.03278771-1.07522959-2.417743061.373785500.0000007H-1.29176899-2.570972521.21573165-2.48276411-0.0000010H-1.29176899-2.570972521.21573163-2.44725695-0.0000010C2.08361819-0.184135771.2245143-1.3977507-0.0000010C1.801982831.211887811.231972161.413473330.0000012H1.22756719-2.1432767-1.328107632.456882950.0000011H2.629797001.91379555-3.393972501.091985320.0000011R2.5508563-0.280286131.23197160.709809100.0000011H4.05085953-0.280286131.23584020.248223410.0000011H4.05085953-0.280286131.23584701.24125700.0000011H3.5826301-1.74103492.42786576-1.7413241-0.0000011H2.31005741.22871681-2.42786576-1.7413241-0.0000011H-1.21005741.22871681-2.42786576-1.74132470.0000016H-1.61034731.22871681-2.42786576-1.43058980.000006H0.96710131.22871681-1.934350521.18965880<

С -1.43470082 -1.49578778 -0.00000015 Н 0.01875329 2.70899220 -0.00000014

Н	2.49620037	2.30181376	0.00000008	С	-1.36473278	1.38156889	-0.00027451
С	-0.14674035	1.63661641	0.00000000	Н	-1.00570694	-2.01948031	0.00038438
С	-0.57812696	-1.13417574	-0.00000012	Н	-2.15796897	2.11776877	-0.00042107
Н	1.79009439	-2.55237237	0.00000025	N	3.34091839	0.24064736	-0.00002744
Н	4.03420032	-1.51760688	0.00000018	Cl	-3.38917692	-0.44565231	0.00006686
С	-1.64910517	-0.25999995	-0.00000001				
С	-1.43073823	1.14323161	0.00000006	1e			
Н	-0.77048092	-2.20064205	-0.00000052	С	3.08371454	1.14632587	0.00000005
Н	-2.26671979	1.82924831	-0.00000000	С	1.70326963	0.80703091	0.00000020
N	3.36464322	0.44585691	-0.00000005	С	1.36446620	-0.57725583	-0.0000008
0	-2.88864312	-0.82464277	-0.00000026	С	2.43202263	-1.51030971	-0.00000049
С	-4.03834731	0.01416959	0.00000011	С	3.72595735	-1.05116901	-0.00000055
Н	-4.07561847	0.64365446	-0.89510293	Н	0.93632991	2.83055592	0.00000077
Н	-4.89298855	-0.66001735	0.00000167	Н	3.36857754	2.19697581	0.00000035
Н	-4.07561718	0.64365552	0.89510269	С	0.67109559	1.77864270	0.00000058
				С	-0.00133808	-0.94791516	0.00000004
1d				Н	2.22460426	-2.57453332	-0.00000075
С	2.36452497	1.11963956	-0.00020374	Н	4.56061097	-1.74447892	-0.0000089
С	0.98451131	0.78302075	-0.00014588	С	-0.98841328	0.01555049	0.00000040
С	0.63954527	-0.59957956	0.00011924	С	-0.64660808	1.39538558	0.00000065
С	1.70545704	-1.53384640	0.00030614	Η	-0.28377099	-1.99415750	-0.00000021
С	3.00044653	-1.07660736	0.00022570	Н	-1.43692466	2.13354420	0.00000090
Н	0.22079449	2.80932909	-0.00054126	N	4.06056808	0.26818143	-0.0000027
Н	2.65022950	2.17011599	-0.00040381	С	-2.40942933	-0.44627982	0.00000040
С	-0.04427323	1.75746806	-0.00033951	0	-2.75356359	-1.60573903	0.00000162
С	-0.72881938	-0.97255317	0.00018353	0	-3.28213799	0.58278592	-0.00000117
Η	1.49838654	-2.59813392	0.00051068	С	-4.67675378	0.22464346	-0.00000100
Н	3.83218993	-1.77361949	0.00036500	Н	-5.21768500	1.16823187	-0.0000263
С	-1.69138400	0.00515216	-0.00001069	Н	-4.91900285	-0.35884133	-0.88905527

1f

С	4.86135235	0.82981806	0.00000000
С	3.44639325	0.71644905	0.00000000
С	2.88539321	-0.59405804	0.00000000
С	3.79162927	-1.68541012	0.00000000
С	5.14264737	-1.43996710	0.00000000
Н	3.01214322	2.83752020	-0.00000100
Н	5.31004239	1.82178113	0.00000000
С	2.58237719	1.84130013	0.00000000
С	1.47919411	-0.74302006	0.00000000
Η	3.41814025	-2.70348419	0.00000100
Н	5.85365644	-2.25987116	0.00000100
С	0.64670705	0.36708503	0.00000000
С	1.22266409	1.67609512	0.00000000
Н	1.04822608	-1.73741213	0.00000000
Η	0.56176004	2.53403218	-0.00000100
Ν	5.68732740	-0.19301601	0.00000000
С	-0.76752505	0.22051002	0.00000000
С	-1.97341414	0.10899401	0.00000000
С	-3.38976625	-0.02770000	0.00000000
С	-4.21888430	1.10935508	0.00000000
С	-3.98579529	-1.30250010	-0.00000100
Η	-3.76628127	2.09357515	0.00000100
С	-5.60200440	0.97090707	0.00000000
С	-5.36984937	-1.43144210	-0.00000100
Η	-6.22923645	1.85514013	0.00000100
С	-6.18262244	-0.29760302	0.00000000

Н	-7.26155754	-0.40187203	0.00000000

Н -5.81615344 -2.41942217 -0.00000100

Н -3.35300124 -2.18175216 -0.00000100

1g

С	2.40770852	0.63997664	0.00000025
С	0.99733309	0.81979755	0.00000006
С	0.16658358	-0.34282406	-0.00000022
С	0.83830795	-1.59365788	-0.0000037
С	2.21195265	-1.62981388	-0.00000012
Н	1.06771611	2.97766165	0.0000034
Н	3.04725156	1.52095229	0.00000058
С	0.41616407	2.10996263	0.00000009
С	-1.25452127	-0.15862611	-0.00000039
Н	0.29292178	-2.52752732	-0.00000068
Н	2.73351634	-2.58147339	-0.00000005
С	-0.95202057	2.26043492	-0.00000018
Н	-1.39585655	3.24888747	-0.00000015
N	3.00669347	-0.52743390	0.00000045
С	-1.77928724	1.12347601	-0.0000039
Н	-2.85813321	1.22881166	-0.00000057
С	-2.20259055	-1.30015749	-0.0000030
0	-3.40946215	-1.17947501	0.00000104
Н	-1.75635448	-2.31088497	-0.00000162

1h

С	0.37368884	2.53911098	0.07633228				
С	-0.94623144	2.15718558	0.06789978				
С	-1.30042845	0.78807387	0.02120761				
-0.29619093	-0.23103708	0.00315539	С	-0.80105681	2.30731084	-0.00000024	
-------------	-------------	-------------	----	-------------	-------------	-------------	--
1.05806590	0.22133289	0.01714223	Н	-1.22417109	3.30540082	-0.00000024	
1.38254669	1.55886867	0.03859455	N	3.03319405	-0.63358940	0.00000075	
-3.43413722	1.15405131	-0.00012013	С	-1.68219085	1.19750340	-0.0000082	
0.64883563	3.58586944	0.11070622	Н	-2.74859053	1.37800794	-0.00000143	
-1.73631865	2.90000764	0.09287860	0	-1.94288267	-1.21800859	-0.00000145	
-2.66380626	0.38530945	-0.01672323	С	-3.35925543	-1.08743122	0.00000193	
-0.75407760	-1.57176694	-0.06524118	Н	-3.75105564	-2.10297573	0.00000412	
2.42681849	1.84058761	0.03091745	Н	-3.70888029	-0.56161039	0.89465293	
-2.10570616	-1.81974260	-0.10354868	Н	-3.70888486	-0.56161267	-0.89464867	
-0.05526457	-2.39312926	-0.07396424					
-2.46710399	-2.84140806	-0.15616867	1j				

-1.22735472 0.72203917 0.00000098

-2.45819622 1.28415739 0.00000105

-2.45525080 -1.28923317 0.00000178

-0.03238299 2.49618646 0.00000043

2.19532712	-0.72302128	0.00964078	С	2.45823864	-1.35340373	0.00000015
3.25503757	-0.32730293	-0.46023489	С	1.20384450	-0.69512500	0.00000055
2.02430568	-1.83828017	0.48869066	С	1.20351003	0.72567926	0.0000038
-3.06743272	-0.86059628	-0.07604191	С	2.46098900	1.37350652	-0.00000019
			С	3.61174030	0.61894395	-0.00000059
			Н	-0.01075175	-2.48035033	0.00000124
2.49384824	0.56503646	0.00000058	Н	2.48240818	-2.44212376	0.0000027
1.09582710	0.82020190	0.00000016	С	-0.03166946	-1.39830538	0.00000107
0.22958819	-0.30814581	-0.00000042	С	-0.03925530	1.41431985	0.00000062
0.82025495	-1.59331048	-0.00000061	Н	2.51700612	2.45685307	-0.0000036
2.19088959	-1.69995438	-0.0000026	Н	4.58604929	1.09746910	-0.00000108
1.23106879	2.98446331	0.00000079	С	-1.22496670	-0.71975704	0.00000129
3.17946025	1.41064727	0.00000122	Ν	3.62325240	-0.73778376	-0.00000043

С

С

С

Η

Η

Η

С

С

Η

С

Η

Η

Ν

0

0

Ν

1i

С

С

С

С

С

Η

Η

С

С

Η

Η

0.55899148 2.13382221 0.00000028

-1.18403213 -0.08872875 -0.00000082

0.19574877 -2.47665128 -0.00000098

2.66882167 -2.67429972 -0.00000008

S37

С

0

0

Η

С	-2.55402927	2.70326683	0.00000045
Н	-3.61931872	2.92614678	0.0000035
Н	-2.09056232	3.13223842	0.89465376
Н	-2.09056230	3.13223764	-0.89465322
С	-2.53733437	-2.70845434	0.00000144
Н	-2.06953577	-3.13361093	-0.89452197
Н	-2.06953491	-3.13361147	0.89452415
Н	-3.60027915	-2.94260145	0.00000189

1k

С	-0.41962186	2.15632804	-0.00000455
С	-0.99828612	0.85978086	-0.00000130
С	-0.12592634	-0.27176266	-0.0000037
С	1.26437564	0.01888209	0.00000011
С	1.70943401	1.31843252	0.00000223
Н	-3.05433052	1.52397717	0.0000032
Н	-1.07316286	3.02616852	0.00000307
С	-2.40112569	0.65796432	0.00000049
С	-0.68981849	-1.57209131	-0.00000009
Н	2.77173979	1.53424590	0.00000177
С	-2.92090850	-0.61350520	0.0000084
N	0.87305934	2.38634603	0.00000200
С	-2.05560426	-1.73257415	0.00000049
Н	-0.03522636	-2.43359139	0.0000009
Н	-2.47741998	-2.73125883	0.00000104
Н	-3.99399642	-0.76534713	0.00000125
Cl	2.44563945	-1.28160844	-0.00000050

С	-1.71945529	0.68197345	0.00000026
С	-0.57266283	-0.17231809	0.00000009
С	0.68695427	0.48529399	0.00000004
С	0.76331078	1.85703571	-0.0000037
Н	-3.87790006	0.77033252	-0.00000010
Н	-2.37835132	2.74663683	-0.00000069
С	-3.01656826	0.11090978	-0.00000015
С	-0.76974643	-1.57600580	0.00000005
Н	1.72479502	2.35703864	-0.00000041
С	-3.17650672	-1.25318047	-0.00000018
N	-0.33189210	2.65841705	-0.00000048
С	-2.04204078	-2.09779706	-0.00000010
Н	0.09189085	-2.23044360	0.00000006
Н	-2.17913076	-3.17321251	-0.00000017
Н	-4.16936724	-1.68765374	-0.0000027
Br	2.32206541	-0.51788138	0.00000003

C -1.51344826 2.08646029 0.00000100

1m

С	-0.23241638	-0.31288042	0.0000023
С	-0.82151366	-1.60066234	0.0000032
С	-1.06821779	0.83836678	0.0000008
С	-2.19184519	-1.73027771	0.0000025
Н	-0.18029075	-2.47221770	0.00000044
С	1.17826706	-0.09261555	0.0000035
С	-2.47510909	0.67103654	0.00000001
С	-0.44772727	2.11889307	0.0000002
С	-3.02645442	-0.58867847	0.00000011
Н	-2.63961987	-2.71776884	0.00000033

11

С	1.65743042	1.20161380	0.00000026	С	-1.48357991	0.23072402	-0.03463054
0	1.95083087	-1.21218633	0.00000049	С	-2.37330067	0.71353884	0.93440700
Н	-3.10837567	1.55192706	-0.00000010	С	-1.96214646	-0.68178244	-0.98613017
N	0.85036307	2.29697635	0.00000010	С	-3.70208428	0.29374819	0.95507995
Н	-1.07004395	3.01129089	-0.00000011	Н	-2.01562373	1.41303500	1.68171706
Н	-4.10346654	-0.71225176	0.00000009	С	-3.29045466	-1.09932293	-0.96681140
Н	2.72003415	1.40937522	0.00000030	Н	-1.29344868	-1.04936493	-1.75646645
С	3.36665215	-1.05937474	0.00000214	С	-4.16486213	-0.61448005	0.00530457
Н	3.70722648	-0.52765979	-0.89431932	Н	-4.37409688	0.67506019	1.71584300
Н	3.70722425	-0.52765866	0.89432376	Н	-3.64474109	-1.79831190	-1.71633974
Н	3.77374422	-2.06890457	0.00000327	Н	-5.19865124	-0.94059285	0.02023664

10

- 1	
	n
_	

С	2.44115601	1.82987616	-0.20590587	С
С	2.34755205	0.42201463	-0.05031244	C
С	1.04755546	-0.16260459	0.03080775	С
С	-0.07721126	0.71619329	-0.07230899	С
С	0.17083518	2.06854711	-0.21354170	C
Η	4.47889936	0.06275863	-0.02444941	Н
Н	3.42584341	2.29022605	-0.26613622	С
С	3.49940461	-0.39895579	0.04456049	C
С	0.95381295	-1.56475739	0.23972918	Н
Н	-0.66182630	2.75955957	-0.30009254	С
С	3.37438076	-1.75435036	0.22816212	N
N	1.40411345	2.63133618	-0.27790130	С
С	2.08909034	-2.33561521	0.33414621	Η
Н	-0.02176613	-2.02352373	0.33522991	Н
Η	2.00002026	-3.40382508	0.49817035	Η
Н	4.25570892	-2.38101506	0.30225943	Н

С	0.75471263	-1.56843604	-0.0000034
С	0.57981120	-0.15617469	-0.00000000
С	1.76042193	0.65124532	0.00000005
С	3.00715309	-0.02196700	0.00000008
С	3.03831670	-1.39336827	0.00000025
Н	-0.12136573	-2.20839338	0.00000024
С	-0.67831943	0.50592814	0.00000012
С	1.64801804	2.06455856	-0.0000002
Н	3.98246394	-1.92831469	-0.0000024
С	-0.76812247	1.87593062	0.00000000
N	1.92325326	-2.16960183	-0.00000009
С	0.41037514	2.65770587	-0.0000007
Н	2.55041351	2.66547125	-0.0000007
Н	0.32087846	3.73796851	-0.00000019
Н	-1.73695741	2.35802916	-0.0000008
Н	3.92815977	0.55030995	-0.00000011

1p

1q

С	-0.92802438	-1.55217782	-0.25379323	С	2.87256893	1.13762076	0.00569721
С	-1.05622394	-0.15065377	-0.03335302	С	1.48184802	1.19171077	0.00602602
С	-2.38367833	0.37134530	0.04765074	С	0.74587625	-0.00000011	0.00000003
С	-3.45781548	-0.54857376	-0.04813684	С	1.48184799	-1.19171102	-0.00602610
С	-3.19379488	-1.88192668	-0.23258241	С	2.87256889	-1.13762105	-0.00569758
Н	0.06193373	-1.98229330	-0.36607496	N	3.57442224	-0.00000015	-0.00000024
С	0.06232101	0.73941199	0.06456358	С	-0.73775617	-0.00000009	0.00000018
С	-2.57895755	1.76664038	0.20329976	С	-1.45587840	-0.93207738	-0.76311031
Н	-4.00080216	-2.60395738	-0.30680333	С	-1.45587819	0.93207722	0.76311084
С	-0.18105994	2.09374251	0.19725497	С	-2.84803449	-0.93046774	-0.76498214
N	-1.93849771	-2.38910898	-0.34960552	С	-2.84803429	0.93046764	0.76498299
С	-1.49524232	2.60707895	0.26565451	С	-3.54959388	-0.00000004	0.00000049
Н	-3.58927580	2.15582328	0.26708332	Н	3.45217335	2.05671348	0.00345495
Н	-1.64046002	3.67541387	0.38144699	Н	0.98091647	2.15238226	-0.01375261
Н	0.65836985	2.77501187	0.27809946	Н	0.98091641	-2.15238250	0.01375267
Н	-4.48057812	-0.19363314	0.01768042	Н	3.45217329	-2.05671378	-0.00345537
С	1.47010922	0.25077852	0.03412738	Н	-0.92035437	-1.64624584	-1.37821983
С	2.36284395	0.72868145	-0.93450507	Н	-0.92035401	1.64624566	1.37822024
С	1.94533657	-0.65536088	0.99281299	Н	-3.38517873	-1.65226682	-1.36998210
С	3.69163333	0.30938498	-0.94827138	Н	-3.38517837	1.65226674	1.36998306
Н	2.00689875	1.42157174	-1.68885483	Н	-4.63361525	-0.0000002	0.00000061
С	3.27450848	-1.07063479	0.98178731				
Н	1.27355989	-1.02191540	1.76081585	1r			
С	4.15188750	-0.59147323	0.00991874	С	1.48655174	1.52292495	0.05958294
Н	4.36543276	0.68395502	-1.71080471	С	0.75239987	0.32609139	0.05841169
Н	3.62569233	-1.76604071	1.73593424	С	1.48945072	-0.86390227	0.06878197

S40

С	2.87836046	-0.80840254	0.07355225	С	-0.50215304	-0.47248603	0.00000000
С	-0.73041620	0.33392840	0.05143175	С	0.48852003	0.43768303	0.00000000
С	-1.45768216	-0.56518406	0.84539164	Н	-0.25061202	-1.52934211	0.00000000
С	-1.44119385	1.24141742	-0.74789874	Н	0.22565502	1.49229611	0.00000000
С	-2.84985544	-0.55782747	0.83988900	С	1.93059514	0.17934401	0.00000000
С	-2.83360547	1.24912844	-0.75257559	С	2.48923018	-1.11192108	0.00000000
С	-3.54367932	0.34977169	0.04098162	С	2.81030520	1.27519609	0.00000000
С	3.49775449	0.43937759	0.06277544	С	3.86611828	-1.29279809	0.00000000
Ν	2.81858637	1.59032335	0.05848690	Н	1.84463013	-1.98281414	-0.00000100
Η	0.96344954	2.47491927	0.08081711	С	4.19043230	1.09463908	0.00000000
Η	0.97861765	-1.82028245	0.05117613	Н	2.40109317	2.28028817	0.00000000
Η	3.47312388	-1.71438831	0.07327525	С	4.72523634	-0.19134201	0.00000000
Η	-0.92871615	-1.25880192	1.48952278	Н	4.27462831	-2.29721317	-0.00000100
Η	-0.89979339	1.92920833	-1.38747638	Н	4.84671335	1.95760814	0.00000000
Η	-3.39319033	-1.25579582	1.46707222	Н	5.79928644	-0.33743702	0.00000000
Η	-3.36413897	1.95343969	-1.38354694	N	-4.74490534	0.22062602	0.00000000
Η	-4.62767222	0.35597678	0.03697832				
Η	4.58090655	0.52009393	0.05749874	1t			
				С	-1.52334435	-1.19223029	-0.02440123
1 s				С	-0.77052480	-0.00358756	-0.00013511
С	-4.21781230	-1.00668707	0.00000000	N	-1.39708833	1.18334622	-0.02221310
С	-3.87906928	1.24285309	0.00000000	С	-2.72854601	1.17351393	-0.03435822
С	-2.49836618	1.09572508	0.00000000	С	-3.46024042	-0.01166181	-0.02118886
С	-1.93966414	-0.19347601	0.00000000	N	-2.85406091	-1.20161439	-0.02659013
С	-2.84976020	-1.26145809	0.00000000	С	0.71239348	-0.00443471	0.02373558
Н	-4.92497235	-1.83171413	0.00000100	С	1.43811647	-1.09265912	0.52973467

H -1.87411913 1.98085214 0.00000000 H -2.49208818 -2.28551716 0.00000000

Н -4.31755631 2.23698016 0.00000000

S41

C 1.41727152 1.10578525 -0.46346231

C 2.83025948 -1.07576153 0.53649550

C 2.80784455 1.11864589 -0.46007105

С	3.52026591	0.02774444	0.03811622
Н	-1.03521597	-2.16013081	-0.06190156
Н	-3.22840170	2.13785559	-0.05186598
Н	-4.54562039	-0.00419995	-0.01508091
Н	0.91981116	-1.94897859	0.94473373
Н	0.85881721	1.95216914	-0.84225640
Н	3.37534190	-1.92189194	0.93931486
Н	3.33781829	1.98184483	-0.84689388
Н	4.60432023	0.03976143	0.04253120

1u

С	0.04044349	0.86567312	-0.00000000
С	0.00000000	-0.54631685	0.00000000
С	1.18759780	-1.28306802	0.00000000
С	2.42409672	0.65338677	-0.00000000
С	1.30691962	1.47199372	-0.00000000
С	-2.25510118	0.50120639	-0.00000000
Н	1.17612979	-2.36949481	0.00000000
Н	3.41893827	1.08762148	-0.00000000
Н	1.41288001	2.55078331	-0.00000000
Ν	2.37810360	-0.69451097	0.00000000
S	-1.65160301	-1.13781740	0.00000000
С	-1.27654405	1.44189521	-0.00000000
Н	-3.32302255	0.66280101	-0.00000000
Н	-1.47047698	2.50632219	-0.00000000

1v

С	1.43874932	1.32487652	0.00000005
С	0.12016687	0.83839939	0.00000018

С	-0.05536202	-0.56302229	0.00000010
С	1.05719675	-1.40525828	-0.0000003
С	2.30572426	-0.79877666	-0.0000008
N	2.50360718	0.53436381	-0.00000006
Н	1.62550410	2.39613107	0.0000009
Н	0.96527886	-2.48446182	-0.00000014
Н	3.20320673	-1.40943251	-0.00000019
С	-1.13272209	1.54579124	0.00000005
С	-2.19996774	0.71092441	-0.0000024
S	-1.75358991	-0.98487591	0.0000007
Н	-1.21710924	2.62454802	-0.00000009
Н	-3.24740429	0.97307724	-0.00000043

1w

С	2.38331514	-0.62699035	-0.00000041
С	1.23178938	-1.37609799	0.00000005
С	-0.01899234	-0.71401659	0.00000062
С	-0.00582850	0.71009985	0.00000024
С	1.25552246	1.36357290	0.0000027
Н	3.35541359	-1.10921056	-0.00000060
Н	1.25611213	-2.45880287	-0.00000003
С	-1.24663182	1.38937356	-0.00000007
Н	1.28753412	2.45196971	-0.00000033
С	-2.40258811	0.65027164	-0.00000021
С	-2.30697608	-0.76471110	-0.00000037
Н	-1.26871287	2.47442170	-0.00000002
Н	-3.37778626	1.12201002	-0.00000014
Н	-3.21753986	-1.35936960	0.0000028
N	2.40818199	0.73443836	-0.00000009

1x

С	2.39510764	-0.71618403	0.00000000
С	1.20508459	-1.40346767	0.00000000
С	-0.02900557	-0.70398503	-0.00000000
С	-0.01417236	0.72606275	0.00000000
С	1.23114107	1.40589110	0.00000000
С	2.40995354	0.69974593	0.00000000
Н	3.33387747	-1.25867231	0.00000000
Н	1.17101216	-2.48632799	0.00000000
С	-1.26451192	1.39201303	0.00000000
Н	1.23755531	2.49112978	0.00000000
Н	3.35829434	1.22499447	0.00000000
С	-2.42009684	0.65242258	0.00000000
С	-2.32394437	-0.76094746	-0.00000000
Н	-1.29270786	2.47703952	-0.00000000
Н	-3.39481382	1.12573654	-0.00000000
Н	-3.23181538	-1.35977373	0.00000002
N	-1.18839099	-1.42334763	0.00000000

1y

С	3.54856197	-0.24399572	-0.00000022	
С	2.79837796	0.91293408	-0.0000029	
С	1.38903736	0.85052510	-0.0000024	
С	0.72818702	-0.40425077	-0.00000012	
С	1.52044079	-1.57321009	-0.00000004	
С	2.89947969	-1.49269891	-0.00000009	
С	0.58995515	2.04457605	-0.00000033	

С	-0.72227000	-0.39683711	-0.0000008
С	-1.38242221	0.86357929	-0.0000018
С	-2.79273461	0.91433934	-0.00000015
Н	-3.25862202	1.89240399	-0.00000022
С	-3.53911004	-0.24493840	-0.0000004
С	-2.89238401	-1.49408583	0.00000006
С	-1.51338830	-1.56645318	0.00000004
Н	1.10253306	3.00623868	-0.00000043
Н	4.63130310	-0.19637538	-0.0000026
Н	3.28164352	1.88452253	-0.0000039
Н	1.05043021	-2.54836751	0.00000006
Н	3.48890760	-2.40279670	-0.0000003
Н	-4.62206657	-0.19632175	-0.0000002
Н	-3.47895358	-2.40583664	0.00000015
Н	-1.03852891	-2.53976500	0.00000011
N	-0.70671808	2.06991170	-0.0000030

1z

2	С	-3.47866384	-0.37074430	0.0000086
)	С	-2.82512734	0.84058711	0.00000011
	С	-1.41472491	0.86794173	-0.00000070
	С	-0.72934258	-0.37934865	-0.00000283
2	С	-2.70356555	-1.54653288	0.00000101
9	С	-0.67895774	2.09833742	-0.00000013
4	С	0.72934251	-0.37934862	0.00000204
2	С	1.41472466	0.86794186	0.00000053
4	С	2.82512711	0.84058734	0.00000049
9	Н	3.37697418	1.77505224	0.0000033
3	С	3.47866396	-0.37074400	-0.00000006

С	2.70356602	-1.54653272	-0.0000088
Н	-1.23145399	3.03221219	0.00000001
Н	-4.56058213	-0.43079435	0.00000186
Η	-3.37697447	1.77505200	0.00000066
Η	-3.19306902	-2.51759551	0.00000033
Η	4.56058225	-0.43079392	-0.00000013
Η	3.19306966	-2.51759530	-0.00000042
С	0.67895736	2.09833750	-0.0000029
Η	1.23145325	3.03221260	-0.00000060
N	-1.38361316	-1.56004584	-0.00000154
N	1.38361348	-1.56004569	0.00000111

1π

С	2.39366628	0.69556877	0.0000027
С	1.21626934	1.40424223	-0.0000009
С	-0.02005456	0.71303109	-0.00000031
С	-0.03990263	-0.71056620	-0.0000039
С	1.18857365	-1.41606433	0.00000002
С	2.37538602	-0.72148107	0.0000026
С	-1.28675236	1.34753432	-0.00000041
С	-2.31827691	-0.67614258	0.00000063
Н	-1.34800663	2.43487135	0.0000083
Н	3.34398565	1.21667173	0.00000056
Н	1.21888890	2.48933888	-0.00000009
Н	1.15805619	-2.49883241	0.00000001
Н	3.31540802	-1.26188571	0.00000046
Н	-3.26124736	-1.21476490	0.00000221
N	-2.41972127	0.68206366	0.00000013
N	-1.22035556	-1.39379686	-0.00000068

3a

С	0.75685075	0.46931296	-0.00000308
С	-0.54064166	-0.13334251	-0.00000042
С	-1.65350140	0.76380810	0.0000025
С	-1.38970474	2.15530106	-0.00000151
С	-0.09227759	2.59736206	-0.00000322
Н	0.03895232	-2.22841040	0.00000052
С	-0.78802701	-1.53237703	0.00000113
С	-2.97095509	0.23766661	0.00000220
Н	-2.21218522	2.86187437	-0.00000123
Н	0.14316594	3.65601341	-0.00000503
С	-3.17710308	-1.11955754	0.00000317
С	-2.07708432	-2.00838328	0.00000252
Н	-3.80951655	0.92527971	0.00000281
Н	-2.25435705	-3.07758846	0.00000297
N	0.97472643	1.76003150	-0.00000378
Н	-4.18582692	-1.51651172	0.00000471
С	2.00975506	-0.40097803	-0.00000007
F	2.04173667	-1.21535897	1.08852714
F	2.04173715	-1.21536294	-1.08852415
F	3.13795029	0.30697172	-0.00000123

TS (broken-symmetry singlet)

С	2.14596280	-0.01156764	-0.16762987
С	3.53749871	0.28932504	-0.32833915
С	4.31252126	-0.56666243	-1.16648093
С	3.63720552	-1.62939300	-1.82269438
С	2.27624836	-1.78196621	-1.64989456

Η	3.55616379	2.00883626	0.98173916
Н	1.49978326	0.68521785	0.36307021
С	4.15623516	1.36997515	0.34031690
С	5.69921669	-0.30881063	-1.31560487
Н	4.18672042	-2.30662585	-2.46896716
Н	1.73578513	-2.57285681	-2.16317794
С	6.28001471	0.75402871	-0.65628325
С	5.50654627	1.60030487	0.17550733
Н	6.29171318	-0.95761209	-1.95402419
Н	5.98360697	2.43185215	0.68473230
N	1.52905461	-0.97454624	-0.86143284
Н	7.34191099	0.94823862	-0.77330388
Ι	-1.31573967	-1.25822645	-0.40088344
С	-3.42564018	-1.18951002	-0.10123093
С	-3.92253301	-0.94324147	1.18213368
С	-4.28030568	-1.36678848	-1.19305834
С	-5.30359875	-0.88249023	1.37104294
Н	-3.24779369	-0.80070968	2.01907421
С	-5.65917263	-1.30439712	-0.98802357
Н	-3.88107166	-1.54976923	-2.18467185
С	-6.17055799	-1.06226355	0.28974617
Н	-5.70011323	-0.69279745	2.36376117
Н	-6.33190583	-1.44250383	-1.82887735
Н	-7.24415803	-1.01285468	0.44269312
С	2.33576690	-1.16775865	1.86282394
F	3.07214101	-0.46086702	2.71768208
F	2.93989664	-2.31593430	1.56632820
F	1.12677442	-1.39742617	2.37010917
0	-1.58665299	1.33372080	-0.88457765

С	-1.06496781	2.03818869	0.04679979
0	-0.32330937	1.74277753	0.97652899
С	-1.52853797	3.52901638	-0.09026419
F	-1.29045336	4.00398100	-1.32721037
F	-2.85269876	3.62581087	0.14492680
F	-0.89248225	4.31767836	0.78652929

1a for mechanism calculation

С	-1.25013643	1.37505753	0.0000000
С	0.00000000	0.69981134	0.00000000
С	-0.01779171	-0.72828603	-0.00000000
С	-1.28683208	-1.36172487	0.00000000
С	-2.42625380	-0.59207312	0.00000000
Н	1.24207279	2.47408766	-0.00000000
Н	-1.25581041	2.46545173	0.00000000
С	1.24053217	1.38738268	0.00000000
С	1.21549889	-1.43076823	-0.00000000
Н	-1.35301106	-2.44576596	0.00000000
Н	-3.40795857	-1.05952626	0.00000000
С	2.40616908	-0.73825432	-0.00000000
С	2.42162150	0.68008895	-0.00000000
Н	1.20479118	-2.51712343	-0.00000000
Н	3.37246116	1.20419988	-0.00000000
N	-2.42382487	0.77305211	0.00000000
Н	3.34738325	-1.28009198	-0.00000000

INT1

C -2.10546215 -2.95447821 -1.54542011

С	-1.14012108	-2.91361821	-0.50091704
С	-1.58215512	-2.50818018	0.79628806
С	-2.95453221	-2.17944515	0.94155207
С	-3.78550427	-2.25297216	-0.15179601
Н	0.55886604	-3.52651026	-1.70165712
Н	-1.78606313	-3.26058624	-2.54169918
С	0.23023202	-3.22482423	-0.71097505
С	-0.63469404	-2.42154718	1.84974113
Η	-3.33511824	-1.84890013	1.90223413
Н	-4.83506035	-1.98707014	-0.06392700
С	0.68955905	-2.72174620	1.61819812
С	1.12829608	-3.12588223	0.33089902
Η	-0.96723707	-2.09863815	2.83143820
Η	2.17988816	-3.33597124	0.16606601
Ν	-3.37642124	-2.63938619	-1.39515910
Η	1.41450010	-2.63148519	2.42016818
Ι	0.29721602	0.20062801	-0.71656605
С	0.72806905	2.25064316	-0.29308802
С	0.85378106	3.13403223	-1.36079910
С	0.85519106	2.61976119	1.04212108
С	1.12474908	4.47103532	-1.06005208
Η	0.74582706	2.80539120	-2.38758617
С	1.12671008	3.96198829	1.31281709
Η	0.74905405	1.89387813	1.83660313
С	1.26010009	4.88045535	0.26836202
Η	1.22874909	5.18658037	-1.86918214
Η	1.23213209	4.28444331	2.34363217
Η	1.47044611	5.92157840	0.49116704
0	2.46871918	-0.19797101	-0.82180806

С	3.06850522	-0.30025502	0.33383202
0	2.63208619	-0.06968000	1.44453010
С	4.50953332	-0.83768906	0.14369301
F	5.19828538	-0.78067005	1.28880609
F	4.46045932	-2.12836915	-0.25430202
F	5.17784037	-0.14114601	-0.79044806
0	-1.85132513	0.88703006	1.51668811
С	-2.38732717	0.89673107	0.42476103
0	-1.84868313	0.72856205	-0.75191105
С	-3.90512628	1.19806809	0.32629202
F	-4.45977232	0.74851005	-0.80900906
F	-4.55636433	0.63941705	1.36046010
F	-4.09363429	2.53156118	0.38491403

INT2 (broken-symmetry singlet)

С	2.24452839	-0.05747258	-0.56821884
С	3.60657504	0.23111720	-0.29796566
С	4.58986125	-0.69063484	-0.77239990
С	4.12862284	-1.83197513	-1.47838982
С	2.77889778	-2.01048736	-1.67101868
Н	3.24746312	2.06418972	0.79647115
Н	1.47285606	0.62216434	-0.21324954
С	4.00751605	1.38115790	0.42957763
С	5.95951655	-0.42597574	-0.51136891
Н	4.83866865	-2.56024059	-1.85824648
Н	2.39717840	-2.87827231	-2.20121123
С	6.32316001	0.70071445	0.19350392
С	5.34351751	1.60988378	0.67002413
Н	6.71086304	-1.12266465	-0.87164964

Н	5.65571600	2.48747344	1.22755654	С	0.88065497	1.74129459	-0.85606075
N	1.83962383	-1.13092277	-1.22035150	С	0.00009293	1.09936286	-0.00000381
Н	7.37228211	0.89855208	0.39212340	С	-0.88040895	1.74133711	0.85608326
Ι	-0.98382423	-1.54844494	-0.60261539	С	-0.87139420	3.13975516	0.84057764
С	-2.99563042	-1.22915066	0.02144704	С	0.00022391	3.83406234	0.00006289
С	-3.21287379	-0.62994324	1.26554220	Н	1.54764655	3.67662499	-1.49814227
С	-4.05107561	-1.57422031	-0.82620184	Н	1.55958147	1.19619620	-1.49902917
С	-4.52573405	-0.38191416	1.66751973	Н	-1.55938910	1.19627271	1.49902398
Н	-2.37825634	-0.35782521	1.90026711	Н	-1.54721490	3.67670008	1.49825920
С	-5.35780090	-1.32292443	-0.40526681	Н	0.00027628	4.91910501	0.00009000
Н	-3.86218124	-2.02808044	-1.79278670	Ι	-0.00000706	-1.08484558	-0.00005366
С	-5.59520516	-0.72739967	0.83655935	0	-2.14370046	-0.96013814	0.44973194
Н	-4.71069886	0.08330642	2.63087075	С	-2.91554989	-0.53180755	-0.52003730
Н	-6.18825770	-1.58894124	-1.05192739	0	-2.61701000	-0.24767273	-1.66016266
Н	-6.61394698	-0.53082328	1.15589036	С	-4.36231462	-0.35604828	0.00577009
С	0.92438200	-0.26608827	2.31627698	F	-5.19469848	-0.02077647	-0.98570874
F	1.61008437	0.82764231	2.62588200	F	-4.81501498	-1.48344157	0.57976352
F	1.67817840	-1.35350060	2.45290913	F	-4.38631311	0.62520776	0.93096482
F	-0.17850084	-0.36021984	3.05347424	0	2.61707986	-0.24799759	1.66009271
0	-1.19434662	0.95549907	-1.44954703	С	2.91558819	-0.53209496	0.51994974
С	-1.06186509	1.75793491	-0.46239967	0	2.14369701	-0.96031056	-0.44983704
0	-0.59230348	1.59751732	0.65888132	С	4.36236249	-0.35642087	-0.00585965
С	-1.68075435	3.15373910	-0.80658012	F	4.81496877	-1.48381577	-0.57992375
F	-1.36233173	3.55853831	-2.04871239	F	5.19478155	-0.02127295	0.98563149
F	-3.02581352	3.07486465	-0.72610895	F	4.38643014	0.62488806	-0.93099679
F	-1.26801727	4.09356846	0.05527870				

PIFA

C 0.87177463 3.13971275 -0.84048668

3a for mechanism calculation

С	0.08878649	2.60159014	-0.00004918
С	1.38891240	2.15770429	-0.00002549

S47

С	1.65185190	0.76573433	0.00000452
С	0.53610502	-0.13089454	0.00000877
С	-0.75970935	0.46948596	-0.00001792
Н	3.80886310	0.92774187	0.00002676
Н	-0.14143817	3.66313536	-0.00007233
Н	2.21396419	2.86334258	-0.00002960
С	2.96954725	0.23868241	0.00003017
С	0.77793657	-1.53175712	0.00003857
С	2.06841296	-2.00994488	0.00006280
С	3.17209486	-1.12163447	0.00005865
Н	-0.05208067	-2.22638465	0.00004223
Н	2.24507021	-3.08097269	0.00008538
Н	4.18112109	-1.52216149	0.00007814
N	-0.98350672	1.76582372	-0.00004553
С	-2.00003407	-0.40623903	-0.00001547
F	-2.02852296	-1.21739394	1.08752151
F	-2.02849729	-1.21743638	-1.08752148
F	-3.13568830	0.30351591	-0.00004273

TFA

С	-0.59596095	-0.00158469	0.00004557
F	-1.18341300	1.19774286	0.00019296
F	-0.99797736	-0.67931954	1.08945269

F	-0.99813576	-0.67912885	-1.08942371
С	0.93956669	0.15618662	-0.00006392
0	1.49299391	1.22629371	-0.00014017
0	1.51554294	-1.04594620	-0.00007562
Н	2.48580577	-0.92404200	-0.00016108

CF₃COO⁻

С	-0.52148069	0.01333416	-0.00374451
F	-1.07363246	1.24003292	-0.15762868
F	-1.00645440	-0.48325575	1.16818357
F	-1.03612786	-0.76652916	-0.99134956
С	1.04410546	0.01062852	-0.01179147
0	1.58537011	1.13535186	-0.00488628
0	1.52840288	-1.14235288	-0.00506775

CF₃

С	-0.25814077	0.02911071	0.10013556
F	0.42782128	0.66220678	-0.99898193
F	0.42782128	0.66220678	1.19925305
F	0.42371553	-1.24144184	0.10013556

6. References

- C. Xu, J. Liu, W. Ming, Y. Liu, J. Liu, M. Wang and Q. Liu, Chem. Eur. J., 2013, 19, 9104.
- a) C. T. Lee and W. T. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785; b) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 5648.
- 3) P. C. Hariharan and J. A. Pople, *Theoret. Chim. Acta.*, 1973, 28, 213.
- a) M. Dolg, U. Wedig, H. Stoll and H. Preuss, J. Chem. Phys., 1987, 86, 866; (b)
 D. Andrae; U. Häußermann, M. Dolg, H. Stoll and H. Preuß, Theor. Chim. Acta., 1990, 77, 123.
- a) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104;
 b) S. Grimme, S. Ehrlich and L. Goerigk, J. Compt. Chem., 2011, 32, 1456.
- a) E. Cancès, B. Mennucci and J. Tomasi, J. Chem. Phys., 1997, 107, 3032. b) J.
 Tomasi, B. Mennucci and E. Cancès, J. Mol. Struct. (Theochem), 1999, 464, 211.
- 7) (a) K. Fukui, J. Phys. Chem., 1970, 74, 4161; (b) K. Fukui, Acc. Chem. Res., 1981, 14, 363.
- Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W.

Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

- R. G. Parr and W. Yang, Density-functional theory of atoms and molecules Oxford University Press, New York, Oxford, 1989.
- 10) T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580.
- 11) a) P. Sjobergp, *Can. J. Chem.*, 1990, **68**, 1440; b) P. Politzer, J. S. Murray and F. A. Bulat, *J. Mol. Model*, 2010, **16**,1731.
- 12) A. D. Becke, K. E. Edgecombe, J. Chem. Phys., 1990, 92, 5397.
- 13) J. S. Murray and P. Politzer, WIREs Comput. Mol. Sci., 2017, e1326.
- 14) S. C. Fosu, C. M. Hambira, A. D. Chen, J. R. Fuchs and D. A. Nagib, *Chem*, 2019, **5**, 417.

7. Characterization data for the products

1-(Trifluoromethyl)isoquinoline (3a)

Yield: 73%, colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.57 (d, J = 5.6 Hz, 1H), 8.28 (d, J = 9.3 Hz, 1H), 7.90 (d, J = 8.1 Hz, 1H), 7.82 (d, J = 5.6 Hz, 1H), 7.78 – 7.73 (m, 1H), 7.69 (ddd, J = 8.2, 6.9, 1.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 146.41 (q, J = 33.2 Hz), 140.86, 137.26, 131.00, 128.94, 127.63, 124.81 – 124.71 (m), 124.70, 124.66, 122.23 (q, J = 276.4 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.99. ESI-HRMS: m/z calcd for C₁₀H₇F₃N[M+H]⁺: 198.0525, found: 198.0523.

6-Methyl-1-(trifluoromethyl)isoquinoline (3b)

Yield: 78%, white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.51 (d, *J* = 5.6 Hz, 1H), 8.17 (d, *J* = 8.7 Hz, 1H), 7.73 (d, *J* = 5.6 Hz, 1H), 7.66 (s, 1H), 7.52 (dd, *J* = 8.8, 1.7 Hz, 1H), 2.55 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 146.17 (q, *J* = 33.2 Hz), 141.66, 140.85, 137.62, 131.26, 126.41, 124.44 (q, *J* = 2.9 Hz), 124.11, 123.14, 122.39 (q, *J* = 276.3 Hz), 22.00. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.04. ESI-HRMS: m/z calcd for C₁₁H₉F₃N[M+H]⁺: 212.0681, found: 212.0682.

6-Methoxy-1-(trifluoromethyl)isoquinoline (3c)

Yield: 82%, white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.43 (d, *J* = 5.6 Hz, 1H), 8.12 (d, *J* = 11.1 Hz, 1H), 7.65 (d, *J* = 5.6 Hz, 1H), 7.26 (dd, *J* = 9.4, 2.6 Hz, 1H), 7.07 (s, 1H), 3.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.12, 145.75 (q, *J* = 33.1 Hz),

141.15, 139.57, 126.30 (q, J = 3.2 Hz), 123.72, 122.16, 126.69 – 118.02 (m), 120.33, 104.78, 55.59. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.83. ESI-HRMS: m/z calcd for C₁₁H₉F₃NO[M+H]⁺: 228.0631, found: 228.0632.

6-Chloro-1-(trifluoromethyl)isoquinoline (3d)

Yield: 64%, white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.57 (d, *J* = 5.6 Hz, 1H), 8.19 (d, *J* = 7.5 Hz, 1H), 7.86 (s, 1H), 7.72 (d, *J* = 5.6 Hz, 1H), 7.60 (dd, *J* = 9.2, 2.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 146.63 (q, *J* = 33.6 Hz), 141.94, 137.97, 137.47, 130.00, 126.43 (q, *J* = 3.1 Hz), 126.31, 123.61, 122.90, 122.06 (q, *J* = 276.4 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.02. ESI-HRMS: m/z calcd for C₁₀H₆ClF₃N[M+H]⁺: 232.0135, found: 232.0140.

1-(Trifluoromethyl)isoquinoline-6-carboxymethylate (3e)

Yield: 61%, white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.66 (d, J = 5.6 Hz, 1H), 8.64 (s, 1H), 8.34 (d, J = 9.0 Hz, 1H), 8.25 (dd, J = 9.0, 1.6 Hz, 1H), 7.95 (d, J = 5.6 Hz, 1H), 4.01 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.88, 146.72 (q, J = 33.6 Hz), 141.75, 136.65, 132.14, 130.14, 128.28, 126.22, 125.53, 125.18 (q, J = 3.1 Hz), 123.97 – 117.54 (m), 52.91. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.46. ESI-HRMS: m/z calcd for C₁₂H₉F₃NO₂[M+H]⁺: 256.0580, found: 256.0579.

6-(Phenylethynyl)-1-(trifluoromethyl)isoquinoline (3f)

Yield: 72%, white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.60 (d, J = 5.6 Hz, 1H), 8.26 (d, J = 7.2 Hz, 1H), 8.08 (s, 1H), 7.87 – 7.71 (m, 2H), 7.64 – 7.55 (m, 2H), 7.44 – 7.35 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 146.54 (q, J = 33.4 Hz), 141.65, 137.04, 131.98, 131.51, 130.40, 129.24, 128.65, 126.38, 124.80 (q, J = 3.1 Hz), 124.15, 123.74, 123.61, 126.23 – 117.81 (m), 93.30, 88.24. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.96. ESI-HRMS: m/z calcd for C₁₈H₁₁F₃N[M+H]⁺: 298.0838, found: 298.0841.

1-(Trifluoromethyl)isoquinoline-5-carbaldehyde (3g)

Yield: 36%, white solid. ¹H NMR (400 MHz, CDCl₃) δ 10.39 (s, 1H), 9.30 (d, *J* = 5.9 Hz, 1H), 8.77 (d, *J* = 5.9 Hz, 1H), 8.57 (d, *J* = 9.4 Hz, 1H), 8.29 (d, *J* = 7.9 Hz, 1H), 7.91 (dd, *J* = 8.7, 7.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 192.32, 146.86 (q, *J* = 33.4 Hz), 144.00, 140.31, 134.70, 131.21 (q, *J* = 3.3 Hz), 131.07, 128.06, 124.80, 122.12 (q, *J* = 276.5 Hz), 121.63. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.34. ESI-HRMS: m/z calcd for C₁₁H₇F₃NO[M+H]⁺: 226.0474, found: 226.0475.

5-Nitro-1-(trifluoromethyl)isoquinoline (3h)

Yield: 64%, white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.82 (d, *J* = 6.0 Hz, 1H), 8.66 (t, *J* = 7.4 Hz, 2H), 8.58 (d, *J* = 7.7 Hz, 1H), 7.87 (t, *J* = 8.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 147.32 (q, *J* = 33.8 Hz), 145.81, 144.08, 131.30 (q, *J* = 3.4 Hz), 129.69, 128.66, 127.54, 125.18, 121.89 (q, *J* = 276.6 Hz), 119.63. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.36. ESI-HRMS: m/z calcd for C₁₀H₆F₃N₂O₂[M+H]⁺: 243.0376, found: 243.0376.

5-Methoxy-1-(trifluoromethyl)isoquinoline (3i)

Yield: 68%, white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.73 (d, J = 8.7 Hz, 1H), 7.78 (d, J = 8.6 Hz, 1H), 7.72 – 7.65 (m, 2H), 6.93 (d, J = 7.7 Hz, 1H), 4.01 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.08, 148.88 – 147.65 (m), 148.10, 133.27, 130.99, 122.02, 121.76 (q, J = 275.3 Hz), 121.73, 115.89 (q, J = 2.2 Hz), 105.93, 56.01. ¹⁹F NMR (376 MHz, CDCl₃) δ -67.60. ESI-HRMS: m/z calcd for C₁₁H₉F₃NO[M+H]⁺: 228.0630, found: 228.0631.

6,7-Dimethoxy-1-(trifluoromethyl)isoquinoline (3j)

Yield: 76%, white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, J = 5.5 Hz, 1H), 7.61 (d, J = 5.5 Hz, 1H), 7.39 (s, 1H), 7.06 (s, 1H), 3.98 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 153.39, 151.33, 143.62 (q, J = 32.7 Hz), 139.60, 134.56, 123.13, 122.57 (q, J = 276.0 Hz), 120.99, 105.13, 102.32 (q, J = 3.3 Hz), 56.16, 56.05. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.49. ESI-HRMS: m/z calcd for C₁₂H₁₁F₃NO₂[M+H]⁺: 258.0736, found: 258.0734.

4-Chloro-1-(trifluoromethyl)isoquinoline (3k)

Yield: 52%, colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.64 (s, 1H), 8.34 (dd, J = 8.4, 4.6 Hz, 2H), 7.92 (t, J = 7.7 Hz, 1H), 7.81 (t, J = 7.9 Hz, 1H). ¹³C NMR (101

MHz, CDCl₃) δ 145.19 (q, J = 33.7 Hz), 139.87, 134.77, 132.42, 132.06, 129.80, 125.62, 125.11 (q, J = 3.1 Hz), 124.43, 122.07 (q, J = 276.1 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.68. ESI-HRMS: m/z calcd for C₁₀H₆ClF₃N[M+H]⁺: 232.0135, found: 232.0134.

4-Bromo-1-(trifluoromethyl)isoquinoline (3l)

Yield: 56%, white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.77 (s, 1H), 8.29 (dd, J = 8.3, 4.6 Hz, 2H), 7.88 (t, J = 7.8 Hz, 1H), 7.82 – 7.73 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 145.85 (q, J = 33.7 Hz), 142.75, 135.96, 132.28, 129.84, 127.08, 125.84, 125.12 (q, J = 3.2 Hz), 123.96, 122.10 (q, J = 276.3 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.68. ESI-HRMS: m/z calcd for C₁₀H₆BrF₃N[M+H]⁺: 275.9630, found: 275.9632.

4-Methoxy-1-(trifluoromethyl)isoquinoline (3m)

Yield: 63%, white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.26 (d, J = 7.6 Hz, 1H), 8.21 (d, J = 7.8 Hz, 1H), 8.08 (s, 1H), 7.76 – 7.65 (m, 2H), 4.10 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 152.86, 138.87 (q, J = 33.3 Hz), 129.96, 129.06, 129.01, 125.38, 124.17 (q, J = 3.1 Hz), 122.53 (q, J = 275.1 Hz), 122.01, 120.83, 56.43. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.44. ESI-HRMS: m/z calcd for C₁₁H₉F₃NO[M+H]⁺: 228.0631, found: 228.0617.

4-Phenyl-1-(trifluoromethyl)isoquinoline (3n)

Yield: 65%, colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.55 (s, 1H), 8.42 – 8.33 (m, 1H), 8.01 (dq, *J* = 6.9, 3.4 Hz, 1H), 7.74 (dt, *J* = 6.6, 3.4 Hz, 2H), 7.61 – 7.45 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 145.71 (q, *J* = 33.1 Hz), 140.72, 137.38, 136.15, 135.74, 131.03, 130.18, 128.89, 128.70, 128.69, 126.05, 124.86 (q, *J* = 3.2 Hz), 124.68, 122.48 (q, *J* = 276.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.68. ESI-HRMS: m/z calcd for C₁₆H₁₁F₃N[M+H]⁺: 274.0838, found: 274.0839.

8-Bromo-1-(trifluoromethyl)isoquinoline (30)

Yield: 54%, white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.58 (d, *J* = 5.4 Hz, 1H), 8.08 (d, *J* = 7.5 Hz, 1H), 7.86 (d, *J* = 8.2 Hz, 1H), 7.81 (d, *J* = 5.4 Hz, 1H), 7.51 (t, *J* = 7.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 144.81 (q, *J* = 34.5 Hz), 140.27, 140.12, 137.23, 130.74, 128.16, 125.36, 125.27, 121.69 (q, *J* = 275.0 Hz), 117.47. ¹⁹F NMR (376 MHz, CDCl₃) δ -55.97. ESI-HRMS: m/z calcd for C₁₀H₆BrF₃N[M+H]⁺: 275.9630, found: 275.9630.

8-Phenyl-1-(trifluoromethyl)isoquinoline (3p)

Yield: 40%, colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.64 (d, J = 5.3 Hz, 1H), 7.96 – 7.86 (m, 2H), 7.78 – 7.70 (m, 1H), 7.57 (dd, J = 7.1, 1.3 Hz, 1H), 7.42 (dp, J =3.8, 2.1 Hz, 3H), 7.36 (dd, J = 6.7, 3.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 146.29 (q, J = 34.3 Hz), 142.11 (q, J = 2.7 Hz), 140.16, 138.76, 133.37, 129.84, 129.68 (q, J = 1.9 Hz), 127.73, 127.43, 124.51, 123.94, 121.37 (q, J = 275.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -58.86. ESI-HRMS: m/z calcd for C₁₆H₁₁F₃N[M+H]⁺: 274.0838, found: 274.0840.

3q

4-Phenyl-2-(trifluoromethyl)pyridine (3q)

Yield: 68%, white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.77 (d, J = 5.1 Hz, 1H), 7.90 (s, 1H), 7.70 (d, J = 5.1 Hz, 1H), 7.70 – 7.63 (m, 2H), 7.56 – 7.48 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.58, 150.41, 148.98 (q, J = 34.3 Hz), 136.99, 130.01, 129.52, 127.23, 124.29, 121.77 (q, J = 274.4 Hz), 118.60 (q, J = 2.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -67.98. ESI-HRMS: m/z calcd for C₁₂H₉F₃N[M+H]⁺: 224.0682, found: 224.0672.

5-Phenyl-2-(trifluoromethyl)pyridine (3r)

Yield: 52%, white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.94 (s, 1H), 8.04 (d, *J* = 9.8 Hz, 1H), 7.76 (d, *J* = 8.1 Hz, 1H), 7.61 (d, *J* = 6.9 Hz, 2H), 7.50 (dt, *J* = 14.0, 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 148.59, 146.90 (q, *J* = 34.8 Hz), 139.61, 136.48, 135.62, 129.46, 129.14, 127.46, 121.83 (q, *J* = 273.8 Hz), 120.57 (q, *J* = 2.7 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -67.69. ESI-HRMS: m/z calcd for C₁₂H₉F₃N[M+H]⁺: 224.0682, found: 224.0682.

(*E*)-4-Styryl-2-(trifluoromethyl)pyridine (3s)

Yield: 61%, white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.68 (d, J = 5.1 Hz, 1H), 7.76

(s, 1H), 7.56 (d, J = 7.1 Hz, 2H), 7.53 (d, J = 4.4 Hz, 1H), 7.45 – 7.37 (m, 3H), 7.36 (d, J = 3.5 Hz, 1H), 7.07 (d, J = 16.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 150.50, 148.84 (q, J = 34.1 Hz), 146.62, 135.63, 135.11, 129.45, 129.08, 127.35, 124.73, 123.44, 121.76 (q, J = 272.6 Hz), 117.68, 117.49 (q, J = 2.7 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -68.05. ESI-HRMS: m/z calcd for C₁₄H₁₁F₃N[M+H]⁺: 250.0838, found: 250.0852.

2-Phenyl-5-(trifluoromethyl)pyrazine (3t)

Yield: 42%, white solid. ¹H NMR (400 MHz, CDCl₃) δ 9.12 (s, 1H), 8.99 (s, 1H), 8.08 (dd, J = 6.7, 2.9 Hz, 2H), 7.60 – 7.53 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.64, 141.78 (q, J = 35.7 Hz), 141.55, 141.17 (q, J = 3.2 Hz), 135.13, 131.21, 129.44, 127.57, 121.56 (q, J = 274.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -67.39. ESI-HRMS: m/z calcd for C₁₁H₈F₃N₂[M+H]⁺: 225.0634, found: 225.0632.

7-(Trifluoromethyl)thieno[2,3-c]pyridine (3u)

Yield: 43%, white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.60 (d, J = 5.3 Hz, 1H), 7.88 (d, J = 5.3 Hz, 1H), 7.83 (d, J = 5.5 Hz, 1H), 7.47 (d, J = 5.5 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 147.59, 142.85 (q, J = 36.1 Hz), 142.31, 133.89, 132.59, 121.91 (q, J = 274.9 Hz), 123.07, 120.75. ¹⁹F NMR (376 MHz, CDCl₃) δ -66.27. ESI-HRMS: m/z calcd for C₈H₅F₃NS[M+H]⁺: 204.0089, found: 204.0088.

4-(Trifluoromethyl)thieno[3,2-c]pyridine (3v)

Yield: 55%, white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.52 (d, *J* = 5.5 Hz, 1H), 7.98 (d, *J* = 5.5 Hz, 1H), 7.66 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 149.61, 142.90 (q, *J* = 35.1 Hz), 141.27, 132.15, 129.97, 122.19 (q, *J* = 275.0 Hz), 121.42 (q, *J* = 2.7 Hz), 120.46. ¹⁹F NMR (376 MHz, CDCl₃) δ -65.18. ESI-HRMS: m/z calcd for C₈H₅F₃NS[M+H]⁺: 204.0089, found: 204.0092.

5-(Trifluoromethyl)-1,6-naphthyridine (3w)

Yield: 41%, white solid. ¹H NMR (400 MHz, CDCl₃) δ 9.16 (d, *J* = 4.2 Hz, 1H), 8.79 (d, *J* = 5.8 Hz, 1H), 8.60 (d, *J* = 9.4 Hz, 1H), 8.12 (d, *J* = 5.8 Hz, 1H), 7.63 (dd, *J* = 8.7, 4.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 155.41, 151.18, 147.24 (q, *J* = 33.8 Hz), 144.77, 133.00 (q, *J* = 3.0 Hz), 126.15, 123.69, 121.81 (q, *J* = 276.6 Hz), 120.50. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.56. ESI-HRMS: m/z calcd for C₉H₆F₃N₂[M+H]⁺: 199.0478, found: 199.0477.

2-(Trifluoromethyl)quinoline (3x)

Yield: 47%, white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, *J* = 8.5 Hz, 1H), 8.23 (d, *J* = 8.5 Hz, 1H), 7.90 (d, *J* = 8.2 Hz, 1H), 7.82 (ddd, *J* = 8.4, 6.9, 1.4 Hz, 1H), 7.73 (d, *J* = 8.5 Hz, 1H), 7.67 (t, *J* = 7.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 147.96 (q, *J* = 34.6 Hz), 147.22, 138.24, 130.92, 130.14, 128.93, 128.70, 127.79, 121.69 (q, *J* = 275.1 Hz), 116.84 (q, *J* = 2.1 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -67.45. ESI-HRMS: m/z calcd for C₁₀H₆F₃N[M+H]⁺: 198.0525, found: 198.0523.

6-(Trifluoromethyl)phenanthridine (3y)

Yield: 32%, white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.64 (d, J = 8.4 Hz, 1H), 8.55 (d, J = 9.5 Hz, 1H), 8.36 (d, J = 8.4 Hz, 1H), 8.27 (d, J = 7.5 Hz, 1H), 7.88 (t, J = 8.3 Hz, 1H), 7.83 – 7.68 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 146.56 (q, J = 32.7 Hz), 141.79, 134.00, 131.44, 131.17, 129.41, 129.29, 128.13, 125.97 (q, J = 3.1 Hz), 125.16, 122.59, 122.13, 122.05 (q, J = 277.2 Hz), 121.81. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.46. ESI-HRMS: m/z calcd for C₁₄H₉F₃N[M+H]⁺: 248.0682, found: 248.0678.

2-(Trifluoromethyl)-1,10-phenanthroline (3z)

Yield: 35%, white solid. ¹H NMR (400 MHz, CDCl₃) δ 9.25 (dd, *J* = 4.4, 1.7 Hz, 1H), 8.41 (d, *J* = 8.3 Hz, 1H), 8.27 (dd, *J* = 8.1, 1.8 Hz, 1H), 7.96 (d, *J* = 8.3 Hz, 1H), 7.88 (d, *J* = 8.9 Hz, 1H), 7.82 (d, *J* = 8.8 Hz, 1H), 7.68 (dd, *J* = 8.1, 4.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 151.17, 147.91 (q, *J* = 35.1 Hz), 145.82, 145.69, 138.05, 136.38, 129.97, 129.30, 128.99, 125.93, 123.84, 121.77 (q, *J* = 275.3 Hz), 119.22 (q, *J* = 2.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.53. ESI-HRMS: m/z calcd for C₁₃H₈F₃N₂[M+H]⁺: 249.0634, found: 249.0679.

2-(Trifluoromethyl)quinazoline (3π)

Yield: 25%, white solid. Yield: 25%, white solid. ¹H NMR (400 MHz, CDCl₃) δ 9.54 (s, 1H), 8.20 (d, *J* = 8.9 Hz, 1H), 8.09 – 8.02 (m, 2H), 7.83 (t, *J* = 7.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 161.77, 152.95 (q, *J* = 36.4 Hz), 149.73, 135.66, 130.14, 129.22, 127.46, 125.27, 120.08 (q, *J* = 275.5 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -69.87. ESI-HRMS: m/z calcd for C₉H₆F₃N₂[M+H]⁺: 199.0478, found: 199.0452.

6-Bromo-1-(trifluoromethyl)isoquinoline (3λ)

Yield: 66%, white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.59 (d, J = 5.6 Hz, 1H), 8.13 (d, J = 9.1 Hz, 1H), 8.07 (d, J = 1.9 Hz, 1H), 7.80 – 7.65 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 146.78 (q, J = 33.4 Hz), 141.95, 138.24, 132.55, 129.72, 126.34 (q, J = 3.1 Hz), 126.04, 123.47, 123.14, 122.05 (q, J = 276.4 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.00. ESI-HRMS: m/z calcd for C₁₀H₆BrF₃N[M+H]⁺: 275.9630, found: 275.9632.

1-(Perfluoroethyl)isoquinoline (4a)

Yield: 69%, colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.61 (d, *J* = 5.6 Hz, 1H), 8.39 (d, *J* = 8.6 Hz, 1H), 7.92 (d, *J* = 8.1 Hz, 1H), 7.83 (d, *J* = 5.5 Hz, 1H), 7.79 – 7.74 (m, 1H), 7.70 (ddd, *J* = 8.3, 6.9, 1.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 146.39 (t, J = 25.3 Hz), 140.84, 137.37, 130.87, 128.92, 127.87, 125.97, 124.92 (t, J = 6.2 Hz), 124.60, 119.37 (qt, J = 286.7, 35.9 Hz), 113.65 (tq, J = 255.4, 36.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -81.18 (s, 3F), -107.63 (s, 2F). ESI-HRMS: m/z calcd for C₁₁H₇F₅N[M+H]⁺: 248.0493, found: 248.0491.

6-Methyl-1-(perfluoroethyl)isoquinoline (4b)

Yield: 74%, white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.55 (d, *J* = 5.6 Hz, 1H), 8.26 (d, *J* = 8.9 Hz, 1H), 7.72 (d, *J* = 5.5 Hz, 1H), 7.66 (s, 1H), 7.51 (dd, *J* = 8.9, 1.7 Hz, 1H), 2.55 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.98 (t, *J* = 25.3 Hz), 141.54, 140.86, 137.76, 131.27, 126.63, 124.64 (t, *J* = 6.1 Hz), 124.36, 124.08, 119.37 (qt, *J* = 286.8, 36.1 Hz), 113.62 (tq, *J* = 255.6, 37.1 Hz), 21.93. ¹⁹F NMR (376 MHz, CDCl₃) δ -81.30 (s, 3F), -107.92 (s, 2F). ESI-HRMS: m/z calcd for C₁₂H₉F₅N[M+H]⁺: 262.0650, found: 262.0647.

4-Phenyl-2-(perfluoroethyl)pyridine (4c)

Yield: 72%, white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.79 (d, *J* = 5.1 Hz, 1H), 7.91 (s, 1H), 7.69 (dd, *J* = 5.1, 1.5 Hz, 1H), 7.65 (dt, *J* = 8.5, 2.3 Hz, 2H), 7.57 – 7.44 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.52, 150.31, 148.43 (t, *J* = 25.2 Hz), 136.90, 129.99, 129.48, 127.19, 124.22, 120.00 (t, *J* = 4.4 Hz), 119.10 (qt, *J* = 286.6, 37.7 Hz), 111.48 (tq, *J* = 254.8, 37.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -83.10 (s, 3F), -117.29 (s, 2F). ESI-HRMS: m/z calcd for C₁₃H₉F₅N[M+H]⁺: 274.0650, found: 274.0647.

1-(Perfluoropropyl)isoquinoline (4d)

Yield: 67%, colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.65 (d, J = 5.5 Hz, 1H), 8.36 (d, J = 8.5 Hz, 1H), 7.91 (d, J = 8.1 Hz, 1H), 7.84 (d, J = 5.5 Hz, 1H), 7.75 (t, J =7.1 Hz, 1H), 7.69 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 146.11 (t, J = 23.8 Hz), 141.10, 137.45, 130.80, 128.96, 127.86, 126.46, 125.05 (tt, J = 6.9, 2.4 Hz), 124.73, 118.20 (qt, J = 287.6, 34.2 Hz), 114.97 (tt, J = 255.8, 31.1 Hz), 109.67 (tq, J = 267.4, 37.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -79.85 (t, J = 9.6 Hz, 3F), -107.05 (qd, J = 9.6, 4.7 Hz, 2F), -124.80 – -124.88 (m, 2F). ESI-HRMS: m/z calcd for C₁₂H₇F₇N[M+H]⁺: 298.0461, found: 298.0458.

4-Phenyl-2-(perfluoropropyl)pyridine (4e)

Yield: 71%, white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.80 (d, *J* = 5.1 Hz, 1H), 7.90 (s, 1H), 7.70 (d, *J* = 5.0 Hz, 1H), 7.66 (dt, *J* = 8.6, 2.3 Hz, 2H), 7.56 – 7.48 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.53, 150.26, 148.43 (t, *J* = 25.2 Hz), 136.93, 130.02, 129.51, 127.23, 124.26, 120.38 (t, *J* = 4.8 Hz), 119.95 – 110.98 (m), 113.09 (tt, *J* = 256.6, 30.3 Hz), 109.74 – 106.16 (m). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.27 (t, *J* = 9.4 Hz, 3F), -114.91 (q, *J* = 9.3 Hz, 2F), -126.35 (s, 2F). ESI-HRMS: m/z calcd for C₁₄H₉F₇N[M+H]⁺: 324.0618, found: 324.0619.

8. ¹H, ¹³C NMR and ¹⁹F NMR spectra of the products

(8.56) (8.56) (8.30) (8.30) (8.30) (8.30) (8.30) (8.30) (7.31) (7.31) (7.32) (7

 $\begin{array}{c} 147.02\\ 146.70\\ 146.57\\ 146.63\\ 146.63\\ 146.63\\ 142.63\\ 137.00\\ 112.63\\ 122.456\\ 112.476\\ 122.456\\ 112.476\\ 112.4$

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

S71

$\begin{array}{c} & 147,03\\ & 146,70\\ & 146,04\\ & 146,03\\ & 146,03\\ & 146,03\\ & 137,04\\ & 137,04\\ & 137,04\\ & 133,15\\ & 133,15\\ & 133,15\\ & 133,15\\ & 122,26\\ & 122,45\\$

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 f1 (ppm)

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 f1 (ppm)

- 4.01

90 80 f1 (ppm) 130 120 ò

8.77 8.31 8.31 8.23 8.23 8.23 8.23 8.23 8.23 7.28 7.78 7.78 7.78 7.77 7.76 7.77 7.26

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -15(r1 (ppm)

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 f1 (ppm)

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 f1 (ppm)

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -86 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 f1 (ppm)

-9.12 -8.09 8.07 8.07 7.55 7.55 7.55 7.55 7.55 7.55 7.55

147.59 142.67 142.67 142.67 142.67 142.67 142.67 142.67 142.65 145.65 14

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -15 f1 (ppm)

 $\begin{pmatrix} 8.52\\ 8.51\\ 7.99\\ 7.98\\ -7.66\\ -7.26 \end{pmatrix}$

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 fl (ppm)

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 f1 (ppm)

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -15(fl (ppm)

-9.54 8.21 8.05 8.05 8.05 8.05 8.05 8.05 8.05 7.83 7.81 7.81 7.26

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -15 f1 (ppm)

146.64 146.14 146.14 146.14 146.14 125.97 125.97 125.97 122.89 122.456 122.456 122.456 122.456 122.456 122.456 122.456 112.352 122.456 112.352 112.456 111.5566 111.5566 111.5566 111.5566 111.5566 111.5566 111.5566 111.5566 111.5566 111.5566 111.5566 111.5566 11.

8.8.8 8.8.79 7.7.09 7.7.09 7.7.06 7.66 7.66 7.7.7.66 7.7.7.67 7.7.7.57 7.7.7.77 7.7.7.77 7.7.77 7.7.77 7.7.77 7.7.77 7.7.77 7.7.77 7.777 7.777

150.52 148.68 148.68 148.68 148.69 148.69 123.99 122.99 122.99 122.99 122.99 122.99 122.99 122.99 122.99 122.99 122.99 122.99 112.00 113.52 114.58 114.58 114.45 114.45 114.45 114.45 114.45 114.45 114.45 114.45 114.45 114.45 111.55 111.55 11

S110

