Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Electrochemical Nickel-Catalyzed Migita Cross-Coupling of Thiosugars with Aryl, alkenyl and alkynyl Bromides

Table of Contents

General information	S2
General Procedures	S2
Graphical guide for electrochemical glycosyl thiols coupling	S 3
Proposed mechanism	S4
Cyclic voltammetry	S5
Unsuccessful substrates	S7
Experimental data	S7
References	S17
NMR spectra	S18

1. General information

Solvents and reagents are obtained from commercial suppliers and were used without further purification. Analytical TLC was performed using Merck silica gel F254 (230-400 mesh) plates and analyzed by UV light or by staining upon heating with vanilin solution (15 g of vanilin in 250 mL ethanol and 2.5 mL of concentrated sulfuric acid). For silica gel chromatography, the flash chromatography technique was used, with Merck silica gel 60 (230-400 mesh) and p.a. grade solvents unless otherwise noted. The ¹H NMR and ¹³C NMR spectra were recorded in either CDCl₃ or MeOD-d4 on Bruker Avance 300 spectrometers. The chemical shifts of ¹H and ¹³C are reported in ppm relative to the solvent residual peaks. IR spectra were measured on a Bruker Vector 22 spectrophotometer.

Merck silica gel 60 (0.015–0.040 mm) was used for column chromatography. Melting points were recorded on a Büchi B-450 apparatus and are uncorrected. High resolution mass spectra (HR-MS) were recorded on a MicroMass LCT Premier Spectrometer spectrometer. Optical rotations were obtained with a PolAAr 32 polarimeter. Thiosugars were synthesized as according the following protocols.^{1, 2}

ElectraSyn 2.0 Package used is from IKA.

Electrode materials and dimensions

The Mg electrodes were purchased from commercial Mg block (purchased from IKA) and Ni foam electrodes were furnished from Nickel Foam (purchased from IKA).

2. General Procedures

The preparation of Solution A: A screwed-capped tube with stir bar charged with Ni catalyst (6 mmol) and dtbbpy (6 mmol) were dissolved in 20 mL of DMF under Ar. The solution was stirred for 1 h at 60 $^{\circ}$ C before usage.

The preparation of Solution B: A screwed-capped tube with a stir bar charged with LiBr (8 mmol) was flame-dried under vacuum until the disappearance of water deposit on the walls. The tube was backfilled with an argon balloon and 20 mL of DMF. The solution was stirring for 1 h under room temperature before usage.

An ElectraSyn vial (5 mL) with a stir bar was charged with thiosugar (0.3 mmol, 1 eq), aryl halide (if solid) (0.3 mmol, 1eq). The ElectraSyn vial cap equipped with sacrificial anode (Mg) and cathode (Ni foam) were inserted into the mixture. The vial was then evacuated and backfilled with an argon balloon. And then, aryl halide (if liquid) (0.3 mmol, 1 eq), 1 mL of **Solution A** and 2 mL of **Solution B** was added. The reaction mixture was electrolyzed under a constant current of 8 mA for 3 h at rt. The mixture was dissolved in water and DCM. The layers were separated and the aqueous solution was extracted with further DCM (3×50 mL). The combined organic layers were dried with MgSO4 and the solvent was removed under reduced pressure. Purification was performed with flash chromatography on silica gel.

3. Graphical guide for electrochemical C-S thiolation

Step to step:

Left. Chose "New Experiments". Middle. Chose "Constant Current". Right. Select "8.0 mA".

Left. "Reference electrodes:" chose "No". Middle. Chose "Time". Right. Select "3 hours".

Left. Chose "0.30". Middle. "Polarity" Chose "No". Right. Chose "Start".

Left. Electrode, Mg and Ni form. Middle. The mixture before reaction. Right. The mixture after reaction.

Proposed mechanism:

Based on the previous literature report on the Nickel-catalyzed thiolation of aryl halides and heteroaryl halides through electrochemistry,³ we could assume that catalytic cycle may be initiated by cathodic reduction of Ni(II) to Ni(0) (Scheme 1). In another hand, glycosyl sulfhydryl group generates a glycosyl thiolate from a cathodic reduction. This later reacts with the complex (I) which arises from Ni(0) oxidative addition (OA) with the aryl bromide, to led to a complex (II). Reductive elimination (RE) delivers the S-arylated sugar. In a possible alternative of the catalytic cycle, the addition of a formed thiyl radical to the complex (I) to generate a Ni(III) complex may be envisioned.³

Figure S1. Proposed mechanism

Cyclic voltammetry

Cyclic voltammetry were performed with AUTOLAB potentiostat/galvanostat PGSTAT302N. A glassy carbon disc (diameter 3 mm) working electrode, a platinum wire counter electrode and a saturated (KCl 3M) calomel electrode (SCE) as reference electrode (Ag wire) were used at a scan rate of 200 mV/s. The experiments were conducted in a 10 mL vial without stirring in DMF (4.5 mL).

Figure S2: Cyclic voltammetry of 2a (0.45 mmol) in DMF at the [-2.5 to 2.5 V] range vs SCE

Figure S3: Cyclic voltammetry of 1a (0.45 mmol) in DMF at the [-2.5 to 2.5 V] range vs SCE

Figure S3: Cyclic voltammetry of LiBr (1.8 mmol) in DMF at the [-2.5 to 2.5 V] range vs SCE

Figure S4: Cyclic voltammetry of **NiBr.diglyme** (0.045 mmol) + **dttbpy** (0.045 mmol) in DMF at the [-2.5 to 2.5 V] range vs SCE

Figure S5: Cyclic voltammetry of **1a** (0.45 mmol) + **2a** (0.45 mmol) + NiBr.diglyme + Dttbpy + LiBr in DMF at the [-2.5 to 2.5 V] range vs SCE

Unsuccessful substrates:

Conclusion:

- The nitro group is not compatible with this procedure.
- Oxidative sensitive groups such as PMB or Bn are not tolerated in this protocol (see SI, Figure S7). Only disulfide dimer was formed during the reaction.

3. Experimental data

$(2R, 3R, 4S, 5R, 6S) - 2 - (acetoxymethyl) - 6 - ((4 - (trifluoromethyl)phenyl)thio)tetrahydro-2H-pyran - 3, 4, 5 - triyl triacetate 3a^4$

Rf = 0.2 (EtOAc /cyclohexane: 3/7); White solid, ¹H NMR (300 MHz, CDCl₃) δ 7.53-7.60 (m,

4H), 5.23 (t, J = 12.0 Hz, 1H), 5.01 (td, J = 9.0, 12.0 Hz, 2H), 4.77 (d, J = 9.0 Hz, 1H), 4.14-4.25 (m, 2H), 3.72-3.78 (m, 1H), 2.06 (s, 3H), 2.05 (s, 3H), 2.01 (s, 3H), 1.98 (s, 3H). HRMS (ESI): m/z calc. for C₂₁H₂₃F₃NaO₉S [M+Na]⁺ 531.0907; found 531.0897.

$(2R, 3R, 4S, 5R, 6S) - 2 - (acetoxymethyl) - 6 - ((4 - cyanophenyl)thio)tetrahydro - 2H - pyran - 3, 4, 5 - triyl triacetate 3b^4$

Rf = 0.3 (EtOAc /cyclohexane: 3/7); White solid, ¹H NMR (300 MHz, CDCl₃) δ 7.51-7.58 (m, 4H), 5.24 (t, *J* = 9.0 Hz, 1H), 5.01 (td, *J* = 12.0, 9.0 Hz, 2H), 4.81 (d, *J* = 9.0 Hz, 1H), 4.13-4.25 (m, 2H), 3.75-3.81 (m, 1H), 2.06 (s, 3H), 2.04 (s, 3H), 2.01 (s, 3H), 1.97 (s, 3H). HRMS (ESI): m/z calc. for C₂₁H₂₃NNaO₉S [M+Na]⁺ 488.0986; found 488.0993.

(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-((4-chlorophenyl)thio)tetrahydro-2H-pyran-3,4,5-triy l triacetate 3c 4

Rf = 0.2 (EtOAc /cyclohexane: 3/7); ¹H NMR (300 MHz, CDCl₃) δ 7.43 (d, *J* = 9.0 Hz, 2H), 7.27 (d, *J* = 9.0 Hz, 2H), 5.20 (t, *J* = 9.0 Hz, 1H), 4.96 (td, *J* = 24.0, 12.0 Hz, 2H), 4.64 (d, *J* = 9.0 Hz, 1H), 4.13-4.23 (m, 2H), 3.67-3.73 (m, 1H), 2.07 (s, 3H), 2.06 (s, 3H), 2.00 (s, 3H), 1.97 (s, 3H); HRMS (ESI): m/z calc. for C₂₀H₂₃ClNaO₉S [M+Na]⁺ 497.0644; found 497.0652.

$(2R, 3R, 4S, 5R, 6S) - 2 - (acetoxymethyl) - 6 - ((4-fluorophenyl)thio)tetrahydro-2H-pyran-3, 4, 5-triyl triacetate 3d^4$

Rf = 0.2 (EtOAc /cyclohexane: 3/7); White solid. ¹H NMR (300 MHz, CDCl₃) δ 7.46-7.51 (m, 2H), 6.97-7.03 (m, 2H), 5.19 (t, *J* = 9.0 Hz, 1H), 4.94 (td, *J* = 9.0, 30.0 Hz, 2H), 4.59 (d, *J* = 12.0 Hz, 1H), 4.13-4.23 (m, 2H), 3.65-3.71 (m, 1H), 2.08 (s, 3H), 2.05 (s, 3H), 1.99 (s, 3H), 1.97 (s, 3H). HRMS (ESI): m/z calc. for C₂₀H₂₃FNaO₉S [M+Na]⁺ 481.0939; found 481.0937.

(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-((4-formylphenyl)thio)tetrahydro-2H-pyran-3,4,5-triy l triacetate 3e

Rf = 0.3 (EtOAc /cyclohexane: 1/1); colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 9.97 (s, 1H),

7.80 (d, J = 9.0 Hz, 2H), 7.57 (d, J = 9.0 Hz, 2H), 5.26 (t, J = 9.0 Hz, 1H), 5.05 (td, J = 6.0, 9.0 Hz, 2H), 4.86 (d, J = 12.0 Hz, 1H), 4.15-4.27 (m, 2H), 3.78-3.83 (m, 1H), 2.08 (s, 3H), 2.06 (s, 3H), 2.02 (s, 3H), 1.98 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 191.2 (CH), 170.4 (C), 170.0 (C), 169.3 (C), 169.2 (C), 140.9 (C), 135.3 (C), 130.9 (2CH), 129.9 (2CH), 84.6 (CH), 76.0 (CH), 73.7 (CH), 69.7 (CH), 68.1 (CH), 62.1 (CH₂), 20.7 (CH₃), 20.6 (CH₃), 20.5 (2CH₃); IR (neat): 2360, 1755, 1700, 1593, 1564, 1368, 1248, 1173, 1089, 1037, 915, 837, 711 cm⁻¹; HRMS (ESI): m/z calc. for C₂₁H₂₄NaO₁₀S [M+Na]⁺ 491.0988; found 491.0991.

(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-((3-cyanophenyl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate 3f

Rf = 0.3 (EtOAc /cyclohexane: 3/7); White solid, m. p.: 133.2-133.6 °C; $[\alpha]_D^{18} = -29.0$ (c, 0.31, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.82 (s, 1H), 7.70 (d, J = 6.0 Hz, 1H), 7.61 (d, J = 9.0 Hz, 1H), 7.43 (t, J = 9.0 Hz, 1H), 5.24 (t, J = 9.0 Hz, 1H), 4.98 (td, J = 9.0 Hz, 21.0 Hz, 2H), 4.72 (d, J = 9.0 Hz, 1H), 4.16-4.27 (m, 2H), 3.74-3.80 (m, 1H), 2.12 (s, 3H), 2.09 (s, 3H), 2.02 (s, 3H), 1.99 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.6 (C), 170.0 (C), 169.3 (C), 169.1 (C), 137.1 (CH), 135.9 (CH), 133.7 (C), 131.8 (CH), 129.5 (CH), 118.0 (C), 113.4 (C), 84.8 (CH), 76.1 (CH), 73.7 (CH), 69.7 (CH), 68.0 (CH), 62.0 (CH₂), 20.7 (2CH₃), 20.5 (2CH₃); IR (neat): 2988, 2901, 2361, 1754, 1248, 1086, 915, 798 cm⁻¹; HRMS (ESI): m/z calc. for C₂₁H₂₃NNaO₉S [M+Na]⁺ 488.0986; found 488.0993.

(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-((3-chlorophenyl)thio)tetrahydro-2H-pyran-3,4,5-triy l triacetate 3g 4

Rf = 0.2 (EtOAc /cyclohexane: 3/7); White solid. ¹H NMR (300 MHz, CDCl₃) δ 7.53 (m, 1H), 7.23-7.38 (m, 3H), 5.25 (t, *J* = 9.0 Hz, 1H), 5.02 (td, *J* = 21.0, 12.0 Hz, 2H), 4.74 (d, *J* = 12.0 Hz, 1H), 4.17-4.28 (m, 2H), 3.74-3.81 (m, 1H), 2.11 (s, 3H), 2.10 (s, 3H), 2.04 (s, 3H), 2.01 (s, 3H). HRMS (ESI): m/z calc. for C₂₀H₂₃ClNaO₉S [M+Na]⁺ 497.0644; found 497.0651.

(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-((2-cyanophenyl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate 3h

Rf = 0.3 (EtOAc /cyclohexane: 3/7); White solid, m. p.: 69.1-70.8 °C; $[\alpha]_D^{18} = -27.9$ (c, 0.43,

CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.80 (d, *J* = 9.0 Hz, 1H), 7.68 (d, *J* = 9.0 Hz, 1H), 7.55 (t, *J* = 6.0 Hz, 1H), 7.45 (t, *J* = 9.0 Hz, 1H), 5.22 (t, *J* = 9.0 Hz, 1H), 4.96 (td, *J* = 9.0 Hz, 30.0 Hz, 2H), 4.75 (d, *J* = 9.0 Hz, 1H), 4.12-4.26 (m, 2H), 3.70-3.76 (m, 2H), 2.12 (s, 3H), 2.07 (s, 3H), 2.00 (s, 3H), 1.97 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.4 (C), 170.0 (C), 169.5 (C), 169.3 (C), 135.3 (CH), 134.8 (C), 133.7 (CH), 132.8 (CH), 129.2 (CH), 118.1 (C), 116.9 (C), 85.1 (CH), 76.1 (CH), 73.8 (CH), 69.4 (CH), 68.1 (CH), 62.0 (CH₂), 20.7 (2CH₃), 20.5 (2CH₃); IR (neat): 2360, 2228, 1755, 1469, 1435, 1367, 1248, 1213, 1090, 1062, 1036, 914, 824, 765 cm⁻¹; HRMS (ESI): m/z calc. for C₂₁H₂₃NNaO₉S [M+Na]⁺ 488.0986; found 488.0990.

(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-(phenylthio)tetrahydro-2H-pyran-3,4,5-triyl triacetate 3i⁵

Rf = 0.2 (EtOAc /cyclohexane: 3/7); White solid. ¹H NMR (300 MHz, CDCl₃) δ 7.47-7.50 (m, 2H), 7.28-7.31 (m, 3H), 5.21 (t, *J* = 9.0 Hz, 1H), 4.99 (td, *J* = 9.0 Hz, 18.0 Hz, 2H), 4.69 (d, *J* = 9.0 Hz, 1H), 4.13-4.24 (m, 2H), 4.69 (d, *J* = 9.0 Hz, 1H), 4.13-4.24 (m, 2H), 3.68-3.75 (m, 1H), 2.07 (s, 3H), 2.06 (s, 3H), 2.00 (s, 3H), 1.97 (s, 3H). HRMS (ESI): m/z calc. for C₂₀H₂₄NaO₉S [M+Na]⁺ 463.1039; found 463.1038.

(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-(naphthalen-2-ylthio)tetrahydro-2H-pyran-3,4,5-triyl triacetate 3j

Rf = 0.3 (EtOAc /cyclohexane: 3/7); White solid, m. p.: 112.4-113.1 °C; $[α]_D$ ¹⁸ = – 16.0 (c, 0.38, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.98 (s, 1H), 7.75-7.82 (m, 3H), 7.47-7.56 (m, 3H), 5.23 (t, *J* = 9.0 Hz, 1H), 5.02 (td, *J* = 6.0, 9.0 Hz, 2H), 4.78 (d, *J* = 9.0 Hz, 1H), 4.14-4.26 (m, 2H), 3.69-3.74 (m, 1H), 2.10 (s, 3H), 2.01 (s, 3H), 2.00 (s, 3H), 1.97 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.5 (C), 170.1 (C), 169.3 (C), 169.2 (C), 133.5 (C), 132.9 (C), 132.7 (CH), 130.2 (CH), 128.8 (C), 128.5 (CH), 127.7 (2CH), 126.7 (2CH), 85.7 (CH), 75.9 (CH), 74.0 (CH), 70.1 (CH), 68.2 (CH), 62.1 (CH₂), 20.8 (CH₃), 20.7 (CH₃), 20.5 (2CH₃); IR (neat): 1755, 1367, 1249, 1215, 1091, 1062, 1037, 915, 861, 818, 749 cm⁻¹; HRMS (ESI): m/z calc. for C₂₄H₂₆NaO₉S [M+Na]⁺ 513.1195; found 513.1193.

$(2R, 3R, 4S, 5R, 6S) - 2 - (acetoxymethyl) - 6 - (naphthalen - 1 - ylthio) tetrahydro - 2H - pyran - 3, 4, 5 - triyl triacetate 3k^4$

Rf = 0.2 (EtOAc /cyclohexane: 3/7); White solid. ¹H NMR (300 MHz, CDCl₃) δ 8.46 (d, J = 6.0

Hz, 1H), 7.81-7.88 (m, 3H), 7.40-7.58 (m, 3H), 5.19 (t, J = 9.0 Hz, 1H), 5.02-5.10 (m, 2H), 4.71 (d, J = 9.0 Hz, 1H), 4.06-4.21 (m, 2H), 3.57-3.63 (m, H), 2.11 (s, 3H), 2.00 (s, 3H), 1.99 (s, 3H), 1.98 (s, 3H). HRMS (ESI): m/z calc. for C₂₄H₂₆NaO₉S [M+Na]⁺ 513.1190; found 513.1195.

$(2R, 3R, 4S, 5R, 6S) - 2 - (acetoxymethyl) - 6 - ((4-methoxyphenyl)thio)tetrahydro-2H-pyran-3, 4, 5-triyl triacetate 3l^4$

Rf = 0.2 (EtOAc /cyclohexane: 7/3); ¹H NMR (300 MHz, CDCl₃) δ 7.42 (d, *J* = 9.0 Hz, 2H), 6.83 (d, *J* = 9.0 Hz, 2H), 5.18 (t, *J* = 9.0 Hz, 1H), 4.93 (td, *J* = 12.0, 30.0 Hz, 2H), 4.54 (d, *J* = 9.0 Hz, 1H), 4.14-4.24 (m, 2H), 3.80 (s, 3H), 3.63-3.69 (m, 1H), 2.08 (s, 3H), 2.06 (s, 3H), 1.99 (s, 3H), 1.96 (s, 3H); HRMS (ESI): m/z calc. for C₂₁H₂₆NaO₁₀S [M+Na]⁺ 493.1139; found 493.1148.

2-(acetoxymethyl)-6-((3-bromo-5-(((2S,3R,4S,5R,6R)-3,4,5-triacetoxy-6-(acetoxymethyl)tetra hydro-2H-pyran-2-yl)thio)phenyl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate 3m

Rf = 0.3 (EtOAc /cyclohexane: 3/7); White solid, m. p.: 151.1-151.3 °C; $[\alpha]_D^{-18} = -26.9$ (c, 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.61 (s, 2H), 7.44 (s, 1H), 5.23 (t, J = 9.0 Hz, 2H), 4.97 (td, J = 9.0, 27.0 Hz, 4H), 4.75 (d, J = 9.0 Hz, 2H), 4.13-4.26 (m, 4H), 3.75-3.80 (m, 2H), 2.10 (s, 6H), 2.07 (s, 6H), 2.00 (s, 6H), 1.97 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 170.6 (2C), 170.0 (2C), 169.3 (2C), 169.1 (2C), 135.2 (CH), 135.0 (2CH), 134.3 (2C), 122.5 (C), 85.1 (2CH), 76.0 (2CH), 73.8 (2CH), 69.8 (2CH), 68.0 (2CH), 62.0 (2CH₂), 20.8 (2CH₃), 20.6 (2CH₃), 20.5 (4CH₃); IR (neat): 2359, 1755, 1740, 1367, 1089, 980, 827, 758 cm⁻¹; HRMS (ESI): m/z calc. for C₃₄H₄₁BrNaO₁₈S₂ [M+Na]⁺ 903.0815; found 903.0821.

(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-(quinolin-2-ylthio)tetrahydro-2H-pyran-3,4,5-triyl triacetate 3n

Rf = 0.3 (EtOAc /cyclohexane: 3/7); White solid, m. p.: 155.9-156.4 °C; $[\alpha]_D$ ¹⁸ = + 2.6(c, 0.38, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.91-7.96 (m, 2H), 7.63-7.75 (m, 2H), 7.46 (t, *J* = 9.0 Hz, 1H), 7.19 (d, *J* = 9.0 Hz, 1H), 6.13 (d, *J* = 9.0 Hz, 1H), 5.43 (t, *J* = 9.0 Hz, 1H), 5.28 (t, *J* = 9.0 Hz, 1H), 5.17 (t, *J* = 9.0 Hz, 1H), 4.25 (dd, *J* = 3.0, 12.0 Hz, 1H), 4.04-4.14 (m, 1H), 3.98-4.01 (m,

1H); ¹³C NMR (75 MHz, CDCl₃) δ 170.6 (C), 170.2 (C), 169.5 (2C), 155.3 (C), 148.1 (C), 136.2 (CH),129.9 (CH), 128.3 (CH), 127.7 (CH), 126.5 (C), 125.9 (CH), 121.0 (CH), 81.1 (CH), 76.1 (CH), 74.3 (CH), 69.4 (CH), 68.6 (CH), 62.1 (CH₂), 20.6 (4CH₃). IR (neat): 2360, 1755, 1296, 1090, 1062, 825, 772 cm⁻¹; HRMS (ESI): m/z calc. for C₂₃H₂₅NNaO₉S [M+Na]⁺ 514.1148; found 514.1151.

(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-(pyridin-2-ylthio)tetrahydro-2H-pyran-3,4,5-triyl triacetate 30 6

Rf = 0.2 (EtOAc /cyclohexane: 1/1); White solid. ¹H NMR (300 MHz, CDCl₃) δ 8.38 (m, 1H), 7.45-7.51 (m, 1H), 7.14-7.17 (m, 1H), 6.99-7.03 (m, 1H), 5.77 (d, *J* = 12.0 Hz, 1H), 5.30 (t, *J* = 9.0 Hz, 1H), 5.12 (td, *J* = 12.0 Hz, 21.0 Hz, 2H), 4.20 (dd, *J* = 3.0, 12.0 Hz, 1H), 4.01-4.06 (m, 1H), 3.80-3.86 (m, 1H), 1.97 (s, 3H), 1.96 (s, 3H), 1.95 (s, 3H), 1.94 (s, 3H). HRMS (ESI): m/z calc. for C₁₉H₂₃NNaO₉S [M+Na]⁺ 464.0991; found 464.0996.

(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-(((E)-4-methoxystyryl)thio)tetrahydro-2H-pyran-3,4, 5-triyl triacetate 3p⁴

Rf = 0.3 (EtOAc /cyclohexane: 1/1); ¹H NMR (300 MHz, CDCl₃) δ 7.30 (d, *J* = 9.0 Hz, 2H), 6.87 (d, *J* = 9.0 Hz, 2H), 6.76 (d, *J* = 15.0 Hz, 1H), 6.59 (d, *J* = 15.0 Hz, 1H), 5.27 (t, *J* = 9.0 Hz, 1H), 5.08-5.16 (m, 2H), 4.62 (d, *J* = 9.0Hz, 1H), 4.16-4.31 (m, 2H), 3.83 (s, 3H), 3.76-3.80 (m, 1H), 2.09 (s, 3H), 2.09 (s, 3H), 2.04 (s, 3H), 2.02 (s, 3H); HRMS (ESI): m/z calc. for C₂₃H₂₈NaO₁₀S [M+Na]⁺ 519.1295; found 519.1307.

(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-(((E)-styryl)thio)tetrahydro-2H-pyran-3,4,5-triyl triacetate 3q

Rf = 0.3 (EtOAc /cyclohexane: 3/7); White solid, m. p.: 114.3-115.5 °C; $[\alpha]_D^{-18} = -42.3$ (c, 0.36, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.27-7.28 (m, 2H), 7.15-7.23 (m, 2H), 6.70 (s, 2H), 5.21 (t, J = 9.0 Hz, 1H), 5.02-5.11 (m, 2H), 4.61 (d, J = 9.0 Hz, 1H), 4.09-4.24 (m, 2H), 3.70-3.76 (m, 1H), 2.01 (s, 3H), 2.00 (s, 3H), 1.97 (s, 3H), 1.95 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.5 (C),

170.1 (C), 169.3 (C), 169.2 (C), 136.3 (C), 134.8 (CH), 128.7 (2CH), 128.0 (CH), 126.2 (2CH), 118.3 (CH), 83.6 (CH), 76.1 (CH), 73.8 (CH), 69.9 (CH), 68.2 (CH), 62.1 (CH₂), 20.6 (2CH₃), 20.5 (2CH₃). IR (neat): 2360, 1755, 1433, 1248, 1091, 1062, 915, 773 cm⁻¹; HRMS (ESI): m/z calc. for $C_{22}H_{26}NaO_9S$ [M+Na]⁺ 489.1195; found 489.1198.

(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-(((E)-hept-1-en-1-yl)thio)tetrahydro-2H-pyran-3,4,5-t riyl triacetate 3r

Mixture of *E* and *Z*. Rf = 0.3 (EtOAc /cyclohexane: 1/1); White solid. ¹H NMR (300 MHz, CDCl₃) δ 5.74-6.06 (m, 2H), 5.21 (t, *J* = 9.0 Hz, 1H), 5.01-5.12 (m, 2H), 4.54 (d, *J* = 12.0 Hz, 0.4H), 4.48 (d, *J* = 12.0 Hz, 0.6H), 4.10-4.24 (m, 2H), 3.70-3.75 (m, 1H), 2.10-2.14 (m, 2H), 2.07 (s, 3H), 2.04 (s, 3H), 2.02 (s, 3H), 1.99 (s, 3H), 1.27-1.44 (m, 6H), 0.85-0.91 (m, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.6 (C), 170.2 (C), 169.4 (C), 169.1 (C), 140.2 (CH), 134.7 (CH), 118.0 (CH), 116.2 (CH), 83.8 (CH), 83.5 (CH), 76.1 (CH), 76.0 (CH), 74.0 (CH), 73.9 (CH), 70.1 (CH), 69.8 (CH), 68.3 (CH), 62.1 (CH₂), 33.2 (CH₂), 31.4 (CH₂), 31.3 (CH₂), 29.2 (CH₂), 28.5 (CH₂), 28.4 (CH₂), 22.4 (CH₂), 20.7 (CH₃), 20.6 (3CH₃), 14.0 (CH₃). IR (neat): 2959, 2930, 2856, 1757, 1433, 1367, 1248, 1214, 1092, 1036, 915 cm⁻¹; HRMS (ESI): m/z calc. for C₂₁H₃₂NaO₉S [M+Na]⁺ 483.1665; found 483.1656.

(2S,3R,4S,5R,6R)-2-((1H-inden-2-yl)thio)-6-(acetoxymethyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate 3s

Rf = 0.3 (EtOAc /cyclohexane: 3/7); White solid, m. p.: 92.0-93.6 °C; $[\alpha]_D^{-18} = -46.9$ (c, 0.40, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.39 (d, J = 6.0 Hz, 1H), 7.24-7.33 (m, 2H), 7.15-7.20 (m, H), 6.92 (s, 1H), 5.28 (t, J = 9.0 Hz, 1H), 5.10 (td, J = 6.0, 9.0 Hz, 2H), 4.79 (d, J = 9.0 Hz, 1H), 4.18-4.29 (m, 2H), 3.78-3.84 (m, 1H), 3.49-3.66 (m, 2H), 2.09 (s, 3H), 2.08 (s, 3H), 2.05 (s, 3H), 2.02 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.5 (C), 170.1 (C), 169.3 (C), 169.2 (C), 144.1 (C), 143.4 (C), 136.8 (C), 133.7 (CH), 126.7 (CH), 124.9 (CH), 123.2 (CH), 120.4 (CH), 84.2 (CH), 76.0 (CH), 73.8 (CH), 70.0 (CH), 68.3 (CH), 62.2 (CH₂), 43.7 (CH₂), 20.7 (2CH₃), 20.5 (2CH₃); IR (neat): 2360, 1755, 1457, 1367, 1248, 1090, 925, 754 cm⁻¹; HRMS (ESI): m/z calc. for C₂₃H₂₆NaO₉S [M+Na]⁺ 501.1195; found 501.1189.

(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-(((4-methoxyphenyl)ethynyl)thio)tetrahydro-2H-pyra n-3,4,5-triyl triacetate 3t

Rf = 0.3 (EtOAc /cyclohexane: 3/7); White solid, m. p.: 78.7-79.8 °C; $[\alpha]_D^{-18} = -41.7$ (c, 0.24, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.33-7.46 (m, 2H), 6.83-6.89 (m, 2H), 5.21-5.34 (m, 2H), 5.12 (t, *J* = 9.0 Hz, 1H), 4.59 (d, *J* = 12.0 Hz, 1H), 4.13-4.29 (m, 2H), 3.81 (s, 3H), 3.75-3.81 (m, 1H), 2.10 (s, 3H), 2.05 (s, 3H), 2.02 (s, 3H), 2.01 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.6 (C), 170.2 (C), 169.3 (C), 169.0 (C), 160.3 (C), 134.1 (2CH), 114.7 (C), 114.0 (2CH), 97.1 (C), 84.6 (CH), 80.6 (C), 76.5 (CH), 74.0 (CH), 69.8 (CH), 68.0 (CH), 62.0 (CH₂), 55.3 (CH₃), 20.7 (CH₃),20.6 (CH₃), 20.5 (2CH₃). IR (neat): 2360, 1756, 1605, 1509, 1442, 1367, 1292, 1251, 1214, 1174, 1091, 1061, 1033, 913, 836, 775 cm⁻¹; HRMS (ESI): m/z calc. for C₂₃H₂₆NaO₁₀S [M+Na]⁺ 517.1144; found 517.1139.

(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-((thiophen-3-ylethynyl)thio)tetrahydro-2H-pyran-3,4, 5-triyl triacetate 3u 4

Rf = 0.2 (EtOAc /cyclohexane: 3/7); White solid. ¹H NMR (300 MHz, CDCl₃) δ 7.58-7.59 (m, 1H), 7.27-7.29 (m, 1H), 7.17-7.19 (m, 1H), 5.24-5.35 (m, 2H), 5.14 (t, *J* = 9.0 Hz, 1H), 4.62 (d, *J* = 6.0 Hz, 1H), 4.17-4.30 (m, 2H), 3.77 -3.82 (m, 1H), 2.11 (s, 3H), 2.07 (s, 3H), 2.04 (s, 3H), 2.03 (s, 3H). HRMS (ESI): m/z calc. for C₂₀H₂₂NaO₉S₂ [M+Na]⁺ 493.0597; found 493.0615.

(2R,3R,4S,5R,6S)-2-((benzoyloxy)methyl)-6-((4-(trifluoromethyl)phenyl)thio)tetrahydro-2Hpyran-3,4,5-triyl tribenzoate 4a ⁴

Rf = 0.2 (EtOAc /cyclohexane: 3/7); White solid. ¹H NMR (300 MHz, CDCl₃) δ 8.10 (d, *J* = 9.0 Hz, 2H), 7.95-8.01 (m, 4H), 7.84 (d, *J* = 9.0 Hz, 2H), 7.26-7.67 (m, 16H), 6.01 (t, *J* = 9.0 Hz, 1H), 5.62 (td, *J* = 12.0, 27.0 Hz, 2H), 5.17 (d, *J* = 9.0 Hz, 1H), 4.74-4.79 (m, 1H), 4.52-4.58 (m, 1H), 4.28-4.34 (m, 1H). HRMS (ESI): m/z calc. for C₄₁H₃₁F₃NaO₉S [M+Na]⁺ 779.1533; found 779.1543.

 $(2R, 3S, 4S, 5R, 6S) - 2 - (acetoxymethyl) - 6 - ((4 - cyanophenyl)thio)tetrahydro - 2H - pyran - 3, 4, 5 - triyl triacetate 4b^4$

Rf = 0.2 (EtOAc /cyclohexane: 3/7); White solid. ¹H NMR (300 MHz, CDCl₃) δ 7.55-7.57 (m, 4H), 5.43 (d, *J* = 3.0 Hz, 1H), 5.24 (t, *J* = 9.0 Hz, 1H), 5.07 (dd, *J* = 3.0, 9.0 Hz, 1H), 4.81 (d, *J* = 12.0 Hz, 1H), 4.08-4.21 (m, 2H), 3.98-4.02 (m, 1H), 2.12 (s, 3H), 2.06 (s, 3H), 2.04 (s, 3H), 1.96 (s, 3H). HRMS (ESI): m/z calc. for C₂₁H₂₃NNaO₉S [M+Na]⁺ 488.0986; found 488.0988.

(28,3R,4S,5S,6R)-2-((4-cyanophenyl)thio)-6-methyltetrahydro-2H-pyran-3,4,5-triyl triacetate 4c 4

Rf = 0.2 (EtOAc /cyclohexane: 3/7); White solid. ¹H NMR (300 MHz, CDCl₃) δ 7.52-7.61 (m, 4H), 5.29 (d, *J* = 3.0 Hz, 1H), 5.24 (t, *J* = 9.0 Hz, 1H), 5.08 (dd, *J* = 3.0, 9.0 Hz, 1H), 4.79 (d, *J* = 9.0 Hz, 1H), 3.90 (q, *J* = 6.0 Hz, 1H), 2.16 (s, 3H), 2.06 (s, 3H), 1.97 (s, 3H), 1.25 (d, *J* = 9.0 Hz, 3H). HRMS (ESI): m/z calc. for C₁₉H₂₁NNaO₇S [M+Na]⁺ 430.0931; found 430.0933.

(2R,3R,4S,5R,6S)-2-(acetoxymethyl)-6-(((2R,3R,4S,5R,6S)-4,5-diacetoxy-2-(acetoxymethyl)-6-(((4-(trifluoromethyl)phenyl)thio)tetrahydro-2H-pyran-3-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate 4d⁴

Rf = 0.2 (EtOAc /cyclohexane: 1/1); White solid. ¹H NMR (300 MHz, CDCl₃) δ 7.50-7.56 (m, 4H),5.00-5.22 (m, 3H), 4.86-4.93 (m, 2H), 4.72 (d, *J* = 9.0 Hz, 1H), 4.47-4.56 (m, 2H), 4.33 (dd, *J* = 3.0, 18.0 Hz, 1H), 3.99-4.11 (m, 2H), 3.62-3.75 (m, 3H), 2.07 (s, 3H), 2.05 (s, 3H), 2.04 (s, 3H), 2.00 (s, 3H), 1.99 (s, 3H), 1.98 (s, 3H), 1.95 (s, 3H). HRMS (ESI): m/z calc. for C₃₃H₃₉F₃NaO₁₇S [M+Na]⁺ 819.1752; found 819.1774.

-(((2R,3R,4S,5R,6S)-4,5-diacetoxy-2-(acetoxymethyl)-6-((4-cyanophenyl)thio)tetrahydro-2H-pyran-3-yl)oxy)tetrahydro-2H-pyran-3-yl)oxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate 4e

Rf = 0.3 (EtOAc /cyclohexane: 1/1); White solid, m. p.: 128.1-130.6 °C; $[\alpha]_D^{18} = -77.6$ (c, 0.34, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 7.46-7.54 (m, 4H), 5.18-5.34 (m, 5H), 4.99 (t, *J* = 9.0 Hz, 1H), 4.76-4.81 (m, 3H), 4.64-4.69 (m, 1H), 4.38-4.48 (m, 2H), 4.19-4.28 (m, 4H), 3.77-3.97 (m, 4H), 3.74-3.77 (m, 1H), 2.09 (s, 3H), 2.08 (s, 3H), 2.02 (s, 3H), 1.98 (s, 3H), 1.97 (s, 3H), 1.96 (s, 3H), 1.94 (s, 3H), 1.93 (s, 3H), 1.93 (s, 3H), 1.91 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.5 (2C), 170.4 (C), 170.2 (C), 170.1 (C), 169.8 (2C), 169.6 (C), 169.4 (C), 169.3 (C), 138.9 (C), 132.3 (C), 131.7 (2CH), 118.2 (C), 111.4 (C), 95.8 (CH), 95.6 (CH), 83.8 (CH), 76.3 (CH), 75.9 (CH), 73.6 (CH), 72.6 (CH), 71.6 (CH), 70.4 (2CH), 70.0 (CH), 69.3 (CH), 69.1 (CH), 68.5 (CH), 67.9 (CH), 62.9 (CH₂), 62.3 (CH₂), 61.4 (CH₂), 20.8 (3CH₃), 20.7 (2CH₃), 20.5 (5CH₃). IR (neat):2230, 1756, 1747, 1432, 1368, 1239, 1222, 1031, 900, 753 cm⁻¹; HRMS (ESI): m/z calc. for C₄₅H₅₅NNaO₂₅S [M+Na]⁺ 1064.2682; found 1064.2688.

4-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)thio)ben zonitrile 5a

Rf = 0.3 (EtOAc /MeOH: 9/1); colorless oil ¹H NMR (300 MHz, MeOD-d₄) δ 7.63-7.64 (m, 4H), 4.83 (d, J = 9.0 Hz, 1H),3.89-3.94 (m, 1H), 3.61-3.72 (m, 1H), 3.30-3.47 (m, 4H); ¹³C NMR (75 MHz, MeOD-d₄) δ 144.0 (C), 133.6 (C), 130.6 (2CH), 119.7 (C), 110.5 (C), 87.8 (CH), 82.2 (CH), 79.7 (CH), 73.8 (CH), 71.3 (CH), 62.8 (CH₂). IR (neat): 3300, 1754, 1635, 1284, 1102 cm⁻¹; HRMS (ESI): m/z calc. for C₁₃H₁₅NNaO₅S [M+Na]⁺ 320.0569; found 320.0573.

4-(((2S,3R,4R,5S,6R)-3,4-dihydroxy-6-(hydroxymethyl)-5-(((2S,3R,4S,5S,6R)-3,4,5-trihydrox y-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2-yl)thio)benzonitr ile 5b

Rf = 0.3 (EtOAc /MeOH: 5/1); White solid, m. p.: 228.5-231.8 °C; $[\alpha]_D^{-18} = -74.7$ (c, 0.73, MeOH); ¹H NMR (300 MHz, MeOD-d₄) δ 7.59-7.60 (m, 4H), 4.82 (d, *J* = 9.0 Hz, 1H), 4.40 (d, *J* =

6.0 Hz, 1H), 3.83-3.92 (m, 3H), 3.51-3.66 (m, 4H), 3.33-3.38 (m, 2H), 3.18-3.27 (m, 3H); ¹³C NMR (75 MHz, MeOD-d₄) δ 143.7 (C), 133.4 (2CH), 130.8 (2CH), 119.7 (C), 110.6 (C), 104.5 (CH), 87.5 (CH), 80.6 (CH), 80.1 (CH), 78.1 (CH), 78.0 (CH), 77.9 (CH), 74.9 (CH), 73.6 (CH), 71.4 (CH), 62.5 (CH₂), 61.9 (CH₂). IR (neat): 3186, 2970, 2406, 1406, 1228, 1025, 926, 740 cm⁻¹; HRMS (ESI): m/z calc. for C₁₉H₂₅NNaO₁₀S [M+Na]⁺ 482.1097; found 482.1088.

Methyl N-(tert-butoxycarbonyl)-S-(4-cyanophenyl)-L-cysteinate 5c

Rf = 0.3 (EtOAc /cyclohexane: 1/1); colorless oil; $[\alpha]_D^{18}$ = +32.0 (c, 1.00, CHCl₃). ¹H NMR (300 MHz, CDCl₃) δ 7.51-7.54 (m, 2H), 7.26-7.38 (m, 2H), 5.30-5.32 (m, 1H), 4.59-4.62 (m, 1H), 3.67 (s, 3H), 3.51 (dd, *J* = 3.0, 12.0 Hz, 1H), 3.39 (dd, *J* = 3.0, 12.0 Hz, 1H), 1.41 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 170.6 (C), 154.9 (C), 142.9 (C), 132.3 (2CH₂), 128.4 (2CH₂), 118.5 (C), 109.4 (C), 53.3 (CH), 52.7 (CH₃), 41.2 (C), 35.2 (CH₃), 28.2 (2CH₃). IR (neat): 2360, 2227, 1748, 1714, 1594, 1487, 1437, 1368, 1255, 1216, 1164, 1088, 1052, 1014, 823, 624 cm⁻¹; HRMS (ESI): m/z calc. for C₁₆H₂₀N₂NaO₄S [M+Na]⁺ 359.1041; found 359.1035.

4. References

- (1) N. Floyd, B. Vijayakrishnan, J. R. Koeppe, B. G. Davis, Angew. Chem., Int. Ed., 2009, 48, 7798-7802.
- (2) D.P. Gamblin, P. Garnier, S. van Kasteren, N. J. Oldham, A. J. Fairbanks, B. G. Davis, *Angew. Chem.*, *Int. Ed.*, **2004**, *43*, 828-833.
- (3) D. Liu, H. Ma, P. Fang, T. Mei, Angew. Chem. Int. Ed. 2019, 58, 5033-5037.
- (4) M. Zhu, G. Dagousset, M. Alami, E. Magnier, S. Messaoudi, Org. Lett., 2019, 21, 5132-5137.
- (5) H. G. Thomas, J. Mieusset. Tetrahedron, 2008, 64, 5124-5131.
- (6) A. I. Khodair , N. Al-Masoudi, J. Gesson, Nucleos. Nucleot. Nucl., 2003, 21, 2061-2076.

Spectra of compounds 3a-u, 4a-e, 5a-c

-9.97

¹³C NMR spectrum of **3e** (75 MHz, CDCl₃)

 ^{13}C NMR spectrum of **3f** (75 MHz, CDCl₃)

¹³C NMR spectrum of **3n** (75 MHz, CDCl₃)

¹³C NMR spectrum of **3q** (75 MHz, CDCl₃)

2

LC-MS of 2r

Service D´Analyses HPLC-Masse

<u>LC-MS</u>

HPLC Alliance 2695 MS-TOF - LCT Premier (Waters)

ZMX 290- 290 YUAN

LC-MS of 3r

¹³C NMR spectrum of **3r** (75 MHz, CDCl₃)

¹³C NMR spectrum of **3s** (75 MHz, CDCl₃)

KKKKK Reference Re

¹H NMR spectrum of **4a** (300 MHz, CDCl₃)

1

¹H NMR spectrum of **5c** (300 MHz, CDCl₃)

 ^{13}C NMR spectrum of **5c** (75 MHz, CDCl₃)