Electronic supplementary information

Halide perovskite as catalyst to simultaneously achieve efficient photocatalytic CO₂ reduction and methanol oxidation

Guang-Xing Dong,^{‡a} Wen Zhang,^{‡a} Yan-Fei Mu,^a Ke Su,^a Min Zhang^{*ab} and Tong-Bu Lu^a

^a MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China

E-mail: zm2016@email.tjut.edu.cn.

^b Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering Department, Tianjin University of Technology, Tianjin 300384, China.

‡ These authors contributed equally to this work.

Experimental Section

Materials: Cesium bromide (CsBr, \geq 99.9%) and lead bromide (PbBr₂, \geq 99.9%) were purchased from Xi'an Polymer Light Technology Corp. Cobalt bromide (CoBr₂, anhydrous, 97%), iron bromide (FeBr₃, anhydrous, 98%) and nichel bromide (NiBr₂, anhydrous, 99%) were purchased from Alfa Aesar. *N*,*N*-dimethylformamide (DMF, HPLC, \geq 99.9%), hydrobromic acid (HBr, 48 wt% solution in water), methanol (HPLC, \geq 99.9%), acetonitrile (Extra dry with molecular sieves, Water \leq 50 ppm, in resealable bottle, \geq 99.9%), ¹³CO₂ and ¹³CH₃OH were purchased from Sigma-Aldrich. All chemicals were purchased from commercial sources and used without further treatments. The pure CsPbBr₃ nanocrystals were prepared by conventional hot injection approach.^{S1}

Synthesis of CsPbBr₃/Cs₄PbBr₆ (PNC) nanocomposites: 1 M PbBr₂ and 1 M CsBr were respectively ultrasonically dissolved in hydrobromic acid solution to prepare solutions **A** and **B**. Solution **A** (120 μ L) was added into DMF (1 mL) and stirred vigorously in ice-bath to form PbBr₂ precursor. Then solution **B** (120 μ L) was added into PbBr₂ precursor solution drop by drop and stirred in ice-bath for 3 h. Finally, dried CsPbBr₃/Cs₄PbBr₆ nanocrystals were obtained by drying at 80 °C in vacuum for 6 h after centrifuging 12000 rpm for 3 minutes, and the powder was stored in vacuum drier for further use.

Synthesis of $Co_{X\%}@CsPbBr_3/Cs_4PbBr_6$ ($Co_{x\%}@PNC$) nanocomposites: 0.01 M CoBr₂ was ultrasonically dissolved in DMF to prepare solution **C**. Solution **A** (120 μ L) was added into a certain amount of DMF (**Table S1**) and stirred vigorously in ice-bath to form PbBr₂ precursor, then a certain amount of solution **C** (**Table S1**) was added into PbBr₂ precursor. After stirring 2 minutes, solution **B** (120 μ L) was added into PbBr₂ precursor solution drop by drop and stirred in ice-bath for 3 h. Finally, dried Co_{X%}@PNC nanocomposites were obtained by drying at 80 °C in vacuum for 6 h after centrifuging 12000 rpm for 3 minutes and washing with DMF, and the powders were stored in vacuum drier for further use. The accurate mass fraction of Co element in Co_{0.5%}@PNC, Co_{1%}@PNC and Co_{2%}@PNC were measured by ICP-MS as 0.015%, 0.047% and 0.053%, respectively.

Doping	DME	Solution A	Solution D	Solution
concentration				
(M)	(µL)	(μL)	(µL)	\mathbf{C} (μ L)
0.5%	940	120	120	60
1%	880	120	120	120
2%	760	120	120	240
3%	640	120	120	360

Table S1 The preparation formulas of PNC nanocomposites with different metal ion doping.

Characterizations methods. X-ray diffraction (XRD) patterns of PNC and Co_{X%}@PNC catalysts were collected on a Rigaku diffractometer (SmartLab, 9 kW) by Cu K α radiation (λ =0.15418 nm) with a scan range of 5°- 60° and a step size of 0.01° . UV-vis DRS spectra were measured with test sample preparation by grind catalyst (5 mg) and Barium sulfate (300 mg) thoroughly on Lambda 750 UV/VIS/NIR spectrophotometer (Perkin Elmer). The steady-state photoluminescence spectrum (PL) were collected using a F-7000 fluorescence spectrophotometer (Hitachi) under excitation at 400 nm. The time-resolved fluorescence measurements were detected with a FLS-1000 steady state and transient state fluorescence spectrometer (Edinburgh Instruments Ltd.). Excitation wavelength: 400 nm; detection wavelength: 520 nm. Transmission electron microscopy (TEM) and High-Resolution Transmission Electron Microscopy (HRTEM) images were recorded on Tecnai G2 Spirit Twin and Talos F200 X transmission electron microscope (FEI), respectively. The gaseous reaction products measurements using GC-2014 Gas Chromatograph with GC-TCD and GC-FID instruments (Shimadzu), and the liquid phase products analyzed by ECO IC (Metrohm). The ¹³C NMR spectra of the liquid product obtained from the reaction with ¹³CO₂ and ¹³CH₃OH were collected on AVANCE III HD 400 MHz Digital NMR spectrometer (Bruker).

Photocatalytic Experiments: The CO₂ reduction and CH₃OH oxidation tests were

carried out in a 12 mL sealed Pyrex bottle with 5 mL acetonitrile, 15 μ L distilled water and 15 μ L methanol, then 4 mg photocatalyst were added into the reaction system above. The reaction system was irradiated under 300 W Xe-lamp with the light intensity of 100 mW cm⁻² at room temperature for 15 h after degas with CO₂ to remove O₂.

Photoelectrochemical Experiments: All the photoelectrochemical characterizations were performed on the CHI760E electrochemical workstation in a 3-electrode configuration with FTO glass (0.5 m^2) attached with catalyst, Pt sheet and Ag/AgCl (in 3 M KCl) as the working, counter and reference electrodes, respectively. The acetonitrile with 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF₆) was filled in the cell as electrolyte. The light source and light density and test conditions were consistent with that in the photocatalytic CO₂ reduction test.

Fig. S1 TEM images of (a) PNC and (b) $Co_{1\%}$ @PNC nanocomposites.

Fig. S2 XRD patterns of the PNC nanocomposites with different Co doping concentrations.

Fig. S3 (a) HRTEM image with lattice spacing of CsPbBr₃ (orange) and Cs₄PbBr₆ (blue). (b) TEM image, and (c-f) elemental mappings for Co_{1%}@CsPbBr₃/Cs₄PbBr₆.

Fig. S4 High resolution XPS plots of Co 2p for CoBr₂, Co_{1%}@PNC and PNC samples.

Fig. S5 UV/Vis diffuse reflectance spectra of PNC with different feed ratios of $PbBr_2$ and CsBr.

Fig. S6 (a) Tauc plots of PNC and $Co_{1\%}$ @PNC. (b) LSV curves of PNC, $Co_{1\%}$ @PNC and free Co^{2+} in water under identical conditions.

Fig. S7 Schematic illustration of band structures for $CsPbBr_3$ and Cs_4PbBr_6 according to the reported results.^{S2}

Fig. S8 Comparison before (a) and after (b) the photocatalytic experiments (left: PNC; right: pure CsPbBr₃).

Fig. S9 (a) Photoluminescence spectra and (b) Time-resolved photoluminescence decays of PNC and Co@PNC with various doping concentrations.

sample	$\tau_1^{(ns)}$	$\tau_1^{(ns)}$	$\tau_1^{(ns)}$	7 (ng)
	(A ₁)	(A ₁)	(A ₁)	l_{Ave} (IIS)
PNC	1.03	6.50	30.14	22 50
	(3.46%)	(26.84%)	(69.70%)	22.78
Co _{0.5%} @PNC	1.05	6.57	27.93	
	(4.43%)	(33.55%)	(62.02%)	19.57
Co _{1%} @PNC	1.04	5.95	24.92	
	(3.86%)	(36.84%)	(55.20%)	16.08
Co _{2%} @PNC	1.03	5.80	22.39	
	(6.81%)	(38.52%)	(54.67%)	14.54

Table S2 Multiexponential fit parameters for the decays of photoluminescence lifetime (Fig. S9b). Excitation wavelength: 400 nm; detection wavelength: 520 nm.^{*a*}

^{*a*} A₁+A₂+A₃=1; The calculation formula of average lifetime $\tau_{Ave} = \sum \tau_i * A_i$.

Fig. S10 (a) EIS Nyquist plots of PNC and Co@PNC with various doping concentrations measured under dark. (b) *I-t* curves of PNC and Co@PNC with various doping concentrations plotted at a bias potential of -0.4 V (vs. Ag/AgCl) under light illumination (100 mW cm⁻²).

Fig. S11 XRD patterns of $Co_{1\%}$ @PNC before (black) and after (red) the photocatalytic reaction.

Entry	Dhata agta bust	Gas Products	Liquid Products	
	Fnotocataryst	n _{CO} [µmol]	n _{HCOO} ⁻ [µmol]	
1	Co _{1%} @PNC	7.28	3.44	
2 ^[a]	0	0	0	
3 ^[b]	Co _{1%} @PNC	0	0	
4 ^[c]	Co _{1%} @PNC	trace	0.13	
5[d]	Co _{1%} @PNC	0.58	0	
6 ^[e]	PNC	1.48		
7 ^[f]	Co _{1%} @PNC	3.02		
8	Cs ₄ PbBr ₆	0	0	
9	Co1%@Cs4PbBr6	0	0	

Table S3 Results of control experiments for the photocatalytic reaction.

Reaction conditions: 4 mg photocatalysts were added into the mixture CO₂-saturated solution of acetonitrile (5 mL), H₂O (15 μ L) and methanol (15 μ L) under 300 W Xelamp irradiation with the light intensity of 100 mW cm⁻². Irradiation time: 15 h. [a] Entry 2: without Co_{1%}@PNC photocatalyst. [b] Entry 3: without light. [c] Entry 4: 100% Ar. [d] Entry 5: without methanol. [e]and [f] Entry 6 and 7: methanol replaced with benzyl alcohol.

Fig. S12 Gas chromatogram and mass spectra (GC-MS) analysis for solar-driven reduction of ${}^{13}CO_2$ to ${}^{13}CO$ (m/z = 29) with Co_{1%}@PNC as photocatalyst.

Reduction:
$$CO_2 \xrightarrow{+e^-, +H^+} O_{COH} \xrightarrow{+e^-} CO + OH^-$$

Oxidation: $CH_3OH \xrightarrow{-e^-, -H^+} CH_3O \xrightarrow{-e^-, -H^+} CH_2O$
 \downarrow^-OH
 \downarrow^-OH

Fig. S13 Proposed mechanistic steps in the reduction of CO_2 and oxidation of CH_3OH .

According to previous literatures, ^{\$3,\$4} reasonable reaction pathways for the reduction of CO2 to CO and the oxidation of CH3OH to HCOOH have been presented as follows (Fig. S13): For the reduction pathway, initially, photoexcited electron (e⁻) can be generated on Co@PNC under light irradiation, the cobalt ions on Co@PNC quickly fixes CO₂ and undergoes a proton-coupled electron transfer (PCET) reduction to generate Co-COOH intermediate. After accepting the second electron, the C-OH bond within Co-COOH is cleaved to give the main reduction product of CO. For the oxidation pathway, firstly, photoexcited hole (h⁺) can be generated on Co@PNC under light irradiation. Thus, an electron can be abstracted from the oxygen of hydroxyl group and generate methoxy radical after deprotonation. Because of the strong oxidizability of photoexcited hole on Co@PNC composite, a second subtraction of electron and proton can take place and formaldehyde can be formed. Then a hydroxide formed in the reduction pathway can react with formaldehyde to produce the hemiacetal product, which would continue to be oxidized by the photogenerated hole of Co@PNC composite and form HCOO⁻. After protonation, the HCOOH can be formed as the main product of methanol oxidation. More detailed mechanistic investigations will be elaborated in future work by in-situ spectroscopic measurements in combination with theoretical simulations.

Reference

- S1 J. Li, L. Xu, T. Wang, J. Song, J. Chen, J. Xue, Y. Dong, B. Cai, Q. Shan, B. Han and H. Zeng, *Adv. Mater.*, 2017, 29, 1603885.
- S2 G. Kaur, K. J. Babu, N. Ghorai, T. Goswami, S. Maiti and H. N. Ghosh, J. Phys. Chem. Lett., 2019, 10, 5302–5311.
- S3 A. Call, M. Cibian, K. Yamamoto, T. Nakazono, K. Yamauchi and K. Sakai, ACS Catal., 2019, 9, 4867–4874.
- S4 W. Wu, K. Ding, J. Liu, T Drake, P. Stair and E. Weitz, *J. Phys. Chem. C*, 2017, 121, 26794–26805.