Electronic Supplementary Information

Synthesis of silyl formates, formamides, and aldehydes via solvent-free organocatalytic hydrosilylation of CO₂

Takumi Murata,^a Mahoko Hiyoshi,^a Manussada Ratanasak,^b Jun-ya Hasegawa,^{*,b} and Tadashi Ema^{*,a,}†

- ^{*a*} Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
- ^b Institute for Catalysis, Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan

† Cooperative Research Fellow, Institute for Catalysis, Hokkaido University

Table of contents

[A] General methods	S 1
[B] Solvent-free hydrosilylation of CO ₂	S 1
[C] Solvent-free <i>N</i> -formylation of amines with CO ₂ and hydrosilane	S6
[D] One-pot aldehyde synthesis with CO ₂	S 8
[E] NMR spectra	S11
[F] Computational details	S53
[G] Cartesian coordinates	S55

[A] General methods.

NMR spectra were measured on a Varian 400-MR spectrometer or a JEOL JNM-ECS400 spectrometer, and chemical shifts are reported as the delta scale in ppm using an internal reference (δ = 7.26 ppm (CDCl₃) for ¹H NMR and δ = 77.16 ppm (CDCl₃) for ¹³C NMR). GC was measured on a Shimadzu GC-8A with a packed column, Shincarbon-ST 50/80 (\emptyset 3 mm × 6 m) (Shinwa Chemical Industries Ltd.). Melting points were measured on a Yanaco melting point apparatus (uncorrected). Column chromatography was carried out using Fuji Silysia BW-127 ZH (100–270 mesh), and thin layer chromatography (TLC) was performed on Merck silica gel 60 F₂₅₄. ¹³CO₂ (99%) purchased from Taiyo Nippon Sanso Corporation was used for the isotope labeling experiment.

[B] Solvent-free hydrosilylation of CO₂.

General procedure. A catalyst (0.10 mmol, 5 mol%) was put in a 30 mL Schlenk flask fitted with a rubber septum. After the flask was quickly evacuated and filled with CO_2 (balloon), hydrosilane (2.0 mmol) was added. The mixture was stirred at constant temperature for reaction time. After addition of $CDCl_3$ (ca. 1 mL) and mesitylene (internal standard) and stirring, a small portion of the mixture was added to $CDCl_3$ in an NMR tube, and the yield was determined by ¹H NMR using mesitylene as the internal standard.

CO ₂ (1 atm)	PhMe ₂ SiH catalyst (5 mol%) no solvent 60 °C, 8 h	`OSiMe₂Ph
entry	catalyst	yield $(\%)^b$
1	$TBAF \cdot 3H_2O$	52
2	TBAC	0
3	TBAB	0
4	TBAI	0
5	TBAA	76
6	TBD	0
7	CsF	0
8	$KF \cdot 2H_2O$	0
9	K_2CO_3	0
10	Cs_2CO_3	0

Table S1. Screening of catalysts for the solvent-free hydrosilylation of CO₂.^{*a*}

^{*a*} Reaction conditions: CO₂ (1 atm, balloon), PhMe₂SiH (2.0 mmol), catalyst (5 mol%), 60 °C, 8 h.

^b Total yield of silyl formate and formic acid. Determined by ¹H NMR using mesitylene as an internal standard.

Generation of H₂ as a side reaction.

Although $PhSiH_3$ appeared to function as a highly reactive reductant in the TBAA-catalyzed hydrosilylation of CO₂, a side reaction generating H₂ also occurred. We consider that an active species reacted with water (impurity) contained in PhSiH₃ or TBAA to generate H₂. Probably because of this side reaction, the yields of silyl formates were modest especially when PhSiH₃ was used at high temperature.

TBAA (30.1 mg, 0.10 mmol, 5 mol%) was put in a 30 mL Schlenk flask fitted with a rubber septum. After the flask was evacuated and filled with CO₂ (balloon), the flask was closed, and the CO₂ balloon was removed. PhSiH₃ (250 μ L, 2.0 mmol, stored over molecular sieves 3A) was added via a syringe. The mixture was stirred at 60 °C for 1 h. The gas (0.4 mL) above the reaction mixture was taken by a syringe and analyzed by GC. As a result, H₂ was detected (Fig. S1).

The generation of H_2 was also confirmed by ¹H NMR spectroscopy. When the gas (5 mL) above the reaction mixture was taken by a syringe and bubbled into CDCl₃ in an NMR tube, a singlet signal assigned as H_2 appeared at 4.62 ppm.

Supporting data for the proposed reaction mechanism. (a) Preparation of an authentic sample of TBA formate.

 $Bu_4N^+OH^- + HCO_2H \longrightarrow Bu_4N^+HCO_2^-$ (TBA formate)

To a solution of TBA hydroxide (Bu₄N⁺OH⁻) in MeOH (37%, 1.40 g, 2.0 mmol) was added dropwise formic acid (88% in water, 164 mg, 3.1 mmol). The reaction mixture was stirred at room temperature for 2 h and then evacuated at 60 °C under reduced pressure to give TBA formate (Bu₄N⁺HCO₂⁻) as a white powder (570 mg, 1.98 mmol, 99% yield). ¹H NMR (CDCl₃, 400 MHz) δ 1.02 (t, *J* = 7.4 Hz, 12H), 1.41–1.50 (m, 8H), 1.63–1.71 (m, 8H), 3.29–3.34 (m, 8H), 8.45 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 13.7, 19.8, 24.0, 58.9, 166.9.

Fig. S2 ¹H NMR spectrum of TBA formate in CDCl₃.

(b) Generation of TBA formate from PhMe₂SiH and TBAA under CO₂ atmosphere.

In a glovebox (purge type) under N₂ atmosphere, TBAA (603 mg, 2.0 mmol, 100 mol%) was put in a 30 mL Schlenk flask fitted with a rubber septum, and the flask was taken out from the glovebox. After the flask was evacuated and filled with CO₂ (balloon), the flask was heated at 60 °C, and PhMe₂SiH (310 μ L, 2.0 mmol) was added via a syringe. The reaction mixture was stirred at 60 °C for 8 h. After cooling, CDCl₃ (2 mL) was added, and mesitylene (70 μ L, 0.50 mmol) was added as an internal standard. ¹H NMR spectrum indicated the formation of TBA formate in 47% yield (Fig. S3). The generation of TBA formate from PhMe₂SiH and TBAA under CO₂ atmosphere supports the initial step of the reaction mechanism shown in Scheme 2.

Fig. S3 ¹H NMR spectrum of the reaction mixture containing TBA formate in CDCl₃.

The signal for the formyl group of TBA formate can be seen at 8.77 ppm, which appeared downfield as compared with that of pure TBA formate (8.45 ppm, Fig. S2). The signal at 8.77 ppm was upfield shifted upon addition of TBA formate (authentic sample) with an increase of the integral. We suppose that the HCO_2^- ion was hydrogen-bonded in the reaction mixture. The signal for the acetyl group of TBAA/acetic acid can be seen at 2.02 ppm. We suppose that $AcOSiMe_2Ph$ was hydrolyzed with water (impurity) contained in TBAA.

(c) Solvent-free synthesis of HCO₂SiMe₂Ph using TBA formate as a catalyst.

$$\begin{array}{c} \text{PhMe}_{2}\text{SiH} \\ \text{CO}_{2} \\ \text{(1 atm)} \\ \begin{array}{c} \text{Bu}_{4}\text{N}^{+}\text{HCO}_{2}^{-} \text{(5 mol}\%) \\ \text{no solvent} \\ \text{60 °C. 8 h} \end{array} \\ \begin{array}{c} \text{O} \\ \text{H} \\ \end{array} \\ \begin{array}{c} \text{OSiMe}_{2}\text{Ph} \end{array}$$

TBA formate (28.7 mg, 0.10 mmol, 5 mol%) was put in a 30 mL Schlenk flask fitted with a rubber septum. After the flask was evacuated and filled with CO₂ (balloon), the flask was heated at 60 °C, and PhMe₂SiH (310 μ L, 2.0 mmol) was added via a syringe. The reaction mixture was stirred at 60 °C for 8 h. After cooling, mesitylene (70 μ L, 0.50 mmol) was added as an internal standard. ¹H NMR spectrum indicated the formation of HCO₂SiMe₂Ph in 72% yield (Fig. S4).

The solvent-free synthesis of HCO₂SiMe₂Ph using TBA formate as a catalyst supports the catalytic cycle shown in Scheme 2.

Fig. S4 ¹H NMR spectrum of the reaction mixture in CDCl₃.

We consider that PhMe₂SiOSiMe₂Ph was formed by a side reaction shown below.

PhMe₂SiH + H₂O
(impurity)
$$H_2$$
 + PhMe₂SiOH
 H_2 + PhMe₂SiOH
 H_2 + OhMe₂SiOH

[C] Solvent-free *N*-formylation of amines with CO₂ and hydrosilane.

$$\begin{array}{c} H \\ R^{1} \\ R^{2} \\ 1 \end{array} \xrightarrow{\begin{array}{c} CO_{2} (1 \text{ atm}) \\ hydrosilane \\ TBAA \\ no \text{ solvent} \end{array}} \xrightarrow{\begin{array}{c} CHO \\ R^{1} \\ R^{2} \\ 2 \end{array}$$

General procedure. TBAA (30.1 mg, 0.10 mmol, 5 mol% based on silane) was put in a 30 mL Schlenk flask fitted with a rubber septum. After the flask was evacuated and filled with CO_2 (balloon), amine 1 (0.50 mmol) and hydrosilane (2.0 mmol) were added in this order via syringes. The mixture was stirred at constant temperature for reaction time. Purification by silica gel column chromatography gave formamide 2.

N-Methyl-*N*-phenylformamide (2a).

51.7 mg (0.383 mmol, 76% yield); Yellow oil; ¹H NMR (CDCl₃, 400 MHz) δ 3.32 (s, 3H), 7.16 (d, J = 7.6 Hz, 2H), 7.28 (t, J = 7.2 Hz, 1H), 7.42 (t, J = 7.7 Hz, 2H), 8.48 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 32.1, 122.4, 126.5, 129.7, 142.2, 162.5.

N-(4-Chlorophenyl)-*N*-methylformamide (2b).

54.3 mg (0.321 mmol, 64% yield); Yellow oil; ¹H NMR (CDCl₃, 400 MHz) δ 3.29 (s, 3H), 7.10 (d, J = 8.7 Hz, 2H), 7.38 (d, J = 8.8 Hz, 2H), 8.44 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 32.2, 123.7, 129.9, 132.2, 140.9, 162.2.

N-(4-Bromophenyl)-*N*-methylformamide (2c).

69.0 mg (0.322 mmol, 64% yield); White solid; mp 69.0–69.5 °C; ¹H NMR (CDCl₃, 400 MHz) δ 3.30 (s, 3H), 7.05 (d, J = 8.8 Hz, 2H), 7.53 (d, J = 9.0 Hz, 2H), 8.45 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 32.1, 119.9, 123.9, 132.9, 141.4, 162.1.

N-(4-Methoxyphenyl)-*N*-methylformamide (2d).

53.2 mg (0.322 mmol, 64% yield); Brown oil; ¹H NMR (CDCl₃, 400 MHz) δ 3.24 (s, 3H), 3.79 (s, 3H), 6.90 (d, J = 8.8 Hz, 2H), 7.07 (d, J = 8.8 Hz, 2H), 8.31 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 32.7, 55.6, 114.8, 124.7, 135.3, 158.3, 162.5.

N-Methyl-*N*-(4-methylphenyl)formamide (2e).

68.0 mg (0.456 mmol, 91% yield); Yellow oil; ¹H NMR (CDCl₃, 400 MHz) δ 2.36 (s, 3H), 3.29 (s, 3H), 7.06 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.2 Hz, 2H), 8.42 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 21.0, 32.4, 122.7, 130.3, 136.5, 139.8, 162.5.

N-Ethyl-*N*-phenylformamide (2f).

72.0 mg (0.483 mmol, 97% yield); Brown oil; ¹H NMR (CDCl₃, 400 MHz) δ 1.16 (t, *J* = 7.1 Hz, 3H), 3.87 (q, *J* = 7.1 Hz, 2H), 7.17 (d, *J* = 7.4 Hz, 2H), 7.30 (t, *J* = 7.4 Hz, 1H), 7.42 (t, *J* = 7.8 Hz, 2H), 8.36 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 13.2, 40.2, 124.4, 127.0, 129.8, 141.0, 162.2.

N-Phenyl-*N*-propylformamide (2g).

60.7 mg (0.372 mmol, 74% yield); Brown oil; ¹H NMR (CDCl₃, 400 MHz) δ 0.89 (t, J = 7.4 Hz, 3H), 1.54–1.59 (m, 2H), 3.78 (t, J = 7.5 Hz, 2H), 7.17 (d, J = 7.3 Hz, 2H), 7.30 (t, J = 7.6 Hz, 1H), 7.41 (d, J = 7.4 Hz, 2H), 8.38 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 11.3, 21.0, 46.7, 124.4, 127.0, 129.8, 141.2, 162.6; IR (neat) 3035, 2965, 2874, 1694, 1597, 1497, 1132, 1086; HRMS (EI) calcd for C₁₀H₁₃NO 163.0997, found 163.0997 (M⁺).

N-Allyl-*N*-phenylformamide (2h).

46.5 mg (0.289 mmol, 58% yield); Yellow oil; ¹H NMR (CDCl₃, 400 MHz) δ 4.42 (dt, J = 1.4, 5.5 Hz, 2H), 5.16–5.22 (m, 2H), 5.80–5.89 (m, 1H), 7.19 (dd, J = 1.0, 8.4 Hz, 2H), 7.28 (t, J = 7.4 Hz, 1H), 7.41 (d, J = 7.5 Hz, 2H), 8.49 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 47.9, 117.7, 123.5, 126.7, 129.6, 132.5, 141.2, 162.0.

N,*N*-Di(4-tolyl)formamide (2i).

3.9 mg (0.017 mmol, 3% yield); Yellow solid; mp 122.4–124.0 °C; ¹H NMR (CDCl₃, 400 MHz) δ 2.35 (s, 3H), 2.37 (s, 3H), 7.05 (d, *J* = 8.3 Hz, 2H), 7.15–7.20 (m, 6H), 8.62 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 21.1, 21.2, 125.1, 126.0, 130.0, 130.3, 136.8, 137.0, 137.3, 139.5, 161.9.

N-Benzyl-*N*-methylformamide (2j).

51.7 mg (0.347 mmol, 69% yield); Colorless oil; ¹H NMR (CDCl₃, 400 MHz) (major rotamer) δ 2.78 (s, 3H), 4.39 (s, 2H), 7.19–7.39 (m, 5H), 8.28 (s, 1H); (minor rotamer) δ 2.84 (s, 3H), 4.52 (s, 2H), 7.19–7.39 (m, 5H), 8.15 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 29.5, 34.1, 47.8, 53.5, 127.5, 127.7, 128.2, 128.3, 128.8, 129.0, 135.8, 136.1, 162.7, 162.9.

N-Methoxy-*N*-methylformamide (2k).

CHO N N Prepared as described in section D and purified by column chromatography. 141 mg (1.58 mmol, 79% yield); Light brown oil; ¹H NMR (CDCl₃, 400 MHz) (major rotamer) δ 3.16 (s, 3H), 3.74 (s, 3H), 8.42 (s, 1H); (minor rotamer) δ 3.16 (s, 3H), 3.74 (s, 3H), 7.85 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 30.5, 63.1, 162.5.

[D] One-pot aldehyde synthesis with CO₂.

Preparation of Grignard reagents. Grignard reagents (RMgBr, 1 M) for the synthesis of **3a–e** and **3i** were freshly prepared by the dropwise addition of the corresponding aryl bromide or alkyl bromide (RBr) to Mg turnings (1.2 equiv) in dry THF at ambient temperature, and those for the synthesis of **3f–h** were freshly prepared by the dropwise addition of the corresponding heterocycle or terminal alkyne (RH) to a suspension of EtMgBr (1 M, 1.1 equiv) in dry THF in an ice bath followed by heating at 50–60 °C for 2–3 h.

Preparation of *N*,*O*-dimethylhydroxylamine (1k). KOH (7.70 g, 137 mmol) was added portionwise to a solution of *N*,*O*-dimethylhydroxylamine hydrochloride (5.40 g, 55.4 mmol) in water (7 mL) in an ice bath, and distillation at 60 °C (bath temperature) gave *N*,*O*-dimethylhydroxylamine (1k) (2.70 g, 44.2 mmol), which was stored over molecular sieves 3A (dried at 150 °C for 2 h in vacuo and cooled to room temperature in advance).

General procedure for one-pot synthesis of aldehydes with CO₂ via Weinreb formamide (2k).

In a glovebox (purge type) under N₂ atmosphere, TBAA (18.0 mg, 0.060 mmol, 3 mol%) was put in a 30 mL Schlenk flask fitted with a rubber septum, and the flask was taken out from the glovebox. After the flask was evacuated and filled with CO₂ (balloon), the flask was cooled in an ice bath. Amine **1k** (155 μ L, 2.0 mmol) and PhSiH₃ (250 μ L, 2.0 mmol, stored over molecular sieves 3A) were added in this order via syringes. The mixture was stirred in an ice bath for 1 h and then at 20 °C for 5 h. This reaction mixture containing Weinreb formamide **2k** was used in the following reaction without purification. The CO₂ balloon was replaced by a N₂ balloon, and the reaction mixture was cooled in an ice bath, and a suspension of a Grignard reagent (RMgBr, 1 M) in dry THF (4 mL) was added. The mixture was stirred at 0 °C for 2 h, and the reaction was quenched with saturated aqueous NH₄Cl (2 mL). The product was extracted with Et₂O (10 mL × 3), and the organic layers were combined and dried over Na₂SO₄. Purification by silica gel column chromatography gave aldehyde **3**.

1-Naphthaldehyde (3a).

222 mg (1.42 mmol, 71% yield); Orange oil; ¹H NMR (CDCl₃, 400 MHz) δ 7.58–7.72 (m, 3H), 7.93 (d, J = 8.2 Hz, 1H), 8.00 (d, J = 7.0 Hz, 1H), 8.11 (d, J = 8.2 Hz, 1H), 9.26 (d, J = 8.6 Hz, 1H), 10.42 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 125.0, 127.1, 128.6, 129.2, 130.7, 131.6, 133.9, 135.4, 136.8, 193.6.

3-Methoxybenzaldehyde (3b).

228 mg (1.67 mmol, 84% yield); Light brown oil; ¹H NMR (CDCl₃, 400 MHz) δ 3.88 (s, 3H), 7.18–7.20 (m, 1H), 7.40 (d, J = 2.1 Hz, 1H), 7.45–7.46 (m, 2H), 9.99 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 55.6, 112.2, 121.7, 123.7, 130.2, 138.0, 160.3, 192.3.

3,5-Dimethoxybenzaldehyde (3c).

286 mg (1.72 mmol, 86% yield); White solid; mp 39.4–39.9 °C; ¹H NMR (CDCl₃, 400 MHz) δ 3.85 (s, 6H), 6.71 (t, J = 2.3 Hz, 1H), 7.02 (d, J = 2.3 Hz, 2H), 9.91 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 55.8, 107.4, 107.5, 138.8, 161.6, 191.8; HRMS (EI) calcd for C₉H₁₀O₃ 166.0630, found 166.0629 (M⁺).

3,5-Dimethoxybenzaldehyde labeled with the ¹³C atom (3c').

3c' was obtained with ¹³CO₂. 185 mg (1.11 mmol, 55% yield); White solid; ¹H NMR (CDCl₃, 400 MHz) δ 3.85 (s, 6H), 6.71 (t, J = 2.3 Hz, 1H), 7.02 (dd, J = 2.3, 5.5 Hz, 2H), 9.91 (d, J = 176 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 55.8, 107.3, 107.3 (d, J = 6.9 Hz), 138.5 (d, J = 52.5 Hz), 161.4 (d, J = 6.2 Hz), 192.1; HRMS (EI) calcd for ¹²C₈¹³CH₁₀O₃ 167.0663, found 167.0661 (M⁺).

2,4,6-Trimethylbenzaldehyde (3d).

225 mg (1.52 mmol, 76% yield); Colorless oil; ¹H NMR (CDCl₃, 400 MHz) δ 2.32 (s, 3H), 2.58 (s, 6H), 6.90 (s, 2H), 10.57 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 20.6, 21.6, 130.1, 130.7, 141.6, 144.0, 193.1.

2-Formylthiophene (3e).

128 mg (1.14 mmol, 57% yield); Dark yellow oil; ¹H NMR (CDCl₃, 400 MHz) δ 7.21–7.24 (m, 1H), 7.76–7.80 (m, 2H), 9.96 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 128.4, 135.3, 136.4, 144.2, 183.1.

Benzothiazole-2-carboxaldehyde (3f).

202 mg (1.24 mmol, 62% yield); Yellow solid; mp 60.5–62.1 °C; ¹H NMR (CDCl₃, 400 MHz) δ 7.57–7.65 (m, 2H), 8.01–8.03 (m, 1H), 8.25–8.27 (m, 1H), 10.18 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 122.8, 125.9, 127.5, 128.6, 136.5, 153.7, 165.5, 185.6.

3-Phenyl-2-propynal (3g).

153 mg (1.18 mmol, 59% yield); Pale yellow oil; ¹H NMR (CDCl₃, 400 MHz) δ 7.39–7.43 (m, 2H), 7.48–7.50 (m, 1H), 7.60–7.62 (m, 2H), 9.43 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 88.6, 95.1, 119.5, 128.8, 131.4, 133.3, 176.9.

3-(4-tert-Butylphenyl)-2-propynal (3h).

239 mg (1.28 mmol, 64% yield); Pale yellow oil; ¹H NMR (CDCl₃, 400 MHz) δ 1.33 (s, 9H), 7.43 (d, *J* = 8.5 Hz, 2H), 7.55 (d, *J* = 8.5 Hz, 2H), 9.42 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 31.1, 35.2, 88.5, 95.9, 116.4, 125.9, 133.3, 155.2, 176.9.

3-Phenylpropanal (3i).

150 mg (1.12 mmol, 56% yield); Colorless oil; ¹H NMR (CDCl₃, 400 MHz) δ 2.77–2.81 (m, 2H), 2.97 (t, *J* = 7.6 Hz, 2H), 7.19–7.23 (m, 3H), 7.27–7.32 (m, 2H), 9.83 (t, *J* = 1.4 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 28.2, 45.4, 126.4, 128.4, 128.7, 140.5, 201.7.

100 MHz ¹³C NMR spectrum of **2f** in CDCl₃.

S37

100 MHz ¹³C NMR spectrum of **3c'** in CDCl₃.

100 MHz ¹³C NMR spectrum of **3h** in CDCl₃.

[F] Computational details.

All the computations were performed with Gaussian 16 (Rev.A.03) program.^{S1} Density functional theory (DFT) calculations were performed at the ω b97xd/6-31G(d) level of theory^{S2}, except for the hydride of PhSiH₃ employing the 6-31++G(d,p) basis set. The self-consistent reaction field (SCRF) method with the polarizable continuum model (PCM)^{S3} was adopted to take into account the solvation effect, and the dielectric constant of toluene was used (Eps = 2.3741). Relative potential energies and Gibbs free energies calculated at 303 K in solution are reported. Natural population analysis (NPA)^{S4} was done to calculate the natural atomic charges with Gaussian NBO Version 3.1. Harmonic frequency and normal mode were calculated to verify the transition-state structures.

- (S1) *Gaussian 16, Revision A.03*, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford, CT, 2016.
- (S2) J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys., 2008, 10, 6615–6620.
- (S3) (a) S. Miertuš, E. Scrocco and J. Tomasi, *Chem. Phys.*, 1981, 55, 117–129; (b) B. Mennucci and J. Tomasi, *J. Chem. Phys.*, 1997, 106, 5151–5158; (c) R. Cammi, B. Mennucci and J. Tomasi, *J. Phys. Chem. A*, 2000, 104, 5631–5637.
- (S4) (a) A. E. Reed and F. Weinhold, J. Chem. Phys., 1983, 78, 4066–4073; (b) A. E. Reed, R. B. Weinstock and F. Weinhold, J. Chem. Phys., 1985, 83, 735–746.

Fig. S5 (a) Energy profile for the hydrosilylation of CO_2 with PhSiH₃ and TBA formate. Potential energies and free energies (303 K) are shown in red and black, respectively. (b) Optimized intermediate and transition-state structures. Distances (Å) are given in blue or red, and NBO charges are shown in black.

[G] Cartesian coordinates.

R

Ν	-1.3750	-0. 2030	-0. 0780
С	-2. 6050	-0. 5530	-0. 8910
Η	-2. 2230	-0. 7120	-1.9050
Η	-2.9760	-1.5030	-0. 5060
С	-3.7370	0. 4660	-0.8690
Η	-3. 4120	1. 4390	-1. 2520
Η	-4. 1080	0.6300	0. 1510
С	-4. 8940	-0. 0390	-1. 7380
Η	-5.2360	-1.0120	-1.3590
Η	-4. 5300	-0. 2120	-2. 7570
С	-6.0660	0.9400	-1.7650
Η	-5.7570	1.9100	-2. 1710
Η	-6.8810	0.5600	-2. 3890
Η	-6.4630	1.1090	-0. 7570
С	-0. 7210	1.0020	-0. 7340
Η	-1.4700	1. 7940	-0. 7550
Η	-0. 5120	0.6740	-1. 7550
С	0. 5430	1. 5070	-0.0510
Η	1. 1780	0. 6810	0. 2810
Η	0. 2960	2.0950	0.8430
С	1.3610	2. 3540	-1.0290
Η	1. 7130	1. 6870	-1.8250
Η	0. 7180	3. 1100	-1. 5020
С	2. 5390	3.0400	-0. 3430
Η	3. 1790	2. 3060	0. 1580
Η	3. 1560	3. 5810	-1.0680
Η	2. 1900	3.7600	0. 4060
С	-1.7140	0. 1370	1. 3470
Η	-0. 7650	0.3600	1.8400
Η	-2. 2950	1.0620	1. 3250
С	-2. 4470	-0. 9470	2. 1220
Η	-3. 4030	-1.1910	1. 6440
Η	-1.8510	-1.8670	2. 1420
С	-2. 7090	-0. 4890	3.5600
Η	-1.7540	-0. 2460	4.0430

Η	-3. 2970	0. 4370	3. 5450
С	-3. 4430	-1. 5500	4. 3780
Н	-3. 6210	-1. 2050	5. 4010
Η	-4. 4140	-1.7900	3.9300
Н	-2.8610	-2. 4770	4. 4310
С	-0. 3570	-1. 3480	-0. 1370
Η	0. 3410	-1.0840	-0. 9400
Η	0. 1660	-1. 3290	0. 8230
С	-0.8600	-2.7540	-0. 4290
Η	-1. 6000	-3. 1050	0. 3020
Η	-1.3190	-2.7790	-1. 4210
С	0. 3480	-3.6980	-0. 4330
Η	0. 8480	-3.6660	0. 5450
Η	1.0710	-3.3320	-1.1720
С	-0.0450	-5. 1370	-0. 7610
Η	0. 8310	-5.7930	-0. 7660
Η	-0. 7570	-5.5310	-0. 0260
Η	-0.5160	-5. 1970	-1.7490
0	1.3630	-0.8860	-2. 6520
С	0. 4680	-1.0690	-3. 5150
0	-0.7690	-0. 9050	-3.3990
Η	0.8230	-1. 4230	-4. 5170
S	i 2.8100	0 -1.1590	0 2.5070
Η	3. 5670	-1.0260	3.7790
Η	2. 4530	-2.5860	2. 2910
Η	1. 5210	-0. 4200	2.6660
С	3.8090	-0. 4780	1. 0830
С	4. 9590	0. 2940	1. 3040
С	3. 3990	-0. 6930	-0. 2410
С	5.6720	0. 8330	0. 2350
Η	5. 3060	0. 4760	2. 3180
С	4. 0980	-0. 1430	-1. 3120
Η	2. 5180	-1. 2860	-0. 4700
С	5. 2400	0. 6180	-1.0720
H	6. 5630	1. 4260	0. 4250
H	3. 7170	-0. 3110	-2. 3140
H	5. 7910	1.0500	-1. 9030
С	-1.2460	4. 5090	0. 6170

0 -0.3780 5.2520 0.3990 0 -2.1150 3.7620 0.8370 11 Ν 1. 2900 -0. 4390 0.0420 1.5050 -1.2560 1.3000 С 0.7330 -0.9050 Η 1.9960 1.3140 -2.2980 1.0420 Н 2.8800 -1.1420 С 1.9460 3. 1110 -0. 1020 2.2010 Н 3.6700 -1.5000 1.2740 Н 2.9030 -1.9730 3.2330 С 2.6620 -3.0180 2.9990 Н 2.1150 -1.6100 3.9030 Н 4.2560 -1.9050 С 3.9390 4.5040 -0.8730 4.2130 Н 4. 2510 -2. 5030 4.8560 Η 5.0580 -2.2830 3.2940 Н 1.0290 С 1.4100 0.4340 2.4620 1.1960 0.6740 Н 0.8100 1.1290 1.3400 Н 0.9530 2.0430 -0.6040 С H -0.0750 1.8430 -0.9170 1.5830 Н 2.0220 -1.5040 0.9830 3.4440 0.0150 С 0.2810 3. 4530 0.8560 Н 1.9790 3.6540 0.4290 Н С 0.6040 4.5270 -0.9920 H -0.4000 4.3480 -1.3930 0.6070 5.5170 -0.5230 Н 1.3070 4.5510 -1.8320 Н 2.3210 -0.7240 -1.0170 С Н 2.0980 -0.0480 -1.8460 3. 2830 -0. 4170 -0. 6010 Н 2.4060 -2.1520 -1.5370 С

H 1. 4920 -2. 4160 -2. 0780

Н

2.5160 -2.8640 -0.7110

 $C \quad \ \ 3.\ 6040\ -2.\ 2970\ -2.\ 4810$

Η	3.	5140	-1.	5710	-3.	2990
Η	4.	5250	-2.	0460	-1.	9400
С	3.	7140	-3.	7070	-3.	0580
Η	4.	5760	-3.	7920	-3.	7270
Η	3.	8340	-4.	4490	-2.	2600
Η	2.	8170	-3.	9700	-3.	6280
С	-0.	1280	-0.	6750	-0.	4680
Η	-0.	7610	0.	0140	0.	1060
Η	-0.	1180	-0.	3650	-1.	5170
С	-0.	7050	-2.	0830	-0.	3400
Η	0.	0050	-2.	8660	-0.	6260
Η	-0.	9900	-2.	2680	0.	7020
С	-1.	9490	-2.	1970	-1.	2270
Η	-1.	6550	-2.	0610	-2.	2770
Η	-2.	6460	-1.	3870	-0.	9860
С	-2.	6520	-3.	5410	-1.	0610
Η	-3.	5280	-3.	6050	-1.	7140
Η	-1.	9810	-4.	3740	-1.	3050
Η	-2.	9970	-3.	6730	-0.	0300
0	-1.	5670	1.	2880	1.	4600
С	-1.	3490	1.	0340	2.	6760
0	-0.	3660	0.	4430	3.	1690
Η	-2.	1320	1.	3890	3.	3930
Si	i -3	3. 5190) 2	. 5430) -0	. 0220
Η	-4.	4200	3.	3710	-0.	8940
Η	-2.	1820	2.	6920	-0.	6480
Η	-3.	6080	3.	1430	1.	3290
С	-4.	2650	0.	8180	-0.	1420
С	-4.	8790	0.	4230	-1.	3400
С	-4.	2910	-0.	0830	0.	9320
С	-5.	4840	-0.	8260	-1.	4690
Η	-4.	8950	1.	1040	-2.	1890
С	-4.	9090	-1.	3250	0.	8160
Η	-3.	8130	0.	1910	1.	8660
С	-5.	5060	-1.	7010	-0.	3860
Η	-5.	9470	-1.	1100	-2.	4100
Η	-4.	9230	-2.	0030	1.	6650
H	-5.	9830	-2.	6720	-0.	4780

С	4. 3230	2.8500 -1.3100
0	4. 0520	3.7360 -2.0140
0	4. 5940	1.9580 -0.6080

TS1

1.7780 -0.2960 -0.0160 Ν 2.2190 -1.2600 1.0710 С Н 1.2920 -1.5810 1.5560 2.6560 -2.1200 0.5640 Н 3. 2200 -0. 7160 2.0820 С 2.8020 0.1250 Н 2.6450 Н 4. 1330 -0. 3580 1.5900 С 3.5980 -1.8250 3.0710 4.0270 -2.6730 2.5210 Н 2.6890 -2.1970 Н 3.5600 4.5910 -1.3430 С 4.1260 4. 1720 -0. 5170 4.7120 Η 4.8490 -2.1490 4.8200 Н 5.5190 -0.9880 Н 3.6620 1.0450 0.8560 0.6590 С 1.7740 1.3510 1.3010 Н 0.2760 0.3760 1.2720 Н C 0.4040 1.8810 -0.2680 H -0. 3710 1.4190 -0.8860 H 1.1340 2.3310 -0.9530 C -0.2400 2.9920 0.5680 H -0.9460 2.5420 1.2740 H 0. 5280 3.4930 1.1740 C -0.97004.0120 -0.3030 H -1.7700 3. 5240 -0. 8710 H -1.4200 4.7990 0.3090 H -0. 2850 4.4880 -1.0150 2.9510 0.2650 -0.7790 С 2.5320 0.9170 -1.5470 Н 3.5000 0.8990 -0.0790 Н 3.8930 -0.7340 -1.4350 С H 4. 2730 -1. 4590 -0. 7060 H 3.3710 -1.2960 -2.2150

С	5.	0800	0.0050 -2.0630
Η	4.	7080	0. 7500 -2. 7780
Η	5.	6160	0.5610 -1.2830
С	6.	0430	-0. 9460 -2. 7700
Η	6.	8840	-0. 4000 -3. 2070
Η	6.	4480	-1.6860 -2.0710
Η	5.	5370	-1. 4890 -3. 5770
С	0.	7820	-0. 9890 -0. 9430
Η	-0.	1850	-0.8820 -0.4500
Η	0.	7920	-0. 4180 -1. 8750
С	0.	9770	-2. 4770 -1. 2120
Η	1.	9990	-2.7290 -1.5140
Η	0.	7490	-3.0350 -0.2980
С	0.	0050	-2.9190 -2.3110
Η	0.	2340	-2.3810 -3.2400
Η	-1.	0140	-2.6320 -2.0250
С	0.	0640	-4. 4250 -2. 5570
Η	-0.	6310	-4. 7200 -3. 3490
Η	1.	0710	-4. 7370 -2. 8590
Η	-0.	2030	-4.9790 -1.6510
0	-3.	0140	-1.5760 1.3420
С	-1.	9250	-1.9390 1.8440
0	-0.	7680	-1.5540 1.5550
Η	-2.	0070	-2. 7060 2. 6520
Si	i -3	8. 0780	0 0. 1530 -0. 3990
Η	-2.	9540	1. 2120 -1. 4870
Η	-2.	4670	-1.0070 -1.0970
Η	-2.	2600	0. 7800 0. 6680
С	-4.	9570	0. 1580 -0. 1800
С	-5.	7010	1.0510 -0.9690
С	-5.	6670	-0. 6600 0. 7150
С	-7.	0890	1.1290 -0.8750
Η	-5.	1860	1.6990 -1.6740
С	-7.	0540	-0. 5860 0. 8110
H	-5.	1130	-1.3560 1.3340
С	-7.	7710	0. 3080 0. 0180
H	-7.	6360	1.8310 -1.5000
H	-7.	5800	-1.2310 1.5110

Η	-8.8530	0.3640 0.0960	
С	3.0560	4. 1950 -0. 0130	
0	2.6390	4.9810 -0.7620	
0	3. 4730	3. 4000 0. 7330	

I2

1.7750 -0.2930 -0.0170 Ν С 2.1870 -1.2730 1.0640 1.2490 -1.6200 1.5070 Н 2.6550 -2.1160 0.5570 Н 3. 1380 -0. 7370 2.1270 С Н 2.6790 0.0790 2.6940 Н 4.0590 -0.3450 1.6780 3.5040 -1.8640 3.0980 С 3.9730 -2.6860 Н 2.5420 2.5880 -2.2700 3.5420 Н 4.4470 -1.3900 4.2020 С 3.9880 -0.5900 4.7940 Н 4.6970 -2.2090 Н 4.8830 5.3830 -1.0020 3.7830 Н 1.0120 0.8440 0.6510 С 1.7240 1.3470 1.3080 Н Н 0.2410 0.3530 1.2520 0.3660 С 1.8620 -0.2800 H -0. 4210 1.3960 -0.8810 1.0910 2.3000 -0.9770 Н C -0.26602.9860 0.5480 H -0.9590 2.5460 1.2730 H 0.5120 3.5010 1.1300 C -1.01603.9840 -0.3300 H -1.8210 3.4770 -0.8740 H -1.4630 4.7790 0.2740 H -0.3460 4.4500 -1.0620 2.9680 0.2910 -0.7310 С 2.5690 0.9550 -1.5000 Н 0.9160 -0.0010 Н 3. 4880 3.9430 -0.6860 -1.3720 С H 4. 2940 -1. 4300 -0. 6480

Η	3.45	580 -	1. 22	80	-2.	1900
С	5.15	520	0. 07	50 ·	-1.	9260
Η	4.80)90	0. 83	90	-2.	6350
Η	5.65	510	0. 60	90	-1.	1070
С	6. 14	190 -	0. 85	40	-2.	6170
Η	7.00)60 –	0. 29	30	-3.	0010
Η	6.52	270 -	1. 61	20	-1.	9220
Η	5.68	320 -	1. 37	40	-3.	4600
С	0.81	60 -	0.97	60 ·	-0.	9890
Η	-0.16	660 -	0.89	50	-0.	5250
Η	0.84	400 -	0.37	90	-1.	9040
С	1.04	420 -	2. 45	30	-1.	2930
Η	2.07	770 -	2. 68	00	-1.	5710
Η	0.79	960 -	3. 04	30	-0.	4050
С	0.11	10 -	2. 87	30	-2.	4350
Η	0.36	650 -	2. 30	70	-3.	3410
Η	-0.92	200 -	2. 60	20	-2.	1750
С	0.19	950 -	4. 37	00	-2.	7220
Η	-0.47	700 -	4. 65	00	-3.	5450
Η	1.21	40 -	4. 66	50	-2.	9980
Η	-0.09	970 -	4. 95	40	-1.	8420
0	-3.07	750 -	1. 47	60	1.	2610
С	-2.01	40 -	1.96	40	1.	7520
0	-0.83	390 -	1. 68	70	1.	4620
Η	-2.19	920 -	2. 73	20	2.	5350
Si	i -3.0	0170	0.0	020	-0	. 2080
Η	-2.86	660	1. 09	10	-1.	3020
Η	-2.38	320 -	1. 08	30	-1.	0220
Η	-2.20)50	0. 73	40	0.	8130
С	-4.91	80	0. 10	10	-0.	1160
С	-5.57	740	1.00	40	-0.	9680
С	-5.72	240 -	0.66	00	0.	7470
С	-6.96	600	1.14	70	-0.	9640
Η	-4.98	350	1. 61	20	-1.	6510
С	-7.11	100 -	0. 52	20	0.	7580
Н	-5.25	500 -	1.36	70	1.	4160
С	-7.73	350	0. 38	20	-0.	0980
H	-7.43	340	1. 85	70	-1.	6380

Η	-7. 7060	-1. 1250	1. 4390	
Η	-8.8170	0. 4890	-0. 0890	
С	2. 9880	4. 2280	-0. 0230	
0	2. 5460	5. 0180	-0. 7530	
0	3. 4300	3. 4290	0. 7040	

I 3

N	2. 2020	0.0660 -0.3530
С	2.8140	1.3880 0.0680
Η	1. 9640	2.0340 0.3020
Η	3. 3610	1.1980 0.9910
С	3. 7490	2.0450 -0.9400
Н	3. 2300	2.2710 -1.8770
Н	4. 5950	1.3900 -1.1830
С	4. 2930	3. 3530 -0. 3540
Н	4. 8200	3. 1400 0. 5850
Н	3. 4530	4.0110 -0.1000
С	5. 2350	4.0690 -1.3200
Н	4. 7210	4. 3220 -2. 2550
Н	5. 6140	4.9980 -0.8830
Н	6.0960	3.4390 -1.5710
С	1. 3200	0.3230 -1.5700
Н	1. 9880	0. 6390 -2. 3740
Н	0. 6760	1.1580 -1.2810
С	0. 4640	-0.8480 -2.0340
Н	-0. 2690	-1.1110 -1.2660
Н	1. 0650	-1.7420 -2.2360
С	-0. 2910	-0.4670 -3.3110
Н	-0. 7970	0. 4930 -3. 1570
Н	0. 4230	-0.3250 -4.1340
С	-1.3270	-1.5250 -3.6850
Н	-2.0750	-1.6190 -2.8890
Н	-1.8470	-1.2590 -4.6100
Н	-0.8570	-2.5050 -3.8320
С	3. 2520	-0.9470 -0.7340
Η	2. 7150	-1.8530 -1.0170
Η	3. 7390	-0.5620 -1.6340
С	4. 2940	-1.2910 0.3200

H 3. $8220 -1.7950$ 1. 1700 C 5. $3580 -2.2180 -0.2780$ H 4. $8730 -3.1130 -0.6890$ H 5. $8480 -1.7130 -1.1200$ C 6. $4050 -2.6320$ 0. 7540 H 7. $1580 -3.2890$ 0. 3080 H 6. $9230 -1.7560$ 1. 1620 H 5. $9430 -3.1680$ 1. 5900 C 1. $2960 -0.4540$ 0. 7600 H 0. 3410 0. 0510 0. 6130 H 1. $1680 -1.5210$ 0. 5710 C 1. $7160 -0.1970$ 2. 2030 H 2. $7600 -0.4630$ 2. 4000 H 1. 5940 0. 8670 2. 4280 C 0. $8060 -1.0070$ 3. 1330 H 0. $9470 -2.0780$ 2. 9380 H -0. $2400 -0.7820$ 2. 8950 C 1. $0790 -0.7080$ 4. 6050 H 0. $4260 -1.3010$ 5. 2530 H 2. $1170 -0.9380$ 4. 8710 H 0. 9010 0. 3500 4. 8280 O -2.3340 2. 2830 0. 7240 C -1.1880 2. 8180 0. 8380 O -0.0810 2. 3090 0. 6070 H -1.2190 3. 8710 1. 1930 Si -2.5310 0. 3490 0. 0734
C 5. $3580 -2. 2180 -0. 2780$ H 4. $8730 -3. 1130 -0. 6890$ H 5. $8480 -1. 7130 -1. 1200$ C 6. $4050 -2. 6320$ 0. 7540 H 7. $1580 -3. 2890$ 0. 3080 H 6. $9230 -1. 7560$ 1. 1620 H 5. $9430 -3. 1680$ 1. 5900 C 1. $2960 -0. 4540$ 0. 7600 H 0. 3410 0. 0510 0. 6130 H 1. $1680 -1. 5210$ 0. 5710 C 1. $7160 -0. 1970$ 2. 2030 H 2. $7600 -0. 4630$ 2. 4000 H 1. 5940 0. 8670 2. 4280 C 0. $8060 -1. 0070$ 3. 1330 H 0. $9470 -2. 0780$ 2. 9380 H -0. $2400 -0. 7820$ 2. 8950 C 1. $0790 -0. 7080$ 4. 6050 H 0. $4260 -1. 3010$ 5. 2530 H 2. $1170 -0. 9380$ 4. 8710 H 0. 9010 0. 3500 4. 8280 O $-2. 3340$ 2. 2830 0. 7240 C $-1. 1880$ 2. 8180 0. 8380 O $-0. 0810$ 2. 3090 0. 6070 H $-1. 2190$ 3. 8710 1. 1930 Si $-2. 5310$ 0. 3490 0. 0734
H 4. 8730 -3. 1130 -0. 6890 H 5. 8480 -1. 7130 -1. 1200 C 6. 4050 -2. 6320 0. 7540 H 7. 1580 -3. 2890 0. 3080 H 6. 9230 -1. 7560 1. 1620 H 5. 9430 -3. 1680 1. 5900 C 1. 2960 -0. 4540 0. 7600 H 0. 3410 0. 0510 0. 6130 H 1. 1680 -1. 5210 0. 5710 C 1. 7160 -0. 1970 2. 2030 H 2. 7600 -0. 4630 2. 4000 H 1. 5940 0. 8670 2. 4280 C 0. 8060 -1. 0070 3. 1330 H 0. 9470 -2. 0780 2. 9380 H -0. 2400 -0. 7820 2. 8950 C 1. 0790 -0. 7080 4. 6050 H 0. 4260 -1. 3010 5. 2530 H 2. 1170 -0. 9380 4. 8710 H 0. 9010 0. 3500 4. 8280 O -2. 3340 2. 2830 0. 7240 C -1. 1880 2. 8180 0. 8380 O -0. 0810 2. 3090 0. 6070 H -1. 2190 3. 8710 1. 1930 Si -2. 5310 0. 3490 0. 0736
H 5.8480 -1.7130 -1.1200 C 6.4050 -2.6320 0.7540 H 7.1580 -3.2890 0.3080 H 6.9230 -1.7560 1.1620 H 5.9430 -3.1680 1.5900 C 1.2960 -0.4540 0.7600 H 0.3410 0.0510 0.6130 H 1.1680 -1.5210 0.5710 C 1.7160 -0.1970 2.2030 H 2.7600 -0.4630 2.4000 H 1.5940 0.8670 2.4280 C 0.8060 -1.0070 3.1330 H 0.9470 -2.0780 2.9380 H -0.2400 -0.7820 2.8950 C 1.0790 -0.7080 4.6050 H 0.4260 -1.3010 5.2530 H 2.1170 -0.9380 4.8710 H 0.9010 0.3500 4.8280 0 -2.3340 2.2830 0.7240 C -1.1880 2.8180 0.8380 0 -0.0810 2.3090 0.6070 H -1.2190 3.8710 1.1930 Si -2.5310 0.3490 0.0730
C6. $4050 - 2. 6320$ 0. 7540 H7. $1580 - 3. 2890$ 0. 3080 H6. $9230 - 1. 7560$ 1. 1620 H5. $9430 - 3. 1680$ 1. 5900 C1. $2960 - 0. 4540$ 0. 7600 H0. 3410 0. 0510 0. 6130 H1. $1680 - 1. 5210$ 0. 5710 C1. $7160 - 0. 1970$ 2. 2030 H2. $7600 - 0. 4630$ 2. 4000 H1. 5940 0. 8670 2. 4280 C0. $8060 - 1. 0070$ 3. 1330 H0. $9470 - 2. 0780$ 2. 9380 H-0. $2400 - 0. 7820$ 2. 8950 C1. $0790 - 0. 7080$ 4. 6050 H0. $4260 - 1. 3010$ 5. 2530 H2. $1170 - 0. 9380$ 4. 8710 H0. 9010 0. 3500 4. 8280 O-2. 3340 2. 2830 0. 7240 C-1. 1880 2. 8180 0. 8380 O-0. 0810 2. 3090 0. 6070 H-1. 2190 3. 8710 1. 1930 Si-2. 5310 0. 3490 0. 0.734
H7. 1580 -3. 2890 0. 3080 H6. 9230 -1. 7560 1. 1620 H5. 9430 -3. 1680 1. 5900 C1. 2960 -0. 4540 0. 7600 H0. 3410 0. 0510 0. 6130 H1. 1680 -1. 5210 0. 5710 C1. 7160 -0. 1970 2. 2030 H2. 7600 -0. 4630 2. 4000 H1. 5940 0. 8670 2. 4280 C0. 8060 -1. 0070 3. 1330 H0. 9470 -2. 0780 2. 9380 H-0. 2400 -0. 7820 2. 8950 C1. 0790 -0. 7080 4. 6050 H0. 4260 -1. 3010 5. 2530 H2. 1170 -0. 9380 4. 8710 H0. 9010 0. 3500 4. 8280 O-2. 3340 2. 2830 0. 7240 C-1. 1880 2. 8180 0. 8380 O-0. 0810 2. 3090 0. 6070 H-1. 2190 3. 8710 1. 1930 Si-2. 5310 0. 3490 0. 0734
H 6.9230 -1.7560 1.1620 H 5.9430 -3.1680 1.5900 C 1.2960 -0.4540 0.7600 H 0.3410 0.0510 0.6130 H 1.1680 -1.5210 0.5710 C 1.7160 -0.1970 2.2030 H 2.7600 -0.4630 2.4000 H 1.5940 0.8670 2.4280 C 0.8060 -1.0070 3.1330 H 0.9470 -2.0780 2.9380 H -0.2400 -0.7820 2.8950 C 1.0790 -0.7080 4.6050 H 0.4260 -1.3010 5.2530 H 2.1170 -0.9380 4.8710 H 0.9010 0.3500 4.8280 0 -2.3340 2.2830 0.7240 C -1.1880 2.8180 0.8380 0 -0.0810 2.3090 0.6070 H -1.2190 3.8710 1.1930 Si -2.5310 0.3490 0.0734
H 5.9430 -3.1680 1.5900 C 1.2960 -0.4540 0.7600 H 0.3410 0.0510 0.6130 H 1.1680 -1.5210 0.5710 C 1.7160 -0.1970 2.2030 H 2.7600 -0.4630 2.4000 H 1.5940 0.8670 2.4280 C 0.8060 -1.0070 3.1330 H 0.9470 -2.0780 2.9380 H -0.2400 -0.7820 2.8950 C 1.0790 -0.7080 4.6050 H 0.4260 -1.3010 5.2530 H 2.1170 -0.9380 4.8710 H 0.9010 0.3500 4.8280 0 -2.3340 2.2830 0.7240 C -1.1880 2.3090 0.6070 H -1.2190 3.8710 1.1930 Si -2.5310 0.3490 0.0734
C1. 2960 -0.4540 0. 7600H0. 34100. 05100. 6130H1. 1680 -1.5210 0. 5710C1. 7160 -0.1970 2. 2030H2. 7600 -0.4630 2. 4000H1. 59400. 86702. 4280C0. 8060 -1.0070 3. 1330H0. 9470 -2.0780 2. 9380H -0.2400 -0.7820 2. 8950C1. 0790 -0.7080 4. 6050H0. 4260 -1.3010 5. 2530H2. 1170 -0.9380 4. 8710H0. 90100. 35004. 8280O -2.3340 2. 28300. 7240C -1.1880 2. 81800. 8380O -0.0810 2. 30900. 6070H -1.2190 3. 87101. 1930Si -2.5310 0. 34900. 0734
H 0.3410 0.0510 0.6130 H 1.1680 -1.5210 0.5710 C 1.7160 -0.1970 2.2030 H 2.7600 -0.4630 2.4000 H 1.5940 0.8670 2.4280 C 0.8060 -1.0070 3.1330 H 0.9470 -2.0780 2.9380 H -0.2400 -0.7820 2.8950 C 1.0790 -0.7080 4.6050 H 0.4260 -1.3010 5.2530 H 2.1170 -0.9380 4.8710 H 0.9010 0.3500 4.8280 0 -2.3340 2.2830 0.7240 C -1.1880 2.8180 0.8380 0 -0.0810 2.3090 0.6070 H -1.2190 3.8710 1.1930 Si -2.5310 0.3490 0.0734
H1. $1680 -1.5210$ 0. 5710 C1. $7160 -0.1970$ 2. 2030 H2. $7600 -0.4630$ 2. 4000 H1. 5940 0. 8670 2. 4280 C0. $8060 -1.0070$ 3. 1330 H0. $9470 -2.0780$ 2. 9380 H-0. $2400 -0.7820$ 2. 8950 C1. $0790 -0.7080$ 4. 6050 H0. $4260 -1.3010$ 5. 2530 H2. $1170 -0.9380$ 4. 8710 H0. 9010 0. 3500 4. 8280 O-2. 3340 2. 2830 0. 7240 C-1. 1880 2. 8180 0. 8380 O-0.08102. 3090 0. 6070 H-1. 2190 3. 8710 1. 1930 Si-2. 5310 0. 3490 0. 0734
C1.7160 -0.1970 2.2030H2.7600 -0.4630 2.4000H1.5940 0.8670 2.4280C 0.8060 -1.0070 3.1330 H 0.9470 -2.0780 2.9380 H -0.2400 -0.7820 2.8950 C 1.0790 -0.7080 4.6050 H 0.4260 -1.3010 5.2530 H 2.1170 -0.9380 4.8710 H 0.9010 0.3500 4.8280 0 -2.3340 2.2830 0.7240 C -1.1880 2.3090 0.6070 H -1.2190 3.8710 1.1930 Si -2.5310 0.3490 0.0734
H2. 7600 -0.4630 2. 4000H1. 59400. 86702. 4280C0. 8060 -1.0070 3. 1330H0. 9470 -2.0780 2. 9380H -0.2400 -0.7820 2. 8950C1. 0790 -0.7080 4. 6050H0. 4260 -1.3010 5. 2530H2. 1170 -0.9380 4. 8710H0. 90100. 35004. 8280O -2.3340 2. 28300. 7240C -1.1880 2. 81800. 8380O -0.0810 2. 30900. 6070H -1.2190 3. 87101. 1930Si -2.5310 0. 34900. 0736
H1.59400.86702.4280C0.8060 -1.0070 3.1330H0.9470 -2.0780 2.9380H -0.2400 -0.7820 2.8950C1.0790 -0.7080 4.6050H0.4260 -1.3010 5.2530H2.1170 -0.9380 4.8710H0.90100.35004.8280O -2.3340 2.28300.7240C -1.1880 2.81800.8380O -0.0810 2.30900.6070H -1.2190 3.87101.1930Si -2.5310 0.34900.0736
C $0.8060 -1.0070$ 3.1330 H $0.9470 -2.0780$ 2.9380 H $-0.2400 -0.7820$ 2.8950 C $1.0790 -0.7080$ 4.6050 H $0.4260 -1.3010$ 5.2530 H $2.1170 -0.9380$ 4.8710 H 0.9010 0.3500 4.8280 $0 -2.3340$ 2.2830 0.7240 C -1.1880 2.8180 0.8380 $0 -0.0810$ 2.3090 0.6070 H -1.2190 3.8710 1.1930 Si -2.5310 0.3490 0.0736
H 0. $9470 -2.0780$ 2. 9380 H $-0.2400 -0.7820$ 2. 8950 C 1. $0790 -0.7080$ 4. 6050 H 0. $4260 -1.3010$ 5. 2530 H 2. $1170 -0.9380$ 4. 8710 H 0. 9010 0. 3500 4. 8280 O -2.3340 2. 2830 0. 7240 C -1.1880 2. 8180 0. 8380 O -0.0810 2. 3090 0. 6070 H -1.2190 3. 8710 1. 1930 Si -2.5310 0. 3490 0. 0736
H -0. 2400 -0. 7820 2. 8950 C 1. 0790 -0. 7080 4. 6050 H 0. 4260 -1. 3010 5. 2530 H 2. 1170 -0. 9380 4. 8710 H 0. 9010 0. 3500 4. 8280 0 -2. 3340 2. 2830 0. 7240 C -1. 1880 2. 8180 0. 8380 0 -0. 0810 2. 3090 0. 6070 H -1. 2190 3. 8710 1. 1930 Si -2. 5310 0. 3490 0. 0734
C 1.0790 -0.7080 4.6050 H 0.4260 -1.3010 5.2530 H 2.1170 -0.9380 4.8710 H 0.9010 0.3500 4.8280 O -2.3340 2.2830 0.7240 C -1.1880 2.8180 0.8380 O -0.0810 2.3090 0.6070 H -1.2190 3.8710 1.1930 Si -2.5310 0.3490 0.0734
H 0.4260 -1.3010 5.2530 H 2.1170 -0.9380 4.8710 H 0.9010 0.3500 4.8280 O -2.3340 2.2830 0.7240 C -1.1880 2.8180 0.8380 O -0.0810 2.3090 0.6070 H -1.2190 3.8710 1.1930 Si -2.5310 0.3490 0.0734
H 2. 1170 -0. 9380 4. 8710 H 0. 9010 0. 3500 4. 8280 O -2. 3340 2. 2830 0. 7240 C -1. 1880 2. 8180 0. 8380 O -0. 0810 2. 3090 0. 6070 H -1. 2190 3. 8710 1. 1930 Si -2. 5310 0. 3490 0. 0734
H 0.9010 0.3500 4.8280 0 -2.3340 2.2830 0.7240 C -1.1880 2.8180 0.8380 0 -0.0810 2.3090 0.6070 H -1.2190 3.8710 1.1930 Si -2.5310 0.3490 0.073
0 -2.3340 2.2830 0.7240 C -1.1880 2.8180 0.8380 0 -0.0810 2.3090 0.6070 H -1.2190 3.8710 1.1930 Si -2.5310 0.3490 0.073
C -1.1880 2.8180 0.8380 0 -0.0810 2.3090 0.6070 H -1.2190 3.8710 1.1930 Si -2.5310 0.3490 0.073
0 -0.0810 2.3090 0.6070 H -1.2190 3.8710 1.1930 Si -2.5310 0.3490 0.0730
H -1.2190 3.8710 1.1930 Si -2.5310 0.3490 0.073
Si -2.5310 0.3490 0.073
H -2.5690 -1.1230 -0.4280
H -1.8030 0.0140 1.3390
H -1. 7850 0. 8420 -1. 1260
C -4. 4240 O. 5450 O. 1320
C -5. 2160 -0. 5780 -0. 1540
C -5.0960 1.7400 0.4380
C -6.6080 -0.5200 -0.1340
H -4.7310 -1.5210 -0.3970
H -4. 7310 -1. 5210 -0. 3970 C -6. 4880 1. 8080 0. 4560
H -4. 7310 -1. 5210 -0. 3970 C -6. 4880 1. 8080 0. 4560 H -4. 5130 2. 6240 0. 6680

Η	-7. 1910	-1. 4100	-0. 3580
Η	-6.9790	2. 7470	0.6950
Η	-8.3360	0. 7290	0. 1860
С	-1. 7660	-3. 5320	-0. 1220
0	-2. 7800	-3.9070	-0. 5540
0	-0.7300	-3.2160	0. 3120

TS2

Ν	2. 2470	0. 0330 -0. 3660	
С	2.8550	1.3340 0.1180	
Η	2.0040	1.9710 0.3710	
Η	3. 3930	1.1050 1.0370	
С	3. 7980	2.0390 -0.8500	
Η	3. 2800	2.3270 -1.7700	
Η	4. 6340	1.3890 -1.1350	
С	4. 3600	3.3020 -0.1890	
Η	4. 8940	3. 0250 0. 7300	
Η	3. 5300	3.9510 0.1150	
С	5. 3010	4.0680 -1.1170	
Η	4. 7810	4.3850 -2.0280	
Η	5.6930	4.9630 -0.6250	
Η	6. 1530	3.4470 -1.4150	
С	1. 3840	0.3430 -1.5830	
Η	2.0620	0.7010 -2.3610	
Η	0. 7330	1.1620 -1.2670	
С	0. 5400	-0.8070 -2.1160	
Η	-0. 1570	-1.1520 -1.3480	
Η	1.1560	-1.6650 -2.4080	
С	-0. 2610	-0.3380 -3.3350	
Η	-0.7500	0.6150 -3.1020	
Η	0. 4210	-0.1480 -4.1740	
С	-1.3220	-1.3600 -3.7360	
Η	-2.0460	-1.5000 -2.9250	
Η	-1.8700	-1.0320 -4.6240	
Η	-0.8710	-2.3350 -3.9570	
С	3. 2990	-0.9670 -0.7760	
Η	2.7590	-1.8580 -1.1000	
Η	3. 7960	-0.5500 -1.6560	

С	4. 3280	-1.3600	0. 2740
Η	4. 8280	-0. 4780	0.6900
Η	3.8420	-1.8840	1. 1030
С	5. 3820	-2. 2830	-0.3460
Η	4. 8860	-3. 1590	-0. 7840
Η	5.8830	-1.7610	-1. 1720
С	6. 4190	-2.7400	0. 6780
Η	7.1640	-3.3950	0. 2160
Η	6.9460	-1.8840	1. 1130
Η	5.9450	-3. 2950	1. 4960
С	1. 3290	-0. 5350	0. 7150
Η	0. 3700	-0. 0380	0. 5720
Η	1. 2070	-1. 5940	0. 4850
С	1. 7320	-0. 3310	2. 1710
Η	2.7790	-0. 5880	2.3650
Η	1. 5960	0. 7220	2. 4420
С	0. 8340	-1.1940	3.0640
Η	0. 9980	-2. 2530	2. 8280
Η	-0.2160	-0. 9860	2.8270
С	1. 0920	-0. 9450	4. 5470
Η	0. 4510	-1.5780	5. 1680
Η	2. 1350	-1.1610	4.8110
Η	0.8890	0.1000	4.8110
0	-2.3590	2. 2120	0.6750
С	-1.2140	2.7790	0. 7710
0	-0. 1080	2. 2710	0. 5780
Η	-1.2810	3.8450	1.0620
S	i -2.5240	0.3570	0. 2080
Η	-2. 5530	-1. 2210	-0. 1720
Η	-1.7810	0.0080	1. 4570
Η	-1.7930	0. 6350	-1.0650
С	-4. 4180	0. 4660	0. 2050
С	-5.1650	-0. 6070	-0. 3060
С	-5. 1310	1. 5740	0. 6920
С	-6.5580	-0. 5760	-0. 3380
H	-4. 6500	-1. 4860	-0. 6850
С	-6. 5230	1. 6060	0.6730
H	-4. 5840	2. 4220	1. 0870

 C
 -7. 2420
 0. 5310
 0. 1550

 H
 -7. 1080
 -1. 4210
 -0. 7450

 H
 -7. 0480
 2. 4750
 1. 0620

 H
 -8. 3290
 0. 5570
 0. 1370

 C
 -2. 0440
 -2. 8490
 -0. 1800

 0
 -2. 9280
 -3. 3700
 -0. 7720

 0
 -1. 0080
 -2. 8030
 0. 3980

I4

N -2.4060 -0.3300 0.0460 C -3.6810 -0.4230 0.8470 H -3. 5250 -1. 2370 1.5610 H -3.7570 0.5040 1.4160 C -4.9780 -0.6390 0.0760 H -4.9670 -1.5900 -0.4680 H -5. 1280 0. 1580 -0. 6610 C -6. 1630 -0. 6430 1.0480 Н -6. 1980 0. 3150 1.5830 H -6.0090 -1.4200 1.8080 C -7. 4920 -0. 8810 0. 3330 H -7. 4960 -1. 8490 -0. 1790 H -8.3260 -0.8720 1.0430 H -7.6800 -0.1040 -0.4170 C -2. 2270 -1. 6150 -0. 7500 H -3.0820 -1.6850 -1.4250 H -2. 2970 -2. 4310 -0. 0210 C -0.9300 -1.7040 -1.5460 H -0.0750 -1.4380 -0.9230 H -0.9340 -0.9900 -2.3730 C -0.7040 -3.1120 -2.1020 H -0.3970 -3.7840 -1.2900 H -1.6380 -3.5160 -2.5160 C 0.3670 -3.0760 -3.1930 H 1.2330 -2.4900 -2.8590 H 0.7150 -4.0830 -3.4500 H -0.0150 -2.6000 -4.1030 C -2. 4350 0. 8160 -0. 9490 H -1.5240 0.7490 -1.5520

Η	-3. 2940	0. 6290	-1.5990
С	-2. 4760	2. 2250	-0. 3860
Η	-3. 3280	2. 3920	0. 2890
Η	-1.5510	2. 4170	0. 1680
С	-2. 5280	3. 2140	-1.5540
Η	-1.6840	2.9930	-2. 2190
Η	-3. 4450	3.0530	-2. 1370
С	-2. 4660	4. 6660	-1.0850
Η	-2. 4990	5. 3570	-1.9340
Η	-3.3060	4. 9060	-0. 4210
Η	-1.5370	4.8560	-0. 5340
С	-1.2120	-0. 2050	0.9910
Η	-0. 9220	-1. 2280	1. 2510
Η	-0. 4190	0. 2390	0. 3830
С	-1. 4050	0.5900	2. 2800
Η	-1.8580	1. 5690	2.0970
Η	-2.0660	0.0590	2.9770
С	-0.0470	0. 7970	2.9610
Η	0. 6460	1. 2970	2. 2700
Η	0. 3980	-0. 1810	3. 1880
С	-0. 1770	1. 6080	4. 2520
Η	0. 7980	1. 7410	4. 7310
Η	-0. 5890	2. 6030	4. 0480
Η	-0.8390	1.1090	4.9680
0	3. 4160	-2. 2760	1.1310
С	2. 6230	-3. 2780	1. 4680
0	1. 4210	-3.3060	1. 2960
Η	3. 1810	-4. 1020	1.9380
S	i 2.6730	0 -0. 9010	0.3380
Η	2. 1430	1. 1060	-2. 3140
Η	1. 6860	-0. 3980	1. 2950
Η	2. 1210	-1.5110	-0.8900
С	4. 1530	0. 2100	0. 0840
С	3.9910	1. 5910	-0. 1200
С	5. 4550	-0.3100	0. 1160
С	5.0970	2. 4190	-0. 2880
H	2. 9850	2.0000	-0. 1510
C	6. 5620	0. 5170	-0. 0590

Η	5.6080	-1.3730	0. 2840
С	6. 3840	1. 8840	-0. 2600
Н	4. 9550	3. 4860	-0. 4400
Н	7. 5620	0. 0930	-0. 0370
Н	7. 2470	2. 5320	-0. 3890
С	1. 0850	1. 1070	-1.9380
0	0. 1800	1. 0840	-2. 7960
0	0.9500	1. 1360	-0. 6810

Ρ

Ν	-1. 5300	0.	2990	-0.0400
С	-2. 2780	0.	6660	1. 2220
Η	-1. 5250	1.	0560	1.9140
Η	-2.9430	1.	4890	0.9620
С	-3.0710	-0.	4780	1.8460
Η	-2. 4060	-1.	1290	2. 4220
Η	-3. 5210	-1.	1130	1.0720
С	-4. 1730	0.	0610	2. 7610
Η	-4. 8550	0.	6910	2. 1730
Η	-3. 7420	0.	7080	3. 5380
С	-4.9630	-1.	0760	3. 4070
Η	-4. 3150	-1.	6930	4. 0390
Η	-5.7780	-0.	6920	4. 0290
Η	-5.3930	-1.	7270	2. 6380
С	-0.6560	-0.	9040	0. 2840
Η	-1.3320	-1.	7320	0. 5340
Η	-0.0730	-0.	6190	1.1660
С	0. 2630	-1.	3860	-0. 8300
Η	1.0260	-0.	6420	-1.0920
Η	-0.3130	-1.	5930	-1.7390
С	0.9550	-2.	6790	-0.3860
Η	1. 4740	-2.	5030	0. 5670
Η	0. 1840	-3.	4310	-0.1900
С	1.9550	-3.	1840	-1. 4240
Η	2. 7480	-2.	4480	-1.6070
Η	2. 4320	-4.	1110	-1.0910
Η	1. 4580	-3.	3880	-2.3790
С	-2. 4760	-0.	0900	-1.1680

360 430 620 820
430 620 820
620 820
820
800
830
070
990
860
240
760
300
040
950
710
770
350
020
960
930
790
380
010
880
710
710 400
710 400 090
710 400 090 560
710 400 090 560 5170
710 400 090 560 5170 750
710 400 090 560 5170 750 130
710 400 090 560 5170 750 130 660
710 400 090 560 5170 750 130 660 110
710 400 090 560 5170 750 130 660 110 410
710 400 090 560 5170 750 130 660 110 410 480
710 400 090 560 5170 750 130 660 110 410 480 370

C 5.9070 -2.2930 -0.0530 H 4.0130 -2.0580 0.9240 C 6.9100 -1.6740 -0.7930 H 7.5790 0.1540 -1.7160 H 5.9920 -3.3420 0.2120 H 7.7810 -2.2410 -1.1070 C -3.3750 -3.5690 -0.0730 0 -2.2250 -3.5370 0.4210 0 -4.0870 -2.6120 -0.4650