Electronic Supplementary Information

Organoselenium-Catalyzed N¹- and N²-selective aza-Wacker reaction

of alkenes with benzotriazoles

Table of Contents

I. General Remarks	S2	
II. GC-MS study	S2	
II. Synthesis Procedure	S2	
III. Analytical Data of Compounds 3 and 4	S3	
IV. ¹ H NMR, and ¹³ C NMR Spectra of Compounds 3 and 4	S27	

I. General remarks.

All reagents were purchased from commercial sources and used without further purification. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AscendTM 400 spectrometer in deuterated solvents containing TMS as an internal reference standard. High-resolution mass spectrometry (HRMS) analyses were conducted on a Waters LCT Premier/XE. Melting points were measured on a melting point apparatus equipped with a thermometer and were uncorrected. All the reactions were conducted in oil bath and monitored by thin-layer chromatography (TLC) using GF254 silica gel-coated TLC plates. Purification by flash column chromatography was performed over SiO₂ (silica gel 200–300 mesh).

II. GC-MS study

To a reaction tube equipped with a stir bar, styrene **1a** (0.5 mmol, 52.0 mg), benzotriazole **2a** (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg) and selectfluor (0.6 mmol, 212.4 mg) were addes. The reaction mixture was stirred in DME (2.0 mL) at 120 °C for 1.5 h. And then take 2 μ L reaction liquid for GC-MS analysis. After scanned for 8.202 min, the signal 260.1, which is more like a mass fragment from intermediate **6**.

III. General procedure:

General procedure for compounds 3:

To a reaction tube equipped with a stir bar, alkenes 1 (0.5 mmol), benzotriazoles 2 (0.5 mmol), (PhSe)₂ (5% mol), and selectfluor (0.6 mmol) were added sequentially. Then the reaction mixture was stirred in DME (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5×3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **3**.

General procedure for compounds 4:

To a reaction tube equipped with a stir bar, alkenes 1 (0.5 mmol), benzotriazoles 2 (0.5 mmol), (PhSe)₂ (5% mol), Me₃SiH (0.5 mmol, 37.1 mg) and K₂S₂O₈ (0.6 mmol) were added sequentially. Then the reaction mixture was stirred in dioxane (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5 × 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **4**.

General procedure for compounds 5, 6, 7 and 8, please see references 1-4.

IV. Analytical data of products obtained in this study

1-(1-phenylvinyl)-1*H*-benzo[*d*][1,2,3]triazole (3a).

styrene **1a** (0.5 mmol, 52.0 mg), benzotriazole **2a** (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg) and selectfluor (0.6 mmol, 212.4 mg). Then the reaction mixture was stirred in DME (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5 × 3 mL). The combined organic layers were

dried over anhydrous Na_2SO_4 and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **3a** as pale yellow liquid (79%, 87.4 mg).

¹H NMR (400 MHz; CDCl₃): δ = 5.79 (d, *J* = 0.8, 1H), 5.81 (s, 1H), 7.07 (d, *J* = 6.0, 1H), 7.30 (d, *J* = 7.2, 2H), 7.37-7.44 (m, 5H), 8.12 (t, *J* = 2.0, 1H). ¹³C NMR (100 MHz; CDCl₃): δ = 111.1, 111.2, 120.1, 124.2, 126.9, 127.8, 128.8, 129.8, 132.9, 134.6, 142.6, 146.1. HRMS (ESI-TOF) Calcd for C₁₄H₁₂N₃, [M+H]⁺ 222.1031; Found 222.1038.

1-(1-(2-fluorophenyl)vinyl)-1*H*-benzo[*d*][1,2,3]triazole (3b).

1-fluoro-2-vinylbenzene **1b** (0.5 mmol, 61.0 mg), benzotriazole **2a** (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg) and selectfluor (0.6 mmol, 212.4 mg). Then the reaction mixture was stirred in DME (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5 × 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **3b** as as pale yellow liquid (73%, 87.3 mg).

¹H NMR (400 MHz; CDCl₃): $\delta = 5.82$ (s, 1H), 6.01 (s, 1H), 7.12-7.20 (m, 3H), 7.25 (d, J = 7.2, 1H), 7.37-7.43 (m, 3H), 8.10 (s, 1H). ¹³C NMR (100 MHz; CDCl₃): $\delta = 110.6$, 113.6 (d, J = 4.3 Hz), 116.5 (d, J = 21.6 Hz), 120.2, 124.2, 124.5, 127.9, 130.1 (d, J = 2.2 Hz), 131.4, 132.5, 137.4, 146.1, 158.9, 161.4 (d, J = 252.3 Hz). HRMS (ESI-TOF) Calcd for C₁₄H₁₁FN₃, [M+H]⁺ 240.0937; Found 240.0940.

1-(1-(4-fluorophenyl)vinyl)-1*H*-benzo[*d*][1,2,3]triazole (3c).

1-fluoro-4-vinylbenzene 1c (0.5 mmol, 61.0 mg), benzotriazole 2a (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg) and selectfluor (0.6 mmol, 212.4 mg). Then the reaction mixture was stirred in DME (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and

quenched with water before being extracted with dichloromethane (5 × 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **3c** as pale yellow liquid (75%, 89.7 mg). ¹H NMR (400 MHz; CDCl₃): δ = 5.76 (s, 2H), 7.07-7.13 (m, 3H), 7.30 (q, *J* = 5.2, 2H), 7.39-7.42 (m, 2H), 8.12 (d, *J* = 6.8, 1H). ¹³C NMR (100 MHz; CDCl₃): δ = 110.8, 111.0, 115.8, 116.0, 120.4, 124.3, 127.9, 128.9 (d, *J* = 8.3 Hz), 130.8 (d, *J* = 3.3 Hz), 132.8, 141.7, 146.1, 162.3 (d, *J* = 250.3 Hz), 164.8. HRMS (ESI-TOF) Calcd for C₁₄H₁₁FN₃, [M+H]⁺ 240.0937; Found 240.0933.

1-(1-(2-chlorophenyl)vinyl)-1*H*-benzo[*d*][1,2,3]triazole (3d).

1-chloro-2-vinylbenzene 1d (0.5 mmol, 69.3 mg), benzotriazole 2a (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg) and selectfluor (0.6 mmol, 212.4 mg). Then the reaction mixture was stirred in DME (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5 × 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product 3d as white solid (76%, 97.1 mg), melting point: 68-69 °C.

¹H NMR (400 MHz; CDCl₃): δ = 5.59 (s, 1H), 6.08 (s, 1H), 7.08 (d, *J* = 6.8, 1H), 7.37-7.41 (m, 5H), 7.55 (dd, *J*₁ = 1.2, *J*₂ = 6.0, 1H), 8.09 (d, *J* = 2.0, 1H). ¹³C NMR (100 MHz; CDCl₃): δ = 110.7, 111.7, 120.2, 124.2, 127.2, 128.0, 130.3, 130.9, 131.6, 132.2, 133.4, 134.1, 140.7, 146.2. HRMS (ESI-TOF) Calcd for C₁₄H₁₁ClN₃, [M+H]⁺ 256.0642; Found 256.0638.

1-(1-(3-chlorophenyl)vinyl)-1*H*-benzo[*d*][1,2,3]triazole (3e).

1-chloro-3-vinylbenzene **1e** (0.5 mmol, 69.3 mg), benzotriazole **2a** (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg) and selectfluor (0.6 mmol, 212.4 mg). Then the reaction mixture was stirred in DME (2.0 mL) at 120 °C. Upon completion of the

reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5 × 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **3e** as pale yellow liquid (74%, 94.6 mg). ¹H NMR (400 MHz; CDCl₃): δ = 5.81 (s, 1H), 5.84 (s, 1H), 7.15 (d, *J* = 8.0, 2H), 7.32-7.43 (m, 5H), 8.13 (t, *J* = 1.2, 1H). ¹³C NMR (100 MHz; CDCl₃): δ = 110.9, 112.1, 120.2, 124.3, 125.1, 127.0, 128.1, 129.8, 130.1, 132.8, 134.9, 136.5, 141.4, 146.1. HRMS (ESI-TOF) Calcd for C₁₄H₁₁ClN₃, [M+H]⁺ 256.0642; Found 256.0647.

1-(1-(4-chlorophenyl)vinyl)-1*H*-benzo[*d*][1,2,3]triazole (3f).

1-chloro-4-vinylbenzene **1f** (0.5 mmol, 69.3 mg), benzotriazole **2a** (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg) and selectfluor (0.6 mmol, 212.4 mg). Then the reaction mixture was stirred in DME (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5 × 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **3f** as white solid (78%, 99.7 mg), melting point: 57-58 °C.

¹H NMR (400 MHz; CDCl₃): δ = 5.80 (s, 1H), 5.81 (s, 1H), 7.13 (d, *J* = 6.8, 1H), 7.24 (d, *J* = 8.4, 2H), 7.33-7.42 (m, 4H), 8.13 (d, *J* = 2.0, 1H). ¹³C NMR (100 MHz; CDCl₃): δ = 111.0, 111.4, 120.2, 124.3, 128.0, 128.2, 129.1, 132.7, 133.1, 135.8, 141.6, 146.1. HRMS (ESI-TOF) Calcd for C₁₄H₁₁ClN₃, [M+H]⁺ 256.0642; Found 256.0639.

1-(1-(2-bromophenyl)vinyl)-1*H*-benzo[*d*][1,2,3]triazole (3g).

1-bromo-2-vinylbenzene 1g (0.5 mmol, 91.5 mg), benzotriazole 2a (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg) and selectfluor (0.6 mmol, 212.4 mg). Then the reaction mixture was stirred in DME (2.0 mL) at 120 °C. Upon completion of the

reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5 \times 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **3g** as white solid (75%, 112.6 mg), melting point: 67-68 °C.

¹H NMR (400 MHz; CDCl₃): $\delta = 5.55$ (d, J = 0.8, 1H), 6.08 (d, J = 0.8, 1H), 7.05 (d, J = 6.8, 1H), 7.34-7.38 (m, 3H), 7.46 (q, J = 6.4, 1H), 7.57-7.62 (m, 2H), 8.09 (dd, $J_I = 2.8$, $J_2 = 6.8$, 1H). ¹³C NMR (100 MHz; CDCl₃): $\delta = 110.8$, 111.2, 120.2, 122.9, 124.2, 127.8, 128.0, 131.1, 131.9, 132.2, 133.5, 136.0, 142.0, 146.3. HRMS (ESI-TOF) Calcd for C₁₄H₁₁BrN₃, [M+H]⁺ 300.0137; Found 300.0142.

1-(1-(3-bromophenyl)vinyl)-1*H*-benzo[*d*][1,2,3]triazole (3h).

1-bromo-3-vinylbenzene **1h** (0.5 mmol, 91.5 mg), benzotriazole **2a** (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg) and selectfluor (0.6 mmol, 212.4 mg). Then the reaction mixture was stirred in DME (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5 × 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **3h** as pale yellow liquid (72%, 108.1 mg). ¹H NMR (400 MHz; CDCl₃): δ = 5.82 (s, 1H), 5.84 (s, 1H), 7.14 (d, *J* = 8.0, 2H), 7.19 (d, *J* = 8.4, 1H), 7.24-7.28 (m, 2H), 7.39-7.46 (m, 2H), 7.56 (d, *J* = 8.0, 1H). ¹³C NMR (100 MHz; CDCl₃): δ = 110.9, 112.1, 120.3, 124.4, 125.5, 128.1, 129.9, 130.3, 132.8, 136.7, 141.3, 146.1. HRMS (ESI-TOF) Calcd for C₁₄H₁₁BrN₃, [M+H]⁺ 300.0137; Found 300.0148.

1-(1-(4-bromophenyl)vinyl)-1*H*-benzo[*d*][1,2,3]triazole (3i).

1-bromo-4-vinylbenzene 1i (0.5 mmol, 91.5 mg), benzotriazole 2a (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg) and selectfluor (0.6 mmol, 212.4 mg). Then the

reaction mixture was stirred in DME (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5×3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **3i** as white solid (80%, 120.1 mg), melting point: 57-58 °C.

¹H NMR (400 MHz; CDCl₃): $\delta = 5.80$ (d, J = 1.2, 1H), 5.82 (d, J = 0.8, 1H), 7.11-7.13 (m, 1H), 7.17 (dd, $J_1 = 1.6, J_2 = 6.8, 2$ H), 7.40 (dd, $J_1 = 1.6, J_2 = 4.8, 2$ H), 7.43 (d, J = 1.6, 2H), 7.53 (t, J = 6.4, 1H). ¹³C NMR (100 MHz; CDCl₃): $\delta = 110.9, 111.4, 120.2, 124.1, 124.3, 128.0, 128.4, 132.0, 132.8, 133.6, 141.7, 146.1. HRMS (ESI-TOF) Calcd for C₁₄H₁₁BrN₃, [M+H]⁺ 300.0137; Found 300.0141.$

1-(1-(4-(trifluoromethyl)phenyl)vinyl)-1*H*-benzo[*d*][1,2,3]triazole (3j).

1-(trifluoromethyl)-4-vinylbenzene **1j** (0.5 mmol, 86.0 mg), benzotriazole **2a** (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg) and selectfluor (0.6 mmol, 212.4 mg). Then the reaction mixture was stirred in DME (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5 × 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **3j** as white solid (77%, 111.4 mg), melting point: 83-84 °C.

¹H NMR (400 MHz; CDCl₃): δ = 5.89 (s, 1H), 5.92 (s, 1H), 7.13 (d, *J* = 7.6, 1H), 7.42-7.44 (m, 4H), 7.64 (d, *J* = 8.4, 2H), 8.13 (d, *J* = 7.2, 1H). ¹³C NMR (100 MHz; CDCl₃): δ = 110.8, 112.9 (J_{C-F} = 209 Hz), 120.3, 123.8 (d, *J* = 272.9 Hz), 124.4, 125.8 (q, *J* = 3.7 Hz), 126.7, 128.2, 131.6 (q, *J* = 32.7 Hz), 132.7, 138.1, 141.4, 146.1. HRMS (ESI-TOF) Calcd for C₁₅H₁₁F₃N₃, [M+H]⁺ 290.0905; Found 290.0909.

1-(1-(2,6-dichlorophenyl)vinyl)-1*H*-benzo[*d*][1,2,3]triazole (3k).

1,3-dichloro-2-vinylbenzene **1k** (0.5 mmol, 86.5 mg), benzotriazole **2a** (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg) and selectfluor (0.6 mmol, 212.4 mg). Then the reaction mixture was stirred in DME (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5×3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **3k** as white solid (73%, 105.9 mg), melting point: 91-92 °C.

¹H NMR (400 MHz; CDCl₃): δ = 5.50 (s, 1H), 6.26 (s, 1H), 7.24 (d, *J* = 8.4, 1H), 7.30-7.42 (m, 5H), 8.06 (dd, *J*₁ = 0.8, *J*₂ = 8.4, 1H). ¹³C NMR (100 MHz; CDCl₃): δ = 110.7, 111.9, 120.3, 124.3, 128.4, 131.0, 131.7, 133.2, 135.8, 136.9, 146.2. HRMS (ESI-TOF) Calcd for C₁₄H₁₀Cl₂N₃, [M+H]⁺ 290.0252; Found 290.0258.

1-(1-(*m*-tolyl)vinyl)-1*H*-benzo[*d*][1,2,3]triazole (3l).

1-methyl-3-vinylbenzene **11** (0.5 mmol, 59.1 mg), benzotriazole **2a** (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg) and selectfluor (0.6 mmol, 212.4 mg). Then the reaction mixture was stirred in DME (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5 × 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **31** as pale yellow liquid (85%, 100.0 mg). ¹H NMR (400 MHz; CDCl₃): δ = 2.33 (s, 3H), 5.75 (s, 1H), 5.78 (s, 1H), 7.07-7.11 (m, 3H), 7.25 (d, *J* = 3.6, 2H), 7.37 (dd, *J*_{*I*} = 3.2, *J*₂ = 6.4, 2H), 8.11 (dd, *J*_{*I*} = 1.2, *J*₂ = 4.0, 1H). ¹³C NMR (100 MHz; CDCl₃): δ = 21.4, 110.9, 111.3, 120.0, 124.1, 127.5, 127.7, 128.7, 130.6, 132.9, 134.6, 138.6, 142.7, 146.1. HRMS (ESI-TOF) Calcd for C₁₅H₁₄N₃, [M+H]⁺ 236.1188; Found 236.1184.

1-(1-(*p*-tolyl)vinyl)-1*H*-benzo[*d*][1,2,3]triazole (3m).

1-methyl-4-vinylbenzene **1m** (0.5 mmol, 59.1 mg), benzotriazole **2a** (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg) and selectfluor (0.6 mmol, 212.4 mg). Then the reaction mixture was stirred in DME (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5 × 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **3m** as pale yellow liquid (83%, 97.6 mg). ¹H NMR (400 MHz; CDCl₃): $\delta = 2.40$ (s, 3H), 5.73 (s, 1H), 5.76 (s, 1H), 7.08 (d, *J* = 6.4, 1H), 7.20 (s, 4H), 7.37 (dd, *J*₁ = 3.2, *J*₂ = 6.4, 2H), 8.11-8.14 (m, 1H). ¹³C NMR (100 MHz; CDCl₃): $\delta = 21.3$, 110.2, 111.3, 120.1, 124.1, 126.8, 127.6, 129.5, 131.8, 132.9, 139.9, 142.6, 146.1. HRMS (ESI-TOF) Calcd for C₁₅H₁₄N₃, [M+H]⁺ 236.1188; Found 236.1191.

1-(1-(4-(*tert*-butyl)phenyl)vinyl)-1*H*-benzo[*d*][1,2,3]triazole (3n).

1-(*tert*-butyl)-4-vinylbenzene **1n** (0.5 mmol, 80.1 mg), benzotriazole **2a** (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg) and selectfluor (0.6 mmol, 212.4 mg). Then the reaction mixture was stirred in DME (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5 × 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **3n** as pale yellow liquid (79%, 109.6 mg). ¹H NMR (400 MHz; CDCl₃): $\delta = 1.34$ (s, 9H), 5.71 (s, 1H), 5.80 (s, 1H), 7.14 (d, J = 6.4, 1H), 7.22 (d, J = 8.4, 2H), 7.37-7.41 (m, 4H), 8.12 (d, J = 2.0, 1H). ¹³C NMR (100 MHz; CDCl₃): $\delta = 31.2$, 34.8, 110.4, 111.2, 120.0, 124.1, 125.7, 126.5, 127.7, 131.7, 133.0, 142.5, 146.0, 153.1. HRMS (ESI-TOF) Calcd for C₁₈H₂₀N₃, [M+H]⁺ 278.1657; Found 278.1652.

1-(1-(4-(chloromethyl)phenyl)vinyl)-1*H*-benzo[*d*][1,2,3]triazole (30).

1-(chloromethyl)-4-vinylbenzene **10** (0.5 mmol, 76.3 mg), benzotriazole **2a** (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg) and selectfluor (0.6 mmol, 212.4 mg). Then the reaction mixture was stirred in DME (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5 × 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **30** as pale yellow liquid (76%, 102.5 mg). ¹H NMR (400 MHz; CDCl₃): δ = 4.60 (s, 2H), 5.78 (s, 1H), 5.83 (d, *J* = 0.8, 1H), 7.11-7.13 (m, 1H), 7.28 (d, *J* = 8.0, 2H), 7.38-7.41 (m, 4H), 8.11 (t, *J* = 2.0, 1H). ¹³C NMR (100 MHz; CDCl₃): δ = 31.2, 34.8, 110.4, 111.2, 120.0, 124.1, 125.7, 126.5, 127.7, 131.7, 133.0, 142.5, 146.0, 153.1. HRMS (ESI-TOF) Calcd for C₁₅H₁₃ClN₃, [M+H]⁺ 270.0798; Found 270.0792.

4-(1-(1*H*-benzo[*d*][1,2,3]triazol-1-yl)vinyl)phenyl acetate (3p).

4-vinylphenyl acetate **1p** (0.5 mmol, 81.1 mg), benzotriazole **2a** (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg) and selectfluor (0.6 mmol, 212.4 mg). Then the reaction mixture was stirred in DME (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5×3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **3p** as white solid (69%, 96.4 mg), melting point: 95-96 °C.

¹H NMR (400 MHz; CDCl₃): $\delta = 2.30$ (s, 3H), 5.75 (s, 1H), 5.79 (s, 1H), 7.11 (d, J = 6.8, 3H), 7.30 (d, J = 8.4, 2H), 7.37-7.39 (m, 2H), 8.09 (t, J = 2.4, 1H). ¹³C NMR (100 MHz; CDCl₃): $\delta = 21.1, 111.1, 111.3, 120.1, 122.1, 124.3, 128.0, 132.2, 132.8, 141.7, 146.0, 151.7, 169.1$. HRMS (ESI-TOF) Calcd for C₁₆H₁₄N₃O₂, [M+H]⁺ 280.1086; Found 280.1082.

1-(1-(cyclohex-1-en-1-yl)vinyl)-1*H*-benzo[*d*][1,2,3]triazole (3q).

cyclohexene **1q** (0.5 mmol, 41.1 mg), benzotriazole **2a** (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg) and selectfluor (0.6 mmol, 212.4 mg). Then the reaction mixture was stirred in DME (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5×3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **3q** as pale yellow liquid (72%, 81.1 mg).

¹H NMR (400 MHz; CDCl₃): δ = 1.79-1.82 (m, 2H), 1.94-1.97 (m, 2H), 2.36-2.38 (m, 2H), 2.78-2.80 (m, 2H), 6.19-6.21 (m, 1H), 7.40 (m, 1H), 7.47 (t, *J* = 7.6, 1H), 7.66 (d, *J* = 8.4, 1H). ¹³C NMR (100 MHz; CDCl₃): δ = 21.6, 22.4, 24.4, 27.6, 111.0, 120.0, 121.3, 124.0, 127.5, 131.9, 135.2, 146.0. HRMS (ESI-TOF) Calcd for C₁₄H₁₆N₃, [M+H]⁺ 226.1344; Found 226.1347.

(E)-1-(1-(cyclooct-1-en-1-yl)vinyl)-1H-benzo[d][1,2,3]triazole (3r).

(Z)-cyclooctene **1r** (0.5 mmol, 55.1 mg), benzotriazole **2a** (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg) and selectfluor (0.6 mmol, 212.4 mg). Then the reaction mixture was stirred in DME (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5×3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **3r** as pale yellow liquid (70%, 88.7 mg).

¹H NMR (400 MHz; CDCl₃): δ = 1.68-1.75 (m, 8H), 2.41-2.46 (m, 2H), 2.93-2.93 (m, 2H), 6.11 (t, *J* = 8.4, 1H), 7.38 (t, *J* = 7.2, 1H), 7.47-7.51 (m, 1H), 7.65 (d, *J* = 8.4, 1H), 8.07 (d, *J* = 8.4, 1H). ¹³C NMR (100 MHz; CDCl₃): δ = 26.0, 26.1, 26.5, 28.5, 29.1, 29.9, 111.0, 120.0, 123.9, 124.2, 127.5, 132.4, 137.4, 145.9. HRMS (ESI-TOF) Calcd for C₁₆H₂₀N₃, [M+H]⁺ 254.1657; Found 254.1656.

5,6-dimethyl-1-(1-phenylvinyl)-1*H*-benzo[*d*][1,2,3]triazole (3s).

styrene **1a** (0.5 mmol, 54.0 mg), 5,6-dimethyl-2*H*-benzo[*d*][1,2,3]triazole (0.5 mmol, 73.6 mg), (PhSe)₂ (5% mol, 7.8 mg) and selectfluor (0.6 mmol, 212.4 mg). Then the reaction mixture was stirred in DME (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5 × 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **3s** as white solid (79%, 98.5 mg), melting point: 81-82 °C.

¹H NMR (400 MHz; CDCl₃): δ = 2.30 (s, 3H), 2.40 (s, 3H), 5.73 (s, 1H), 5.78 (s, 1H), 6.86 (s, 1H), 7.29 (d, *J* = 7.6, 2H), 7.36-7.42 (m, 3H), 7.85 (s, 1H). ¹³C NMR (100 MHz; CDCl₃): δ = 20.3, 20.9, 110.5, 110.7, 119.1, 126.8, 128.7, 129.6, 132.0, 134.0, 138.2, 142.7, 145.3. HRMS (ESI-TOF) Calcd for C₁₆H₁₆N₃, [M+H]⁺ 250.1344; Found 250.1340.

2-(1-phenylvinyl)-2*H*-benzo[*d*][1,2,3]triazole (4a).

styrene **1a** (0.5 mmol, 52.0 mg), benzotriazole **2a** (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg), Me₃SiH (0.5 mmol, 37.1 mg) and K₂S₂O₈ (0.6 mmol, 162.0 mg). Then the reaction mixture was stirred in dioxane (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5 × 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **4a** as pale yellow liquid (79%, 87.3 mg). ¹H NMR (400 MHz; CDCl₃): δ = 5.67 (s, 1H), 6.21 (s, 1H), 7.42-7.45 (m, 7H), 7.92 (dd, J_1 = 2.8, J_2 = 6.8, 2H). ¹³C NMR (100 MHz; CDCl₃): δ = 111.0, 118.5, 127.2,

128.4, 129.6, 134.6, 144.7, 147.1. HRMS (ESI-TOF) Calcd for C₁₄H₁₂N₃, [M+H]⁺ 222.1031; Found 222.1037.

2-(1-(2-fluorophenyl)vinyl)-2*H*-benzo[*d*][1,2,3]triazole (4b).

1-fluoro-2-vinylbenzene **1b** (0.5 mmol, 61.0 mg), benzotriazole **2a** (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg), Me₃SiH (0.5 mmol, 37.1 mg) and K₂S₂O₈ (0.6 mmol, 162.0 mg). Then the reaction mixture was stirred in dioxane (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5 \times 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **4b** as white solid (74%, 88.5 mg), melting point:67-68 °C.

¹H NMR (400 MHz; CDCl₃): $\delta = 5.63$ (s, 1H), 6.50 (s, 1H), 7.14 (t, J = 8.4, 1H), 7.27 (d, J = 7.2, 1H), 7.40 (dd, $J_1 = 3.2$, $J_2 = 6.8$, 2H), 7.47 (t, J = 7.2, 2H), 7.88 (d, J = 6.4, 2H). ¹³C NMR (100 MHz; CDCl₃): $\delta = 112.6$, 115.8, 116.1, 118.5, 124.2, 127.2, 131.1, 131.2 (d, J = 2.5 Hz), 131.4 (d, J = 8.3 Hz), 131.5, 141.9, 144.7, 159.0, 160.2 (d, J = 251.4 Hz), 161.5 . HRMS (ESI-TOF) Calcd for C₁₄H₁₁FN₃, [M+H]⁺ 240.0937; Found 240.0942.

2-(1-(4-fluorophenyl)vinyl)-2*H*-benzo[*d*][1,2,3]triazole (4c).

1-fluoro-4-vinylbenzene **1c** (0.5 mmol, 61.0 mg), benzotriazole **2a** (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg), Me₃SiH (0.5 mmol, 37.1 mg) and K₂S₂O₈ (0.6 mmol, 162.0 mg). Then the reaction mixture was stirred in dioxane (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5 \times 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **4c** as pale yellow liquid (70%, 83.7 mg).

¹H NMR (400 MHz; CDCl₃): δ = 5.61 (s, 1H), 6.22 (s, 1H), 7.15 (t, *J* = 8.4, 2H), 7.41-7.45 (m, 4H), 7.91 (dd, *J*₁ = 2.8, *J*₂ = 6.8, 2H). ¹³C NMR (100 MHz; CDCl₃): δ = 110.8, 115.4 (d, *J* = 21.9 Hz), 115.6, 118.4, 127.4, 130.3 (d, *J* = 8.5 Hz), 130.7 (d, *J* = 3.4 Hz), 144.7, 146.1, 162.2, 163.4 (d, *J* = 249.8 Hz), 164.7. HRMS (ESI-TOF) Calcd for C₁₄H₁₁FN₃, [M+H]⁺ 240.0937; Found 240.0941.

2-(1-(2-chlorophenyl)vinyl)-2*H*-benzo[*d*][1,2,3]triazole (4d).

1-chloro-2-vinylbenzene **1d** (0.5 mmol, 69.3 mg), benzotriazole **2a** (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg), Me₃SiH (0.5 mmol, 37.1 mg) and K₂S₂O₈ (0.6 mmol, 162.0 mg). Then the reaction mixture was stirred in dioxane (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5 \times 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **4d** as pale yellow liquid (71%, 90.8 mg).

¹H NMR (400 MHz; CDCl₃): δ = 5.52 (s, 1H), 6.56 (s, 1H), 7.38-7.46 (m, 5H), 7.56 (dd, J_1 = 2.0, J_2 = 6.8, 1H), 7.87 (d, J = 3.2, 2H). ¹³C NMR (100 MHz; CDCl₃): δ = 111.9, 118.5, 126.9, 127.2, 129.8, 130.8, 131.8, 134.0, 134.1, 144.6, 144.8. HRMS (ESI-TOF) Calcd for C₁₄H₁₁ClN₃, [M+H]⁺ 256.0642; Found 256.0640.

2-(1-(3-chlorophenyl)vinyl)-2*H*-benzo[*d*][1,2,3]triazole (4e).

1-chloro-3-vinylbenzene **1e** (0.5 mmol, 69.3 mg), benzotriazole **2a** (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg), Me₃SiH (0.5 mmol, 37.1 mg) and K₂S₂O₈ (0.6 mmol, 162.0 mg). Then the reaction mixture was stirred in dioxane (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5 \times 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **4e** as pale yellow liquid (73%, 93.3 mg).

¹H NMR (400 MHz; CDCl₃): δ = 5.67 (s, 1H), 6.26 (s, 1H), 7.34 (q, *J* = 7.6, 2H), 7.43-7.47 (m, 4H), 7.91 (dd, *J*₁ = 2.8, *J*₂ = 6.4, 2H). ¹³C NMR (100 MHz; CDCl₃): δ = 111.8, 118.5, 124.6, 126.5, 127.4, 128.4, 129.7, 134.4, 136.3, 144.7, 145.8. HRMS

2-(1-(4-chlorophenyl)vinyl)-2*H*-benzo[*d*][1,2,3]triazole (4f).

1-chloro-4-vinylbenzene **1f** (0.5 mmol, 69.3 mg), benzotriazole **2a** (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg), Me₃SiH (0.5 mmol, 37.1 mg) and K₂S₂O₈ (0.6 mmol, 162.0 mg). Then the reaction mixture was stirred in dioxane (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5 \times 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **4f** as white solid (75%, 95.9 mg), melting point: 156-157 °C.

¹H NMR (400 MHz; CDCl₃): δ = 5.65 (s, 1H), 6.24 (s, 1H), 7.39-7.44 (m, 6H), 7.90 (dd, J_1 = 3.2, J_2 = 6.8, 2H). ¹³C NMR (100 MHz; CDCl₃): δ = 111.2, 118.4, 127.4, 128.7, 129.6, 133.0, 135.6, 144.7, 146.0. HRMS (ESI-TOF) Calcd for C₁₄H₁₁ClN₃, [M+H]⁺ 256.0642; Found 256.0648.

2-(1-(2-bromophenyl)vinyl)-2*H*-benzo[*d*][1,2,3]triazole (4g).

1-bromo-2-vinylbenzene **1g** (0.5 mmol, 91.5 mg), benzotriazole **2a** (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg), Me₃SiH (0.5 mmol, 37.1 mg) and K₂S₂O₈ (0.6 mmol, 162.0 mg). Then the reaction mixture was stirred in dioxane (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5 \times 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **4g** as pale yellow liquid (68%, 102.1 mg).

¹H NMR (400 MHz; CDCl₃): δ = 5.50 (s, 1H), 5.67 (s, 1H), 7.36-7.41 (m, 3H), 7.56-7.58 (m, 2H), 7.65 (d, *J* = 8.0, 1H), 7.89 (t, *J* = 3.6, 2H). ¹³C NMR (100 MHz; CDCl₃): δ = 111.7, 118.5, 123.8, 127.3, 127.6, 130.9, 132.1, 133.0, 136.0, 144.8, 145.8.

2-(1-(3-bromophenyl)vinyl)-2*H*-benzo[*d*][1,2,3]triazole (4h).

1-bromo-3-vinylbenzene **1h** (0.5 mmol, 91.5 mg), benzotriazole **2a** (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg), Me₃SiH (0.5 mmol, 37.1 mg) and K₂S₂O₈ (0.6 mmol, 162.0 mg). Then the reaction mixture was stirred in dioxane (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5 \times 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **4h** as white solid (62%, 93.0 mg), melting point: 125-126 °C.

¹H NMR (400 MHz; CDCl₃): δ = 5.66 (s, 1H), 6.26 (s, 1H), 7.29-7.44 (m, 4H), 7.60 (d, *J* = 7.6, 2H), 7.90 (s, 2H). ¹³C NMR (100 MHz; CDCl₃): δ = 111.8, 118.5, 122.5, 127.0, 127.4, 129.9, 131.3, 132.5, 136.7, 144.7, 145.7. HRMS (ESI-TOF) Calcd for C₁₄H₁₁BrN₃, [M+H]⁺ 300.0136; Found 300.0141.

2-(1-(4-bromophenyl)vinyl)-2*H*-benzo[*d*][1,2,3]triazole (4i).

1-bromo-4-vinylbenzene **1i** (0.5 mmol, 91.5 mg), benzotriazole **2a** (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg), Me₃SiH (0.5 mmol, 37.1 mg) and K₂S₂O₈ (0.6 mmol, 162.0 mg). Then the reaction mixture was stirred in dioxane (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5 \times 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **4i** as pale yellow liquid (70%, 105.1 mg).

¹H NMR (400 MHz; CDCl₃): δ = 5.65 (s, 1H), 6.24 (d, *J* = 0.8, 1H), 7.33 (d, *J* = 8.4, 2H), 7.43 (dd, *J*₁ = 2.8, *J*₂ = 6.4, 2H), 7.57 (d, *J* = 8.8, 2H), 7.89 (dd, *J*₁ = 3.2, *J*₂ = 6.8, 2H). ¹³C NMR (100 MHz; CDCl₃): δ = 111.2, 118.4, 123.9, 127.4, 129.9, 131.6,

133.5, 144.7, 146.1. HRMS (ESI-TOF) Calcd for $C_{14}H_{11}BrN_3$, $[M+H]^+$ 300.0136; Found 300.0139.

2-(1-(4-(trifluoromethyl)phenyl)vinyl)-2*H*-benzo[*d*][1,2,3]triazole (4j).

1-(trifluoromethyl)-4-vinylbenzene **1j** (0.5 mmol, 86.0 mg), benzotriazole **2a** (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg), Me₃SiH (0.5 mmol, 37.1 mg) and K₂S₂O₈ (0.6 mmol, 162.0 mg). Then the reaction mixture was stirred in dioxane (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5 × 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **4j** as white solid (72%, 104.1 mg), melting point: 89-90 °C.

¹H NMR (400 MHz; CDCl₃): δ = 5.72 (s, 1H), 6.35 (s, 1H), 7.44 (dd, J_1 = 3.2, J_2 = 6.8, 2H), 7.59 (d, J = 4.4, 2H), 7.70 (d, J = 8.0, 2H), 7.91 (dd, J_1 = 3.2, J_2 = 6.8, 2H). ¹³C NMR (100 MHz; CDCl₃): δ = 111.2, 118.1, 118.4, 123.8 (d, J = 272.9 Hz), 125.4 (q, J = 3.7 Hz), 127.5, 127.6, 128.8, 131.4 (q, J = 32.5 Hz), 138.0, 144.8, 145.8. HRMS (ESI-TOF) Calcd for C₁₅H₁₁F₃N₃, [M+H]⁺ 290.0905; Found 290.0911.

2-(1-(4-nitrophenyl)vinyl)-2*H*-benzo[*d*][1,2,3]triazole (4k).

1-nitro-4-vinylbenzene **1k** (0.5 mmol, 74.5 mg), benzotriazole **2a** (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg), Me₃SiH (0.5 mmol, 37.1 mg) and K₂S₂O₈ (0.6 mmol, 162.0 mg). Then the reaction mixture was stirred in dioxane (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5 \times 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **4k** as white solid (65%, 86.5 mg), melting point: 110-111 °C.

¹H NMR (400 MHz; CDCl₃): δ = 5.78 (s, 1H), 6.43 (s, 1H), 7.45 (dd, J_1 = 3.2, J_2 = 6.8,

2H), 7.65 (d, J = 8.8, 2H), 7.89 (dd, $J_1 = 3.2$, $J_2 = 6.8$, 2H), 8.30 (d, J = 8.8, 2H). ¹³C NMR (100 MHz; CDCl₃): $\delta = 113.2$, 118.4, 123.7, 127.7, 129.4, 140.6, 144.8, 145.1, 148.3. HRMS (ESI-TOF) Calcd for C₁₄H₁₁O₂N₄, [M+H]⁺ 267.0882; Found 267.0887.

2-(1-(2,6-dichlorophenyl)vinyl)-2*H*-benzo[*d*][1,2,3]triazole (4l).

1,3-dichloro-2-vinylbenzene **11** (0.5 mmol, 86.5 mg), benzotriazole **2a** (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg), NIS (0.5 mmol, 112.5 mg), Me₃SiH (0.5 mmol, 37.1 mg) and K₂S₂O₈ (0.6 mmol, 162.0 mg). Then the reaction mixture was stirred in dioxane (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5×3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **4l** as white solid (80%, 116.1 mg), melting point: 150-151 °C.

¹H NMR (400 MHz; CDCl₃): δ = 5.51 (d, *J* = 0.8, 1H), 6.85 (s, 1H), 7.36-7.40 (m, 3H), 7.47 (d, *J* = 7.6, 2H), 7.85-7.88 (m, 2H). ¹³C NMR (100 MHz; CDCl₃): δ = 112.5, 118.5, 127.3, 128.1, 130.8, 133.0, 136.0, 140.6, 144.8. HRMS (ESI-TOF) Calcd for C₁₄H₁₀Cl₂N₃, [M+H]⁺ 290.0252; Found 290.0257.

2-(1-(naphthalen-2-yl)vinyl)-2*H*-benzo[*d*][1,2,3]triazole (4m).

2-vinylnaphthalene **1m** (0.5 mmol, 72.1 mg), benzotriazole **2a** (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg), Me₃SiH (0.5 mmol, 37.1 mg) and K₂S₂O₈ (0.6 mmol, 162.0 mg). Then the reaction mixture was stirred in dioxane (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5 \times 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **4m** as pale yellow liquid (76%, 102.7 mg).

¹H NMR (400 MHz; CDCl₃): δ = 5.80 (s, 1H), 6.31 (s, 1H), 7.44 (dd, J_1 = 3.2, J_2 = 6.4,

2H), 7.53 (dd, J_1 = 3.6, J_2 = 7.2, 2H), 7.89-7.99 (m, 7H). ¹³C NMR (100 MHz; CDCl₃): δ = 111.4, 118.5, 125.4, 126.5, 127.0, 127.3, 127.7, 128.0, 128.1, 128.5, 132.0, 133.0, 133.7, 144.7, 147.2. HRMS (ESI-TOF) Calcd for C₁₈H₁₄N₃, [M+H]⁺ 272.1188; Found 272.1182.

2-(1-(*m*-tolyl)vinyl)-2*H*-benzo[*d*][1,2,3]triazole (4n).

1-methyl-3-vinylbenzene **1n** (0.5 mmol, 59.7 mg), benzotriazole **2a** (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg), Me₃SiH (0.5 mmol, 37.1 mg) and K₂S₂O₈ (0.6 mmol, 162.0 mg). Then the reaction mixture was stirred in dioxane (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5 \times 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **4n** as pale yellow liquid (75%, 88.2 mg).

¹H NMR (400 MHz; CDCl₃): $\delta = 2.39$ (s, 3H), 5.65 (s, 1H), 6.18 (s, 1H), 7.24 (t, J = 8.0, 3H), 7.32 (d, J = 7.6, 1H), 7.42 (dd, $J_1 = 3.2, J_2 = 6.4, 2H$), 7.92 (dd, $J_1 = 3.2, J_2 = 6.8, 2H$). ¹³C NMR (100 MHz; CDCl₃): $\delta = 21.4, 110.9, 118.5, 125.4, 127.2, 128.3, 128.8, 130.4, 134.6, 138.1, 144.7, 147.3. HRMS (ESI-TOF) Calcd for C₁₅H₁₄N₃, [M+H]⁺ 236.1188; Found 236.1192.$

2-(1-(*p*-tolyl)vinyl)-2*H*-benzo[*d*][1,2,3]triazole (40).

1-methyl-4-vinylbenzene **10** (0.5 mmol, 59.7 mg), benzotriazole **2a** (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg), Me₃SiH (0.5 mmol, 37.1 mg) and K₂S₂O₈ (0.6 mmol, 162.0 mg). Then the reaction mixture was stirred in dioxane (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5 \times 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **40** as pale yellow liquid (79%,

92.9 mg).

¹H NMR (400 MHz; CDCl₃): $\delta = 2.42$ (s, 3H), 5.63 (s, 1H), 6.16 (s, 1H), 7.24 (d, J = 8.0, 2H), 7.34 (d, J = 8.4, 2H), 7.42 (dd, $J_1 = 2.8, J_2 = 6.8, 2H$), 7.92 (dd, $J_1 = 3.2, J_2 = 6.8, 2H$). ¹³C NMR (100 MHz; CDCl₃): $\delta = 21.3, 110.3, 118.5, 127.1, 128.2, 129.1, 131.8, 139.7, 144.6, 147.1. HRMS (ESI-TOF) Calcd for C₁₅H₁₄N₃, [M+H]⁺ 236.1188; Found 236.1195.$

2-(1-(4-(*tert*-butyl)phenyl)vinyl)-2*H*-benzo[*d*][1,2,3]triazole (4p).

1-(*tert*-butyl)-4-vinylbenzene **1p** (0.5 mmol, 80.1 mg), benzotriazole **2a** (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg), Me₃SiH (0.5 mmol, 37.1 mg) and K₂S₂O₈ (0.6 mmol, 162.0 mg). Then the reaction mixture was stirred in dioxane (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5 × 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **4p** as pale yellow liquid (74%, 102.6 mg).

¹H NMR (400 MHz; CDCl₃): δ = 1.36 (s, 9H), 5.65 (s, 1H), 6.15 (s, 1H), 7.38-7.47 (m, 6H), 7.91 (dd, J_1 = 3.2, J_2 = 6.4, 2H). ¹³C NMR (100 MHz; CDCl₃): δ = 31.2, 34.7, 110.5, 118.5, 125.4, 127.1, 127.9, 131.6, 144.6, 147.1, 152.7. HRMS (ESI-TOF) Calcd for C₁₈H₂₀N₃, [M+H]⁺ 278.1657; Found 278.1651.

2-(1-(4-(chloromethyl)phenyl)vinyl)-2H-benzo[d][1,2,3]triazole (4q).

1-(chloromethyl)-4-vinylbenzene **1q** (0.5 mmol, 76.3 mg), benzotriazole **2a** (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg), Me₃SiH (0.5 mmol, 37.1 mg) and K₂S₂O₈ (0.6 mmol, 162.0 mg). Then the reaction mixture was stirred in dioxane (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5 × 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was

purified by flash column chromatography to give the desired product **4q** as pale yellow liquid (70%, 94.4 mg).

¹H NMR (400 MHz; CDCl₃): δ = 4.64 (s, 2H), 5.67 (s, 1H), 6.24 (s, 1H), 7.42-7.46 (m, 6H), 7.90 (dd, J_1 = 3.2, J_2 = 6.4, 2H). ¹³C NMR (100 MHz; CDCl₃): δ = 45.6, 111.3, 118.4, 127.3, 128.6, 128.7, 134.6, 138.7, 144.7, 146.5. HRMS (ESI-TOF) Calcd for C₁₅H₁₃ClN₃, [M+H]⁺ 270.0798; Found 270.0793.

4-(1-(2*H*-benzo[*d*][1,2,3]triazol-2-yl)vinyl)phenyl acetate (4r).

4-vinylphenyl acetate **1r** (0.5 mmol, 81.1 mg), benzotriazole **2a** (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg), Me₃SiH (0.5 mmol, 37.1 mg) and K₂S₂O₈ (0.6 mmol, 162.0 mg). Then the reaction mixture was stirred in dioxane (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5 \times 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **4r** as white solid (67%, 93.6 mg), melting point: 90-91 °C.

¹H NMR (400 MHz; CDCl₃): δ = 2.33 (s, 3H), 6.56 (s, 1H), 6.22 (s, 1H), 7.17 (d, *J* = 8.4, 2H), 7.42-7.49 (m, 4H), 7.90 (dd, *J*₁ = 3.2, *J*₂ = 6.8, 2H). ¹³C NMR (100 MHz; CDCl₃): δ = 21.2, 111.2, 18.4, 121.7, 127.3, 129.5, 132.2, 144.7, 146.2, 151.1, 169.2. HRMS (ESI-TOF) Calcd for C₁₆H₁₄N₃O₂, [M+H]⁺ 280.1086; Found 280.1092.

2-(cyclopent-1-en-1-yl)-2H-benzo[d][1,2,3]triazole (4s).

cyclopentene **1s** (0.5 mmol, 34.0 mg), benzotriazole **2a** (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg), Me₃SiH (0.5 mmol, 37.1 mg) and K₂S₂O₈ (0.6 mmol, 162.0 mg). Then the reaction mixture was stirred in dioxane (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5 \times 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash

column chromatography to give the desired product **4s** as white solid (78%, 72.2 mg), melting point: 91-92 °C.

¹H NMR (400 MHz; CDCl₃): δ = 2.16-2.23 (m, 2H), 2.65-2.69 (m, 2H), 3.16-3.20 (m, 2H), 6.63 (s, 1H), 7.37 (dd, J_1 = 3.2, J_2 = 6.8, 2H), 7.86 (dd, J_1 = 2.8, J_2 = 6.4, 2H). ¹³C NMR (100 MHz; CDCl₃): δ = 22.1, 31.2, 31.4, 118.0, 121.2, 126.9, 141.8, 144.5. HRMS (ESI-TOF) Calcd for C₁₁H₁₂N₃, [M+H]⁺ 186.1031; Found 186.1037.

2-(cyclohex-1-en-1-yl)-2*H*-benzo[*d*][1,2,3]triazole (4t).

cyclohexene **1t** (0.5 mmol, 41.0 mg), benzotriazole **2a** (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg), Me₃SiH (0.5 mmol, 37.1 mg) and K₂S₂O₈ (0.6 mmol, 162.0 mg). Then the reaction mixture was stirred in dioxane (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5 \times 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **4t** as white solid (73%, 72.7 mg), melting point: 65-66 °C.

¹H NMR (400 MHz; CDCl₃): δ = 1.72-1.76 (m, 2H), 1.90-1.93 (m, 2H), 2.35-2.37 (m, 2H), 2.90-2.92 (m, 2H), 6.98 (s, 1H), 7.35 (dd, J_1 = 2.8, J_2 = 6.4, 2H), 7.86 (dd, J_1 = 3.2, J_2 = 6.4, 2H). ¹³C NMR (100 MHz; CDCl₃): δ = 21.6, 22.3, 24.4, 25.6, 118.0, 120.7, 126.5, 138.2, 144.1. HRMS (ESI-TOF) Calcd for C₁₂H₁₄N₃, [M+H]⁺ 200.1188; Found 200.1195.

(E)-2-(cyclooct-1-en-1-yl)-2H-benzo[d][1,2,3]triazole (4u).

(Z)-cyclooctene **1u** (0.5 mmol, 55.1 mg), benzotriazole **2a** (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg), Me₃SiH (0.5 mmol, 37.1 mg) and K₂S₂O₈ (0.6 mmol, 162.0 mg). Then the reaction mixture was stirred in dioxane (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5 × 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product 4u as white solid (82%, 93.2 mg), melting point: 64-65 °C.

¹H NMR (400 MHz; CDCl₃): δ = 1.59-1.84 (m, 8H), 2.38-2.43 (m, 2H), 3.11-3.14 (m, 2H), 6.96 (s, 1H), 7.35 (dd, J_1 = 2.8, J_2 = 6.4, 2H), 7.86 (dd, J_1 = 3.2, J_2 = 6.4, 2H). ¹³C NMR (100 MHz; CDCl₃): δ = 25.9, 26.3, 26.4, 26.7, 28.5, 29.9, 118.0, 123.1, 126.5, 140.5, 144.2. HRMS (ESI-TOF) Calcd for C₁₄H₁₈N₃, [M+H]⁺ 228.1501; Found 228.1509.

2-(2,5-dihydrofuran-3-yl)-2*H*-benzo[*d*][1,2,3]triazole (4v).

2,5-dihydrofuran **1v** (0.5 mmol, 35.0 mg), benzotriazole **2a** (0.5 mmol, 59.6 mg), (PhSe)₂ (5% mol, 7.8 mg), Me₃SiH (0.5 mmol, 37.1 mg) and K₂S₂O₈ (0.6 mmol, 162.0 mg). Then the reaction mixture was stirred in dioxane (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5 \times 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **4v** as white solid (69%, 64.6 mg), melting point: 116-117 °C.

¹H NMR (400 MHz; CDCl₃): δ = 4.99-5.02 (m, 2H), 5.30-5.33 (m, 2H), 6.69 (t, *J* = 2.0, 1H), 7.42 (dd, *J*₁ = 3.2, *J*₂ = 7.2, 2H), 7.86 (d, *J* = 2.8, 2H). ¹³C NMR (100 MHz; CDCl₃): δ = 72.2, 75.5, 115.2, 118.1, 127.6, 144.7. HRMS (ESI-TOF) Calcd for C₁₀H₁₀ON₃, [M+H]⁺ 188.0824; Found 188.0827.

5-methyl-2-(1-phenylvinyl)-2*H*-benzo[*d*][1,2,3]triazole (4w).

styrene **1a** (0.5 mmol, 54.0 mg), 5-methyl-2*H*-benzo[*d*][1,2,3]triazole (0.5 mmol, 66.5 mg), (PhSe)₂ (5% mol, 7.8 mg), Me₃SiH (0.5 mmol, 37.1 mg) and K₂S₂O₈ (0.6 mmol, 162.0 mg). Then the reaction mixture was stirred in dioxane (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5

 \times 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **4w** as pale yellow liquid (70%, 82.4 mg).

¹H NMR (400 MHz; CDCl₃): δ = 2.51 (s, 3H), 5.64 (d, *J* = 0.8, 1H), 6.18 (d, *J* = 0.8, 1H), 7.25 (d, *J* = 1.2, 1H), 7.44-7.46 (m, 5H), 7.66 (d, *J* = 1.2, 1H), 7.79 (d, *J* = 8.8, 1H). ¹³C NMR (100 MHz; CDCl₃): δ = 22.2, 110.5, 116.5, 117.9, 128.2, 128.4, 129.5, 130.2, 134.7, 143.4, 145.2, 147.1. HRMS (ESI-TOF) Calcd for C₁₅H₁₄N₃, [M+H]⁺ 236.1188; Found 236.1194.

5-chloro-2-(1-phenylvinyl)-2*H*-benzo[*d*][1,2,3]triazole (4x).

styrene **1a** (0.5 mmol, 54.0 mg), 5-chloro-2*H*-benzo[*d*][1,2,3]triazole (0.5 mmol, 76.7 mg), (PhSe)₂ (5% mol, 7.8 mg), Me₃SiH (0.5 mmol, 37.1 mg) and K₂S₂O₈ (0.6 mmol, 162.0 mg). Then the reaction mixture was stirred in dioxane (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled to room temperature and quenched with water before being extracted with dichloromethane (5 × 3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **4x** as white solid (74%, 94.6 mg), melting point: 65-66 °C.

¹H NMR (400 MHz; CDCl₃): δ = 5.68 (s, 1H), 6.24 (s, 1H), 7.35-7.46 (m, 6H), 7.84-7.92 (m, 2H). ¹³C NMR (100 MHz; CDCl₃): δ = 111.4, 117.4, 119.7, 128.3, 128.5, 128.8, 129.6, 133.1, 134.3, 143.2, 145.0, 147.0. HRMS (ESI-TOF) Calcd for C₁₄H₁₁ClN₃, [M+H]⁺ 256.0642; Found 256.0647.

5,6-dimethyl-2-(1-phenylvinyl)-2*H*-benzo[*d*][1,2,3]triazole (4y).

styrene **1a** (0.5 mmol, 54.0 mg), 5,6-dimethyl-2*H*-benzo[*d*][1,2,3]triazole (0.5 mmol, 73.6 mg), (PhSe)₂ (5% mol, 7.8 mg), Me₃SiH (0.5 mmol, 37.1 mg) and K₂S₂O₈ (0.6 mmol, 162.0 mg). Then the reaction mixture was stirred in dioxane (2.0 mL) at 120 °C. Upon completion of the reaction (as monitored by TLC), the mixture was cooled

to room temperature and quenched with water before being extracted with dichloromethane (5×3 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a residue, which was purified by flash column chromatography to give the desired product **4y** as pale yellow liquid (75%, 93.5 mg).

¹H NMR (400 MHz; CDCl₃): δ = 2.42 (s, 6H), 5.61 (s, 1H), 6.16 (s, 1H), 7.44-7.45 (m, 5H), 7.65 (s, 2H). ¹³C NMR (100 MHz; CDCl₃): δ = 20.9, 110.2, 116.7, 128.2, 128.4, 129.4, 134.8, 137.9, 144.2, 147.1. HRMS (ESI-TOF) Calcd for C₁₆H₁₆N₃, [M+H]⁺ 250.1344; Found 250.1339.

References:

1. E. Tang, W.-L. Wang, Y.-J. Zhao, M. Zhang, X. Dai, Org. Lett., 2016, 18, 176.

2. K. Sun, X. Wang, Y.-H. Lv, G. Li, H.-Z. Jiao, C.-W. Dai, Y.-Y. Li, C. Zhang, L. Liu, *Chem. Commun.*, 2016, **52**, 8471.

3. L. Sun, Y. Yuan, M. Yao, H. Wang, D.-X. Wang, M. Gao, Y.-H. Chen, A.-W. Lei, *Org. Lett.*, 2019, **21**, 1297.

4. 1-(Trimethylsilyl)-1H-benzotriazole **8** (CAS: 43183-36-4) is purchased directly from Sigma-Aldrich or TCI.

V. ¹H NMR, and ¹³C NMR Spectra of Compounds 3 and 4

Compound 3a

Compound 3b

Compound 3c

180 160 140 120 100 80 60 40 20 0 ppm

200

Compound 3d

Compound 3e

Compound 3f

Compound 3g

Compound 3h

Compound 3i

Compound 3j

Compound 3k

Compound 31

Compound 3m

Compound 3n

Compound 3o

Compound 3p

Compound 3q

Compound 3r

Compound 3s

Compound 4a

Compound 4b

Compound 4d

Compound 4e

Compound 4f

Compound 4g

Compound 4h

Compound 4i

Compound 4j

Compound 4k

Compound 41

Compound 4m

60

Compound 4p

Compound 4q

Compound 4r

Compound 4s

Compound 4v

Compound 4w

Compound 4y

