Electronic Supplementary Information (ESI)

The solvent-induced isomerization of silver thiolate clusters with symmetry transformation

Xu-Ran Chen,^a Ling Yang,^a Yu-Ling Tan,^a Hong Yu,^{*a} Chun-Yan Ni,^a Zheng Niu^{*a} and Jian-Ping Lang^{*a}

^aCollege of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou

215123, Jiangsu, People's Republic of China.

E-mail: jplang@suda.edu.cn; nkniuzheng@163.com; yuhong@suda.edu.cn

Fax: 86-512-65880328;

^bState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China

Table of Contents

General procedures. S3
Synthesis of Tab (4-(trimethyl- ammonio)benzenethiolate) ligand
Synthesis of Ag12a S3
Synthesis of Ag12b S3
Synthesis of Ag12c S3
X-ray diffraction crystallography S4
Table S1 Crystal data collection and structure refinement parameters for Ag12a-c. S5
Fig. S1 (a) Ball-stick representation of the crystal structure of Ag12a ; (b) View of the Ag12 kernel coordinated by Tab ligands in Ag12a ; (c) View of the Ag12 kernel coordinated by trifluoroacetate anions in Ag12a . Free solvents and H atoms are omitted for clarity. Color codes: Ag, green; S, yellow; O, red; F, sky blue; C, gray; N, blue. S6
Fig. S2 (a) Ball-stick representation of the crystal structure of Ag12b ; (b) View of the Ag12 kernel coordinated by Tab ligands in Ag12b ; (c) View of the Ag12 kernel coordinated by trifluoroacetate anions in Ag12b . Free solvents and H atoms are omitted for clarity. Color codes: Ag, green; S, yellow; O, red; F, sky blue; C, gray; N, blue
Fig. S3 (a) Ball-stick representation of the crystal structure of Ag12c ; (b) View of the Ag12 kernel coordinated by Tab ligands in Ag12c ; (c) View of the Ag12 kernel coordinated by trifluoroacetate anions in Ag12c . Free solvents and H atoms are omitted for clarity. Color codes: Ag, green; S, yellow; O, red; F, sky blue; C, gray; N, blue. S6
Fig. S4 PXRD patterns of Ag12a : simulated from single crystal data (red line) and single-phase polycrystalline sample (blue line). S7
Fig. S5 PXRD patterns of Ag12b : (a) simulated from single crystal data (red line); (b) sample obtained from recrystallization of Ag12a in DMF (green line); (c) sample derived from recrystallization of Ag12c in DMF (yellow line). S7
Fig. S6 PXRD patterns of Ag12c : (a) simulated from single crystal data (red line); (b) single-phase polycrystalline sample (blue line); (c) sample obtained from recrystallization of Ag12a in CH ₃ CN (yellow line); (d) sample derived from recrystallization of Ag12b in CH ₃ CN (green line).
Fig. S7 ESI mass spectrum of the solution of Ag12c (obtained from dissolving Ag12a in CH ₃ CN) in the positive mode. S8
Fig. S8 ESI mass spectrum of the solution of Ag12b (obtained from dissolving Ag12a in DMF) in the positive mode. S9
Fig. S9 ESI mass spectrum of the solution of Ag12a (dissolved in H ₂ O, CH ₃ CN and DMF) in the positive mode. S9
Fig. S10 ESI mass spectrum of the solution of Ag12b (obtained from dissolving Ag 12a in DMF) in the positive mode. S10
Fig. S11 ESI mass spectrum of the solution of Ag12c (obtained from dissolving Ag12b in CH ₃ CN) in the positive mode. S10
Fig. S12 The TGA plots of Ag12a, Ag12b and Ag12c S11

General procedures. The TabHPF₆ was prepared according to the literature methods.^{S1} All other chemicals and reagents were commercially available and used without further purification. The C, H and N elemental analyses were carried out on an EA1110 elemental analyzer, whereas the S elemental analysis was carried out on a Vario micro organic elemental analyzer. The IR spectra were recorded on a Varian 1000 FT-IR spectrometer as KBr disks in the range of 4000-400 cm⁻¹. The UV-Vis spectra and optical diffuse reflectance spectra were obtained with a Shimadzu UV-2600 spectrometer. The thermogravimetric analyses (TGA) were performed using a Mettler TGA/SDTA851 thermal analyzer under an N₂ atmosphere with a heating rate of 10 °C min⁻¹. The powder X-ray diffraction (PXRD) patterns were collected by using a PANalytical Aeris diffractometer with Cu-Ka radiation ($\lambda = 1.5406$ Å) over the 2θ range of 5-50° at room temperature.

Synthesis of Tab (4–(trimethyl–ammonio)benzenethiolate) ligand. The solution of TabHPF₆ (156.5 mg, 0.5 mol) in 5 mL acetonitrile was mixed with 1 mL Et₃N under stirring for 5 minutes at ambient temperature. Then the white precipitate of Tab was isolated by filtration, washed by 2 mL acetonitrile and 5 mL Et₂O, and dried in air: Yield: 93%.

Synthesis of Ag12a. A mixture of Tab (16.7 mg, 0.1 mmol) and AgTFA (44 mg, 0.2 mmol) was dissolved in a mixed CH₃CN-DMF solvent (5 mL, v : v = 4 : 1) under ultrasonic. Then about 0.25 mL deionized water was added dropwise. The resulting clear solution was diffused by Et₂O in the dark at room temperature. After about five days the colorless needle-like crystals were collected and washed by Et₂O. Yield: 15.3% (based on AgTFA). Ana. Calcd (%) for C₉₀H₁₀₀Ag₁₂F₃₆N₁₂O₂₆S₆: C 27.46, H 2.56, N 4.27, S 4.89; found: C 27.75, H 2.63, N 4.31, S 5.24. IR (KBr disk, cm⁻¹): 3438 (s), 1678 (vs), 1487 (s), 1431 (m), 1208 (vs), 956 (w), 836 (s), 802 (m), 722 (s), 549 (m).

Synthesis of Ag12b. A mixture of Tab (16.7 mg, 0.1 mmol) and AgTFA (44 mg, 0.2 mmol) was dissolved in a mixed CH₃OH-DMF solvent (5 mL, v : v = 4 : 1) under ultrasonic. The resulting clear solution was diffused by Et₂O in the dark at room temperature. After about five days the colorless block crystals were collected and washed by Et₂O. Yield: 20.7% (based on AgTFA). Ana. Calcd (%) for C₈₄H₉₂Ag₁₂F₃₆N₈O₂₆S₆: C 26.55, H 2.44, N 2.95, S 5.06; found: C 26.10, H 2.39, N 3.12, S 5.53. IR (KBr disk, cm⁻¹): 3438 (s), 1678 (vs), 1488 (s), 1431 (m), 1208 (vs), 1125 (s), 956 (w), 836 (s), 802 (m), 722 (s), 549 (m), 517 (w).

Synthesis of Ag12c. A mixture of Tab (16.7 mg, 0.1 mmol) and AgOOCCF₃ (44 mg, 0.2 mmol) was dissolved in 5 mL CH₃CN under ultrasonic. The resulting clear solution was diffused by anhydrous Et_2O in the dark at room temperature. After about five days the colorless block crystals were collected and washed by Et_2O . Product yield was 35.4% (based on AgTFA). Ana. Calcd (%)

for $C_{82}H_{84}Ag_{12}F_{36}N_8O_{24}S_6$: C 26.36, H 2.27, N 3.00, S 5.15; found: C 26.72, H 2.34, N 3.15, S 5.60. IR (KBr disk, cm⁻¹): 3438 (s), 1678 (vs), 1488 (s), 1431 (m), 1208 (vs), 1125 (s), 956 (w), 836 (s), 802 (m), 722 (s), 549 (m), 517 (w).

X-ray diffraction crystallography. Single-crystal X-ray diffraction of **Ag12a**, **Ag12b** and **Ag12c** was performed on a Bruker D8-Quest diffractometer by using graphite monochromated Mo K α radiation ($\lambda = 0.7107$ Å). Single crystal with appropriate dimensions was mounted on the glass fiber loop and quickly and coated with paraton oil to prevent decomposition at 190 K. The cell parameters refinement and data reduction were performed using the program Bruker Apex III with absorption correction (multi-scan) applied.^{S2}

The structures of Ag12a, Ag12b and Ag12c were solved by using the charge-flipping algorithm, as implemented in the program $SUPERFLIP^{S3}$ and refined by full-matrix least-squares techniques on F_0^2 using the *SHELXL* program^{S4} through the *OLEX*² interface.^{S5} Appropriate restraints or constraints were applied to the geometry and the atomic displacement parameters of the atoms in the cluster. A small amount of spatially delocalized electron density in the lattice was found but acceptable refinement results could not be obtained for this electron density. The solvent contribution was then modeled using *SQUEEZE* in the Platon program suite.^{S6} Hydrogen atoms were placed in calculated positions and refined isotropically by using a riding model. All structures were examined using the Addsym subroutine of *PLATON*^{S7} to ensure that no additional symmetry could be applied to the models. Pertinent crystallographic data collection and refinement parameters are collated in Table S1. Crystallographic data have been deposited in the Cambridge Crystallographic Data Center (CCDC) with the reference numbers of 1974330 for Ag12a, 1974470 for Ag12b and 1974488 for Ag12c, respectively.

References

- S1. B. V. DePamphilis, B. A. Averill, T. Herskovitz, L. Que and R. H. Holm, J. Am. Chem. Soc., 1974, 96, 4159.
- G. M. Sheldrick, SADABS, Program for empirical absorption correction program of area detector data; University of Göttingen, Germany, 1996.
- S3. L. Palatinus and G. Chapuis, J. Appl. Crystallogr., 2007, 40, 786.
- S4. G. M. Sheldrick, Acta. Crystallogr., Sect. C, 2015, 71, 3.
- O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, Howard and J. A. K. H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339.
- S6. A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7.
- S7. A. L. Spek, Acta. Crystallogr., Sect. D, 2009, 65, 148.

Compound	Ag12a	Ag12b	Ag12c
Empirical formula	$C_{90}H_{100}Ag_{12}F_{36}N_{12}O_{26}S_6$	$C_{84}H_{92}Ag_{12}F_{36}N_8O_{26}S_6$	$C_{82}H_{84}Ag_{12}F_{36}N_8O_{24}S_6$
Formula weight	3936.61	3800.45	3736.37
Temperature/K	190	190	190
Wavelength/Å	0.71073	0.71073	0.71073
Crystal system	orthorhombic	monoclinic	monoclinic
Space group	Pbca	C2/c	$P2_{1}/c$
a/Å	20.9281(12)	30.2957(17)	13.8315(8)
b/Å	22.1548(12)	20.8495(10)	29.7018(15)
$c/{ m \AA}$	28.9986(12)	22.4448(12)	16.2995(9)
a/°	90	90	90
$\beta/^{\circ}$	90	114.615(2)	94.930(2)
γ/°	90	90	90
Volume/ Å ³	13445.4(13)	12888.9(12)	6671.4(12)
Ζ	4	4	2
$\rho_{calc}/g \cdot cm^{-3}$	1.945	1.959	1.860
μ/mm^{-1}	1.914	1.992	1.922
<i>F</i> (000)	7664	7376	3616
θ range for data collection	2.264 to 28.347	2.192 to 27.521	2.306 to 27.569
Reflection collected	414509	123394	166651
Independent	16752 [$R_{\rm int} = 0.0885$]	14827 [$R_{\rm int} = 0.0625$]	15365 [$R_{\rm int} = 0.0799$]
reflection			
Data/restraints/parameters	16752/216/946	14827/155/948	15365/270/878
Goodness-of-fit on F^2	1.064	1.019	1.045
Final <i>R</i> indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0484, wR_2 = 0.1009$	$R_1 = 0.0394, wR_2 = 0.0869$	$R_1 = 0.0809, wR_2 = 0.2077$
Final <i>R</i> indexes [all data]	$R_1 = 0.0756, wR_2 = 0.1142$	$R_1 = 0.0608, wR_2 = 0.0959$	$R_1 = 0.1273, wR_2 = 0.2451$
Largest diff. peak/hole/e·Å ⁻³	1.540/-1.108	0.974/-1.204	1.541/-1.395

Table S1 Crystal data collection and structure refinement parameters for Ag12a-c.

 $R_{1} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|. \ wR_{2} = \left\{ \sum w (F_{o}^{2} - F_{c}^{2})^{2} / \sum w (F_{o}^{2})^{2} \right\}^{1/2}. \ \text{GOF} = \left\{ \sum w [(F_{o}^{2} - F_{c}^{2})^{2}] / (n-p) \right\}^{1/2}, \text{ where } n = \left\{ \sum w [(F_{o}^{2} - F_{c}^{2})^{2}] / (n-p) \right\}^{1/2}.$

n is the number of reflections and p is total number of parameters refined.

Fig. S1 (a) Ball-stick representation of the crystal structure of **Ag12a**; (b) View of the Ag12 kernel coordinated by Tab ligands in **Ag12a**; (c) View of the Ag12 kernel coordinated by trifluoroacetate anions in **Ag12a**. Free solvents and H atoms are omitted for clarity. Color codes: Ag, green; S, yellow; O, red; F, sky blue; C, gray; N, blue.

Fig. S2 (a) Ball-stick representation of the crystal structure of **Ag12b**; (b) View of the Ag12 kernel coordinated by Tab ligands in **Ag12b**; (c) View of the Ag12 kernel coordinated by trifluoroacetate anions in **Ag12b**. Free solvents and H atoms are omitted for clarity. Color codes: Ag, green; S, yellow; O, red; F, sky blue; C, gray; N, blue.

Fig. S3 (a) Ball-stick representation of the crystal structure of **Ag12c**; (b) View of the Ag12 kernel coordinated by Tab ligands in **Ag12c**; (c) View of the Ag12 kernel coordinated by trifluoroacetate anions in **Ag12c**. Free solvents and H atoms are omitted for clarity. Color codes: Ag, green; S, yellow; O, red; F, sky blue; C, gray; N, blue.

Fig. S4 PXRD patterns of **Ag12a**: simulated from single crystal data (red line) and single-phase polycrystalline sample (blue line).

Fig. S5 PXRD patterns of **Ag12b**: (a) simulated from single crystal data (red line); (b) sample obtained from recrystallization of **Ag12a** in DMF (green line); (c) sample derived from recrystallization of **Ag12c** in DMF (yellow line).

Fig. S6 PXRD patterns of **Ag12c**: (a) simulated from single crystal data (red line); (b) single-phase polycrystalline sample (blue line); (c) sample obtained from recrystallization of **Ag12a** in CH₃CN (yellow line); (d) sample derived from recrystallization of **Ag12b** in CH₃CN (green line).

Fig. S7 ESI mass spectrum of the solution of Ag12c (obtained from dissolving Ag12a in CH_3CN) in the positive mode.

Noted: The major peak at m/z = 662.96 is assignable to the corresponding cationic species $[Ag_4(Tab)_4(TFA)_2]^{2+}$ (a).

Fig. S8 ESI mass spectrum of the solution of **Ag12b** (obtained from dissolving **Ag12a** in DMF and CH₃OH) in the positive mode.

Noted: The peaks at m/z = 579.41, 652.46, 773.89 and 883.84 are assignable to the corresponding cationic species $[Ag_4(Tab)_3(TFA)_2]^{2+}$ (a), $[Ag_4(Tab)_3(TFA)_2(DMF)_2]^{2+}$ (b), $[Ag_5(Tab)_4(TFA)_3]^{2+}$ (c) and $[Ag_6(Tab)_4(TFA)_4]^{2+}$ (d).

Fig. S9 ESI mass spectrum of the solution of Ag12a (dissolved in H_2O , CH_3CN and DMF) in the positive mode.

Noted: The peaks at m/z = 579.41, 652.46, 662.96, 773.89, 883.84, 993.78 and 1105.23 are assignable to the corresponding cationic species $[Ag_4(Tab)_3(TFA)_2]^{2+}$ (a), $[Ag_4(Tab)_3(TFA)_2(DMF)_2]^{2+}$ (b), $[Ag_4(Tab)_4(TFA)_2]^{2+}$ (c), $[Ag_5(Tab)_4(TFA)_3]^{2+}$ (d), $[Ag_6(Tab)_4(TFA)_4]^{2+}$ (e), $[Ag_7(Tab)_4(TFA)_5]^{2+}$ (f) and $[Ag_8(Tab)_4(TFA)_6]^{2+}$ (g).

Fig. S10 ESI mass spectrum of the solution of **Ag12b** (obtained from dissolving Ag**12c** in DMF) in the positive mode.

Noted: The peaks at m/z = 662.96, 873.35 and 1041.95 are assignable to the corresponding cationic species $[Ag_4(Tab)_4(TFA)_2]^{2+}$ (a), $[Ag_6(Tab)_4(TFA)_3(DMF)_2]^{2+}$ (b) and $[Ag_8(Tab)_3(TFA)_6(CH_3CN)]^{2+}$ (c).

Fig. S11 ESI mass spectrum of the solution of **Ag12c** (obtained from dissolving **Ag12b** in CH₃CN) in the positive mode.

Noted: The peaks at m/z = 662.96, 683.46, 883.84 and 1041.95 are assignable to the corresponding cationic species $[Ag_4(Tab)_4(TFA)_2]^{2+}$ (a); $[Ag_4(Tab)_4(TFA)_2(CH_3CN)]^{2+}$ (b), $[Ag_6(Tab)_4(TFA)_4]^{2+}$ (c) and $[Ag_8(Tab)_3(TFA)_6(CH_3CN)]^{2+}$ (d).

Fig. S12 The TGA plots of Ag12a, Ag12b and Ag12c.Noted: The isolated silver nanoclusters can stabilize up to 215 °C before their decomposition.