# **Supporting Information**

# Supramolecular Assembly Mediated by Host-Guest

# Interaction for Improved Chemo-Photodynamic Combination

## Therapy

Weipeng Mao, Yujun Liao, Da Ma\*

Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China. Department of Neurosurgery, Huashan Hospital of Fudan University, 12 Middle Wulumuqi Road, Shanghai 200032, China \*Email: dama@fudan.edu.cn

# **Table of Contents**

| General experimental            | S1  |
|---------------------------------|-----|
| Synthesis and characterizations | S2  |
| Host-guest chemistry            | S7  |
| Self-assembly behavior          | S12 |
| Stability evaluation            | S17 |
| Cell study                      | S18 |
| References                      | S22 |

#### **General experimental**

All reagents and solvents were purchased from commercial suppliers and were used without further purification. NMR spectra were recorded on an AVANCE III operating at 400 MHz for <sup>1</sup>H and 100 MHz for <sup>13</sup>C. Mass spectrometry was performed using a Bruker MicrOTOF instrument (Electro-Spray Ionization). Fluorescence microscopy was carried out on a DMi 8 microscope (Leica, Germany). UV-Vis absorbance spectroscopy was measured on an Agilent Cary 100 UV. Fluorescence spectroscopy was measured on Shimadzu RF-6000. Dynamic light scattering (DLS) and  $\zeta$ -potential measurements were carried on a Malvern ZetaSizer Nano-ZS. Transmission electron microscopy (TEM) measurements were performed on a Tecnai G2 F20 S-Twin apparatus operating at an accelerating voltage of 200 kV. Confocal laser scanning microscopy (CLSM) images were performed on a Nikon C2b laser scanning confocal microscope (Nikon, Japan).

#### Synthesis and Characterizations



CPT-SS-TPP: TPP-OH and CPT-SS-OH were synthesized according to literature reports.<sup>1,2</sup> CPT-SS-OH (100 mg, 0.19 mmol) and triphosgene (20.8 mg, 0.07 mmol) were dissolved in  $CH_2Cl_2$  (5 mL) under N<sub>2</sub> protection at room temperature. Dimethylaminopyridine (74.3 mg, 0.61 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (1 mL) was added into the solution and stirred for 0.5 h. TPP-OH (362 nm, 0.57 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (5 mL) was slowly added into the solution and stirred overnight. The solution was evaporated and the residue was purified by silica gel column chromatography (CH<sub>2</sub>Cl<sub>2</sub> and CH<sub>3</sub>OH) to afford CPT-SS-TPP (112.2 mg, 0.9 mmol, 49.8%). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz): δ = 8.87-8.79 (m, 8H), 8.28 (s, 1H), 8.28-8.21 (m, 8H), 8.06 (d, J = 7.6 Hz, 1H), 7.82-7.75 (m, 11H), 7.58 (d, J = 8.0 Hz, 1H), 7.55 (d, J = 7.6 Hz, 2H), 7.38 (s, 1H), 5.73 (d, J = 16.8 Hz, 1H), 5.40 (d, J = 16.8 Hz, 1H), 5.26 (s, 2H), 4.59 (t, J = 6.0 Hz, 2H), 4.46 (t, J = 6.0 Hz, 1H), 3.12 (t, J = 6.4 Hz, 2H), 3.06 (t, J = 6.4 Hz, 2H), 2.33-2.30 (m, 1H), 2.21-2.16 (m, 1H), 1.02 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>, 100 MHz): δ = 167.5, 156.9, 153.3, 152.6, 151.1, 148.2, 146.6, 145.2, 141.6, 139.4, 136.0, 135.5, 134.6, 132.5, 132.4, 132.2, 131.9, 130.8, 130.0, 129.4, 129.3, 128.8, 128.5, 128.3, 128.0, 127.4, 120.6, 120.5, 120.1, 119.6, 119.2, 114.4, 94.8, 78.4, 66.9, 66.8, 66.7, 50.6, 36.8, 36.7, 30.8, 8.0. HR-MS: m/z 1185.3296 ([M+H<sup>+</sup>], calculated for  $[C_{70}H_{53}N_6O_9S_2]^+$ , 1185.3315).



СРТ



CPT-mPEG: CPT (200 mg, 0.57 mmol) and triphosgene (63 mg, 0.21 mmol) were dissolved in CH<sub>2</sub>Cl<sub>2</sub> (20 mL) under N<sub>2</sub> protection at room temperature. Dimethylaminopyridine (202 mg, 1.65 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (2 mL) was added into solution and stirred for 1 h. mPEG-OH (1.4 g, molecular weight = 5000) were dissolved in CH<sub>2</sub>Cl<sub>2</sub> (5 mL) and added into the reaction mixture. After 2 days stirring, CH<sub>2</sub>Cl<sub>2</sub> was removed by evaporation. Water (40 mL) was added into the mixture and centrifuge for 15 min (12000 rpm). The supernatant was collected and dialysis (MWCO = 5000) against water for 2 days and followed by freezing dry to afford CPT-mPEG (1.1 g, 72.8%). <sup>1</sup>H NMR (D<sub>2</sub>O, 400 MHz):  $\delta$  = 8.11 (s, 1H), 7.77 (d, *J* = 8.8 Hz, 1H), 7.63-7.57 (m, 2H), 7.37 (t, *J* = 7.6 Hz, 1H), 7.21 (d, 1H), 7.54 (d, *J* = 16.8 Hz, 1H), 5.41 (d, *J* = 16.8 Hz, 1H), 4.33 (s, 2H), 3.78-3.41 (m, 447H), 3.27(s, 3H), 2.22-2.11 (m, 2H), 0.99 (t, *J* = 7.2 Hz, 3H). <sup>13</sup>C NMR (D<sub>2</sub>O, 100 MHz):  $\delta$  = 169.5, 157.0, 153.8, 150.1, 147.0, 146.5, 145.1, 132.1, 131.0, 127.9, 127.7, 127.4,



Figure S1. <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>, 400 MHz) recorded for CPT-SS-TPP.



Figure S2. <sup>13</sup>C NMR spectrum (DMSO-d<sub>6</sub>, 100 MHz) recorded for CPT-SS-TPP.



Figure S3. <sup>1</sup>H NMR spectrum (D<sub>2</sub>O, 400 MHz) recorded for CPT-mPEG.



Figure S4. <sup>13</sup>C NMR spectrum (D<sub>2</sub>O, 100 MHz) recorded for CPT-mPEG.



*Figure S5.* <sup>1</sup>H NMR spectrum (D<sub>2</sub>O, 400 MHz) recorded for host **1**, CPT-mPEG and **1**•CPT-mPEG complex with different molar ratios.



*Figure S6.* <sup>1</sup>H NMR spectrum (DMSO- $d_6$ ,400 MHz) recorded for (1) CPT-SS-TPP, DTT (10 mM) was added into the solution of CPT-SS-TPP for (2) 5min, (3) 5 h, (4) 24 h and (5) CPT. Red rectangle highlight the transformation of CPT-SS-TPP and the formation of CPT under 10 mM DTT.



*Figure S7.* (a) Fluorescence spectra recorded for CPT-SS-TPP (1  $\mu$ M in water, ex: 360 nm) in the presence of DTT (10 mM) at different time intervals (0 – 330 min), FRET peak is observed at 660 nm. (b) Release curve calculated based on disulfide cleavage rate (FRET peak at 660 nm).

## Host-guest chemistry

Binding constants between guest and host **1** were calculated with nonlinear fitting with Origin 9 software based on 1:1 Binding and the following equation:

[H]<sup>0</sup>: initial host concentration; [G]<sup>0</sup>: initial guest concentration;  $\Delta_A$ : change of absorbance or fluorescence intensity;  $\Delta_\epsilon$ : change of coefficiency;  $K_a$ : binding constant.

$$\Delta_A = \Delta_{\varepsilon} \cdot \{\frac{1}{2}([H]^0 + [G]^0 + \frac{1}{K_a}) - \sqrt{\frac{1}{4}([H]^0 + [G]^0 + \frac{1}{K_a})^2 - [H]^0 \cdot [G]^0}\}$$

 $K_{\rm a}$  was evaluated by nonlinear fitting.



*Figure S8.* (a) Fluorescence emission spectra from the titration of CPT (1  $\mu$ M) with host **1** (0 – 72.6  $\mu$ M) in PBS (pH 7.4); (b) plot of  $\Delta$ I at 430 nm as a function of the concentration of host **1**. Solid line represents the best non-linear fitting of the data based on a 1:1 binding model ( $K_a = (4.5 \pm 0.3) \times 10^4 \text{ M}^{-1}$ ).



*Figure S9.* (a) Fluorescence emission spectra from the titration of CPT-mPEG (1  $\mu$ M) with host **1** (0 – 133.2  $\mu$ M) in PBS (pH 7.4); (b) plot of  $\Delta$ I at 420 nm as a function of the concentration of host **1**. Solid line represents the best non-linear fitting of the data based on a 1:1 binding model ( $K_a = (2.2 \pm 0.2) \times 10^4$  M<sup>-1</sup>).



*Figure S10.* (a) Absorbance spectra from the titration of TPP-OH (20  $\mu$ M) with host **1** (0 – 180  $\mu$ M) in PBS (pH 7.4); (b) plot of  $\Delta$ A at 430 nm as a function of the concentration of host **1**. Solid line represents the best non-linear fitting of the data based on a 1:1 binding model ( $K_a = (2.7 \pm 0.2) \times 10^4 \text{ M}^{-1}$ ).



*Figure S11.* Job plot for the 1·CPT complex in water. [host 1] + [CPT] = 2  $\mu$ M.



*Figure S12.* Job plot for the 1 TPP-OH complex in water. [host 1] + [TPP-OH] = 20  $\mu$ M.

### Self-assembly behavior

**Preparation of SNM-1 and SNM-3.** Due to the limited solubility of CPT-SS-TPP in water, a solution of CPT-SS-TPP (2 mM in DMSO) was injected into ultrapure water slowly under vigorous stirring in the presence or absence of host **1** and CPT-mPEG to yield SNM-1 and SNM-3 respectively. The final concentration of CPT-SS-TPP was 100  $\mu$ M. The solution was dialyzed (MWCO = 14000) against water to remove DMSO, and used for further characterizations and experiments.

Determination of Critical Aggregation Concentration of self-assembly. In a typical experiment, SNM-3 (100  $\mu$ M) stock solution was prepared. SNM-3 solution was diluted, and recorded by fluorescence spectroscopy. The fluorescence intensity of FRET peak at 660 nm was plot against molar concertation. The saltation was regarded as CAC.

#### Detection of <sup>1</sup>O<sub>2</sub> generation in aqueous solution.

In a typical experiment, SNM-3 (10  $\mu$ M) was suspended in water or FBS (10% in PBS) containing 30  $\mu$ M DPBF. The solution was irradiated at 671 nm (0.2 W/cm<sup>2</sup>). The UV-Vis spectra of the solution was recorded at different irradiation time intervals.



Figure S13. TEM images of SNM-1.



*Figure S14.* TEM images of CPT-SS-TPP in the presence of CPT-mPEG. (a), (b) [CPT-SS-TPP]:[CPT-mPEG] = 1:1. (c), (d) [CPT-SS-TPP]:[CPT-mPEG] = 10:1.



*Figure S15.* TEM images of CPT-SS-TPP in the presence of host **1** and CPT-mPEG, [CPT-SS-TPP]:[CPT-mPEG]:[host **1**]: (a) 0.5:2:2.5; (b) 1.25:0.5:1.75; (c) 1:1:5; (d) 1:0:1.



*Figure S16*. Fluorescence intensity against concentration recorded for SNM-1 in water (ex: 360 nm, em: 660 nm).



*Figure S17.* Fluorescence intensity against concentration recorded for SNM-3 in water (ex: 360 nm, em: 660 nm).



*Figure S18*. UV-Vis absorbance spectra of TPP-OH (red solid line) and fluorescence emission spectra of CPT (blue dash line, ex: 360 nm).

### **Stability evaluation**

SNM-1 (10  $\mu$ M) or SNM-3 (10  $\mu$ M) were incubated in water or FBS (10%) at 37 °C.

The fluorescence spectra and hydrodynamic size were recorded by fluorescence spectroscopy and DLS at different time intervals.



*Figure S19*. Fluorescence emission spectra recorded for SNM-1 (10  $\mu$ M) in 10% FBS at different incubation time intervals (ex: 360 nm).



*Figure S20*. DLS hydrodynamic size distribution recorded for SNM-3 in FBS (10%) at different time intervals.

### Cell study

**Cell culture.** Chang Liver cells were incubated in Dulbecco's Modified Eagle Medium (DMEM) containing FBS (10%) and penicillin/streptomycin (1%). HeLa cells were incubated in Dulbecco's Modified Eagle Medium (DMEM) containing FBS (10%) and penicillin/streptomycin (1%). A549 cells were incubated in RPMI-1640 medium containing FBS (10%) and penicillin/streptomycin (1%). MCF-7 cells were incubated in Modified Eagle Medium (MEM) containing FBS (10%) and

penicillin/streptomycin (1%). Cells were incubated at 37  $\,^{\circ}C$  and 5% CO<sub>2</sub>.

#### In vitro cell internalization and intracellular singlet oxygen detection. SNM-3

(10 µM) was incubated with HeLa cells at 37 °C for 2 h. Cells were washed three

times with PBS, and stained with Lysotracker green for 15 min. The fluorescence images were recorded on a confocal laser scanning microscope. For intracellular  ${}^{1}O_{2}$  detection, HeLa cells were incubated with SNM-3 (10 µM), SNM-1 (10 µM) or TPP-OH (10 µM) for 4 h. Subsequently, medium was removed, and cells were washed by PBS for three times. Fresh medium containing DCF-DA (20 µM) was added and cells were incubated for another 30 min followed by thorough washing with PBS. Cells were imaged by fluorescence microscopy before or after laser irradiation (671 nm, 0.2 W/cm<sup>2</sup>).

Cytotoxicity evaluation. The cytotoxicity of different formulations was determined by CCK-8 assay with different cell lines. In a typical dark cytotoxicity experiment, cells were seeded in 96-plate wells (4000 cells/well, n = 6) and cultured for 12 h. Then, cells were treated with fresh medium containing SNM-3 at various concentrations. After 24 h incubation, the medium was removed and CCK-8 solution (10  $\mu$ L) and fresh medium (90  $\mu$ L) were added to each well. After another 2 h incubation, the absorbance was determined at 450 nm by microplate reader (Biotek Synergy H1). The relative cell viability was calculated against the control group (cells treated with medium). In a typical combination therapy experiment, cells were seeded in 96-plate wells (4000 cells/well, n = 6) and cultured for 12 h. Then, the cells were treated with fresh medium containing SNM-3 at different concentrations. After 4 h incubation, cells were irradiated with laser (671 nm, 0.2 W/cm<sup>2</sup>) for 5 min each well. After irradiation, cells were further incubated for 20 h. Then medium was removed, and CCK-8 solution (10 µL) and fresh medium (90 µL) were added to each well. After another 2 h incubation, the absorbance was determined at 450 nm by microplate reader. The relative cell viability was calculated against the control group. Statistical analysis.

The statistical analyses were performed using unpaired two-tailed Student's t test. All statistical analysis was carried out by using GraphPad Prism 6 software.



*Figure S21.* Fluorescence microscopic image recorded for HeLa cells incubated with (a) SNM-3 or (b) TPP-OH for 4 h. Scale bar: 200  $\mu$ m.



*Figure S22.* Fluorescence microscopic image recorded for HeLa cells incubated with SNM-3, SNM-1 (10  $\mu$ M) for 4 h and stained with DCF-DA in the absence and presence of laser irradiation (671 nm. 0.2 W/cm<sup>2</sup>, 3 min). Scale bar: 100  $\mu$ m.



*Figure S23.* Photocytotoxicity and dark cytotoxicity of SNM-3, TPP-OH, SNM-1 and CPT to A549 cells (671 nm, 0.2 W/cm<sup>2</sup>, 5 min per well). All cell viability is displayed as mean  $\pm$  SD (n = 6, \*\*\*p < 0.001, \*p < 0.05, Student's t test).



*Figure S24.* Photocytotoxicity and dark cytotoxicity of SNM-3, TPP-OH, SNM-1 and CPT to MCF-7 cells (671 nm, 0.2 W/cm<sup>2</sup>, 5 min per well). All cell viability is displayed as mean  $\pm$  SD (n = 6, \*\*\*p < 0.001, Student's t test).



*Figure S25.* Dark cytotoxicity of CPT-mPEG against HeLa, A549 or MCF-7 cell line. Incubation time: 24 h.

# References

- 1 W. Shao, X. Liu, G. Sun, X. Y. Hu, J. J. Zhu and L. Wang, *Chem. Commun.*, 2018, **54**, 9462–9465.
- 2 L. Xu, L. Liu, F. Liu, H. Cai and W. Zhang, *Polym. Chem.*, 2015, **6**, 2945–2954.