Supplementary Information

Short-step synthesis and chiroptical properties of polyaza[5]-

[9]helicenes with blue to green-colour emission

Takashi Otani,^{*a} Takuma Sasayama,^b Chisaki Iwashimizu,^b

Kyalo Stephen Kanyiva,^c Hidetoshi Kawai^d and Takanori Shibata^{*b}

Co	ntents		
1.	General Information	••••	S2
2.	Synthesis	• • • • •	S2
3.	NMR Spectra	••••	S9
4.	Optical Resolution	••••	S23
5.	X-ray Analysis	• • • • •	S29
6.	Photophysical Properties	••••	S31
7.	DFT Calculations	••••	S32

1. General Information

1,4-Phenylenediamine was purchased from Tokyo Chemical Industry Co., Ltd. The other reagents were purchased from Wako Pure Chemical Industries, Ltd., Kanto Chemical CO., Inc., and Sigma-Aldrich Co. LLC. Preparative thin-layer chromatography (PTLC) was performed with silica gel-precoated glass plates (Merck 60 GF254) prepared in our laboratory. Silica-gel column chromatography was carried out using Silica Gel 60 N (Kanto Chemical Co., spherical, neutral, 0.040–0.050 mm). All reagents were weighed and handled in air and backfilled under argon at room temperature. All reactions were performed under an argon atmosphere.

Proton nuclear magnetic resonance (¹H NMR) spectra were recorded with JEOL ECX-500 (500 MHz) spectrometer. Chemical shift values for protons are reported in parts per million (δ) relative to internal standard TMS (0.00 ppm). ¹³C NMR spectra were obtained by JEOL ECX-500 (125.8 MHz) spectrometers and referenced to the internal solvent signals (central peak is 77.16 ppm in CDCl₃ and 39.52 ppm in (CD₃)₂SO). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, dd = doublet of doublet, m = multiplet), coupling constant (Hz), and integration.

High-resolution mass spectra (HRMS) were performed on a JMS-SX102A, a JMS-HX110. All melting points were determined on a Yanaco melting point apparatus and are uncorrected.

Ultraviolet spectra were measured on a Shimadzu UV-2400 spectrometer. Fluorescence spectra were measured on a JASCO FP-8300 instrument. Absolute PL quantum yield was measured by Hamamatsu Photonics C9920-02 spectrometer, and quantum yields were determined with an integrating sphere (diameter 10 cm). X-ray structures were obtained by a Rigaku R-AXIS RAPID diffractometer. CD spectra were measured on a JASCO J-820 (420 W Xe) spectropolarimeter. CPL spectra were obtained using a JASCO CPL-200 at room temperature. Optical rotations were measured with a JASCO DIP-1000 polarimeter.

2. Synthesis

General Procedure (I): Preparation of Precursor of Helicene. Helicene precursors were synthesized as follows. A mixture of *p*-phenylenediamine and 2-chloropyridine was heated under reflux conditions. After being cooled to room temperature, the mixture was filtered and rinsed with diethyl ether. To the cake was added aqueous ammonia and the mixture was extracted with CH₂Cl₂. The organic layer was dried over Na₂SO₄ and the solvent was removed under reduced pressure. The resulting residue was purified by a silica gel column chromatography or preparative TLC to give desire product.

General Procedure (II): Preparation of Precursor of Symmetric Helicene. Helicene precursors were synthesized as follows. A mixture of amine compound, nitrogen-containing heteroaryl chlorides and 1-butanol was heated under reflux conditions. After being cooled to room temperature, the mixture was

filtered and rinsed with diethyl ether. To the cake was added aqueous ammonia and the mixture was extracted with CH₂Cl₂. The organic layer was dried over Na₂SO₄ and the solvent was removed under reduced pressure. The resulting residue was purified by a silica gel column chromatography or preparative TLC to give desire product.

General Procedure (III): Synthesis of Azahelicene. Helicenes were synthesized as follows. To a stirred mixture of helicene precursor (0.1 mmol), 4-iodoanisole (70.2 mg, 0.3 mmol), and HFIP (1.5 mL) was added *m*CPBA (73.8 mg, 0.3 mmol) in six portions every 0.5 h over 2.5 hours under room temperature. The mixture was stirred for another 0.5 h and then aqueous NaHCO₃ (20 mL) was added. The mixture was extracted with CHCl₃ (20 mL × 3) and the organic layer was condensed under reduced pressure. The residue was purified by preparative TLC (eluent: toluene/ethyl acetate = 1/2, additive: triethylamine 4%) to give desire product.

*N*¹,*N*⁴-Di(pyridin-2-yl)benzene-1,4-diamine (6). The title compound (94 mg, 36%) was synthesized from *p*-phenylenediamine (4) (108 mg, 1.0 mmol) and 2-chloropyridine (5) (341 mg, 3.0 mmol) according to the general procedure (I) (reflux time: 2 h). The resulting residue was purified by recrystallization with CH₃CN; purple solid; Mp: 203–204 °C; ¹H NMR (500 MHz, CDCl₃, δ): 8.19 (dd, J = 5.2, 1.8 Hz, 2H), 7.48 (ddd, J=8.5, 7.2, 1.8 Hz, 2H), 7.31(s, 4H), 6.80 (d, J = 8.5 Hz, 2H), 6.72 (dd, J=7.2, 5.2 Hz, 2H), 6.53 (brs, 2H); ¹³C NMR (125.8 MHz, CDCl₃, δ): 156.6, 148.5, 137.8, 135.9, 122.4, 114.8, 107.9; HRMS-ESI (*m/z*): [M+H]⁺ calcd for C₁₆H₁₅N₄: 263.1291, found: 263.1290.

*N*¹,*N*⁴-Di(quinolin-2-yl)benzene-1,4-diamine (8). The title compound (187 mg, 52%) was synthesized from *p*-phenylenediamine (4) (108 g, 1.0 mmol) and 2-chloroquinoline (7) (489 mg, 3.0 mmol) according to the general procedure (**II**) (reflux time: 26 h). The resulting residue was purified by recrystallization with CH₃CN; transparent yellowish green solid; Mp 248–250 °C; ¹H NMR (500 MHz, CDCl₃, δ): 7.92 (d, *J* = 9.1 Hz, 2H), 7.77 (d, *J* = 8.6 Hz, 2H), 7.64 (d, *J* = 7.9 Hz, 2H), 7.56–7.61 (m, 6H), 7.29 (dd, *J* = 7.9, 6.8 Hz, 2H), 6.96 (d, *J* = 9.1 Hz, 2H), 7.92 (d, *J* = 9.1 Hz, 2H), 6.74 (brs, 1H); ¹³C NMR (125.8 MHz, CDCl₃, δ): 154.7, 147.8, 137.9, 135.8, 129.9, 127.5, 126.7, 124.2, 123.1, 122.2, 111.5; HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₂₄H₁₉N₄: 363.1604, found: 363.1603.

*N*¹,*N*⁴-Di(1,10-phenanthrolin-2-yl)benzene-1,4-diamine (11). The title compound (163 mg, 70%) was synthesized from *p*-phenylenediamine (4) (54 mg, 0.5 mmol) and 2-chloro-1,10-phenanthroline (9) (322 mg, 1.5 mmol) according to the general procedure (II) (reflux time: 48 h); dark yellow solid; Mp: 300 °C over; ¹H NMR (500 MHz, (CD₃)₂SO, δ): 8.69 (s, 2H), 8.29 (d, *J* = 4.1 Hz, 2H), 7.56 (d, *J* = 8.0 Hz, 2H), 7.43 (s, 4H), 7.32 (d, *J* = 8.8 Hz, 2H), 6.96 (d, *J* = 8.6 Hz, 2H), 6.87 (d, *J* = 4.1 Hz, 2H), 6.83 (d, *J* = 8.6 Hz, 2H), 6.39 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (125.8 MHz, (CD₃)₂SO, δ): 155.3, 150.0, 145.6, 145.3, 137.6, 136.5, 136.1, 129.5, 127.1, 123.2, 123.1, 122.3, 119.6, 114.4; HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₃₀H₂₁N₆: 465.1822, found: 465.1821.

*N*¹,*N*⁴-Bis(benzo[*h*]quinolin-2-yl)benzene-1,4-diamine (12). The title compound (53 mg, 46%) was synthesized from *p*-phenylenediamine (4) (27 mg, 0.25 mmol) and 2-chlorobenzo[*h*]quinolone (10) (319 mg, 1.5 mmol) according to the general procedure (II) (reflux time: 48 h); indigo solid; Mp: 300 °C over; ¹H NMR (500 MHz, (CD₃)₂SO, δ): 8.63 (s, 2H), 8.22 (d, *J* = 7.6 Hz, 2H), 7.28 (d, *J* = 8.7 Hz, 2H), 7.20 (s, 4H), 7.11 (d, *J* = 7.5 Hz, 2H), 6.79–8.88 (m, 8H), 6.30 (d, *J* = 8.7 Hz, 2H); ¹³C NMR (125.8 MHz, (CD₃)₂SO, δ): 154.8, 145.2, 137.7, 135.8, 134.4, 130.6, 128.4, 128.1, 126.6, 126.1, 124.4, 123.2, 120.4, 119.8, 113.5; HRMS-ESI (*m/z*): [M+H]⁺ calcd for C₃₂H₂₃N₄: 463.1917, found: 463.1916.

 N^{1} -(1,10-Phenanthrolin-2-yl)benzene-1,4-diamine (13). The title compound (110 mg, 77%) was synthesized from *p*-phenylenediamine (4) (162 mg, 1.5 mmol) and 2-chloro-1,10-phenanthroline (9) (107 mg, 0.5 mmol) according to the general procedure (II) (reflux time: 48 h). The residue was purified by preparative TLC (eluent: toluene/ethyl acetate = 1/2, Rf = 0.10); yellowish green solid; Mp 110–114 °C; ¹H NMR (500 MHz, CDCl₃, δ): 9.10 (dd, *J* = 4.3, 1.8 Hz, 1H), 8.17 (dd, *J* = 8.1, 1.8 Hz, 1H), 7.93 (d, *J* = 8.9 Hz, 1H), 7.62 (d, *J* = 8.7 Hz, 1H), 7.53 (dd, *J* = 8.1, 4.3 Hz, 1H), 7.50 (d, *J* = 8.7 Hz, 1H), 7.12 (d, *J* = 8.6 Hz, 2H), 7.08 (d, *J* = 8.9 Hz, 1H), 6.71 (d, *J* = 8.6 Hz, 2H), 3.48 (brs, 2H); ¹³C NMR (125.8 MHz, CDCl₃, δ): 157.3, 149.6, 144.4, 138.2, 136.0, 130.4, 129.4, 126.5, 126.2, 123.4, 122.9, 122.6, 121.8, 116.8, 116.1,

*N*¹-(Benzo[*h*]quinolin-2-yl)benzene-1,4-diamine (14). The title compound (175 mg, 61%) was synthesized from *p*-phenylenediamine (4) (216 mg, 2.0 mmol) and 2-chlorobenzo[*h*]quinolone (10) (213 mg, 1.0 mmol) according to the general procedure (II) (reflux time: 72 h). The residue was purified by preparative TLC (eluent: toluene/ethyl acetate = 1/1, Rf = 0.47); light black solid; Mp: 52–55 °C; ¹H NMR (500 MHz, CDCl₃, δ): 9.15 (d, J = 8.4 Hz, 1H), 7.88 (d, J = 8.8 Hz, 1H), 7.86 (dd, J = 8.4, 7.7 Hz, 1H), 7.60–7.69 (m, 2H), 7.57 (d, J = 8.6 Hz, 1H), 7.54 (d, J = 8.6 Hz, 1H), 7.35 (d, J = 8.5 Hz, 2H), 6.88 (d, J = 8.8 Hz, 1H), 6.74 (d, J = 8.5 Hz, 2H), 6.72 (brs, 1H), 3.58 (brs, 2H); ¹³C NMR (125.8 MHz, CDCl₃, δ): 155.6, 145.9, 143.1, 137.8, 134.3, 131.5, 130.6, 127.8, 127.7, 126.1, 125.4, 124.5, 124.2, 123.3, 120.6, 116.0, 109.7; HRMS-ESI (*m*/z): [M+H]⁺ calcd for C₁₉H₁₆N₃: 286.1339, found: 286.1337.

*N*¹-(1,10-Phenanthrolin-2-yl)-*N*⁴-(quinolin-2-yl)benzene-1,4-diamine (15). The title compound (81 mg, 89%) was synthesized from *N*¹-(1,10-phenanthrolin-2-yl)benzene-1,4-diamine (13) (62 mg, 0.22 mmol) and 2-chloroquinoline (7) (107 mg, 0.66 mmol) according to the general procedure (**II**) (reflux time: 48 h). The residue was purified by preparative TLC (eluent: toluene/ethyl acetate = 1/2, Rf = 0.12); Yellow solid; Mp: 158–164 °C; ¹H NMR (500 MHz, CDCl₃, δ): 9.10 (d, *J* = 3.8 Hz, 1H), 8.19 (d, *J* = 8.2 Hz, 1H), 8.00 (d, *J* = 8.9 Hz, 1H), 7.91 (d, *J* = 8.9 Hz, 1H), 7.78 (d, *J* = 8.5 Hz, 1H), 7.51–7.68 (m, 7H), 7.26–7.40 (m, 5H), 6.96 (d, *J* = 8.9 Hz, 1H), 6.94 (brs, 1H); ¹³C NMR (125.8 MHz, CDCl₃, δ): 156.3, 154.5, 149.6, 147.7, 146.0, 145.1, 138.2, 137.9, 136.8, 136.1, 135.2, 129.9, 129.4, 127.5, 126.7, 126.5, 124.2, 123.6, 123.4, 123.2, 122.7, 122.2, 122.0, 111.9, 110.2; HRMS-ESI (*m*/z): [M+H]⁺calcd for C₂₇H₂₀N₅: 414.1713, found:414.1713.

 N^{1} -(Benzo[*h*]quinolin-2-yl)- N^{4} -(quinolin-2-yl)benzene-1,4-diamine (16). The title compound (192 mg, 77%) was synthesized from N^{1} -(benzo[*h*]quinolin-2-yl)benzene-1,4-diamine (14) (172 mg, 0.6 mmol) and 2-chloroquinoline (7) (293 mg, 1.8 mmol) according to the general procedure (II) (reflux time: 48 h). After

extraction, the resulting residue was not purified; yellow solid; Mp: 213–216 °C; ¹H NMR (500 MHz, CDCl₃, δ): 9.14 (d, *J* = 8.1 Hz, 1H), 7.97 (d, *J* = 8.6 Hz, 1H), 7.92 (d, *J* = 8.9 Hz, 1H), 7.86 (d, *J* = 7.7 Hz, 1H), 7.79 (d, *J* = 8.4 Hz, 1H), 7.56–7.71 (m, 11H), 7.29 (dd, *J* = 7.3, 8.0 Hz, 1H), 7.01 (d, *J* = 8.7 Hz, 1H), 6.98 (d, *J* = 8.9 Hz, 1H), 6.85 (brs, 1H); ¹³C NMR (125.8 MHz, CDCl₃, δ): 154.9, 154.2, 147.7, 145.8, 138.0, 137.8, 136.3, 135.2, 134.3, 130.7, 130.0, 127.8, 127.6, 126.6, 126.3, 125.3, 124.6, 124.1, 123.8, 123.1, 122.4, 121.5, 121.0, 111.5, 110.7; HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₂₈H₂₁N₄: 413.1761, found:413.1760.

Pyrido[2''',1''':2'',3'']**imidazo**[4'',5'':3',4']**benzo**[1',2':4,5]**imidazo**[1,2-*a*]**pyridine** ([5]**H**). The title compound (15.2 mg, 59%) was synthesized from N^1 , N^4 -di(pyridin-2-yl)benzene-1,4-diamine (6) (26.2 mg, 0.1 mmol) according to the general procedure (**III**). The residue was purified by preparative TLC (eluent: toluene/ethyl acetate = 1/2, additive: triethylamine 4%, Rf = 0.13); deep green solid; Mp: 263–267 °C; ¹H NMR (500 MHz, CDCl₃, δ): 8.92 (d, *J* = 7.0 Hz, 2H), 8.03 (s, 2H), 7.77(d, *J* = 9.1 Hz, 2H), 7.38 (dd, *J* = 9.1, 6.9 Hz, 2H), 6.70 (dd, *J*=7.0, 6.9 Hz, 2H); ¹³C NMR (125.8 MHz, CDCl₃, δ): 146.9, 141.5, 127.2, 126.7, 119.0, 118.9, 116.0, 111.4; HRMS-ESI (*m*/*z*):[M+H]⁺ calcd for C₁₆H₁₁N₄: 259.0978, found: 259.0977.

Quinolino[2^{**},1^{**}:2^{**},3^{**}]**imidazo**[4^{**},5^{**}:3^{*},4^{*}]**benzo**[1^{*},2^{*}:4,5]**imidazo**[1,2-*a*]**quinoline** ([7]**H**). The title racemic compound (13.6 mg, 38%) was synthesized from N^1 , N^4 -di(quinolin-2-yl)benzene- 1,4-diamine (8) (36.2 mg, 0.1 mmol) according to the general procedure (III). The residue was purified by preparative TLC (eluent: toluene/ethyl acetate = 1/2, additive: triethylamine 4%, Rf = 0.22); light brown solid; Mp: 288–291 °C; ¹H NMR (500 MHz, CDCl₃, δ): 8.16 (s, 2H), 7.76–7.71(m, 6H), 7.44 (d, *J* = 8.3 Hz, 2H), 7.20 (dd, *J* = 7.7, 7.6 Hz, 2H), 6.73 (dd, *J* = 8.3, 7.7 Hz, 2H); ¹³C NMR (125.8 MHz, CDCl₃, δ): 147.5, 142.9, 136.2, 130.3, 128.1, 126.7, 124.6, 123.4, 119.3, 118.4, 117.8, 117.4; HRMS-ESI (*m/z*): [M+H]⁺ calcd for C₂₄H₁₅N₄: 359.1291, found: 359.1289.

Quinolino[2^{'''},1^{'''}:2^{''},3^{''}]imidazo[4^{''},5^{''}:3',4']benzo[1',2':4,5]imidazo[1,2-*a*]phenanthoroline ([8]Ha). To a stirred mixture of N^1 -(1,10-phenanthrolin-2-yl)- N^4 -(quinolin-2-yl)benzene-1,4-diamine (15) (41.4 mg, 0.1 mmol), 4-iodoanisole (70.2 mg, 0.3 mmol), and HFIP (1.5 mL) was added *m*CPBA (73.8 mg, 0.3 mmol)

in six portions every 0.5 h over 2.5 hours under room temperature. The mixture was stirred for another 0.5 h and then aqueous NaHCO₃ (20 mL) was added. The mixture was extracted with CHCl₃ (20 mL × 3) and the organic layer was condensed under reduced pressure. The residue was purified by preparative TLC (eluent: toluene/ethyl acetate = 1/2, additive: triethylamine 4%, Rf = 0.16) to give the desire product (4.7 mg, 12%) as a yellow solid; Mp: 235–240 °C; ¹H NMR (500 MHz, CDCl₃, δ): 8.27 (d, *J* = 8.7 Hz, 2H), 8.07 (d, *J* = 9.1 Hz, 1H), 7.94 (dd, *J* = 9.1, 2.5 Hz, 2H), 7.72–7.77 (m, 2H), 7.68 (dd, *J* = 9.2, 5.6 Hz, 2H), 7.48 (d, *J* = 9.2 Hz, 1H), 7.37 (d, *J* = 7.8 Hz, 1H), 6.83–6.89 (m, 3H), 6.32 (ddd, *J* = 8.5, 7.3, 1.6 Hz, 1H); ¹³C NMR (125.8 MHz, CDCl₃, δ): 147.4, 146.9, 146.3, 143.3, 141.6, 141.5, 135.1, 134.5, 134.4, 129.1, 128.6, 127.1, 126.6, 125.8, 125.2, 124.4, 123.6, 123.3, 122.8, 121.9, 121.7, 120.9, 119.2, 118.9, 118.1, 117.7; HRMS-ESI (*m/z*): [M+H]⁺ calcd for C₂₇H₁₆N₄: 410.1400, found: 410.1400.

Quinolino[2^{**},1^{**}:2^{**},3^{**}]imidazo[4^{**},5^{**}:3^{*},4^{*}]benzo[1^{*},2^{*}:4,5]imidazo[1,2-*a*]benzo[h]quinoline ([8]Hb). N^{1} -(Benzo[h]quinolin-2-vl)- N^{4} -(quinolin-2-vl)benzene-1,4-diamine (16) (40.8)mg. 0.1 mmol). 4-iodoanisole (70.2 mg, 0.3 mmol), and HFIP (1.5 mL) was added mCPBA (73.8 mg, 0.3 mmol) in six portions every 0.5 h over 2.5 hours under room temperature. The mixture was stirred for another 0.5 h and then aqueous NaHCO₃ (20 mL) was added. The mixture was extracted with CHCl₃ (20 mL \times 3) and the organic layer was condensed under reduced pressure. The residue was purified by preparative TLC (eluent: toluene/ethyl acetate = 1/2, additive: triethylamine 4%, Rf = 0.25) to give desire product (31.5 mg, 77%) as a yellow solid; Mp: 280–283 °C; ¹H NMR (500 MHz, CDCl₃, δ): 8.29 (s, 2H), 7.96 (d, J = 9.1 Hz, 1H), 7.90 (d, J = 9.1 Hz, 1H), 7.81 (d, J = 8.4 Hz, 1H), 7.68 (d, J = 8.4 Hz, 1H), 7.59 (d, J = 9.4 Hz, 1H), 7.42 (d, J = 9.4 Hz, 1H), 7.49.4 Hz, 1H), 7.39 (d, J = 8.1 Hz, 1H), 7.31 (d, J = 7.4 Hz, 1H), 7.25 (d, J = 7.5 Hz, 1H), 6.96 (dd, J = 8.1, 7.2 Hz, 1H), 6.88 (dd, J = 8.2, 7.2 Hz, 1H), 6.50 (dd, J = 8.3, 7.5 Hz, 1H), 6.42 (d, J = 8.2 Hz, 1H), 6.26 (dd, J = 8.2 Hz J = 8.3, 7.4 Hz, 1H); ¹³C NMR (125.8 MHz, CDCl₃, δ): 147.8, 146.9, 142.8, 141.6, 134.7, 133.7, 132.1, 129.8, 129.6, 127.1, 126.8, 126.7, 126.0, 126.0, 125.0, 124.3, 123.9, 123.6, 122.8, 121.6, 120.7, 120.5, 118.7, 118.2, 118.0, 117.7, 117.4, 117.2; HRMS-ESI (m/z): $[M+H]^+$ calcd for C₂₈H₁₇N₄: 409.1448, found: 409.1447.

Phenanthoro[2"',1"':2",3"]imidazo[4",5":3',4']benzo[1',2':4,5]imidazo[1,2-a]phenanthoroline

([9]Ha). The title compound (6 mg, 12%) was synthesized from N^1, N^4 -di(1,10-phenanthrolin-2-yl)benzene-1,4-diamine (11) (46.4 mg, 0.1 mmol) according to the general procedure (III). The residue was purified by preparative TLC (eluent: toluene/ethyl acetate = 1/2, additive: triethylamine 4%, Rf = 0.13);

yellow solid; Mp: 283–289 °C; ¹H NMR (500 MHz, CDCl₃, δ): 8.38 (s, 2H), 8.00 (d, *J* = 9.1 Hz, 2H), 7.66 (d, *J* = 8.1 Hz, 2H), 7.62 (d, *J* = 9.1 Hz, 2H), 7.50 (d, *J* = 1.7 Hz, 2H), 7.44 (d, *J* = 8.5 Hz, 2H), 7.30 (d, *J* = 8.5 Hz, 2H), 6.82 (dd, *J* = 8.1, 1.7 Hz, 2H); ¹³C NMR (125.8 MHz, (CD₃)₂SO and CDCl₃, δ): 146.9, 146.2, 141.3, 140.1, 134.4, 132.9, 128.3, 125.7, 125.4, 123.5, 123.2, 122.0, 118.6, 117.8; HRMS-ESI (*m/z*): [M+H]⁺ calcd for C₃₀H₁₇N₆: 461.1509, found: 461.1511.

Benzoquinolino[2",1":2",3"]imidazo[4",5":3',4']benzo[1',2':4,5]imidazo[1,2-a]benzoquinoline

([9]Hb). The title compound (15.3 mg, 33%) was synthesized from N^1, N^4 -bis(benzo[*h*]quinolin-2-yl)benzene-1,4-diamine (12) (46.2 mg, 0.1 mmol) according to the general procedure (III). The residue was purified by preparative TLC (eluent: toluene/ethyl acetate = 1/2, additive: triethylamine 4%, Rf = 0.16); yellow solid; Mp: 293–295 °C; ¹H NMR (500 MHz, CDCl₃, δ): 8.42 (s, 2H), 7.82 (d, *J* = 9.1 Hz, 2H), 7.55 (d, *J* = 9.1 Hz, 2H), 7.43 (d, *J* = 7.8 Hz, 2H), 7.41 (d, *J* = 8.7 Hz, 2H), 7.28 (d, *J* = 8.7 Hz, 2H), 6.98 (dd, *J* = 7.8, 6.9 Hz, 2H), 6.86 (d, *J* = 8.5 Hz, 2H), 6.36 (dd, *J* = 8.5, 6.9 Hz, 2H); ¹³C NMR (125.8 MHz, CDCl₃, δ): 132.6, 131.1, 129.6, 127.2, 126.5, 125.3, 124.7, 123.9, 123.1, 121.2, 119.9, 118.2, 117.0; HRMS-ESI (*m/z*): [M+H]⁺ calcd for C₃₂H₁₉N₄: 459.1604, found: 459.1603.

3. NMR Spectra

Fig. S1 ¹H NMR spectrum of 6 in CDCl₃.

Fig. S2 ¹³C NMR spectrum of 6 in CDCl₃.

Fig. S3 ¹H NMR spectrum of 8 in CDCl₃.

Fig. S4. ¹³C NMR spectrum of 8 in CDCl₃.

Fig. S6 ¹³C NMR spectrum of 15 in CDCl₃.

Fig. S7 1 H NMR spectrum of **16** in (CD₃)₂SO.

Fig. S8 13 C NMR spectrum of 16 in (CD₃)₂SO.

Fig. S9 ¹H NMR spectrum of 13 in CDCl₃.

Fig. S10 ¹³C NMR spectrum of 13 in CDCl₃.

Fig. S11 ¹H NMR spectrum of 14 in CDCl₃.

Fig. S12 ¹³C NMR spectrum of 14 in CDCl₃.

Fig. S13 ¹H NMR spectrum of 15 in CDCl₃.

Fig. S14 ¹³C NMR spectrum of 15 in CDCl₃.

Fig. S15 ¹H NMR spectrum of 16 in CDCl₃.

Fig. S16 ¹³C NMR spectrum of 16 in CDCl₃.

Fig. S18 ¹³C NMR spectrum of [5]H in CDCl₃.

Fig. S19 ¹H NMR spectrum of [7]H in CDCl₃.

Fig. S20 ¹³C NMR spectrum of [7]H in CDCl₃.

Fig. S21 ¹H NMR spectrum of [8]Ha in CDCl₃.

Fig. S22 ¹³C NMR spectrum of [8]Ha in CDCl₃.

Fig. S23 ¹H NMR spectrum of [8]Hb inCDCl₃.

Fig. S24 ¹³C NMR spectrum of [8]Hb in CDCl₃.

Fig. S25 ¹H NMR spectrum of [9]Ha in CDCl₃.

Fig. S26 ¹³C NMR spectrum of [9]Ha in (CD₃)₂SO and CDCl₃.

Fig. S27 ¹H NMR spectrum of [9]Hb in CDCl₃.

Fig. S28 ¹³C NMR spectrum of [9]Hb in CDCl₃.

4. Optical Resolution

Optical resolution of [7]H. Optical resolution of racemic compound was conducted by MPLC analysis using chiral flash column (CHIRALFLASH[®] IC: 30 mm \times 100 mm, eluent: MeOH / EtOH = 25/75, Flow Rate 20 mL/min). Analytical conditions for HPLC were as follows: Daicel CHIRALPAK IC-3: 4.6×250 mm, 254 nm UV detector, rt, eluent: MeOH / EtOH = 25/75, flow rate: 1.0 mL/min.

Fig. S29 Copy of HPLC chromatogram of racemic [7]H.

(*M*)-[7]H: $[\alpha]^{25}_{D} = -3611$ (*c* 0.270, CHCl₃, 91% ee).

Fig. S30 Copy of HPLC chromatogram of (*M*)-[7]H.

(*P*)-[7]H: $[\alpha]^{25}_{D}$ = +3232 (*c* 0.405, CHCl₃, 97% ee)

Fig. S31 Copy of HPLC chromatogram of (P)-[7]H.

Optical resolution of [8]Ha. Optical resolution of racemic compound was conducted by MPLC analysis using chiral flash column (CHIRALFLASH[®] IC: 30 mm \times 100 mm, eluent: MeOH / EtOH = 25/75, Flow Rate 20 mL/min). Analytical conditions for HPLC were as follows: Daicel CHIRALPAK IC-3: 4.6×250 mm, 254 nm UV detector, rt, eluent: MeOH / EtOH = 25/75, flow rate: 1.0 mL/min.

Fig. S32 Copy of HPLC chromatogram of racemic [8]Ha.

(+)-[8]Ha: $[\alpha]^{25}_{D}$ = +6774 (*c* 0.060, CHCl₃, 100% ee).

(-)-[8]Ha: $[\alpha]^{25}_{D} = -6103$ (*c* 0.080, CHCl₃, 100% ee)

Fig. S34 Copy of HPLC chromatogram of (–)-[8]Ha.

Optical resolution of [8]Hb. Optical resolution of racemic compound was conducted by MPLC analysis using chiral flash column (CHIRALFLASH[®] IC: 30 mm \times 100 mm, eluent: MeOH / EtOH = 25/75, Flow Rate 20 mL/min). Analytical conditions for HPLC were as follows: Daicel CHIRALPAK IC-3: 4.6×250 mm, 254 nm UV detector, rt, eluent: MeOH / EtOH = 25/75, flow rate: 1.0 mL/min.

Fig. S35 Copy of HPLC chromatogram of racemic [8]Hb.

(+)-[8]Hb: $[\alpha]^{25}_{D}$ = +4471 (*c* 0.370, CHCl₃, 93% ee).

Fig. S36 Copy of HPLC chromatogram of (+)-[8]Hb.

(-)-[8]**Hb:** $[\alpha]^{25}_{D}$ = -4124 (*c* 0.380, CHCl₃, 100% ee).

Fig. S37 Copy of HPLC chromatogram of (–)-[8]Hb.

Optical resolution of [9]Ha. Optical resolution of racemic compound was conducted by MPLC analysis using chiral flash column (CHIRALFLASH[®] IC: 30 mm \times 100 mm, eluent: MeOH / EtOH = 50/50, Flow Rate 20 mL/min) Analytical conditions for HPLC were as follows: Daicel CHIRALPAK IC-3: 4.6×250 mm, 254 nm UV detector, rt, eluent: MeOH / EtOH = 50/50, flow rate: 1.0 mL/min.

Fig. S38 Copy of HPLC chromatogram of racemic [9]Ha.

(+)-[9]Ha: $[\alpha]^{25}_{D}$ = +7055 (*c* 0.145, CHCl₃, 100% ee).

Fig. S39 Copy of HPLC chromatogram of racemic [9]Ha.

(-)-[9]Ha: $[\alpha]^{25}_{D} = -7207$ (*c* 0.140, CHCl₃, 100% ee).

Fig. S40 Copy of HPLC chromatogram of racemic [9]Ha.

Optical resolution of [9]Hb. Optical resolution of racemic compound was conducted by MPLC analysis using chiral flash column (CHIRALFLASH[®] IC: 30 mm \times 100 mm, eluent: MeOH / EtOH = 50/50, Flow Rate 20 mL/min) Analytical conditions for HPLC were as follows: Daicel CHIRALPAK IC-3: 4.6×250 mm, 254 nm UV detector, rt, eluent: MeOH / EtOH = 50/50, flow rate: 1.0 mL/min.

	4888: 4000 -300	аза абласти и странование и абласти и странование и стр 16.0 20.0 т	500 State (min) St	33.0	
No.	Rt	Configuration	Area	Area(%)	Height
1	19.74	(P)	19659626.06	49.1159	128814
2	30.35	(M)	20367382.27	50.8841	290345
Total			40027008.33	100	419159

Fig. S41 Copy of HPLC chromatogram of racemic [9]Hb.

(+)-[9]**Hb:** $[\alpha]^{25}_{D}$ = +3768 (*c* 0.470, CHCl₃, 100% ee).

Fig. S42 Copy of HPLC chromatogram of (+)-[9]Hb.

(-)-[9]Hb: $[\alpha]^{25}_{D} = -3946$ (*c* 0.285, CHCl₃, 100% ee).

Fig. S43 Copy of HPLC chromatogram of (–)-[9]Hb.

Fig. S44 ORTEP diagram of [5]H: (a) Top and (b) side view. Ellipsoids are set at 50% probability.

Table S1	Crystal data and structural refine	ement parameters for [5]H	l, (M)-[7]H and [9]Ha

-					
Component		[5]H	(<i>M</i>)-[7]H	[9]Ha	
Data deposition Empirical formula		1979567	1979582	1569975	
		$C_{16}H_{10}N_4$	$C_{24}H_{14}N_4\cdot(CHCl_3)$	$C_{30}H_{16}N_{6}$	
Formula weight		258.28	477.78	460.5	
Temperature		296 K	296 K	296 K	
Wavelength		1.54187 Å	1.54187 Å	1.54187 Å	
Crystal system		monoclinic	orthorhombic	tetragonal	
Space group		<i>P</i> 1 <i>n</i> 1	$P2_{1}2_{1}2_{1}$	I-42d	
Unit cell dimensions	а	11.6524(7) Å	11.2100 Å	22.3365(5) Å	
	b	4.0000(2) Å	17.1917 Å	22.3365(5) Å	
	С	14.3571(8) Å	19.6180 Å	9.9167(2) Å	
	α	90.0000 °	90.0000 °	90.0000 °	
	β	92.273(7) °	90.0000 °	90.0000 °	
	r	90.0000 °	90.0000 °	90.0000 °	
Volume		668.66 Å ³	3780.7647 Å ³	4947.62(18) Å ³	
Ζ		4	8	16	
Density (calculated)	2.565 g/m ³	1.679 g/m ³	2.473 g/m ³	
Absorption coefficient	Mu	1.279 mm ⁻¹	4.585 mm ⁻¹	1.212 mm ⁻¹	
F(000)		536	1952	3808	
		$0.200 \times 0.100 \times 0.100$	$0.500 \times 0.500 \times 0.100$	$0.700 \times 0.200 \times 0.200$	
Crystal size		mm ³	mm ³	mm ³	
Theta range for data collection Index ranges		3.08 to 68.05 °	3.418 to 68.226 °	3.96 to 68.22 °	
		-14<=h<=13	-13<=h<=13	-26<=h<=26	
		-4<=k<=4	-19<=k<=20	-26<=k<=26	
		-17<=l<=17	-23<=l<=23	-11<=l<=11	
Reflections collecte	d	6812	43243	28498	
		Full-matrix least-squares	Full-matrix least-squares	Full-matrix least-squares	
Refinement method		refinement ² on F ²	refinement ² on F ²	refinement ² on F ²	
Data/restraints/parameters Goodness-of-fit on F ²		2366/2/181	6904/0/532	2257/0/163	
		1.892	1.021	1.051	
Final <i>R</i> indices $[I > 2\sigma(I)]$		$R_1 = 0.1609, wR_2 =$	$R_1 = 0.1660, wR_2 =$	$R_1 = 0.0623, wR_2 =$	
		0.4010	0.0628	0.1996	
R indices (all data)		$R_1 = 0.1641, wR_2 =$	$R_1 = 0.0667, wR_2 =$	$R_1 = 0.0626, wR_2 =$	
		0.4065	0.1696	0.2002	

Fig. S45 Absorption and fluorescence spectra of (a) [5]H, (b) [7]H, (c) [8]Ha, (d) [8]Hb, (e) [9]Ha and (f) [9]Hb.

7. DFT Calculations

LUMO+1 (-1.25 eV)

LUMO (-1.50 eV)

HOMO (-5.18 eV)

HOMO-1 (-5.85 eV) Fig. S46 The LUMO+1, LUMO, HOMO and HOMO-1 of [5]H calculated by DFT method [B3LYP/6-31G(d,p)].

LUMO (-1.61 eV)

HOMO (-5.23 eV)

HOMO-1 (-5.73 eV) Fig. S47 The LUMO+1, LUMO, HOMO and HOMO-1 of [7]H calculated by DFT method [B3LYP/6-31G(d,p)].

LUMO+1 (-1.47 eV)

LUMO (-1.88 eV)

HOMO (-5.08 eV)

HOMO-1 (-5.52 eV)

Fig. S48 The LUMO+1, LUMO, HOMO and HOMO–1 of **[8]Ha** calculated by DFT method [B3LYP/6-31G(d,p)].

LUMO+1 (-1.52 eV)

LUMO (-1.71 eV)

HOMO (-5.16 eV)

HOMO-1 (-5.60 eV)

Fig. S49 The LUMO+1, LUMO, HOMO and HOMO–1 of **[8]Hb** calculated by DFT method [B3LYP/6-31G(d,p)].

LUMO+1 (-1.76 eV)

LUMO (-1.77 eV)

HOMO (-4.95 eV)

HOMO-1 (-5.43 eV)

Fig. S50 The LUMO+1, LUMO, HOMO and HOMO–1 of **[9]Ha** calculated by DFT method [B3LYP/6-31G(d,p)].

LUMO+1 (-1.60 eV)

LUMO (-1.68 eV)

HOMO (-5.09 eV)

HOMO-1 (-5.52 eV)

Fig. S51 The LUMO+1, LUMO, HOMO and HOMO–1 of **[9]Hb** calculated by DFT method [B3LYP/6-31G(d,p)].