Supporting information

Access to 4-Substituted Isothiazoles through Three-Component Cascade Annulation and Its Application in C-H Activation

Guoling Huang,^a Jian Li,^a Xiaoliang Ji,^a Lu Chen,^a Qiang Liu,^{a,b} Xiuwen

Chen,^a Yubing Huang,*,^a and Yibiao Li*,^a

^aSchool of Biotechnology and Health Sciences, Wuyi University, Jiangmen,

Guangdong Province 529090, China, ^bCenter of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084

E-mail: huangyb@126.com; leeyib268@126.com

Table of Contents

- (A). General Information 2
- (B). General procedures 2

(C) Plausible mechanism for synthesis 5,5'-bisisothiazoles from 4-substituted isothiazolederivatives 3

- (D) Single-Crystal X-ray diffraction analysis 4
- (E) Analytical data of all products 4
- (F) X-ray Crystallographic Data of 2g 15

- (G) X-ray Crystallographic Data of 2x 19
- (H) X-ray Crystallographic Data of 3k 23
- (I) $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra data of all products ~ 28 ~

(A). General Information

Chemicals and solvents were purchased from commercial suppliers and used as received unless noted. All products were purified by flash chromatography on silica gel. The chemical yields referred are isolated products. ¹H NMR and ¹³C NMR spectra were recorded on 400 MHz, 500MHz and 600 MHz Bruker spectrometers. Chemical shifts of ¹H were reported in part per million relative to the CDCl₃ residual peak (δ 7.260). Chemical shifts of ¹³C NMR were reported relative to CDCl₃ (δ 77.00). The used abbreviations are as follows: s (singlet), d (doublet), t (triplet), quart. (quartet), quint. (quintet), m (multiplet), br (broad). Multiplets which arise from accidental equality of coupling constants of magnetically non-equivalent protons are marked as virtual (*virt*.). High resolution mass spectra (HRMS) data were measured on a ESI-microTOF II. Melting points were measured on a SGW_® X-4B and are not corrected. Reactions were monitored by TLC analysis using silica gel 60 Å F-254 thin layer plates and compounds were visualized with a UV light at 254 nm or 365 nm. Most of the isopropene derivatives in this study were sourced from reagent service companies.

Initially, when treated with elemental sulfur and NH₄I at 130 °C, **1a** afforded 4phenylisothiazole (**2a**) in 53% yield (Table 1, entry 1). Attempts to improve the yield by employing other sulfur sources, and using EtOCS₂K, gave a satisfactory yield, while thiourea and Na₂S gave similar results to that of elemental sulfur (entries 2–4). The reaction efficiency showed no obvious change, even when the amount of H₂O was increased or decreased (entries 5–7). Notably, NH₄I played an important role in the annulation reaction. No desired product was detected when similar ammonium salts Et₄NI or NH₄Br were used (entries 8 and 9). Furthermore, the screening of alternative solvents, such as DMF, NMP, DMAc, and 1,4-dioxane, did not give improved results (entries 10–13). The dosage of NH₄I was found to have a significant effect on the desired product yield (entry 14). Notably, shortening the reaction time decreased the yield (entry 15). The reaction did not occur in the absence of EtOCS₂K (entry 16). When butylated hydroxytoluene or 2,2,6,6-tetramethyl-1-piperidinyloxy were added as radical scavengers, the intermolecular annulation process was completely inhibited (entries 17 and 18), indicating that this transition-metal-free cascade annulation reaction proceeded via a radical pathway.

entry	"N" source	"sulphur" source	solvent(v/v)	yield[%] ^b
 1	NH ₄ I	S_8	DMSO/H ₂ O(2:1)	53
2	NH ₄ I	thiourea	DMSO/H ₂ O(2:1)	49
3	NH ₄ I	EtOCS ₂ K	DMSO/H ₂ O(2:1)	87 (84)
4	NH ₄ I	Na ₂ S	DMSO/H ₂ O(2:1)	34
5	NH ₄ I	EtOCS ₂ K	DMSO/H ₂ O(1:1)	62
6	NH4I	EtOCS ₂ K	DMSO/H ₂ O(3:1)	59
7	NH4I	EtOCS ₂ K	DMSO/H ₂ O(3:0)	54
8	Et ₄ NI	EtOCS ₂ K	DMSO/H ₂ O(2:1)	< 5
9	NH ₄ Br	EtOCS ₂ K	DMSO/H ₂ O(2:1)	< 5
10	NH ₄ I	EtOCS ₂ K	DMF/H ₂ O(2:1)	28
11	NH ₄ I	EtOCS ₂ K	NMP/H ₂ O(2:1)	18
12	NH ₄ I	EtOCS ₂ K	DMAc/H ₂ O(2:1)	13
13	NH ₄ I	EtOCS ₂ K	dioxane/H ₂ O(2:1)	9
14 ^c	NH ₄ I	EtOCS ₂ K	DMSO/H ₂ O(2:1)	64
15^d	NH ₄ I	EtOCS ₂ K	DMSO/H ₂ O(2:1)	75
16	NH ₄ I	-	DMSO/H ₂ O(2:1)	-
17^e	NH ₄ I	EtOCS ₂ K	DMSO/H ₂ O(2:1)	< 5
18 ^f	NH4I	EtOCS ₂ K	DMSO/H ₂ O(2:1)	< 5

Table 1. Optimization of reaction conditions *a*,*b*

^a Reaction conditions: α-Methylstyrene (1a, 1.0 mmol), nitrogen source (2.0 mmol), sulfur source (1.2 mmol) in solvent (3.0 mL) at 130 °C for 24 h; ^b Yield determined by GC-MS analysis; ^c NH₄I (1.5 mmol) was used; ^d Reaction conducted at 130 °C for 18 h; ^e TEMPO (1.0 mmol) was used; ^f BHT (1.0 mmol) was used.

(B). General procedures

General procedures for synthesis of 4-substituted isothiazoles: A mixture of prop-1-en-2-ylbenzene (1.0 mmol), NH₄I (2.0 mmol, 290 mg), EtOCS₂K (1.2 mmol, 192 mg), DMSO (2.0 ml) and H₂O (1.0 ml) was added successively in a 20 mL Schlenk tube. The Schlenk tube was then immersed in an oil bath at 130 °C stirring for 24 h. After cooling down to room temperature, the solution was filtered through a small amount of silica gel. Then the residue was concentrated in vacuo and the crude was purified by flash chromatography with n-hexane/ethyl acetate (20/1, v/v) to afford the 4-phenylisothiazole (**2a**) as a yellow viscous liquid in 84% yield.

General procedures for synthesis of 5,5'-diisothiazole: A mixture of 4-(p-tolyl)isothiazole (87.5 mg, 0.5 mmol), Pd(OAc)₂ (11.2 mg, 0.05 mmol, 10 mol%), 1,10-phenanthroline (9.0 mg, 0.05 mmol, 10 mol%), Ag₂CO₃ (27.6 mg, 0.1 mmol), K₂CO₃ (13.8 mg, 0.1 mmol) and toluene (1.0 ml) was added successively in a 20 mL Schlenk tube. The Schlenk tube was then immersed in an oil bath at 130 °C stirring for 24 h. After cooling down to room temperature, the solution was filtered through a small amount of silica gel. Then the residue was concentrated in vacuo and the crude was purified by flash chromatography with n-hexane/ethyl acetate (20/1, v/v) to afford the 4,4'-di-p-tolyl-5,5'-biisothiazole (**3a**) as a yellow solid in 89% yield.

General procedures for synthesis of 4,5-diphenylisothiazoles: A mixture of 4phenylisothiazole (2a) (80 mg, 0.5 mmol), Iodobenzene (153 mg, 0.75 mmol), Pd(OAc)₂ (11.2 mg, 0.05 mmol, 10 mol%), 1,10-phenanthroline (9.0 mg, 0.05 mmol, 10 mol%), Ag₂CO₃ (27.6 mg, 0.1 mmol), K₂CO₃ (13.8 mg, 0.1 mmol) and toluene (1.0 ml) was added successively in a 20 mL Schlenk tube. The Schlenk tube was then immersed in an oil bath at 130 °C stirring for 24 h. After cooling down to room temperature, the solution was filtered through a small amount of silica gel. Then the residue was concentrated in vacuo and the crude was purified by flash chromatography with n-hexane/ethyl acetate (20/1, v/v) to afford the 4,5diphenylisothiazole (**4a**) as a yellow solid in 65% yield.

Gram-scale synthesis of 4-phenylisothiazole: A mixture of prop-1-en-2-ylbenzene (1g, 8.5 mmol), NH₄I (2.47g, 17 mmol), EtOCS₂K (1.63g, 10.2 mmol), DMSO (15

ml) and H₂O (7.0 ml) was added successively in a 50 mL Schlenk tube. The Schlenk tube was then immersed in an oil bath at 130 °C stirring for 36 h. After cooling down to room temperature, the solution was filtered through a small amount of silica gel. Then the residue was concentrated in vacuo and the crude was purified by flash chromatography with n-hexane/ethyl acetate (20/1, v/v) to afford the 4-phenylisothiazole **2a** as a yellow viscous liquid in 76% yield.

(C) Plausible mechanism for synthesis 5,5'-bisisothiazoles from 4-substituted isothiazole derivatives

The 4-substituted isothiazoles **2** undergo ligand-assisted dissociation with $Pd(OAc)_2$, adjusting to coordinate to the palladium complex through its π -system, to facilitate C5–H activation of 4-substituted isothiazoles **D**. A similar C–H activation process then occurs to give bi(hetero)arene-palladium(II) complex **E**, followed by reductive elimination to give the desired product **3**. Finally, Pd(II) is oxidized by Ag₂CO₃ to regenerate Pd(OAc)₂ and 1,10- phenanthroline with the assistance of KOAc.

Scheme 1. Plausible mechanism for synthesis 5,5'-bisisothiazoles

(D) Single-Crystal X-ray diffraction analysis

Scheme 2. Molecular structures of 2g, 2x, and 3k from Single-Crystal X-ray diffraction analysis

(E) Analytical data of all products

Yellow viscous liquid (135 mg, 84% yield); $R_{\rm f} = 0.48$ (Hexane/EtOAc = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 8.78 (s, 1H), 8.71 (s, 1H), 7.59 (d, J = 7.9 Hz, 2H), 7.52 – 7.40 (m, 2H), 7.36 (dd, J = 10.5, 4.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 156.0, 142.6, 140.0, 132.6, 129.1 (2C), 128.0, 126.9 (2C); GC-MS (EI, 70 eV) m/z (%) 161 (100), 134 (57), 77.

4-(o-Tolyl)isothiazole (2b)^[2]

Yellow viscous liquid (98 mg, 56% yield); $R_f = 0.47$ (Hexane/EtOAc = 20:1); ¹H NMR (600 MHz, Acetone- d_6) δ 8.93 (s, 1H), 8.62 (s,

1H), 7.37 – 7.26 (m, 4H), 2.33 (s, 3H); ¹³C NMR (150 MHz, Acetone-*d*₆) δ 158.9,
146.6, 140.1, 136.6, 133.7, 131.5, 130.6, 128.9, 127.0, 20.8; HRMS (ESI-TOF): *m/z*[M+H]⁺: calcd for C₁₀H₁₀NS 176.0529; found 176.0527.

4-(3-methylphenyl)-isothiazole (2c)

Yellow viscous liquid, (126 mg, 72% yield); $R_f = 0.47$ (Hexane/EtOAc = 20:1); ¹H NMR (600 MHz, Acetone- d_6) δ 9.12 (s, 1H), 8.92 (s, 1H), 7.61 – 7.59(m, 1H), 7.56 – 7.53 (m, 1H), 7.35 – 7.31 (m, 1H), 7.19 – 7.16(m, 1H), 2.38 (s, 3H); ¹³C NMR (150 MHz, Acetone- d_6) δ 156.1, 143.1, 139.9, 138.7 132.6, 129.0, 128.6, 127.5, 123.9 20.6. HRMS (ESI-TOF) m/z [M+H]⁺: calcd for C₁₀H₁₀NS 176.0529; found 176.0529.

Yellow viscous liquid, (141.8 mg, 81% yield); $R_f = 0.47$ (Hexane/EtOAc = 20:1); ¹H NMR (400 MHz, CDCl₃) δ 8.74 (s, 1H), 8.62 (s, 1H), 7.46 (d, J = 8.1 Hz, 2H), 7.27 – 7.16 (m, 2H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.9, 141.9, 139.8, 137.8, 129.7 (2C), 129.7 (2C), 126.7, 21.1. HRMS (ESI-TOF) *m/z* [M+H]⁺: calcd for C₁₀H₁₀NS 176.0529; found 176.0528.

4-(4-isobutylphenyl)isothiazole (2e)

Yellow viscous liquid, (141.1 mg, 65% yield); $R_f = 0.36$ (Hexane/EtOAc = 20:1); ¹H NMR (600 MHz, Acetone- d_6) δ 9.12 (s, 1H), 8.93 (s, 1H), 7.70 – 7.69 (m, 2H), 7.28 – 7.127 (m, 2H), 2.51 (d, J = 7.2 Hz, 2H), 1.95 – 1.82 (m, 1H), 0.92(s, 1H), 0.91(s, 1H); ¹³C NMR (150 MHz, Acetone- d_6) δ 160.0, 143.6, 142.4, 140.7, 131.2, 130.7 (2C), 127.5 (2C), 45.6, 31.0, 22.6 (2C). HRMS (ESI-TOF) m/z [M+H]⁺: calcd for C₁₃H₁₆NS 218.0998; found 218.0996.

4-(4-methoxyphenyl)isothiazole (2f)

Yellow solid, (149 mg, 78% yield); m.p.: 73–75 °C; $R_f = 0.35$ (Hexane/EtOAc = 20:1); ¹H NMR (600 MHz, CDCl₃) δ 8.72 (s,

1H), 8.57 (s, 1H), 7.52 – 7.49 (m, 2H), 6.97 – 6.93 (m, 2H), 3.83 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 159.3, 155.8, 141.2, 139.5, 127.9 (2C), 125.1, 114.4 (2C), 55.2. HRMS (ESI-TOF) *m/z* [M+H]⁺: calcd for C₁₀H₁₀NOS 192.0478; found 192.0477.

4-(benzo[d][1,3]dioxol-5-yl)isothiazole (2g)

Brown solid, (143.5 mg, 70% yield); m.p.: 69–72 °C; $R_f = 0.55$ (Hexane/EtOAc = 20:1); ¹H NMR (600 MHz, Acetone- d_6) δ 9.04 (s, 1H), 8.86 (s, 1H), 7.28 – 7.26 (m, 2H), 6.91 – 6.92 (m, 1H), 6.04 (s, 2H); ¹³C

NMR (150 MHz, Acetone-*d*₆) δ 156.9, 149.4, 148.4, 143.2, 140.4, 127.8, 121.4, 109.6, 108.1, 102.4. HRMS (ESI-TOF) *m/z* [M+H]⁺: calcd for C₁₀H₈NO₂S 206.0270; found 206.0270.

4-(naphthalen-2-yl)isothiazole (2h)^[2]

Brown solid, (151.9 mg, 72% yield); $R_f = 0.55$ (Hexane/EtOAc = 20:1); ¹H NMR (400 MHz, CDCl₃) δ 8.92 (s, 1H), 8.81 (s, 1H), 8.06 (s, 1H), 7.89 (dd, J = 18.9, 8.1 Hz, 3H), 7.70 (d, J = 8.4 Hz, 1H), 7.56 – 7.46 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 156.2, 142.8, 139.9, 133.6, 132.8, 129.9, 128.9, 128.0, 127.7, 126.7, 126.3, 125.5, 125.0. HRMS (ESI-TOF) m/z [M+H]⁺: calcd for C₁₃H₁₀NS 212.0529; found 212.0527.

4-(4-chlorophenyl)isothiazole (2i)

Yellow viscous liquid, (156 mg, 80% yield); $R_f = 0.30$ (Hexane /EtOAc = 20:1); ¹H NMR (400 MHz, CDCl₃) δ 8.74 (s, 1H), 8.69 (s, 1H), 7.52 (d, J = 8.5 Hz, 2H), 7.41 (d, J = 8.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 155.7, 142.9, 138.8, 133.9, 131.0, 129.3 (2C), 128.0 (2C). HRMS (ESI-TOF) m/z [M+H)⁺: calcd for C₉H₇CINS 195.9982; found 195.9982.

4-(3-chlorophenyl)isothiazole (2j)

Yellow viscous liquid, (144.3 mg, 74% yield); $R_f = 0.30$ (Hexane/EtOAc = 20:1); ¹H NMR (600 MHz, Acetone- d_6) δ 9.27 (s, 1H), 8.98 (s, 1H), 7.83 – 7.81 (m, 1H), 7.74 – 7.71 (m, 1H), 7.48 – 7.40 (m, 1H), 7.38 – 7.36 (m,

1H); ¹³C NMR (150 MHz, Acetone- d_6) δ 156.9, 145.3, 139.0, 135.47, 135.3, 131.5, 128.5, 127.4, 126.1. HRMS (ESI-TOF) *m/z* [M+H]⁺: calcd for C₉H₇CINS 195.9982; found 195.9981.

4-(3,4-dichlorophenyl)isothiazole (2k)

Yellow viscous liquid, (139.7, 61% yield); $R_f = 0.30$ (Hexane/EtOAc = 20:1); ¹H NMR (600 MHz, Acetone- d_6) δ 9.32 (s, 1H), 8.99 (s, 1H), 7.99 (d, J = 2.2 Hz, 1H), 7.76 (dd, J = 8.4, 2.1 Hz, 1H), 7.62 (d, J = 8.4 Hz,

1H). ¹³C NMR (150 MHz, Acetone-*d*₆) δ 156.0, 144.8, 137.2, 133.2, 132.6, 131.1, 131.06,
128.6, 126.7; HRMS (ESI-TOF) *m/z* [M+H)⁺: calcd for C₉H₆Cl₂NS 229.9593; found 229.9591.

4-(3-bromophenyl)isothiazole (21)

Yellow viscous liquid, (149.4 mg, 62% yield); $R_f = 0.35$ (Hexane/EtOAc = 20:1); ¹H NMR (600 MHz, Acetone- d_6) δ 9.29 (s, 1H), 8.99 (s, 1H), 7.99-7.97 (m, 1H), 7.81-7.78 (m, 1H), 7.55 –

7.53 (m, 1H), 7.44-7.40 (m, 1H). ¹³C NMR (150 MHz, Acetone-*d*₆) δ 156.7, 145.1, 138.7, 135.6, 131.6, 131.3, 131.2, 126.3, 123.3; HRMS (ESI-TOF) *m/z* [M+H]⁺: calcd for C₉H₇BrNS 241.9456; found 241.9455.

4-(4-t Yello

4-(4-bromophenyl)isothiazole (2m)

Yellow viscous liquid, (159.1 mg, 66% yield); $R_{\rm f} = 0.35$ (Hexane/EtOAc = 20:1); ¹H NMR (600 MHz, Acetone- d_6) δ 9.24 (s, 1H), 8.96 (s, 1H), 7.77 – 7.73 (m, 2H), 7.66 – 7.63 (m, 2H); ¹³C NMR (150 MHz, Acetone- d_6) δ 156.2, 144.2, 138.7, 132.4 (2C), 132.2, 129.0 (2C), 121.5;

HRMS (ESI-TOF) *m*/*z* [M+H]⁺: calcd for C₉H₇BrNS 241.9456; found 241.9455.

4-(4-fluorophenyl)isothiazole (2n)

Yellow viscous liquid, (139.6 mg, 78% yield); $R_f = 0.35$ (Hexane/EtOAc = 20:1); ¹H NMR (400 MHz, CDCl₃) δ 8.72 (s, 1H), 8.65 (s, 1H), 7.60 – 7.50 (m, 2H), 7.17 – 7.08 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 162.5 (d, *J* = 246.3 Hz, 1C), 155.8, 142.5, 138.9, 128.7(d, *J* = 3.4 Hz, 1C), 128.5 (d, *J* = 8.1 Hz, 2C), 116.0 (d, *J* = 21.6 Hz, 2C); HRMS (ESI-TOF) *m/z* [M+H]⁺: calcd for C₉H₇FNS 180.0278; found 180.0277

4-(2-fluorophenyl)isothiazole (20)

Yellow viscous liquid, (75.2 mg, 42% yield); $R_f = 0.34$ (Hexane/EtOAc = 20:1); ¹H NMR (600 MHz, Acetone- d_6) δ 9.23 (d, J = 1.3 Hz, 1H), 8.91 (d, J = 1.7 Hz, 1H), 7.81 (td, J = 7.7, 1.8 Hz, 1H), 7.46 -7.41 (m, 1H), 7.32 – 7.27 (m, 2H); ¹³C NMR (150 MHz, Acetone- d_6) δ 160.5 (d, J = 245.6 Hz, 1C), 157.9 (d, J = 4.5 Hz, 1C), 147.1 (d, J = 5.5 Hz, 1C), 134.0 (d, J = 2.2Hz, 1C), 130.8 (d, J = 6.1 Hz, 1C), 130.7, 125.9 (d, J = 3.7 Hz, 1C), 121.4 (d, J = 13.6Hz, 1C), 117.17 (d, J = 22.6 Hz, 1C); HRMS (ESI-TOF) m/z [M+H]⁺: calcd for C₉H₇FNS 180.0278; found 180.0277.

4-(3,4-difluorophenyl)isothiazole (2p)

Yellow viscous liquid, (124.1 mg, 63% yield); $R_f = 0.30$ (Hexane/EtOAc =0.43); ¹H NMR (600 MHz, Acetone- d_6) δ 9.25 (s, 1H), 8.96 (s, 1H), 7.81 – 7.77 (m, 1H), 7.66 – 7.62 (m, 1H), 7.44 – 7.39 (m, 1H); ¹³C NMR (150 MHz, Acetone- d_6) δ 156.9, 151.8 (dd, J=12.75 Hz,

100.05 Hz, 1C), 150.2 (dd, J = 12.75 Hz, 101.3 Hz, 1C), 145.2, 138.5 (d, J = 1.95 Hz, 1C), 131.1 (dd, J = 6.8, 4.0 Hz, 1C), 124.4 (dd, J = 6.4, 3.5 Hz, 1C), 118.9 (d, J = 17.4Hz, 1C), 116.8(d, J = 18.3 Hz, 1C); HRMS (ESI-TOF) m/z [M+H]⁺: calcd for: C₉H₆F₂NS 198.0184; found 198.0183.

4-(3-bromo-4-fluorophenyl)isothiazole (2q)

Yellow solid, (138.8 mg, 54% yield); m.p.: 79–82 °C; $R_{\rm f} = 0.50$ (Hexane/EtOAc = 20:1); ¹H NMR (400 MHz, CDCl₃) δ 8.69 (d, J = 7.2

Hz, 2H), 7.76 (dd, J = 6.4, 2.3 Hz, 1H), 7.51 – 7.46 (m, 1H), 7.18 (t, J = 8.4 Hz, 1H); ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3) \delta 158.8 \text{ (d}, J = 247.5 \text{ Hz}, 1\text{C}), 155.6, 143.2, 137.6, 131.8, 130.2 \text{ (d}, J = 3.9 \text{ CDCl}_3)$ Hz, 1C), 127.4 (d, *J* = 7.3 Hz, 1C), 117.3 (d, *J* = 22.5 Hz, 1C), 110.0 (d, *J* = 21.3 Hz, 1C); HRMS (ESI-TOF) m/z [M+H]⁺: calcd for C₉H₆BrFNS 257.9383; found 257.9380.

4-(4-iodophenyl)isothiazole (2r)

Yellow solid, (238.2 mg, 83% yield); m.p.: 102–104 °C; $R_f = 0.32$ (Hexane/EtOAc = 20:1); ¹H NMR (400 MHz, CDCl₃) δ 8.73 (s, 1H), 8.70 (s, 1H), 7.75 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 155.6, 142.9, 138.2 (2C), 132.0 128.5 (2C), 93.4; HRMS (ESI-TOF) m/z [M+H]⁺: calcd for C₉H₇INS 287.9338; found 287.9339.

4-(4-(trifluoromethyl)phenyl)-isothiazole (2s)

Yellow liquid, (155.7 mg, 68% yield); $R_f = 0.45$ (Hexane/EtOAc = 20:1); ¹H NMR (600 MHz, Acetone- d_6) δ 9.37 (s, 1H), 9.04

(s, 1H), 8.04 – 8.01 (m, 2H), 7.82 – 7.78 (m, 2H); ¹³C NMR (150 MHz, Acetone- d_6) δ 157.1, 146.2, 139.1, 137.5, 130.0 (q, J = 29.1 Hz), 128.3 (2C), 126.8 (q, J = 3.9 Hz, 2C), 125.3 (d, J = 269.6 Hz, 1C); HRMS (ESI-TOF) m/z [M+H]⁺: calcd for C₁₀H₇F₃NS 230.0246; found 230.0243.

4-(3-(trifluoromethyl)phenyl)-isothiazole (2t)

Yellow viscous liquid, (148.9 m, 65% yield); $R_f = 0.45$ (Hexane/EtOAc = 20:1); ¹H NMR (600 MHz, Acetone- d_6) δ 9.41 (s, 1H), 9.07 (s, 1H), 8.13 (s, 1H), 8.11 – 8.09 (m, 1H), 7.72-7.71 (m,

2H); ¹³C NMR (150 MHz, Acetone- d_6) δ 157.1, 145.8, 139.1, 134.7, 131.8 (d, J = 32.1 Hz, 1C), 131.5 (d, J = 0.9 Hz, 1C), 130.9, 125.3 (q, J = 266.9 Hz, 1C), 125.2 (q, J = 4.3 Hz, 1C), 124.3 (q, J = 3.9 Hz, 1C); HRMS (ESI-TOF) m/z [M+H]⁺: calcd for C₁₀H₇F₃NS 230.0246; found 230.0244.

4-(4-cyclohexylphenyl)isothiazole (2u)

Yellow solid, (136.1 mg, 56% yield); m.p.: 67–70 °C; $R_{\rm f} = 0.40$ (Hexane/EtOAc = 20:1); ¹H NMR (600 MHz, Acetone- d_6) δ 9.10 (s, 1H), 8.91 (s, 1H), 7.79 – 7.58 (m, 2H), 7.47 – 7.17 (m, 2H), 2.58 – 2.52 (m, 1H), 1.89 – 1.80 (m, 5H), 1.75 – 1.71 (m, 1H), 1.47 – 1.38(m, 4H); ¹³C NMR (150 MHz, Acetone- d_6) δ 157.0, 148.7, 143.4, 140.7, 131.2, 128.4 (2C), 127.7 (2C), 45.1, 35.1 (2C), 27.5 (2C), 26.7; HRMS (ESI-TOF) *m/z* [M+H)⁺]: calcd for C₁₅H₁₈NS 244.1155; found 244.1153.

4-(4-phenylphenyl)-isothiazole (2v)

Yellow solid, (144.6 mg, 61% yield); m.p.: 157–159 °C; TLC: R_f = 0.43 (Hexane/EtOAc = 20:1); ¹H NMR (600 MHz, Acetone- d_6) δ 9.23 (s, 1H), 9.00 (s, 1H), 7.90 – 7.83 (m, 2H), 7.78 – 7.75 (m,

2H), 7.72 – 7.70 (m, 2H), 7.49-7.47 (m, 2H), 7.39 (d, J = 7.4 Hz, 1H); ¹³C NMR (150 MHz, Acetone- d_6) δ 156.6, 143.8, 140.9, 140.7, 139.8, 132.2, 129.4 (2C), 129.4, 128.0 (2C), 128.0 (2C), 127.8 (2C); HRMS (ESI-TOF) m/z [M+H]⁺: calcd for C₁₅H₁₂NS 238.0685; found 238.0682.

20:1); ¹H NMR (600 MHz, Acetone- d_6) δ 9.04 (s, 1H), 8.84 (s, 1H), 7.51 – 7.48 (m, 2H), 7.14 – 7.12 (m, 1H); ¹³C NMR (150 MHz, Acetone- d_6) δ 156.4, 143.1, 135.8, 134.2, 129.0, 126.2, 125.8; HRMS (ESI-TOF) m/z [M+H]⁺: calcd for C₇H₆NS₂ 167.9936; found: 167.9933.

1,3-di(isothiazol-4-yl)benzene (2x)

Yellow solid, (100.1 mg, 41% yield) m.p.: 107–109 °C; $R_f = 0.32$ (Hexane/EtOAc = 5:1); ¹H NMR (600 MHz, Acetone- d_6) δ 9.31 (s,

2H), 9.06 (s, 2H), 8.25-8.23 (m, 1H), 7.79 (d, J = 1.8 Hz, 1H), 7.78 (d, J = 1.8 Hz, 1H), 7.58– 7.54 (m, 1H); ¹³C NMR (150 MHz, Acetone- d_6) δ 157.3 (2C), 144.8 (2C), 140.3, 134.5, 130.8 (2C), 127.2 (2C), 126.3 (2C); HRMS (ESI-TOF) m/z [M+H]⁺: calcd for C₁₂H₉N₂S₂ 245.0202; found 245.0201.

4,4'-di-p-tolyl-5,5'-biisothiazole (3a)

Yellow solid, (154.9 mg, 89% yield); m.p.: 134–137 °C; R_f = 0.34 (Hexane/EtOAc = 20:1); ¹H NMR (600 MHz, Acetone-d6) δ 8.60 (s, 2H), 7.22 – 7.10 (m, 8H), 2.33 (s, 6H); ¹³C NMR (150 MHz, Acetone-d6) δ 159.6 (2C), 149.6

(2C), 140.1 (2C), 139.2 (2C), 130.4 (4C), 129.8 (2C), 129.5 (4C), 21.3 (2C); HRMS (ESI-TOF) *m/z* [M+H]⁺: calcd for C₂₀H₁₇N₂S₂ 349.0828; found 349.0828.

4,4'-di-m-tolyl-5,5'-biisothiazole (3b)

Yellow solid, (161.8 mg, 93% yield); $R_f = 0.53$ (Hexane/EtOAc = 20:1); ¹H NMR (600 MHz, Acetone- d_6) δ 7.18 (t, J = 7.5 Hz, 2H), 7.14 (d, J = 7.5 Hz, 2H), 7.00 (dd, J = 5.7, 5.0 Hz, 4H), 2.25 (s, 6H); ¹³C NMR (150 MHz, Acetone- d_6) δ 158.9 (2C), 149.2 (2C),

139.3 (2C), 138.6 (2C), 132.0 (2C), 129.4 (2C), 129.1 (2C), 128.8 (2C), 126.0 (2C), 20.7 (2C); HRMS (ESI-TOF) *m/z* [M+H]⁺: calcd for C₂₀H₁₇N₂S₂ 349.0828; found 349.0826.

4,4'-bis(4-methoxyphenyl)-5,5'-biisothiazole (3c)

Yellow solid, (163.4 mg, 86% yield); m.p.: 79–83 °C; $R_{\rm f}$ = 0.22 (Hexane /EtOAc = 20:1); ¹H NMR (500 MHz, DMSO- d_6) δ 8.74 (s, 2H), 7.26 (d, J = 8.7 Hz, 4H), 6.94 (d, J = 8.8 Hz, 4H), 3.76 (s, 6H); ¹³C NMR (125 MHz,

DMSO- d_6) δ 159.4 (2C), 159.0 (2C), 147.7 (2C), 138.5 (2C), 129.9 (4C), 123.4 (2C), 114.4 (4C), 55.2 (2C); HRMS (ESI-TOF) *m*/*z* [M+H]⁺: calcd for C₂₀H₁₇N₂O₂S₂ 381.0726; found 381.0725.

4,4'-bis(benzo[d][1,3]dioxol-5-yl)-5,5'-biisothiazole (3d)

Brown solid, (114.2 mg, 56% yield); $R_f = 0.20$ (Hexane /EtOAc = 10:1); ¹H NMR (600 MHz, Acetone- d_6) δ 8.57 (s, 2H), 6.81 (d, J = 8.0 Hz, 2H), 6.75 – 6.68 (m, 4H), 6.03 (s, 4H); ¹³C NMR (150 MHz, Acetone- d_6) δ 159.8 (2C), 149.5 (2C), 149.1 (2C), 149.0 (2C), 139.5 (2C), 126.4 (2C), 123.7 (2C), 109.7 (2C), 109.4 (2C), 102.5 (2C); HRMS (ESI-TOF) m/z [M+H]⁺: calcd for C₂₀H₁₃N₂O₄S₂ 409.0311; found 409.0309.

4,4'-bis(3-chlorophenyl)-5,5'-biisothiazole (3e)

Yellow solid, (163.0 mg, 84% yield); m.p.: 142–145 °C; $R_f = 0.20$ (Hexane /EtOAc = 20:1) ¹H NMR (400 MHz, Acetone) δ 8.66 (s, 2H), 7.32 – 7.25 (m, 4H), 7.09 (s, 2H), 7.06 (d, J = 7.5

Hz, 2H); ¹³C NMR (100 MHz, Acetone-d6) δ 159.9 (2C), 150.3 (2C), 138.0 (2C), 135.0 (2C), 134.6 (2C), 131.2 (2C), 129.2 (2C), 129.0 (2C); 128.0 (2C). HRMS (ESI-TOF) *m/z* [M+H]⁺: calcd for C₁₈H₁₁Cl₂N₂S₂ 388.9735; found 388.9732.

4,4'-bis(4-chlorophenyl)-5,5'-biisothiazole (3f)

Yellow solid, (164.9 mg, 85% yield); m.p.: 129-132 °C; $R_f =$ 0.40 (Hexane /EtOAc = 20:1); ¹H NMR (600 MHz, Acetoned₆) δ 8.65 (s, 2H), 7.33 – 7.29 (m, 4H), 7.21 – 7.17 (m, 4H); ¹³C NMR (150 MHz, Acetone-d₆) δ 159.1 (2C), 149.3 (2C), 137.6

(2C), 134.1 (2C), 130.8 (2C), 130.4 (4C), 129.0 (4C); HRMS (ESI-TOF) *m/z* [M+H)]⁺: calcd for C₁₈H₁₁Cl₂N₂S₂ 388.9735; found 388.9732.

4,4'-bis(4-fluorophenyl)-5,5'-biisothiazole (3g)

Yellow solid, (160.2 mg, 90% yield); m.p.: 105–108 °C; $R_f =$ 0.38 (Hexane /EtOAc = 20:1); ¹H NMR (600 MHz, Acetone- d_6) δ 8.66 (s, 2H), 7.29 – 7.17 (m, 4H), 7.12 – 7.00 (m, 4H); ¹³C

NMR (150 MHz, Acetone- d_6) δ 1632.9 (d, J = 245.1 Hz, 2C), 159.1 (2C), 149.1 (2C), 137.9 (2C), 130.9 (d, J = 8.7 Hz, 2C), 128.3 (d, J = 3.0 Hz, 4C), 115.8 (d, J = 21.9 Hz, 4C); HRMS (ESI-TOF) m/z [M+H]⁺: calcd for C₁₈H₁₀F₂N₂S₂ 357.0326; found 357.0325.

4,4'-bis(4-bromophenyl)-5,5'-biisothiazole (3h)

Yellow solid, (183.3 mg, 77% yield); m.p.: 151–154 °C; $R_f = 0.36$ (Hexane /EtOAc = 20:1). ¹H NMR (600 MHz, Acetoned₆) δ 8.66 (s, 2H), 7.48 – 7.43 (m, 4H), 7.14 – 7.07 (m, 4H); ¹³C NMR (150 MHz, Acetone-d₆) δ 159.8 (2C), 150.0 (2C),

138.4 (2C), 132.7 (4C), 131.9 (2C), 131.4 (4C), 123.0 (2C); HRMS (ESI-TOF) *m/z* [M+H]⁺: calcd for C₁₈H₁₁Br₂N₂S₂ 476.8725; found 476.8720.

4,4'-di(thiophen-2-yl)-5,5'-biisothiazole (3i)

Yellow solid, (146.1 mg, 88% yield); m.p.: 143–146 °C; $R_f = 0.36$ (Hexane/EtOAc = 20:1); ¹H NMR (400 MHz, DMSO- d_6) δ 9.16 (s, 2H), 7.49 (dd, J = 17.0, 4.3 Hz, 4H), 7.15 – 6.91 (m, 2H); ¹³C NMR (100 MHz, DMSO- d_6) δ 158.0 (2C), 144.9 (2C), 133.5 (2C), 132.4 (2C), 128.0 (2C), 127.6 (2C), 127.2 (2C); HRMS (ESI-TOF) m/z [M+H]⁺: calcd for C₁₄H₉N₂S₄ 332.9643; found 332.9640.

4-(4-cyclohexylphenyl)-4'-phenyl-5,5'-biisothiazole (3j)

Yellow viscous liquid, (86.4 mg, 43% yield); $R_f = 0.48$ (Hexane/EtOAc = 20:1); ¹H NMR (400 MHz, DMSO- d_6) δ 8.8 (s, 1H), 8.75 (s, 1H), 7.31 (dd, J = 5.0, 1.8 Hz, 2H), 7.22 (dd, J = 6.4, 3.0 Hz, 2H), 7.18 – 7.07 (m, 5H), 2.47 (d, J = 2.9 Hz, 1H), 1.77 (s, 5H), 1.42 – 1.31 (m, 5H); ¹³C NMR (100 MHz, DMSO- d_6) δ 159.2, 159.2, 148.6, 147.9, 147.8, 138.7, 138.6, 131.2, 128.8 (2C), 128.6, 128.4(2C), 128.3 (2C), 128.2, 127.1 (2C), 43.5, 33.8 (2C), 26.3 (2C), 25.5; HRMS (ESI-TOF) m/z [M+H]⁺: calcd for C₂₄H₂₃N₂S₂ 403.1297; found 403.1294.

4,4'-diphenyl-5,5'-biisothiazole (3k)

White solid, (146 mg, 91% yield); m.p.: 153–156 °C; $R_f = 0.36$ (Hexane/EtOAc = 20:1); ¹H NMR (500 MHz, Acetone- d_6) δ 8.63 (s, 2H), 7.35 – 7.29 (m, 6H), 7.26 (ddd, J = 7.9, 5.0, 2.6 Hz, 4H); ¹³C NMR (125 MHz, Acetone- d_6) δ 158.8 (2C), 149.0 (2C), 139.1 (2C),

131.8 (2C), 128.8 (4C), 128.7 (4C), 128.3 (2C); HRMS (ESI-TOF) *m/z* [M+H]⁺: calcd for C₁₈H₁₃N₂S₂ 321.0515; found 321.0512.

4-(4-(phenylethynyl)phenyl)isothiazole (2y)

Yellow solid, (120.1 mg, 92% yield); $R_{\rm f} = 0.40$ (Hexane /EtOAc = 15:1). ¹H NMR (600 MHz, DMSO d_6 +Acetone- d_6) δ 9.47 (s, 1H), 9.13 (s, 1H), 7.90 (d, J =

8.4 Hz, 2H), 7.64 (d, J = 8.4 Hz, 2H), 7.62 – 7.54 (m, 2H), 7.44 (dd, J = 5.1, 1.8 Hz, 3H); ¹³C NMR (150 MHz, DMSO- d_6 +Acetone- d_6) δ 156.3, 144.8, 138.1, 132.2, 132.0 (2C), 131.3 (2C), 128.7, 128.7 (2C), 126.8 (2C), 122.1, 121.5, 90.0, 89.0; HRMS (ESI-TOF) m/z [M+H]⁺: calcd for C₁₇H₁₂NS 262.0685; found 262.0683.

4-(4-bromophenyl)isothiazole (2m)

Yellow viscous liquid, (104.0 mg, 87% yield); $R_{\rm f} = 0.32$ (Hexane/EtOAc = 20:1); ¹H NMR (500 MHz, Acetone- d_6) δ 9.23 (s, 1H), 8.95 (s, 1H), 7.77 – 7.72 (m, 2H), 7.66 – 7.60 (m, 2H). ¹³C NMR (125 MHz, Acetone- d_6) δ 156.0, 144.0, 138.5, 132.1 (2C), 128.7 (2C), 121.3. HRMS (ESI-TOF) *m/z* [M+H]⁺: calcd for C₉H₇BrNS 241.9456; found 241.9455.

4-phenylisothiazole-5-d

Yellow viscous liquid (135 mg, 84% yield); $R_{\rm f} = 0.48$ (Hexane/EtOAc = 20:1). ¹H NMR (500 MHz, CDCl₃) δ 8.78 (s, 1H), 7.59 (dd, J = 5.2, 3.2 Hz, 2H), 7.48 – 7.41 (m, 2H), 7.36 (ddd, J = 7.5, 3.9, 1.2 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 155.9, 142.5, 139.7, 132.4, 129.0 (2C), 127.9, 126.8 (2C).

4,5-diphenylisothiazole (4a)^[3]

Yellow solid, (77.0 mg, 65% yield); $R_{\rm f}$ = 0.38 (Hexane/EtOAc = 20:1); ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.72 (s, 1H), 7.44 – 7.31 (m, 10H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 160.8, 159.7, 135.5, 132.2,

129.9, 129.3, 129.2 (2C), 128.8 (2C), 128.7 (2C), 128.4 (2C), 127.8.

4-(4-methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)isothiazole Yellow solid, (mg, 58% yield); m.p.: °C; $R_f = 0.20$ (Hexane /EtOAc = 10:1); ¹H NMR (500 MHz, DMSO- d_6) δ 8.65 (s, 1H), 7.45 – 7.24 (m, 2H), 6.97 (d, J = 8.7 Hz, 2H), 6.60 (s, 2H), 3.76 (s, 3H), 3.68 (s, 3H), 3.63 (s, 6H); ¹³C NMR (125 MHz, DMSO-

*d*₆) δ 159.9, 159.6, 159.0, 153.1 (2C), 138.1, 135.2, 130.1 (2C), 125.4, 124.5, 114.2 (2C), 105.9 (2C), 60.1, 55.8 (2C), 55.2.

methyl(2-phenylprop-1-en-1-yl)sulfane ()^[4]

Yellow liquid, (104.0 mg, 87% yield); $R_f = 0.32$ (Hexane/EtOAc = 20:1);¹H NMR (500 MHz, CDCl₃) δ 7.45 – 7.41 (m, 2H), 7.38 (t, J = 7.7 Hz, 2H), 7.31 – 7.26 (m, 1H), 6.35 (s, 1H), 2.45 (s, 3H), 2.20 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 141.8, 132.8, 128.2 (2C), 126.5, 125.3, 125.0 (2C), 17.4, 17.2.

REFERENCES:

- [1] Pavlik, J. W.; Tongcharoensirikul, P.; Bird, N. P.; Day, A. C.; Barltrop, J. A. J. *Am. Chem. Soc.* **1994**, *116*, 2292.
- [2] Soledade, M.; Pedras, C.; Suchy, M.; Bioorg. Med. Chem. 2006, 14, 714.
- [3] Nakayama, J.; Sakai, A.; Tokiyama, A.; Hoshino, M. *Tetrahedron Letters*, 1983, 24, 3729.
- [4] Gao, X.; Pan, X.; Gao, J.; Jiang, H.; Yuan, G.; Li, Y. Org. Lett., 2015, 17, 1038.

(F) X-ray Crystallographic Data of 2g

The X-ray crystallographic structures for **2g**. ORTEP representation with 50% probability thermal ellipsoids. Solvent and hydrogen are omitted for clarity. Solvent and hydrogen are omitted for clarity. Crystal data have been deposited to CCDC, number 1902238.

Crystal structure determination of 2g

Crystal Data for C₁₀H₇NO₂S (M = 205.23 g/mol): monoclinic, space group P2₁/c (no. 14), a = 6.9853(19)Å, b = 8.3741(16)Å, c = 14.638(3)Å, $\beta = 99.28(2)$, V = 845.1(3) Å³, Z = 4, T = 100.01(10) K, μ (MoK α) = 0.348 mm⁻¹, *Dcalc* = 1.613 g/cm³, 3223 reflections measured ($5.622 \le 2\Theta \le 50$), 1438 unique ($R_{int} = 0.0434$, $R_{sigma} = 0.0530$) which were used in all calculations. The final R_1 was 0.0532 (I > 2 σ (I)) and wR_2 was 0.1685 (all data).

Identification code	2g	
Empirical formula	$C_{10}H_7NO_2S$	
Formula weight	205.23	
Temperature/K	100.01(10)	
Crystal system	monoclinic	
Space group	$P2_1/c$	
a/Å	6.9853(19)	
b/Å	8.3741(16)	
c/Å	14.638(3)	
α/°	90	
β/°	99.28(2)	
ν/°	90	

Table 1. Crystal data and structure refinement for 2g.

Volume/Å ³	845.1(3)
Ζ	4
$\rho_{calc}g/cm^3$	1.613
µ/mm ⁻¹	0.348
F(000)	424.0
Crystal size/mm ³	$0.13 \times 0.12 \times 0.11$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	5.622 to 50
Index ranges	$-6 \le h \le 8, -9 \le k \le 9, -15 \le l \le 17$
Reflections collected	3223
Independent reflections	1438 [$R_{int} = 0.0434$, $R_{sigma} = 0.0530$]
Data/restraints/parameters	1438/0/127
Goodness-of-fit on F ²	1.069
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0532, wR_2 = 0.1579$
Final R indexes [all data]	$R_1 = 0.0646, wR_2 = 0.1685$
Largest diff. peak/hole / e Å ⁻³	0.44/-0.44

Table 2. Fractional Atomic Coordinates (×104) and Equivalent IsotropicDisplacement Parameters (Ų×10³) for 2g. U_{eq} is defined as 1/3 of of the trace ofthe orthogonalised U_{IJ}tensor.

Atom	x	у	Z	U(eq)
S(1)	1622.3(12)	9144.0(11)	4455.3(6)	27.1(4)

O(2)	10464(3)	4518(3)	6344.1(16)	26.2(6)
O(1)	9387(3)	3591(3)	7664.7(15)	27.7(6)
N(1)	3460(4)	9015(3)	3914.6(19)	24.4(7)
C(5)	7516(5)	6038(4)	5741(2)	19.2(8)
C(4)	5663(4)	6474(4)	5921(2)	17.6(7)
C(1)	7993(5)	4539(4)	7158(2)	20.1(8)
C(6)	8616(5)	5088(4)	6370(2)	20.7(8)
C(3)	5070(5)	5924(4)	6732(2)	21.0(8)
C(2)	6211(5)	4943(4)	7363(2)	23.0(8)
C(9)	2560(5)	7989(4)	5360(2)	23.3(8)
C(8)	4381(5)	7478(4)	5268(2)	18.7(7)
C(10)	4818(5)	8104(4)	4424(2)	22.3(8)
C(7)	10989(5)	3628(4)	7179(2)	26.8(8)

Table 3. Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 2g. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
S (1)	22.8(6)	32.9(6)	25.1(6)	1.5(4)	2.9(4)	2.8(4)
O(2)	17.9(13)	39.0(15)	22.6(12)	7.3(10)	6.1(10)	6.4(10)
O(1)	22.1(13)	37.4(15)	24.2(13)	10.5(11)	5.2(11)	6.7(11)
N(1)	34.6(18)	23.1(16)	16.3(14)	1.2(11)	6.6(13)	-4.2(13)
C(5)	19.2(18)	24.4(18)	14.6(16)	-0.4(13)	4.5(14)	-3.2(13)
C(4)	17.3(17)	18.3(16)	17.3(16)	-4.7(13)	2.9(13)	-4.0(13)

C(1)	20.5(18)	21.3(17)	17.8(16)	0.6(13)	0.5(14)	-3.4(13)
C(6)	18.7(18)	24.5(18)	19.4(17)	-6.0(14)	5.0(14)	-4.5(14)
C(3)	20.5(18)	23.1(18)	20.4(17)	-1.1(13)	6.1(14)	-0.3(13)
C(2)	27(2)	25.7(18)	18.0(17)	-1.2(14)	8.6(15)	-4.6(15)
C(9)	23.4(19)	28.6(19)	18.5(17)	-0.7(14)	5.2(15)	-1.6(14)
C(8)	16.4(17)	20.2(17)	19.2(16)	-5.8(13)	2.0(13)	-5.4(13)
C(10)	21.5(18)	23.9(18)	22.1(17)	-0.3(14)	5.5(14)	2.4(14)
C(7)	22.3(19)	34(2)	24.0(18)	6.5(16)	2.6(15)	2.0(16)

Table 4. Bond Lengths for 2g.

Atom Atom	Length/Å	Atom Atom	Length/Å
S(1) N(1)	1.617(3)	C(5) C(6)	1.358(5)
S(1) C(9)	1.685(3)	C(4) C(3)	1.397(4)
O(2) C(6)	1.382(4)	C(4) C(8)	1.465(4)
O(2) C(7)	1.428(4)	C(1) C(6)	1.375(4)
O(1) C(1)	1.377(4)	C(1) C(2)	1.370(5)
O(1) C(7)	1.420(4)	C(3) C(2)	1.388(5)
N(1) C(10)	1.345(4)	C(9) C(8)	1.369(4)
C(5) C(4)	1.410(4)	C(8) C(10)	1.420(4)

Table 5. Bond Angles for 2g.

Atom Atom Atom	Angle/°	Atom Atom	Atom	Angle/°
N(1) S(1) C(9)	96.18(15) C(5) C(6) C	D(2)	127.8(3)

C	C(6)	O(2)	C(7)	105.6(2)	C(5)	C(6)	C(1)	122.9(3)
C	2(1)	0(1)	C(7)	105.3(2)	C(1)	C(6)	O(2)	109.3(3)
C	C(10)	N(1)	S(1)	108.1(2)	C(2)	C(3)	C(4)	123.0(3)
C	C(6)	C(5)	C(4)	117.5(3)	C(1)	C(2)	C(3)	116.4(3)
C	C(5)	C(4)	C(8)	120.7(3)	C(8)	C(9)	S(1)	110.6(2)
C	C(3)	C(4)	C(5)	118.7(3)	C(9)	C(8)	C(4)	126.5(3)
C	C(3)	C(4)	C(8)	120.7(3)	C(9)	C(8)	C(10)	107.7(3)
C	C(6)	C(1)	O(1)	110.6(3)	C(10)	C(8)	C(4)	125.8(3)
C	C(2)	C(1)	O(1)	127.8(3)	N(1)	C(10)	C(8)	117.4(3)
C	C(2)	C(1)	C(6)	121.5(3)	O(1)	C(7)	O(2)	109.0(3)

Table 6. Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 2g.

Atom	x	У		z	U(eq)
H(5)	7967.84		6388.32	5211.85	23
H(3)	3856.81		6229.47	6854.16	25
H(2)	5787.35		4579.69	7896.64	28
H(9)	1928.76		7733.88	5853.63	28
H(10)	5996.59		7891.99	4230.17	27
H(7A)	11345.87		2547.99	7034.62	32
H(7B)	12095.48		4121.66	7560.13	32

(G) X-ray Crystallographic Data of 2x

The X-ray crystallographic structures for 2x. ORTEP representation with 50% probability thermal ellipsoids. Solvent and hydrogen are omitted for clarity. Solvent and hydrogen are omitted for clarity. Crystal data have been deposited to CCDC, number 1978413.

Crystal structure determination of 2x

Crystal Data for C₁₂H₈N₂S₂ (M = 244.32 g/mol): orthorhombic, space group Pbca (no. 61), a = 6.0865(10) Å, b = 17.576(4) Å, c = 20.351(3) Å, V = 2177.1(7)Å³, Z = 8, T = 100.00(10) K, μ (MoK α) = 0.458 mm⁻¹, *Dcalc* = 1.491 g/cm³, 8203 reflections measured ($4.634 \le 2\Theta \le 49.998$), 1914 unique ($R_{int} = 0.0825$, $R_{sigma} = 0.0694$) which were used in all calculations. The final R_1 was 0.0701 (I > 2 σ (I)) and wR_2 was 0.1832 (all data).

Identification code	2x	
Empirical formula	$C_{12}H_8N_2S_2$	
Formula weight	244.32	
Temperature/K	100.00(10)	
Crystal system	orthorhombic	
Space group	Pbca	
a/Å	6.0865(10)	
b/Å	17.576(4)	
c/Å	20.351(3)	
$\alpha/^{\circ}$	90	
β/°	90	

Table 7. Crystal data and structure refinement for 2x.

$\gamma/^{\circ}$	90
Volume/Å ³	2177.1(7)
Z	8
$\rho_{calc}g/cm^3$	1.491
μ/mm^{-1}	0.458
F(000)	1008.0
Crystal size/mm ³	$0.13 \times 0.12 \times 0.11$
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	4.634 to 49.998
Index ranges	$-5 \le h \le 7, -19 \le k \le 20, -23 \le l \le 23$
Reflections collected	8203
Independent reflections	1914 [$R_{int} = 0.0825$, $R_{sigma} = 0.0694$]
Data/restraints/parameters	1914/0/145
Goodness-of-fit on F ²	1.022
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0701$, $wR_2 = 0.1640$
Final R indexes [all data]	$R_1 = 0.0960, wR_2 = 0.1832$
Largest diff. peak/hole / e Å ⁻³	0.61/-0.46

Table 8. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 2x. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	Z	U(eq)
S(1)	-3708.1(19)	4214.0(7)	4993.7(5)	24.3(4)

S(2)	9042(2)	1515.6(7)	6830.5(6)	30.1(4)
N(1)	-2868(6)	3330(2)	4921.6(17)	25.7(9)
N(2)	6773(7)	1172(2)	6487.3(18)	30.0(10)
C(1)	-361(7)	3871(2)	5655.3(19)	20.0(10)
C(10)	6073(7)	2483(2)	6611(2)	21.3(10)
C(4)	1594(7)	3859(2)	6095.8(19)	18.7(10)
C(9)	2874(7)	3211(2)	6153.0(19)	20.7(10)
C(8)	4729(7)	3183(2)	6556.1(19)	19.5(10)
C(6)	4024(7)	4494(3)	6858(2)	22.9(10)
C(5)	2176(7)	4511(2)	6458(2)	22.5(10)
C(11)	8151(8)	2421(3)	6870(2)	25.0(11)
C(12)	5383(8)	1739(3)	6405(2)	26.5(11)
C(3)	-1099(7)	3226(3)	5287(2)	24.9(11)
C(7)	5299(8)	3843(2)	6907(2)	23.0(11)
C(2)	-1714(7)	4479(2)	5535(2)	22.9(10)

Table 9. Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 2x. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
S(1)	28.4(7)	26.2(7)	18.2(6)	-0.2(5)	-1.9(5)	2.5(5)
S(2)	32.3(7)	32.0(8)	25.9(7)	0.1(5)	-5.3(5)	3.7(5)
N(1)	29(2)	30(2)	19(2)	-2.0(16)	-1.0(17)	2.6(18)
N(2)	37(2)	32(2)	21(2)	-3.7(17)	-3.5(19)	6.9(19)

C(1)	29(2)	21(2)	10(2)	-1.0(17)	7.1(18)	-3.5(19)
C(10)	30(3)	28(3)	6(2)	1.9(17)	5(2)	-5(2)
C(4)	24(2)	23(2)	9(2)	2.4(17)	4.4(18)	-2.4(19)
C(9)	30(2)	22(3)	10(2)	-0.9(17)	5.4(19)	-3(2)
C(8)	25(2)	24(3)	9(2)	0.7(18)	1.5(18)	-0.6(19)
C(6)	32(3)	24(3)	13(2)	-1.7(18)	3(2)	-8(2)
C(5)	33(3)	23(2)	11(2)	-0.7(18)	1(2)	-1(2)
C(11)	34(3)	28(3)	13(2)	-0.7(18)	0(2)	-3(2)
C(12)	28(3)	34(3)	17(2)	-2(2)	-2(2)	0(2)
C(3)	30(3)	27(3)	18(2)	0(2)	0(2)	6(2)
C(7)	30(3)	28(3)	11(2)	1.0(18)	-0.5(19)	-4(2)
C(2)	29(3)	25(3)	15(2)	-5.0(18)	1(2)	2(2)

Table 10. Bond Lengths for 2x.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S(1)	N(1)	1.642(4)	C(10)	C(8)	1.481(6)
S(1)	C(2)	1.703(4)	C(10)	C(11)	1.375(6)
S(2)	N(2)	1.661(4)	C(10)	C(12)	1.436(6)
S(2)	C(11)	1.683(5)	C(4)	C(9)	1.385(6)
N(1)	C(3)	1.322(5)	C(4)	C(5)	1.406(6)
N(2)	C(12)	1.318(6)	C(9)	C(8)	1.396(6)
C(1)	C(4)	1.490(6)	C(8)	C(7)	1.407(6)
C(1)	C(3)	1.431(6)	C(6)	C(5)	1.389(6)

Table 11. Bond Angles for 2x.

Atom Atom	Atom	Angle/°	Atom Atom Atom	Angle/°
N(1) S(1)	C(2)	95.4(2)	C(5) C(4) C(1)	120.3(4)
N(2) S(2)	C(11)	95.5(2)	C(4) C(9) C(8)	122.2(4)
C(3) N(1)	S (1)	109.6(3)	C(9) C(8) C(10)	121.3(4)
C(12) N(2)	S(2)	108.2(3)	C(9) C(8) C(7)	117.9(4)
C(3) C(1)	C(4)	123.6(4)	C(7) C(8) C(10)	120.7(4)
C(2) C(1)	C(4)	126.8(4)	C(5) C(6) C(7)	120.9(4)
C(2) C(1)	C(3)	109.6(4)	C(6) C(5) C(4)	119.6(4)
C(11) C(10)	C(8)	127.1(4)	C(10) C(11) S(2)	110.7(3)
C(11) C(10)	C(12)	108.0(4)	N(2) C(12) C(10)	117.6(4)
C(12) C(10)	C(8)	124.9(4)	N(1) C(3) C(1)	116.1(4)
C(9) C(4)	C(1)	120.8(4)	C(6) C(7) C(8)	120.4(4)
C(9) C(4)	C(5)	118.9(4)	C(1) C(2) S(1)	109.3(3)

Table 12. Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 2x.

Atom	x	У	z	U(eq)
H(9)	2485.09	2780.04	5914.83	25
H(6)	4411.37	4925.23	7095.49	27
H(5)	1328.47	4949.63	6429.28	27

H(11)	8953.88	2823.84	7043.41	30
H(12)	4004.96	1660.21	6219.69	32
H(3)	-375.62	2760.05	5304.95	30
H(7)	6538.28	3843.33	7174.5	28
H(2)	-1566.72	4959.87	5719.37	28

(H) X-ray Crystallographic Data of 3k

The X-ray crystallographic structures for **3k**. ORTEP representation with 50% probability thermal ellipsoids. Solvent and hydrogen are omitted for clarity. Solvent and hydrogen are omitted for clarity. Crystal data have been deposited to CCDC, number 1978414.

Crystal structure determination of 3k

Crystal Data for C₁₈H₁₂N₂S₂ (*M*=320.42 g/mol): monoclinic, space group I2 (no. 5), *a* = 7.8212(6) Å, *b* = 5.9264(4)Å, *c* = 16.1736(11)Å, β = 91.155(7), *V* = 749.52(9)Å³, *Z* = 2, *T* = 100.00(10)K, μ (MoK α) = 0.352 mm⁻¹, *Dcalc* = 1.420 g/cm³, 3560 reflections measured (5.038 ≤ 2 Θ ≤ 58.226), 1748 unique (R_{int} = 0.0275, R_{sigma} = 0.0449) which were used in all calculations. The final R_1 was 0.0352 (I > 2 σ (I)) and *w* R_2 was 0.0822 (all data).

Table 13. Crystal data and structure refinement for 3k.

Identification code	3k
Empirical formula	$C_{18}H_{12}N_2S_2$
Formula weight	320.42
Temperature/K	100.00(10)

Crystal system	monoclinic
Space group	Ι2
a/Å	7.8212(6)
b/Å	5.9264(4)
c/Å	16.1736(11)
$\alpha/^{\circ}$	90
β/°	91.155(7)
$\gamma/^{\circ}$	90
Volume/Å ³	749.52(9)
Z	2
$ ho_{calc}g/cm^3$	1.420
μ/mm^{-1}	0.352
F(000)	332.0
Crystal size/mm ³	$0.13 \times 0.12 \times 0.11$
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	5.038 to 58.226
Index ranges	$-9 \le h \le 9, -7 \le k \le 7, -21 \le l \le 21$
Reflections collected	3560
Independent reflections	1748 [$R_{int} = 0.0275, R_{sigma} = 0.0449$]
Data/restraints/parameters	1748/1/100
Goodness-of-fit on F ²	1.047
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0352, wR_2 = 0.0798$
Final R indexes [all data]	$R_1 = 0.0374, wR_2 = 0.0822$

Γ_{1} , Γ_{2} , Γ_{2	Largest diff. peak/hole / e Å ⁻³	0.27/-0.27
Flack parameter 0.03(6)	Flack parameter	0.03(6)

Table 14. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 3k. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	Z	U(eq)
S1	7138.6(8)	776.3(12)	5577.5(4)	20.94(19)
N1	7570(3)	1689(4)	6526.7(14)	23.4(5)
C1	3920(3)	5662(5)	6221.5(13)	14.7(5)
C7	5236(3)	3913(5)	6088.1(16)	15.5(5)
C6	2252(3)	5448(5)	5910.7(16)	20.6(6)
C9	5469(3)	2599(4)	5400.0(15)	15.2(5)
C2	4326(4)	7563(4)	6700.3(15)	17.0(5)
C4	1467(4)	8992(5)	6524.8(17)	22.6(6)
C5	1040(4)	7089(5)	6062.4(17)	23.6(6)
C8	6489(4)	3310(5)	6705.6(16)	19.1(6)
C3	3111(4)	9203(5)	6849.9(17)	21.3(6)

Table 15. Anisotropic Displacement Parameters (Å²×10³) for 3k. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
S1	23.6(4)	23.1(3)	16.2(3)	1.9(3)	0.7(2)	8.1(3)

N1	20.9(13)	32.2(13)	16.9(11)	3.6(10)	-3.4(9)	5.3(10)
C1	15.4(12)	16.9(12)	11.8(10)	2.3(13)	-0.5(8)	1.3(12)
C7	13.3(13)	18.3(12)	14.8(12)	2.1(10)	-2.2(10)	-2.0(10)
C6	20.2(14)	25.8(17)	15.5(11)	-3.8(12)	-4.8(10)	2.3(12)
C9	16.5(13)	15.6(12)	13.5(12)	2.0(10)	1.1(10)	-0.6(10)
C2	17.6(13)	19.5(13)	13.7(12)	1.7(10)	1.1(10)	-2.4(11)
C4	24.6(15)	24.9(15)	18.4(13)	3.4(12)	4.3(11)	8.9(12)
C5	16.8(14)	35.3(17)	18.7(14)	-0.7(13)	-2.6(11)	6.1(12)
C8	19.0(14)	25.5(15)	12.7(12)	0.8(11)	-3.1(11)	1.1(11)
C3	28.4(16)	17.5(13)	18.1(13)	-0.9(11)	5.6(11)	-1.8(12)

Table 16. Bond Lengths for 3k.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S 1	N1	1.656(2)	C7	C8	1.431(4)
S 1	C9	1.714(3)	C6	C5	1.384(4)
N1	C8	1.316(4)	С9	C91	1.475(5)
C1	C7	1.479(4)	C2	C3	1.384(4)
C1	C6	1.395(4)	C4	C5	1.390(4)
C1	C2	1.400(4)	C4	C3	1.385(4)
C7	C9	1.374(4)			

Table 17. Bond Angles for 3k.

Atom Atom Atom	Angle/°	Atom Atom Atom	Angle/°	
----------------	---------	----------------	---------	--

N1	S 1	C9	95.15(12)	C7	С9	S 1	109.6(2)
C8	N1	S 1	108.8(2)	C7	С9	C91	129.7(2)
C6	C1	C7	122.1(3)	C91	С9	S 1	120.73(18)
C6	C1	C2	118.2(3)	C3	C2	C1	120.9(3)
C2	C1	C7	119.6(2)	C3	C4	C5	119.3(3)
C9	C7	C1	128.3(2)	C6	C5	C4	120.5(3)
C9	C7	C8	108.9(2)	N1	C8	C7	117.6(2)
C8	C7	C1	122.8(2)	C4	C3	C2	120.4(3)
C5	C6	C1	120.8(3)				

Table 18. Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 3k.

Atom	x	У	Z	U(eq)
H6	1950.96	4187.56	5597.87	25
H2	5426.93	7725.82	6920.72	20
H4	658.28	10110.43	6614.87	27
Н5	-69.13	6918.56	5853.4	28
H8	6538.06	4037.07	7215.05	23
H3	3400.01	10453.96	7170.49	26

(I) ¹H and ¹³C NMR spectra data of all products ¹H NMR (400 MHz, CDCl₃) spectrum of compound 2a

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 2a

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR (150 MHz, Acetone-*d*₆) spectrum of compound 2b

¹H NMR (600 MHz, Acetone-*d*₆) spectrum of compound 2c

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppa)

¹H NMR (400 MHz, CDCl₃) spectrum of compound 2d

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 2d

¹H NMR (600 MHz, Acetone-*d*₆) spectrum of compound 2e

¹³C NMR (150 MHz, Acetone-*d*₆) spectrum of compound 2e

¹H NMR (600 MHz, CDCl₃) spectrum of compound 2f

¹³C NMR (150 MHz, CDCl₃) spectrum of compound 2f

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of compound 2h

¹³C NMR (100 MHz, CDCl₃) spectrum of compound 2h

90 80 fl (ppm)

¹H NMR (600 MHz, Acetone-*d*₆) spectrum of compound 2j

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR (600 MHz, Acetone-*d*₆) spectrum of compound 2k

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1</t

¹H NMR (600 MHz, Acetone-*d*₆) spectrum of compound 2m

 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 <th1</th>
 <th1</th>
 <th1</th>
 <th1</th>

¹H NMR (400 MHz, CDCl₃) spectrum of compound 2n

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) spectrum of compound 2q

< 8.695</p>
8.677

 7.767

 7.756

 7.751

 7.751

 7.751

 7.751

 7.751

 7.751

 7.755

 7.755

 7.755

 7.155

 7.155

004 529 580	.235 .561	.343 139 914	639	8 8 8 3 8 3 8 3 8 3 8 3 8 9 0 0 8 1 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8
157 155	143	127 117 116	109	77.3 76.6
SIZ	- î î î	1 4		

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR (600 MHz, Acetone-*d*₆) spectrum of compound 2s

³C NMR (150 MHz, Acetone-*d*₆) spectrum of compound 2s

¹H NMR (600 MHz, Acetone-*d*₆) spectrum of compound 2t

¹³C NMR (150 MHz, Acetone-*d*₆) spectrum of compound 2t

¹H NMR (600 MHz, Acetone-*d*₆) spectrum of compound 2u

13

C NMR (150 MHz, Acetone-d₆) spectrum of compound 2u

¹H NMR (600 MHz, Acetone-*d*₆) spectrum of compound 2v

¹³C NMR (150 MHz, Acetone-*d*₆) spectrum of compound 2v

¹H NMR (600 MHz, Acetone-*d*₆) spectrum of compound 2w

¹³C NMR (150 MHz, Acetone-*d*₆) spectrum of compound 2w

¹H NMR (600 MHz, Acetone-*d*₆) spectrum of compound 2x

¹³C NMR (150 MHz, Acetone-*d*₆) spectrum of compound 2x

¹H NMR (600 MHz, Acetone-*d*₆) spectrum of compound 3a

¹³C NMR (150 MHz, Acetone-*d*₆) spectrum of compound 3a

¹H NMR (600 MHz, Acetone-*d*₆) spectrum of compound 3b

¹³C NMR (150 MHz, Acetone-*d*₆) spectrum of compound 3b

¹H NMR (400 MHz, Acetone-*d*₆) spectrum of compound 3c

¹³C NMR (100 MHz, Acetone-*d*₆) spectrum of compound 3c

¹H NMR (600 MHz, Acetone-*d*₆) spectrum of compound 3d

¹³C NMR (150 MHz, Acetone-*d*₆) spectrum of compound 3d

¹H NMR (600 MHz, Acetone-*d*₆) spectrum of compound 3e

¹³C NMR (150 MHz, Acetone-*d*₆) spectrum of compound 3e

¹H NMR (600 MHz, Acetone-*d*₆) spectrum of compound 3f

¹³C NMR (150 MHz, Acetone-*d*₆) spectrum of compound 3f

¹H NMR (600 MHz, Acetone-*d*₆) spectrum of compound 3g

¹³C NMR (150 MHz, Acetone-*d*₆) spectrum of compound 3g

¹H NMR (600 MHz, Acetone-*d*₆) spectrum of compound 3h

¹³C NMR (150 MHz, Acetone-*d*₆) spectrum of compound 3h

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of compound 3i

¹³C NMR (100 MHz, DMSO-*d*₆) spectrum of compound 3i

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of compound 3j

³C NMR (100 MHz, DMSO-*d*₆) spectrum of compound 3j

1

¹H NMR (500 MHz, Acetone-*d*₆) spectrum of compound 3k

¹³C NMR (125 MHz, Acetone-*d*₆) spectrum of compound 3k

¹H NMR (600 MHz, Acetone-*d*₆+DMSO-*d*₆) spectrum of compound 2y

³C NMR (150 MHz, Acetone-*d*₆+DMSO-*d*₆) spectrum of compound 2y

1

¹H NMR (500 MHz, Acetone-*d*₆) spectrum of compound 3m

³C NMR (125 MHz, Acetone-*d*₆) spectrum of compound 3m

1
¹H NMR (400 MHz, DMSO-*d*₆) spectrum of compound 4a

¹³C NMR (100 MHz, C DMSO-*d*₆) spectrum of compound 4a

¹H NMR (400 MHz, DMSO-*d*₆) spectrum of compound 4a

¹³C NMR (100 MHz, C DMSO-*d*₆) spectrum of compound 4a

¹H NMR (500 MHz, CDCl₃) spectrum of compound 2a-D

¹³C NMR (125 MHz, C CDCl₃) spectrum of compound 2a-D

¹³C NMR (125 MHz, C CDCl₃) spectrum of compound

¹H NMR (500 MHz, CDCl₃) spectrum of compound