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Methods
Synthesis of nanoporous RuO@C

One gram of soluble starch was dissolved in 10.0 mL distilled water with stirring. Then, it
was mixed with a 10 mL aqueous solution of Ruthenium chloride (0.1 M) to form a uniform
suspension. The mixture was then placed in an oil bath preheated to 80 °C and maintained for
20 min under vigorous stirring until a pink gel was obtained. The gelatinized paste was kept
at 80 °C for an additional 10 min without stirring to age. After cooling to room temperature,
it was then freeze-dried for 72 h to obtain the Ru®*/starch precursor. Then, the precursor was
calcined at a temperature of 500 °C with a heating rate of 5 °C min™* to obtain the
hierarchically 3D nanoporous RuO.@C.

Characterization. The morphologies of the samples were investigated by field-emission
scanning electron microscopy (FESEM; JEOL JSM-7500FA) and transmission electron
microscopy (TEM, JEOL 2011, 200 kV). The high-angle annular dark-field scanning TEM
(HAADF-STEM) images and the scanning TEM energy dispersive X-ray spectroscopy
(STEM-EDS) data were acquired on the transmission electron microscopy system (TEM,
JEOL ARM-200F, 200 kV). The XRD patterns were collected by powder X-ray diffraction
(XRD; GBC MMA diffractometer) with Cu Ka radiation at a scan rate of 4 ® min“L. The valence
status was determined by XPS (PHOIBOS 100 Analyser from SPECS, Berlin, Germany; Al
Ka X-rays). Synchrotron powder diffraction data were collected at the Australian Synchrotron
beamline with a wavelength (1) of 0.0.7749 A (National Institute of Standards and Technology
(NIST) LaB6 660b).

Electrochemical Measurements. Before the glassy carbon electrode (GCE) was used, it was
consecutively polished with 1.0 and 0.05 pm alumina powder, rinsed with deionized water, and
sonicated first in ethanol and then in water. Electrochemical experiments of OER were carried
out in 0.1 M KOH by using a computer-controlled potentiostat (Princeton 2273 and 616,
Princeton Applied Research) in a conventional three-electrode cell at room temperature.
Typically, working electrodes were prepared by mixing the catalyst with deionized water +
isopropanol + 5% Nafion® (v/v/v = 4/1/0.05). A Pt wire was used as the counter electrode and
Ag/AgCl (KCI, 3M) was used as the reference electrode, with all potentials referred to
reversible hydrogen electrode (RHE). Thus, the potential with respect to RHE can be calculated
as follows: E(RHE) = E(Ag/AgCI) + 0.059 x pH + 0.210. Before testing, flowing N2 was
bubbled through the electrolyte in the cell to achieve an N -saturated solution.

Li-O2 Battery Measurements. The electrochemical performances of lithium oxygen batteries
were investigated using 2032 coin-type cells with air holes on the cathode side. For the



preparation of the H-PtCo/Pt@zNPC cathode electrode, 70 wt. % catalyst, 20 wt. % Super P,
and 10 wt. % poly(1,1,2,2-tetrafluoroethylene) (PTFE) were mixed in an isopropanol solution.
The resulting homogeneous slurry was coated on carbon paper. After that, the electrodes were
dried at 120 °C in a vacuum oven for 12 h. All the Li-O batteries were assembled in an Ar-
filled glove box (Mbraun, Unilab, Germany) with water and oxygen contents below 0.1 ppm.
They contained lithium metal foil as the counter electrode and a glass fiber separator (Whatman
GF/D). One electrolyte consisted of 1 M LiCFsSOs in tetraethylene glycol dimethyl ether
(TEGDME). All the assembled coin cells were stored in an Oz purged chamber which was
connected to a LAND CT 2001 instrument. The galvanostatic discharge-charge tests were then
conducted on the battery testing system. All the capacities were calculated based on the mass
of active materials in the cathode.
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Figure S3. The SEM images of RuO.@C with different amounts of starch.
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Figure S4. The XRD pattern of RuO.@C.

Figure S5. The HRTEM image of RuO,@C.
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Figure S6. High-resolution XPS spectra of (a) O 1s, (b) C 1s, (c) Ru 3d, and (d) Ru 3p.
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Figure S7. The charge/discharge curves at various cycles.
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Figure S8. The SEM image (left) and XRD pattern (right) of pure RuO..
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Figure S9. The comparative OER polarization curves of commercial RuO2 and 3D

nanoporous RuO,@C.
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Figure S10. The ORR polarization curves of 3D nanoporous RuO,@C with different rotating
speed.

limitation of 500, 1000, and 1500 mAh g*.



