Electronic Supplementary Material for

Enhancing switchable dielectric property for crystalline supramolecular rotor compounds by adding polar component

Rui-Kang Huang, Xiao-Xian Chen, Zhi-Feng Xiao, De-Xuan Liu, Wei-Xiong Zhang* and Xiao-Ming Chen

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China

E-mail: zhangwx6@mail.sysu.edu.cn

Experimental details.

Materials and General Methods. Reagents and solvents were commercially available and used without further purification. Thermogravimetric analysis was performed using a TA-Q50 system.

Synthesis of $[(HMNA)(18C6)]PF_6$ (**1P**): Equivalent 68% HPF₆ aqueous solution was added to the mixed ethanol solution of 18C6 and MNA by drops. The mixed solution was evaporated in air. After 1 week, colourless block-like crystals of **1P** were filtered and washed by ethanol, then dried in air (yield: *ca*. 65%).

Synthesis of [(HMNA)(18C6)]SO₃CF₃ (**1S**): Equivalent HSO₃CF₃ was added to the mixed ethanol solution of 18C6 and MNA by drops. The mixed solution was evaporated in air. After 3 days, colourless block-like crystals of **1S** were filtered and washed by ethanol, then dried in air (yield: *ca.* 80%).

Crystal Structure Determination. Single-crystal diffraction data of **1P**-RT, **1P**-LT, **1S**-RT and **1S**-LT were collected on a Rigaku XtaLAB P300DS single-crystal diffractometer equipped with a graphite-monochromated Cu K α radiation ($\lambda = 1.54178$ Å), respectively. The structures were solved with the direct methods and refined with a full-matrix least-squares technique with the *SHELX* program package. Anisotropic thermal parameters were applied to all non-hydrogen atoms. The hydrogen atoms were positioned geometrically and included in the refinement. Crystallographic data and refinements for the complexes are summarized in **Table S1**. CCDC numbers: 1982636-1982639 for **1P**-RT, **1P**-LT, **1S**-RT and **1S**-LT, respectively.

Differential scanning calorimeter (DSC). The DSC measurements were performed by heating/cooling the powder sample sealed in aluminum crucibles at a rate of 10 K min⁻¹ on a TA DSC Q2000 instrument. The value of *N* is estimated by the Boltzmann equation, $\Delta S = R \ln N$, where *R* is the gas constant, *N* represents the ratio of the numbers of state. The value of ΔS calculated by its definition, $\Delta S = \Delta Q/T_c$, where the value of ΔQ is integrated from DSC results by TA *Universal Analysis* and the value of T_c is the phase-transition temperature.

Dielectric measurement. The dielectric measurements were carried on a TH2838 impedance analyzer at 10 different frequencies from 5 kHz to 200 kHz, with an amplitude of 1.0 V, and a temperature sweeping rate of *ca.* 3 K min⁻¹ in a Mercury iTC cryogenic environment controller of Oxford Instrument. Pellets with 5 mm in diameter and 0.2–0.9 mm thick were prepared by pressing microcrystal samples at 780 MPa. Silver conduction paste deposited on the surface of pressed-powder pellets was used as the electrodes.

Hirshfeld surfaces analysis. Hirshfeld surfaces and the related 2D-fingerprint plots were calculated with high resolution by *CrystalExplorer* with inputting structure file in CIF format. The Bond lengths related to hydrogen atoms were set to typical neutron values (C-H = 1.083 Å, N-H = 1.009 Å and O-H = 0.983 Å, respectively).

Compound	[(MNA)(18C6)]PF ₆ (1P)		[(MNA)(18C6)]SO ₃ CF ₃ (1S)	
Formula	$C_{19}H_{33}F_6N_2O_9P$		$C_{20}H_{33}F_3N_2O_{12}S$	
Formula weight	578.44		582.54	
Phase	1P- RT	1P-LT	1S- RT	1S- LT
T/K	298(2)	213(2)	298(2)	213(2)
Crystal system	Orthorhombic	Orthorhombic	Monoclinic	Monoclinic
Space group	Pccn	Pccn	$P2_{1}/c$	$P2_{1}/c$
<i>a</i> / Å	17.7788(4)	16.774(3)	10.0129(3)	20.31807(19)
<i>b</i> / Å	19.7210(3)	20.000(3)	18.4433(5)	17.85897(16)
<i>c</i> / Å	15.0786(2)	15.122(3)	14.9448(3)	14.64020(12)
eta / $^{\circ}$	90	90	98.440(2)	96.2560(10)
$V/\text{\AA}^3$	5286.79(16)	5073.0(15)	2729.98(13)	5280.70(8)
Ζ	8	8	4	8
$D_{\rm c}/{\rm g}\cdot{\rm cm}^{-3}$	1.453	1.515	1.417	1.465
$R_{ m int}$	0.0858	0.0422	0.0531	0.0228
$R_1 \left[I > 2\sigma(I) \right]^a$	0.0867	0.0536	0.0685	0.0448
$wR_2[I > 2\sigma(I)]^b$	0.2941	0.1531	0.2038	0.1223
R_1 (all data)	0.0988	0.0560	0.0741	0.0496
wR_2 (all data)	0.3198	0.1568	0.2110	0.1282
GOF	1.009	1.098	1.081	1.032

Table S1. Crystallographic parameters for 1P-RT, 1P-LT, 1S-RT and 1S-LT.

 ${}^{a}R_{1} = |F_{o}| - |F_{c}|/|F_{o}|, {}^{b}wR_{2} = \{w[(F_{o})^{2} - (F_{c})^{2}]^{2}/w[(F_{o})^{2}]^{2}\}^{1/2}$

Figure S1. TG curves of 1P (a) and 1S (b).

Figure S2. Temperature dependence of dielectric constant (ε ') for 1P (a) and 1S (b).

Figure S3. The packing modes of **1P**-RT (a), **1P**-LT (b), **1S**-RT (c) and **1S**-LT (d), and the topological connectivity (e) of dimer units (white spheres) and PF_6^- anions (yellow spheres). Different symmetry equivalences are distinguished with different colour: HMNA⁺ mapped with blue or cyan, 18C6 mapped with red or pink, counter anion mapped with green or yellow.

Figure S4. The supramolecular interactions between two [(HMNA)(18C6)]⁺ cations in **1P**-RT (a) and **1S**-RT (b).

Figure S5. The asymmetry units of 1P-RT (a), 1S-RT (b), 1P-LT (c), and 1S-LT (d).

Figure S6. The structure details of 18C6 (a, e), PF_6^- anion (b, c, f and g), and HMNA⁺ cation (d, h) in **1P**-RT (up row) and **1P**-LT (down row).

Figure S7. The structure details of 18C6 molecule (a, d), SO₃CF₃⁻ anion (b, e), and HMNA⁺ cation (c, f) in **1S**-RT (up row) and **1S**-LT (down row).

Figure S8. The Hirshfeld surfaces of $SO_3CF_3^-$ anions (a, e). The 2D-fingerprint plots of $SO_3CF_3^-$ anions for contacts between all interior atoms (b, f), O atoms (c, g) and F atoms (d, h) to all exterior atoms of the Hirshfeld surfaces.

Figure S9. The supramolecular interactions between rotate axis of the PF_6^- anion and the dimer unit.

Figure S10. The direction and packing of asymmetry dimer unit.