Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information for:

C–F activation Reactions at Germylium Ions: Dehydrofluorination of Fluoralkanes

M. Talavera, G. Meißner, S. G. Rachor, T. Braun*

Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany

1. Materiais and Methods	
2. Synthesis of Germylium Ions	2
3. Stoichiometric C-F Bond Activation Reactions	6
4. General Procedures for Catalytic C–F Bond Activation Reactions	7
5. X-Ray Diffraction Analysis	10
6. Mass and NMR spectra	12
7. References	29

1. Materials and Methods

The samples were prepared in a glovebox and the reactions performed in JYoung NMR tubes using conventional Schlenk techniques. Benzene and hexane were dried over K-Solvona[®] and distilled before usage. *o*-Dichlorobenzene was stored over molecular sieve. All reagents were obtained from commercial sources and used as received.

NMR spectra were acquired at a Bruker DPX 300, Bruker AVANCE II 300 spectrometer at room temperature with tetramethylsilane as external standard. 1H NMR and $^{13}C\{^1H\}$ NMR chemical shifts (δ) were referenced to residual o-C $_6D_4Cl_2$ (δ = 7.17 ppm and δ = 132.6 ppm, respectively). ^{19}F NMR spectra were calibrated externally to CFCl $_3$; ^{11}B NMR spectra to external BF $_3$ ·OEt $_2$ and $^{31}P\{^1H\}$ NMR spectra to external 85% H $_3PO_4$. NMR assignments were supported by 1H - 1H COSY, 1H - 1G C HMQC, 1H - 1G C HMBC, $^1H\{^{19}F\}$ and $^1H\{^{31}P\}$ experiments.

LIFDI-TOF-MS was measured with a Micromass Q-TOF-2 mass spectrometer, equipped with a Linden LIFDI source (Linden CMS GmbH). GC-MS was measured with an Agilent 6890N gas-phase chromatograph (Agilent 19091S-433 Hewlett-Packard) with an Agilent 5973 Network mass selective detector at 70 eV.

2. Synthesis of Germylium Ions

Synthesis of $[Et_3Ge][B(C_6F_5)_4]$ (1a)

 $[Ph_3C][B(C_6F_5)_4]$ (50.0 mg, 54 µmol) and Et_3GeH (8.7 µL, 54 µmol) were dissolved in C_6D_6 (0.4 mL) and strirred for 5 min at room temperature. The colourless top phase was removed and the yellow bottom phase was washed with C_6D_6 (3 x 0.3 mL). For characterisation, the isolated yellow bottom phase was dissolved in o- $C_6D_4Cl_2$ (0.3 mL). A quantitative conversion of the starting materials based on the 1H NMR spectrum yielded $\bf 1a$.

¹**H NMR** (300 MHz, o-C₆D₄Cl₂): δ = 1.23-1.13 (m, 6H, CH₂CH₃); 1.12-1.02 (m, 9H, CH₂CH₃) ppm.

¹³C{¹H} NMR (75 MHz, o-C₆D₄Cl₂): δ = 149.0 (dm, ${}^{1}J_{C,F}$ = 240 Hz, CF); 138.8 (dm, ${}^{1}J_{C,F}$ = 243 Hz, CF); 137.0 (dm, ${}^{1}J_{C,F}$ = 244 Hz, CF); 14.5 (br s, CH₂); 7.9 (s, CH₃) ppm. The signal for the C_{ipso} of the anion could not be observed due to overlapping with the solvent signals.

¹⁹**F NMR** (280 MHz, o-C₆D₄Cl₂): δ = -132.1 (m, 8F, CF); -162.5 (t, ${}^{3}J_{F,F}$ = 21 Hz, 4F, p-CF); -166.4 (m, 8F, CF) ppm.

¹¹**B NMR** (96 MHz, *o*-C₆D₄Cl₂): δ = -16.4 (s) ppm.

MS (LIFDI, o-C₆H₄Cl₂): m/z = 161 [Et₃Ge]⁺; 133 [Et₂GeH]⁺

Synthesis of $[Ph_3Ge][B(C_6F_5)_4]$ (1b)

[Ph₃C][B(C₆F₅)₄] (50.0 mg, 54 μ mol) and Ph₃GeH (16.5 mg, 54 μ mol) were dissolved in C₆D₆ (0.4 mL) and strirred for 5 min at room temperature. The colourless top phase was removed and the yellow bottom phase was washed with C₆D₆ (3 x 0.3 mL). For characterisation, the isolated yellow bottom phase was dissolved in o-C₆D₄Cl₂ (0.3 mL) and the formation of **1b** was observed. Note that formation of B(C₆F₅)₃ was also detected (18% based on the ¹⁹F NMR spectrum).

¹**H NMR** (300 MHz, o-C₆D₄Cl₂): δ = 7.82-7.68 (m, 9H, Ph); 7.68-7.56 (m, 6H, Ph) ppm.

¹³C{¹H} NMR (75 MHz, o-C₆D₄Cl₂): δ = 149.0 (dm, ${}^{1}J_{C,F}$ = 239 Hz, CF); 138.8 (dm, ${}^{1}J_{C,F}$ = 244 Hz, CF); 136.9 (dm, ${}^{1}J_{C,F}$ = 248 Hz, CF); 135.7 (s, C_{ar}), 134.9 (s, C_{ipso}); 130.2 (s, C_{ar}) ppm. The signal for the C_{ipso} of the anion and the remaining signal of the phenyl ligands could not be observed due to overlapping with the solvent signals.

¹⁹**F NMR** (280 MHz, o-C₆D₄Cl₂): δ = -131.3 (m, 8F, CF); -161.8 (t, ${}^{3}J_{F,F}$ = 21 Hz, 4F, p-CF); -165.7 (m, 8F, CF) ppm.

¹¹**B NMR** (96 MHz, o-C₆D₄Cl₂): δ = -16.3 (s) ppm.

MS (LIFDI, o-C₆H₄Cl₂): m/z = 305 [Ph₃Ge]⁺.

Synthesis of $[nBu_3Ge][B(C_6F_5)_4]$ (1c)

[Ph₃C][B(C₆F₅)₄] (50.0 mg, 54 μ mol) and nBu₃GeH (13.9 μ L, 54 μ mol) were dissolved in C₆D₆ (0.4 mL) and strirred for 5 min at room temperature. The colourless top phase was removed and the yellow bottom phase was washed with C₆D₆ (3 x 0.3 mL). For characterisation, the isolated yellow bottom phase was dissolved in o-C₆D₄Cl₂ (0.3 mL). The quantitative conversion of the starting materials based on the ¹H NMR spectrum yielded **1c**.

¹H NMR (300 MHz, o-C₆D₄Cl₂): δ = 1.57-1.47 (m, 12H, C H_2 CH₂CH₂CH₃); 1.47-1.33 (m, 6H, CH₂CH₂CH₂CH₃); 1.02 (tm, ${}^3J_{H,H}$ = 7.0 Hz, 9H, C H_3) ppm.

¹³C{¹H} NMR (75 MHz, o-C₆D₄Cl₂): δ = 148.9 (dm, ${}^{1}J_{C,F}$ = 244 Hz, CF); 138.7 (dm, ${}^{1}J_{C,F}$ = 243 Hz, CF); 136.8 (dm, ${}^{1}J_{C,F}$ = 245 Hz, CF); 25.9 and 25.6 (s, CH₂); 23.5 (br s, CH₂); 13.2 (s, CH₃) ppm. The signal for the C_{ipso} of the anion could not be observed due to overlapping with the solvent signals.

¹⁹**F NMR** (280 MHz, o-C₆D₄Cl₂): δ = -131.7 (m, 8F, CF); -162.3 (t, ${}^{3}J_{F,F}$ = 21 Hz, 4F, p-CF); -166.1 (m, 8F, CF) ppm.

¹¹**B NMR** (96 MHz, o-C₆D₄Cl₂): δ = -16.2 (s) ppm.

MS (LIFDI, o-C₆H₄Cl₂): m/z = 245 [nBu_3Ge]⁺; 189 [nBu_2GeH]⁺.

Reaction of the germylium ion 1a with Et₃GeH: Formation of 2a

Reaction using 1 equivalent of Et₃GeH:

[Ph₃C][B(C₆F₅)₄] (50.0 mg, 54 μmol) and Et₃GeH (9.8 μL, 59 μmol) were dissolved in C₆D₆ (0.4 mL) and strirred for 5 min at room temperature. The colourless top phase was removed and the yellow bottom phase was washed with C₆D₆ (3 x 0.3 mL). A second equivalent Et₃GeH (9.8 μL, 59 μmol) in C₆D₆ (0.3 mL) was added to the germylium ion **1a** and the bottom phase turned colourless. For characterisation, the isolated colourless bottom phase was dissolved in o-C₆D₄Cl₂ (0.3 mL). The quantitative conversion of **1a** based on the ¹H NMR spectrum yielded [Et₃Ge-H-GeEt₃][B(C₆F₅)₄] (**2a**).

¹**H NMR** (300 MHz, o-C₆D₄Cl₂): δ = 2.08 (s br, 1H, Ge-H-Ge); 1.50-1.06 (m, 30H, CH₂CH₃) ppm.

¹³C{¹H} NMR (75 MHz, o-C₆D₄Cl₂): δ = 149.0 (dm, ${}^{1}J_{C,F}$ = 242 Hz, CF); 138.8 (dm, ${}^{1}J_{C,F}$ = 245 Hz, CF); 136.9 (dm, ${}^{1}J_{C,F}$ = 244 Hz, CF); 9.7 (br s, CH₂); 9.0 (s br, CH₃) ppm. The signal of the C_{ipso} of the anion could not be observed due to overlapping with the solvent signals.

¹⁹**F NMR** (280 MHz, o-C₆D₄Cl₂): δ = -131.8 (m, 8F, CF); -162.4 (t, ${}^{3}J_{F,F}$ = 21 Hz, 4F, p-CF); -166.2 (m, 8F, CF) ppm.

¹¹**B NMR** (96 MHz, o-C₆D₄Cl₂): δ = -16.1 (s) ppm.

Reaction using different equivalents of Et₃GeH:

Et₃GeH (5 μL, 32 μmol) was added to the solution of **2a** (32 μmol of trityl salt) in o-C₆D₄Cl₂ and the mixture stirred for 5 min at room temperature. ¹H NMR spectrum confirmed the consumption of the Et₃GeH. Then, more Et₃GeH (8 μL, 50 μmol) was added to the solution. NMR data confirmed the formation of GeEt₄ and traces of Et₂GeH₂.

Reaction of the germylium ion 1b with Ph₃GeH: Formation of 2b

 $[Ph_3C][B(C_6F_5)_4]$ (50.0 mg, 54 μmol) and Ph_3GeH (16.5 mg, 54 μmol) were dissolved in C_6D_6 (0.4 mL) and strirred for 5 min at room temperature. The colourless top phase was removed and the yellow bottom phase was washed with C_6D_6 (3 x 0.3 mL). A second equivalent Ph_3GeH (16.5 mg, 54 μmol) in C_6D_6 (0.3 mL) was added to the germylium ion **1b** and the bottom phase turned colourless. For characterisation, the isolated colourless bottom phase corresponding to $[Ph_3Ge-H-GePh_3][B(C_6F_5)_4]$ (**2b**) was dissolved in o- $C_6D_4Cl_2$ (0.3 mL). Note that formation of $B(C_6F_5)_3$ was also observed.

¹**H NMR** (300 MHz, o-C₆D₄Cl₂): δ = 7.75-7.61 (m, 9H, H_{ar}); 7.61-7.51 (m, 6H, H_{ar}); 5.40 (s br, 1H, Ge-H-Ge) ppm.

¹³C{¹H} NMR (75 MHz, o-C₆D₄Cl₂): δ = 148.9 (dm, ${}^{1}J_{C,F}$ = 240 Hz, CF); 138.6 (dm, ${}^{1}J_{C,F}$ = 243 Hz, CF); 136.8 (dm, ${}^{1}J_{C,F}$ = 242 Hz, CF); 135.5 (s, C_{ar}); 129.1 (s, C_{ar}) ppm. The signal for the C_{ipso} of the anion and the remaining signals of the phenyl ligands could not be observed due to overlapping with the solvent signals and with the signals corresponding to B(C₆F₅)₃.

¹⁹**F NMR** (280 MHz, o-C₆D₄Cl₂): δ = -131.7 (m, 8F, CF); -162.2 (t, ${}^{3}J_{F,F}$ = 21 Hz, 4F, p-CF); -166.1 (m, 8F, CF) ppm.

¹¹**B NMR** (96 MHz, o-C₆D₄Cl₂): δ = -16.1 (s) ppm.

Reaction of the germylium ion 1c with nBu₃GeH: Formation of 2c

[Ph₃C][B(C₆F₅)₄] (50.0 mg, 54 μmol) and nBu₃GeH (13.9 μL, 54 μmol) were dissolved in C₆D₆ (0.4 mL) and strirred for 5 min at room temperature. The colourless top phase was removed and the yellow bottom phase was washed with benzene (3 x 0.3 mL). A second equivalent nBu₃GeH (13.9 μL, 54 μmol) in C₆D₆ (0.3 mL) was added to the germylium ion **1c** and the bottom phase turned colourless. For characterisation, the isolated colourless bottom phase was dissolved in o-C₆D₄Cl₂ (0.3 mL). The quantitative conversion of the starting materials based on the ¹H NMR spectrum yielded [nBu₃Ge-H-GenBu₃][B(C₆F₅)₄] (**2c**).

¹**H NMR** (300 MHz, o-C₆D₄Cl₂): δ = 1.97 (s br, 1H, Ge-H-Ge); 1.75-1.42 (m, 36H, CH₂CH₂CH₂CH₃); 1.09 (tm, ${}^3J_{H,H}$ = 7.1 Hz, 18H, CH₃) ppm.

¹³C{¹H} NMR (75 MHz, o-C₆D₄Cl₂): δ = 148.9 (dm, ${}^{1}J_{C,F}$ = 242 Hz, CF); 138.8 (dm, ${}^{1}J_{C,F}$ = 244 Hz, CF); 136.9 (dm, ${}^{1}J_{C,F}$ = 244 Hz, CF); 27.4, 26.1 and 18.1 (all s, CH₂); 13.6 (s, CH₃) ppm. The signal of the C_{ipso} of the anion could not be observed due to overlapping with the solvent signals.

¹⁹**F NMR** (280 MHz, o-C₆D₄Cl₂): δ = -131.7 (m, 8F, CF); -162.5 (t, ${}^{3}J_{F,F}$ = 21 Hz, 4F, p-CF); -166.2 (m, 8F, CF) ppm.

¹¹**B NMR** (96 MHz, o-C₆D₄Cl₂): δ = -16.2 (s) ppm.

Synthesis of $[Et_3Ge-OH_2][B(C_6F_5)_4]$ (3)

Degassed H_2O (1 μ l, 55 μ mol) was added to a solution of $[Et_3Ge][B(C_6F_5)_4]$ (43 μ mol) in o- $C_6D_4Cl_2$ (0.4 mL) and strirred for 5 min at room temperature. The quantitative conversion of the germylium ion yielded compound **3**. Crystals were obtained by adding hexane (0.4 mL) to a solution of **3** in o- $C_6H_4Cl_2$ (0.2 mL).

¹**H NMR** (300 MHz, o-C₆D₄Cl₂): δ = 5.1 (s, vbr, OH₂); 1.33-1.12 (m, CH₂CH₃) ppm.

¹⁹**F NMR** (280 MHz, o-C₆D₄Cl₂): δ = -131.4 (m, 8F, CF); -162.0 (t, ${}^{3}J_{F,F}$ = 21 Hz, 4F, p-CF); -165.8 (m, 8F, CF) ppm.

Synthesis of $[Et_3Ge-PEt_3][B(C_6F_5)_4]$ (4a)

PEt₃ (5 μ l, 35 μ mol) was added to a solution of *in situ* synthesized [Et₃Ge][B(C₆F₅)₄] (32 μ mol of [Ph₃C][B(C₆F₅)₄]) in o-C₆D₄Cl₂ (0.4 mL) and the reaction mixture was strirred for 5 min at room temperature. Then, the excess of triethylphosphine was removed in vacuum, and the oily product **4a** obtained in a quantitative conversion (based on the ¹H and ³¹P{¹H} NMR spectra) was dissolved in o-C₆D₄Cl₂ for characterisation.

³¹**P**{¹**H**} **NMR** (121 MHz, o-C₆D₄Cl₂): δ = 1.94 (s, PEt₃) ppm.

¹**H NMR** (300 MHz, o-C₆D₄Cl₂): δ = 1.83 (dq, ${}^2J_{H,P}$ = 11.4 Hz, 6H, CH₂P); 1.31-1.01 (m, 24H, GeCH₂CH₃ + CH₃CH₂P) ppm.

¹³C{¹H} NMR (75 MHz, o-C₆D₄Cl₂): δ = 148.9 (dm, ${}^{1}J_{C,F}$ = 238 Hz, CF); 138.8 (dm, ${}^{1}J_{C,F}$ = 246 Hz, CF); 136.9 (dm, ${}^{1}J_{C,F}$ = 245 Hz, CF); 18.5 (d, ${}^{1}J_{C,P}$ = 64 Hz, CH₂P); 8.3, 7.6, 6.8 (all s, $CH_{3}CH_{2}CH_$

¹⁹**F NMR** (280 MHz, o-C₆D₄Cl₂): δ = -131.8 (m, 8F, CF); -162.3 (t, ${}^{3}J_{F,F}$ = 21 Hz, 4F, p-CF); -166.1 (m, 8F, CF) ppm.

¹¹**B NMR** (96 MHz, o-C₆D₄Cl₂): δ = -16.2 (s) ppm.

Synthesis of $[Et_3Ge-PPh_3][B(C_6F_5)_4]$ (4b)

PPh₃ (8.5 mg, 32 μmol) was added to a solution of *in situ* synthesized [Et₃Ge][B(C₆F₅)₄] (32 μmol of [Ph₃C][B(C₆F₅)₄]) in o-C₆D₄Cl₂ (0.4 mL) and the reaction mixture was strirred for 5 min at room temperature. The quantitative conversion of the phosphine according to the ¹H and ³¹P{¹H} NMR spectra yielded compound **4b**.

³¹P{¹H} NMR (121 MHz, o-C₆D₄Cl₂): δ = 2.33 (s br, PPh₃) ppm.

¹H NMR (300 MHz, o-C₆D₄Cl₂): δ = 7.66 (pseudo q, $J_{H,H}$ = 7.6 Hz, 3H, p-(C₆ H_5)₃P); 7.59 (tdm, $J_{H,H}$ = 7.6, ${}^4J_{H,P}$ = 2.3 Hz, 6H, m-(C₆ H_5)₃P); 7.53 (dm, ${}^3J_{H,P}$ = 11.8 Hz, 3H, o-(C₆ H_5)₃P); 7.48 (dm, ${}^3J_{H,P}$ = 11.7 Hz, 3H, o-(C₆ H_5)₃P); 1.39-1.25 (m, 6H, C H_2 CH₃); 1.22-1.10 (m, 9H, CH₂CH₃) ppm.

¹³C{¹H} NMR (75 MHz, o-C₆D₄Cl₂): δ = 149.0 (dm, ${}^{1}J_{C,F}$ = 240 Hz, CF); 138.8 (dm, ${}^{1}J_{C,F}$ = 244 Hz, CF); 136.9 (dm, ${}^{1}J_{C,F}$ = 245 Hz, CF); 133.5 (d, ${}^{2}J_{C,P}$ = 13 Hz, o-($C_{6}H_{5}$)₃P); 128.4 and 128.1 (s br, ($C_{6}H_{5}$)₃P); 8.7 (s, CH₃); 8.4 (br s, CH₂) ppm. The signasl for the C_{ipso} of the anion and the phosphine ligand could not be observed due to overlapping with the solvent signals.

¹⁹**F NMR** (280 MHz, o-C₆D₄Cl₂): δ = -131.7 (m, 8F, CF); -162.4 (t, ${}^{3}J_{F,F}$ = 21 Hz, 4F, p-CF); -166.2 (m, 8F, CF) ppm.

¹¹**B NMR** (96 MHz, o-C₆D₄Cl₂): δ = -16.2 (s) ppm.

Reaction of 1a with Et₃GeF: Formation of 5a

[Ph₃C][B(C₆F₅)]₄ (35.0 mg, 38 μmol) and Et₃GeH (6.2 μL, 38 μmol) were dissolved in C₆D₆ (0.4 mL) and the solution was strirred for 5 min at room temperature. The colourless top phase was removed and the yellow bottom phase was washed with C₆D₆ (3 x 0.3 mL). An equivalent of Et₃GeF (5.9 μL, 38 μmol) was added to the germylium ion **1a** in C₆D₆. For characterisation, the isolated light yellow bottom phase was dissolved in o-C₆D₄Cl₂ (0.3 mL). The quantitative conversion of **1a** and the fluorogermane based on the ¹H NMR and ¹⁹F{¹H} spectra yielded [Et₃Ge-F-GeEt₃][B(C₆F₅)₄] (**5a**).

¹**H NMR** (300 MHz, o-C₆D₄Cl₂): δ = 1.37-1.04 (m, CH₂CH₃) ppm.

¹³C{¹H} NMR (75 MHz, o-C₆D₄Cl₂): δ = 148.9 (dm, ${}^{1}J_{C,F}$ = 243 Hz, CF); 138.8 (dm, ${}^{1}J_{C,F}$ = 245 Hz, CF); 136.8 (dm, ${}^{1}J_{C,F}$ = 245 Hz, CF); 9.4 (s br, CH₂); 7.1 (s, CH₃) ppm. The signal of the C_{ipso} of the anion could not be observed due to overlapping with the solvent signals.

¹⁹**F NMR** (280 MHz, o-C₆D₄Cl₂): δ = -131.7 (m, 8F, CF); -162.3 (t, ${}^{3}J_{F,F}$ = 20.7 Hz, 4F, p-CF); -166.2 (m, 8F, CF); -196.9 (s br, 1F, Ge-F-Ge) ppm.

¹¹**B NMR** (96 MHz, o-C₆D₄Cl₂): δ = -16.2 (s) ppm.

Reaction of 1b with Ph₃GeF: Formation of 5b

[Ph₃C][B(C₆F₅)₄] (30.0 mg, 32 μmol) and Ph₃GeH (9.91 mg, 32 μmol) were dissolved in C₆D₆ (0.4 mL) and reaction mixture was strirred for 5 min at room temperature. The colourless top phase was removed and the yellow bottom phase was washed with C₆D₆ (3 x 0.3 mL). Then, Ph₃GeF (10.5 mg, 32 μmol) in C₆D₆ (0.3 mL) was added to germylium ion **1b**. For characterisation, the isolated light yellow bottom phase was dissolved in o-C₆D₄Cl₂ (0.3 mL). The quantitative conversion of **1b** and the fluorogermane based on the ¹H NMR and ¹⁹F{¹H} spectra yielded [Ph₃Ge-F-GePh₃][B(C₆F₅)₄] (**5b**).

¹**H NMR** (300 MHz, *o*-C₆D₄Cl₂): δ = 7.8-7.34 (m, H_{ar}) ppm.

¹³C{¹H} NMR (125 MHz, o-C₆D₄Cl₂): δ = 149.1 (dm, ${}^{1}J_{C,F}$ = 242 Hz, CF); 138.9 (dm, ${}^{1}J_{C,F}$ = 244 Hz, CF); 136.7 (dm, ${}^{1}J_{C,F}$ = 248 Hz, CF); 134.7 (s, C_{ar}); 129.6 (s, C_{ar}); 128.6 (s, C_{ar}) ppm. Both signals for C_{ipso} could not be observed due to overlapping with the solvent's signals.

¹⁹**F NMR** (280 MHz, o-C₆D₄Cl₂): δ = -131.6 (m, 8F, CF); -162.4 (t, ${}^{3}J_{F,F}$ = 21 Hz, 4F, p-CF); -166.1 (m, 8F, CF); -170.4 (s br, 1F, Ge-F-Ge) ppm.

¹¹**B NMR** (96 MHz, o-C₆D₄Cl₂): δ = -16.1 (s) ppm.

3. Stoichiometric C-F Bond Activation Reactions.

Formation of 5 and 1,2-dichloro-4-cyclohexylbenzene-d₃

In a JYoung NMR tube, $[R_3Ge][B(C_6F_5)_4]$ (R= Et (1a), nBu (1c)) (32 μ mol) or $[R_3Ge-H-GeR_3][B(C_6F_5)_4]$ (R= Et (3a), nBu (3c)) (32 μ mol) was dissolved in $^o-C_6D_4Cl_2$ (0.4 mL). Then fluorocyclohexane (3.6 μ L, 32 μ mol) was added. After 5 minutes, full conversion of the fluorocyclohexane and formation of 1,2-dichloro-4-cyclohexylbenzene-d₃ together with the formation of species such as $[R_3Ge-F-GeR_3][B(C_6F_5)_4]$ (R= Et (5a), nBu (5c)) were observed. The Friedel Craft product was identify based on the non-deuterated derivative described in the literature. [1]

NMR data for R = nBu (5c):

¹**H NMR** (300 MHz, o-C₆D₄Cl₂): δ = 1.70-1.43 (m, 36H, CH₂CH₂CH₂CH₃); 1.14-1.04 (m, 18H, CH₃) ppm.

¹³C{¹H} NMR (75 MHz, o-C₆D₄Cl₂): δ = 148.9 (dm, ${}^{1}J_{C,F}$ = 243 Hz, CF); 138.8 (dm, ${}^{1}J_{C,F}$ = 244 Hz, CF); 136.9 (dm, ${}^{1}J_{C,F}$ = 244 Hz, CF); 26.1, 25.6 and 18.7 (all s, CH₂); 13.6 (s, CH₃) ppm. The signal of the C_{ipso} of the anion could not be observed due to overlapping with the solvent's signals.

¹⁹**F NMR** (280 MHz, o-C₆D₄Cl₂): δ = -131.7 (m, 8F, CF); -162.4 (t, ${}^{3}J_{F,F}$ = 20.7 Hz, 4F, p-CF); -166.2 (m, 8F, CF); -201.6 (s br, Ge-F-Ge) ppm.

4. General Procedures for Catalytic C–F Bond Activation Reactions

Activation of fluorocyclohexane

In a JYoung NMR tube, $[Ph_3C][B(C_6F_5)_4]$ (9.2 mg, 0.01 mmol) was dissolved in o- $C_6D_4Cl_2$ (0.4 mL). Then, R_3GeH (R = Et, nBu) (0.2 or 0.4 mmol) and fluorocyclohexane (0.1 or 0.2 mmol) were added. H_2 evolution was observed. The reactions were performed either at room temperature or under heating (Table S1). The reaction progress was monitored by 1H and ^{19}F NMR spectroscopy. For the reaction without solvent, same procedure was used and after the reaction time C_6D_6 was added in order to measure the NMR. The products were identified by their characteristic signals in the 1H or ^{19}F NMR spectra (Tables S3 and S4).

Table S1. C-F activation of fluorocyclohexane by germylium ions.

R	T (°C)	Time	Conversion (%) ^a	Products ratio
Et	rt	30 min	100	7:1
Et^b	rt	5 h	99	12:1
Etc	100	1 d	100	10:1
Et^d	rt	30 min	100	5:1
<i>n</i> Bu	rt	4 d	23	1:0
<i>n</i> Bu	65	2 h	100	3:1

a) Based on consumption of fluorocyclohexane by integration of the ¹⁹F NMR spectra. b) 2.5 mol% of catalyst. c) Compound **4b** as catalytic precursor. d) Reaction in neat conditions

Activation of other fluorinated substrates

In a JYoung NMR tube, $[Ph_3C][B(C_6F_5)_4]$ (9.2 mg, 0.01 mmol) was dissolved in o- $C_6D_4Cl_2$ (0.4 mL). Then, Et_3GeH (0.2 or 0.4 mmol) and the fluorinated substrate (0.1 or 0.2 mmol) were added. H_2 evolution was observed. The Reactions took place at room temperature or at 65°C (Table S2). The reaction

¹¹**B NMR** (96 MHz, o-C₆D₄Cl₂): δ = -16.2 (s) ppm.

progress was monitored by ^{1}H and ^{19}F NMR spectroscopy. The products were identified by characteristic signals in the ^{1}H or ^{19}F NMR spectra (Tables S3 and S4).

$$F = \frac{[Ph_{3}C][B(C_{6}F_{5})_{4}] \text{ (mol\%)}}{2 \text{ Et}_{3}\text{GeH}} + \frac{}{o \cdot C_{6}D_{4}\text{Cl}_{2}} + \dots + \frac{}{o \cdot C_{6}D_$$

Table S2. Dehydrofluorination reaction by germylium ions

Substrate	Mol%	T (°C)	Time	Conversion (%) ^a
F	5	rt	1 d ^b	62
	10	rt	1 d ^c	73
	5	65	6 h 30 min	99
	10	65	3 h	100
	10 ^d	65	4 h	99
F	10	65	5 h	100
F	10	65	1 w	99
F ₃ C F F	10	65	3d	5

a) Based on consumption of fluorocyclohexane by integration of the ¹⁹F NMR spectra. b) 3d, 66% conversion. c) 3d, 77% conversion. d) *n*Bu₃GeH used as hydrogen source.

 Table S3 Selected NMR resonances of substrates in ortho-dichlorobenzene

Substrate	δ (1 H NMR) [ppm]	δ (19 F NMR) [ppm]
Et₃GeH	3.96 (hept, ${}^{3}J_{H,H}$ = 2.8 Hz, 1H, HGe); 1.26 (t, ${}^{3}J_{H,H}$ = 7.9 Hz, 9H, CH ₃); 0.99 (qd, ${}^{3}J_{H,H}$ = 7.9, ${}^{3}J_{H,H}$ = 2.8 Hz, 6H, CH ₂)	-
Et₃GeF	1.29-1.24 (m, 9H, CH ₃); 1.23-1.15 (m, 6H, CH ₂)	-211.5 (hept br, ³ J _{F,H} = 5 Hz)
nBu₃GeH	4.04 (hept, ${}^{3}J_{H,H}$ = 3.0 Hz, 1H, HGe); 1.69-1.47 (m, 12H, Ge(CH ₂) ₂); 1.11 (t, ${}^{3}J_{H,H}$ = 7.1 Hz, 9H, CH ₃); 1.07-0.99 (m, 6H, CH ₂ CH ₃)	-
Ph₃GeH	7.77-7.68 (m, 6H, H _{ar}); 7.57-7.46 (m, 9H, H _{ar}); 5.94 (s, 1H, HGe)	-
Ph₃GeF	7.89-7.81 (m, 6H, H _{ar}); 7.64-7.52 (m, 9H, H _{ar})	-200.9 (s)
Fluoropentane	4.51 (dt, ${}^{2}J_{H,F} = 47.6$, ${}^{3}J_{H,H} = 6.2$ Hz, 2H, CH ₂ F); 1.76 (dm, ${}^{3}J_{H,F} = 24.4$ Hz, 2H, CH ₂ CH ₂ F); 1.51-1.37 (m, 2H, CH ₂ CH ₃); 1.06-1.00 (m, 3H, CH ₂ CH ₃)	-216.7 (hept, ² J _{F,H} = 24 Hz)
Fluorocyclohexane	4.66 (dtt, ${}^2J_{H,F} = 48.9$, ${}^3J_{H,H} = 7.8$, ${}^3J_{H,H} = 3.9$ Hz, 1H, CHF); 2.02-1.88 (m, 2H, CH ₂); 1.88-1.79 (m, 2H, CH ₂); 1.79-1.66 (m, 2H, CH ₂); 1.60-1.48 (m, 2H, CH ₂); 1.48-1.34 (m, 2H, CH ₂)	-172.2 (s br)
Fluoroethane	4.57 (dq, ${}^{2}J_{H,F} = 47.0$, ${}^{3}J_{H,H} = 7.0$ Hz, 2H, CH ₂ F); 1.42 (dt, ${}^{2}J_{H,F} = 26.0$, ${}^{3}J_{H,H} = 7.0$ Hz, 3H, CH ₃)	-209.9 (tq, ${}^{2}J_{F,H} = 70$, ${}^{2}J_{F,H} = 26$ Hz)
1,1,1,3,3- Pentafluorobutane	2.76 (tq, ${}^{3}J_{H,F} = 13.6$, ${}^{3}J_{H,F} = 10.3$ Hz, 2H, CH ₂); 1.78 (t, ${}^{3}J_{H,F} = 18.7$, 3H, CH ₃)	-61.8 (pseudo pent, ${}^3J_{F,H} \approx {}^4J_{F,F} =$ 10 Hz, CF ₃); - 86.8 (m, CF ₂)

Table S4 Selected NMR resonances of products in *ortho*-dichlorobenzene

Product	δ (¹ H NMR) [ppm]	δ (19 F NMR) [ppm]
Z-2-pentene	5.60-5.50 (m, 2H, CH=CH); 1.75 (dm, ³ J _{H,H} = 5.2 Hz, H ₃ C-C=C)	
E-2-pentene	5.66-5.48 (m, 2H, CH=CH); 1.80 (dm, ${}^{3}J_{H,H} = 5.9 \text{ Hz}$, $H_{3}C\text{-C=C}$)	
cyclohexene	5.86-5.68 (m, 2H, CH=CH); 2.20-2.06 (m, 2H, CH ₂)	
cyclohexane	1.59 (s, CH ₂)	
H ₂	4.75 (s)	-
<i>n</i> Bu₃GeF	n.d.	-205.2 (m)
Z-2-heptene	5.74-5.46 (m, 2H, CH=CH); 1.78 (dm, ${}^{3}J_{H,H} = 4.5 \text{ Hz}, H_{3}\text{C-C=C})$	
E-2-heptene	5.74-5.46 (m, 2H, CH=CH); 1.82 (dm, ${}^3J_{H,H} = 4.8 \text{ Hz}, H_3\text{C-C=C})$	
Ethane	1.36 (s)	
2,4,4,4-tetrafluoro- 1-butene	4.94 (dd, ${}^{3}J_{H,F} = 16.0$, ${}^{3}J_{H,H} = 3.6$ Hz, 1H, =CH ₂); 4.62 (dd, ${}^{3}J_{H,F} = 47.2$, ${}^{3}J_{H,H} = 3.6$ Hz, 1H, =CH ₂)	-64.8 (td, ${}^{3}J_{F,H} = 10$, ${}^{4}J_{F,F} = 7$ Hz, CF ₃); -94.5 (dtq, ${}^{3}J_{F,H} = 47$, ${}^{3}J_{F,H} = 16$, ${}^{4}J_{F,F} = 7$ Hz, CF)

5. X-Ray Diffraction Analysis

For the structure determination, the data collection was performed with a BRUKER D8 VENTURE area detector using Mo-K $_{\alpha}$ radiation (λ = 0.71073 Å). Multiscan absorption corrections implemented in SADABS $^{[2]}$ were applied to the data. The structures were solved by intrinsic phasing method (SHELXT-2013) $^{[3]}$ and refined by full-matrix least square procedures based on F2 with all measured reflections (SHELXL-2013), with anisotropic temperature factors for all non-hydrogen atoms. All carbon bound hydrogen atoms were added geometrically and refined by using a riding model. Crystallographic data (excluding structure factors) for the structures in this paper have been deposited with the Cambridge Crystallographic Data Centre, CCDC 1983059.

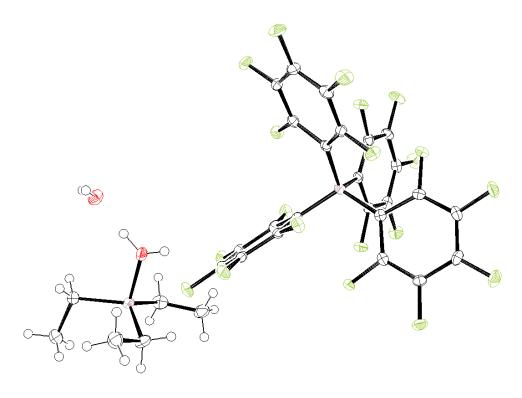


Figure S1. ORTEP representation of $[Et_3Ge-OH_2][B(C_6F_5)_4]$ H_2O (3· H_2O).

Table 3. Cristal data and structure refinement for compound $3 \cdot H_2 O$.

Empirical formula	$C_{30}H_{19}BF_{20}GeO_2$	Crystal size	0.60 x 0.355 x 0.24 mm ³
Formula weight	874.85	θ range for data collection	2.165° to 25.082°.
Temperature	100(2) K	Index ranges	-17<=h<=17, -20<=k<=20, -29<=l<=28
Wavelength	0.71073 Å	Reflections collected	75256
Crystal system	Orthorhombic	Independent reflections	5570 [R(int) = 0.0323]
Space group	Pbca	Completeness to $\theta = 25.082^{\circ}$	99.8 %
Unit cell dimensions	a = 14.3032(13) Å	Absorption correction	Semi-empirical from equivalents
	b = 17.5925(15) Å	Max. and min. transmission	0.7452 and 0.5653
	c = 24.968(2) Å	Refinement method	Full-matrix least-squares on F ²
Volume	6282.8(10) Å ³	Data/ restraints / parameters	5570 / 1 / 504
Z	8	Goodness-of-fit on F ²	1.017
Density (calculated)	1.850 mg/m ³	Final R indices [I>2sigma(I)]	R1 = 0.0276, wR2 = 0.1051
Absorption coefficient	1.125 mm ⁻¹	R indices (all data)	R1 = 0.0312, wR2 = 0.1112
F(000)	3456	Largest diff. peak and hole	0.359 and -0.711 e. Å ⁻³

6. Mass and NMR spectra

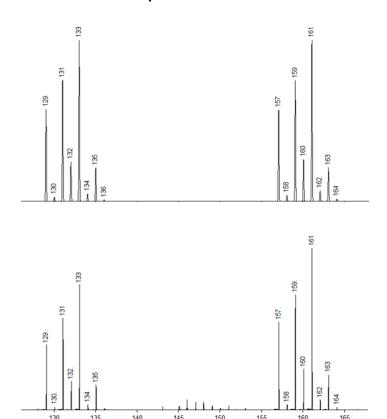


Figure S2. Experimental (bottom) and simulated (up) mass spectrum of [Et₃Ge]⁺.

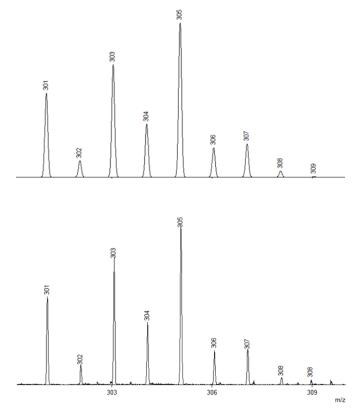


Figure S3. Experimental (bottom) and simulated (up) mass spectrum of $[Ph_3Ge]^+$.

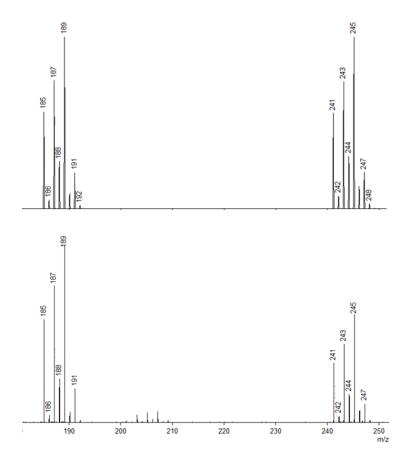
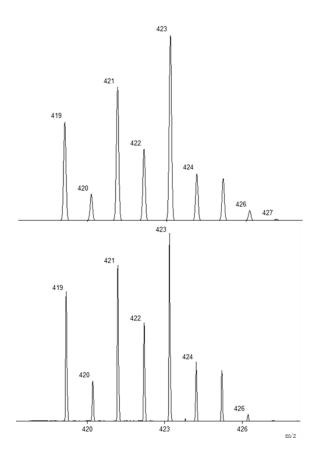
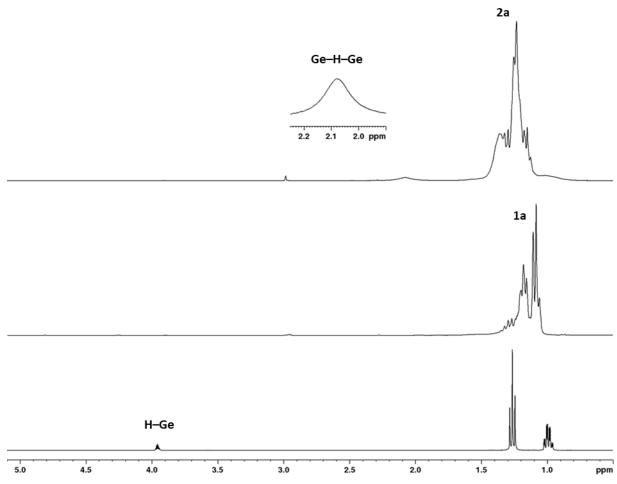
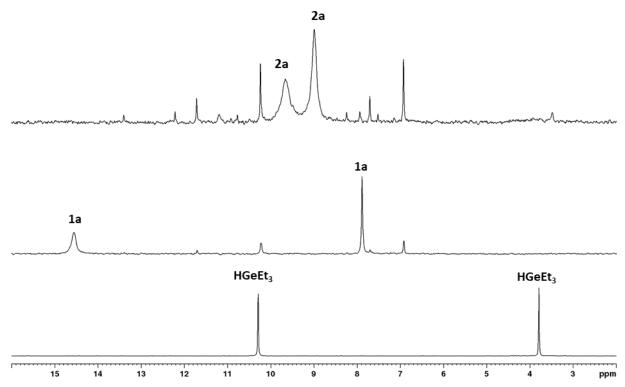
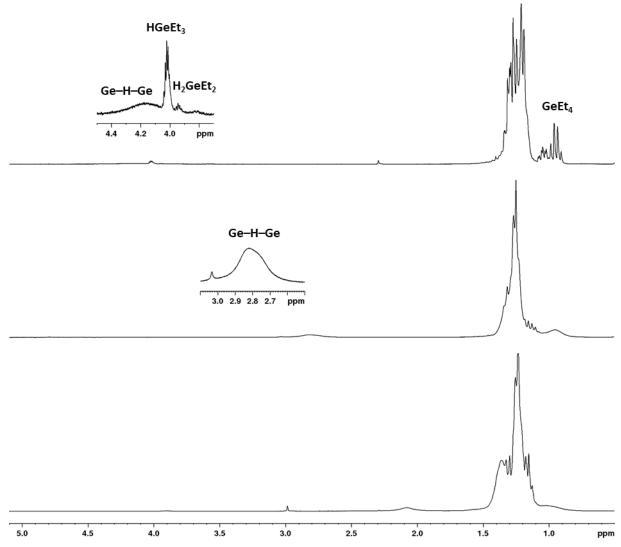
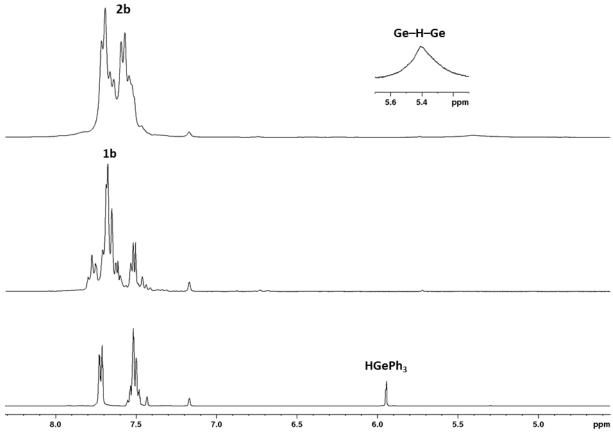
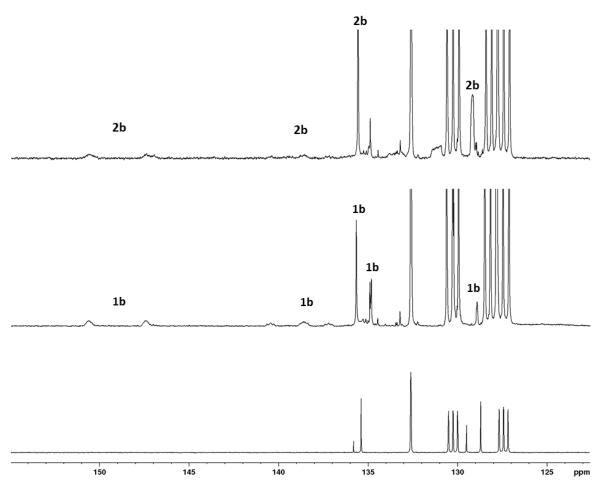


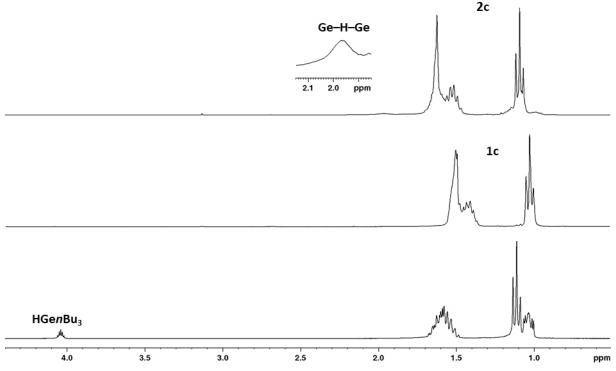
Figure S4. Experimental (bottom) and simulated (up) mass spectrum of $[nBu_3Ge]^+$.

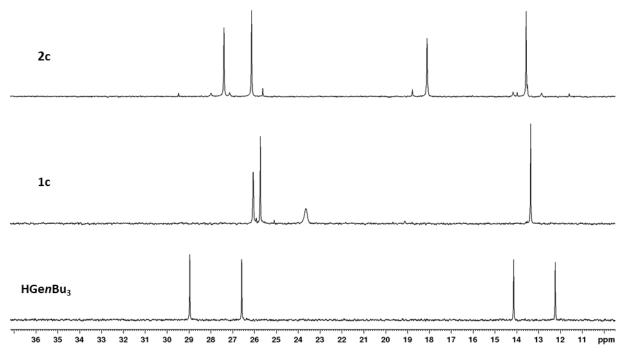





Figure S5. Experimental (bottom) and simulated (up) mass spectrum of [Et₃Ge-PPh₃]⁺.


Figure S6. Section of the ${}^{1}H$ NMR spectra of Et₃GeH (bottom), [Et₃Ge][B(C₆F₅)₄] (**1a**, middle) and [Et₃GeHGeEt₃][B(C₆F₅)₄] (**2a**, top) in o-dichlorobenzene-d₄.


Figure S7. Section of the ${}^{13}C\{{}^{1}H\}$ NMR spectra of Et_3GeH (bottom), $[Et_3Ge][B(C_6F_5)_4]$ (**1a**, middle) and $[Et_3GeHGeEt_3][B(C_6F_5)_4]$ (**2a**, top) in o-dichlorobenzene-d₄.


Figure S8. Section of the ${}^{1}H$ NMR spectra of [Et₃GeHGeEt₃][B(C₆F₅)₄] (**2a**, bottom) and after addition of 1 equivalent (middle) or excess (top) of HGeEt₃ in o-dichlorobenzene-d₄.


Figure S9. Section of the ${}^{1}H$ NMR spectra of Ph₃GeH (bottom), [Ph₃Ge][B(C₆F₅)₄] (**1b**, middle) and [Ph₃GeHGePh₃][B(C₆F₅)₄] (**2b**, top) in *o*-dichlorobenzene-d₄.

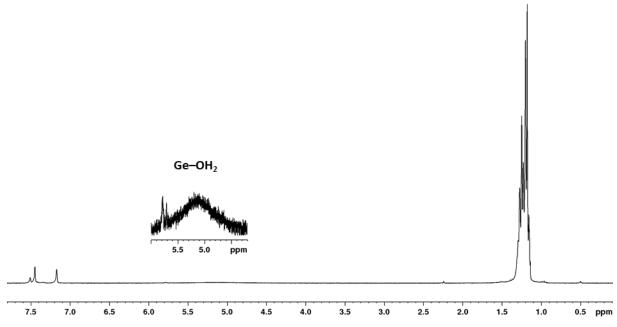

Figure S10. $^{13}C\{^1H\}$ NMR spectra of Ph₃GeH (bottom), [Ph₃Ge][B(C₆F₅)₄] (**1b**, middle) and [Ph₃GeHGePh₃][B(C₆F₅)₄] (**2b**, top) in *o*-dichlorobenzene-d₄. Note that C₆D₆ was not completely removed.

Figure S11. Section of the ${}^{1}H$ NMR spectra of $nBu_{3}GeH$ (bottom), $[nBu_{3}Ge][B(C_{6}F_{5})_{4}]$ (**1c**, middle) and $[nBu_{3}GeHGenBu_{3}][B(C_{6}F_{5})_{4}]$ (**2c**, top) in o-dichlorobenzene-d₄.

Figure S12. Section of the ${}^{13}C\{{}^{1}H\}$ NMR spectra of nBu_3GeH (bottom), $[nBu_3Ge][B(C_6F_5)_4]$ (**1c**, middle) and $[nBu_3GeHGenBu_3][B(C_6F_5)_4]$ (**2c**, top) in o-dichlorobenzene-d₄.

Figure S13. ^{1}H NMR spectrum of $[Et_{3}Ge-OH_{2}][B(C_{6}F_{5})_{4}]$ (3) in o-dichlorobenzene-d₄. Note that $C_{6}D_{6}$ was not completely removed.

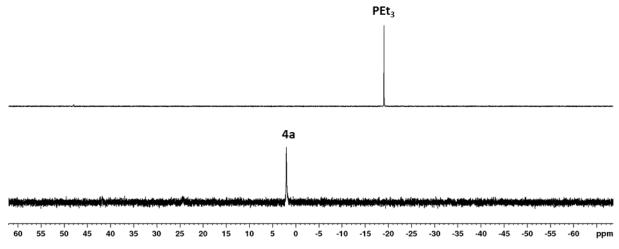


Figure S14. $^{31}P\{^{1}H\}$ NMR spectra of $[Et_{3}Ge-PEt_{3}][B(C_{6}F_{5})_{4}]$ (4a, bottom) and PEt_{3} (top) in o-dichlorobenzene-d₄.

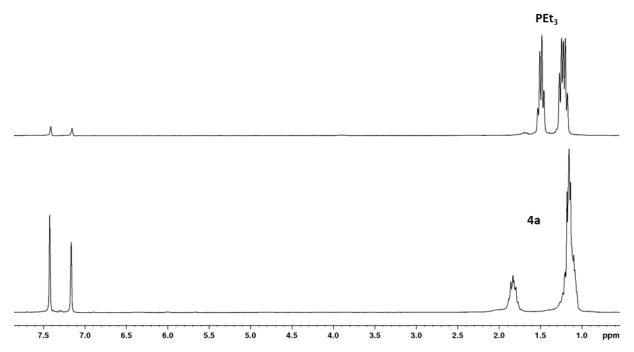
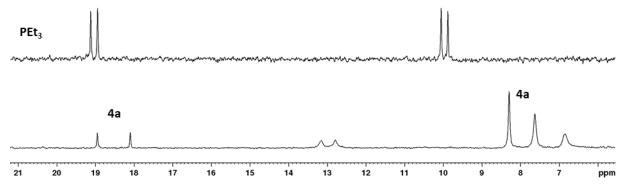
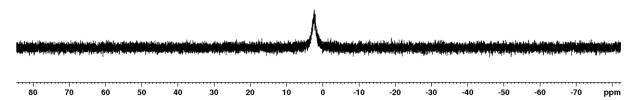
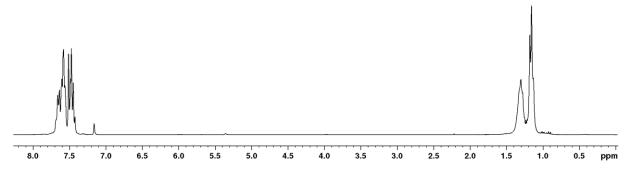
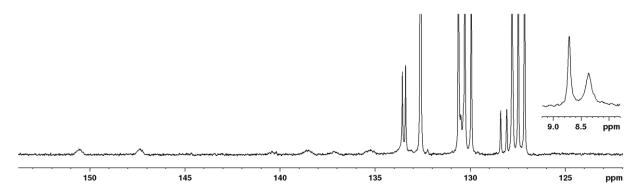
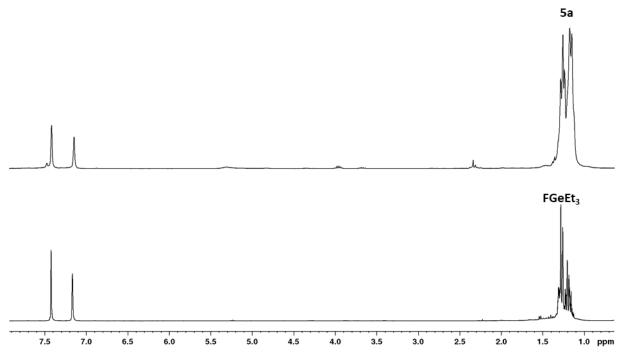


Figure S15. ¹H NMR spectra of [Et₃Ge-PEt₃][B(C₆F₅)₄] (4a, bottom) and free PEt₃ (top) in o-dichlorobenzene-d₄.


Figure S16. 13 C 14 H NMR spectra of [Et $_3$ Ge-PEt $_3$][B(C $_6$ F $_5$) $_4$] (4a, bottom) and PEt $_3$ (top) in o-dichlorobenzene-d $_4$.


 $\textbf{Figure S17.} \ ^{31}P\{^{1}H\} \ NMR \ spectrum \ of \ [Et_{3}Ge-PPh_{3}][B(C_{6}F_{5})_{4}] \ \textbf{(4b)} \ in \ \emph{o}-dichlorobenzene-d_{4}.$

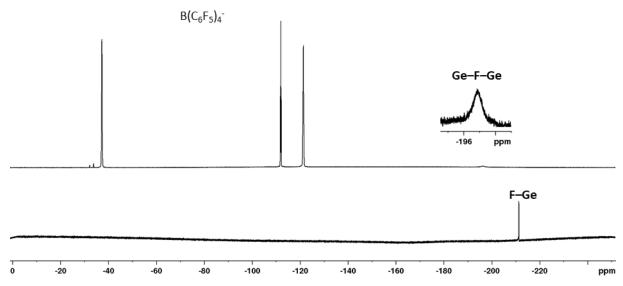

Figure S18. ¹H NMR spectrum of $[Et_3Ge-PPh_3][B(C_6F_5)_4]$ (**4b**) in *o*-dichlorobenzene-d₄. Note that C_6D_6 was not completely removed.

Figure S19. $^{13}C\{^1H\}$ NMR spectrum of $[Et_3Ge-PPh_3][B(C_6F_5)_4]$ **(4b)** in o-dichlorobenzene-d₄. Note that C_6D_6 was not completely removed.

Figure S20. ¹H NMR spectra of Et_3GeF (bottom) and $[Et_3GeFGeEt_3][B(C_6F_5)_4]$ (**5a**, top) in *o*-dichlorobenzene-d₄. Note that C_6D_6 was not completely removed.

 $\textbf{Figure S21.} \ ^{19}\text{F NMR spectra of Et}_{3}\text{GeF (bottom) and } [\text{Et}_{3}\text{GeFGeEt}_{3}][B(C_{6}F_{5})_{4}] \ (\textbf{5a}, \text{top) in } \textit{o-} \\ \text{dichlorobenzene-d}_{4}.$

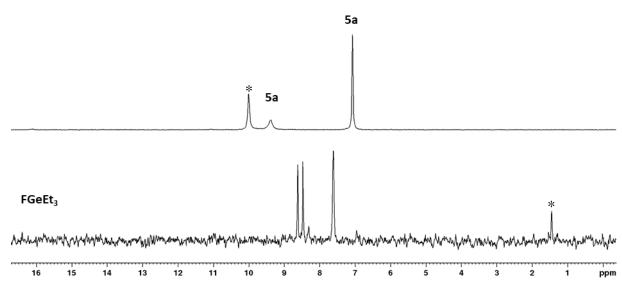
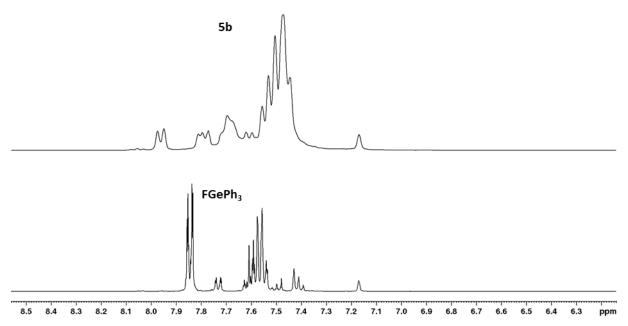
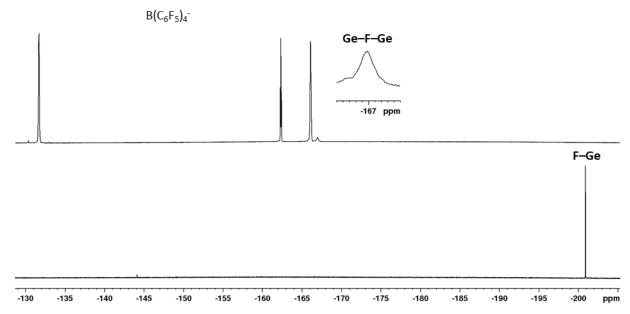
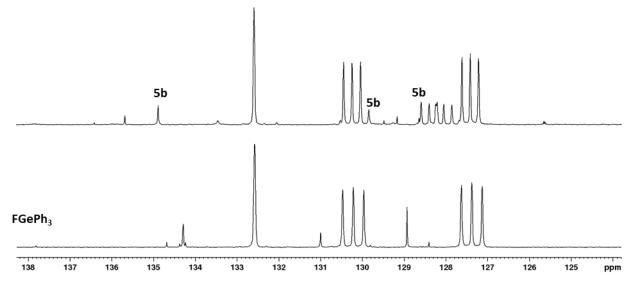
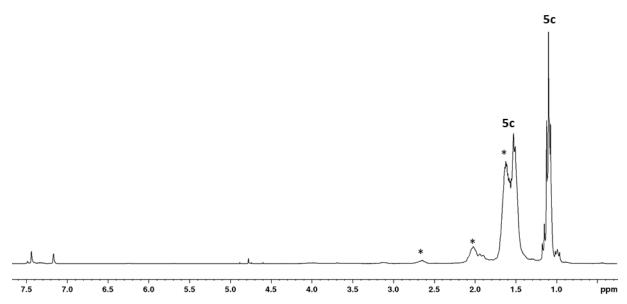
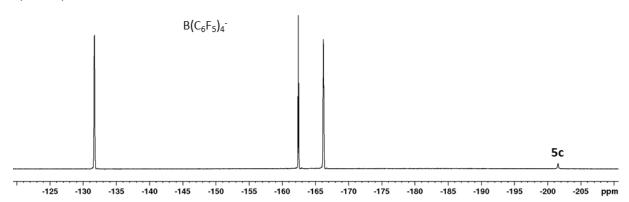
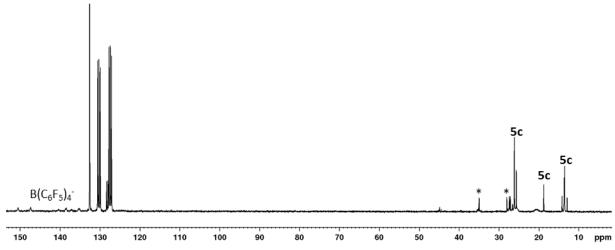


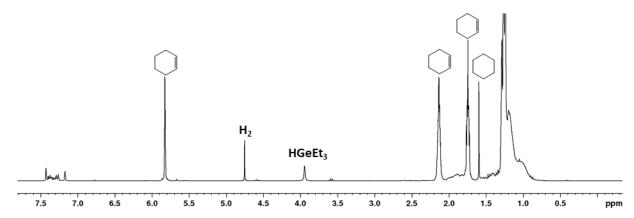
Figure S22. Section of the ${}^{13}C\{{}^{1}H\}$ NMR spectra of Et₃GeF (bottom) and [Et₃GeFGeEt₃][B(C₆F₅)₄] (5a, top) in odichlorobenzene-d₄. * Impurity.


Figure S23. 1 H NMR spectra of Ph₃GeF (bottom) and [Ph₃GeFGePh₃][B(C₆F₅)₄] (5b, top) in o-dichlorobenzene-d₄. Note that C₆D₆ was not completely removed.


 $\textbf{Figure S24.} \ ^{19}F \ NMR \ spectra \ of \ Ph_{3}GeF \ (bottom) \ and \ [Ph_{3}GeFGePh_{3}][B(C_{6}F_{5})_{4}] \ (\textbf{5b}, \ top) \ in \ \emph{o}-dichlorobenzene-d_{4}.$


Figure S25. $^{13}C\{^1H\}$ NMR spectra of Ph₃GeF (bottom) and [Ph₃GeFGePh₃][B(C₆F₅)₄] (**5b**, top) in odichlorobenzene-d₄. Note that C₆D₆ was not completely removed.


Figure S26. ¹H NMR spectrum of the reaction of **2c** and fluorocyclohexane to form $[nBu_3Ge-F-GenBu_3][B(C_6F_5)_4]$ (**5c**) in *o*-dichlorobenzene-d₄. Note that C_6D_6 was not completely removed. * = 1,2-dichloro-4-cyclohexylbenzene-d₃.

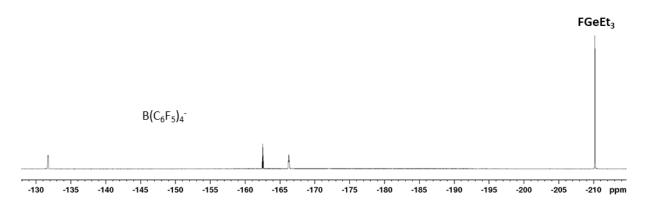

Figure S27. ¹⁹F NMR spectrum of the reaction of **2c** and fluorocyclohexane to form $[nBu_3Ge-F-GenBu_3][B(C_6F_5)_4]$ (**5c**) in *o*-dichlorobenzene-d₄.

Figure S28. 13 C{ 1 H} NMR spectrum of the reaction of **2c** and fluorocyclohexane to form [$nBu_3Ge-F-GenBu_3$][B(C₆F₅)₄] (**5c**) in o-dichlorobenzene-d₄. Note that C₆D₆ was not completely removed. * = 1,2-dichloro-4-cyclohexylbenzene-d₃.

Figure S29. 1 H NMR spectrum of the catalytic dehydrofluorination of fluorocyclohexane in o-dichlorobenzene- d_4 .

Figure S30. ¹⁹F NMR spectrum of the catalytic dehydrofluorination of fluorocyclohexane in o-dichlorobenzene- d_4 .

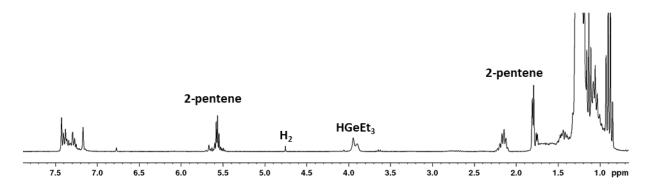
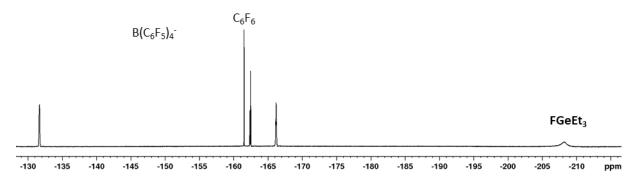
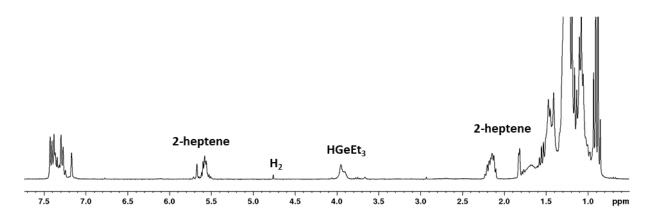




Figure S31. ¹H NMR spectrum of the catalytic dehydrofluorination of fluoropentane in *o*-dichlorobenzene-d₄.

Figure S32. ¹⁹F NMR spectrum of the catalytic dehydrofluorination of fluoropentane in o-dichlorobenzene-d₄. C_6F_6 was used as standard.

Figure S33. ¹H NMR spectrum of the catalytic dehydrofluorination of fluoroheptane in *o*-dichlorobenzene-d₄.

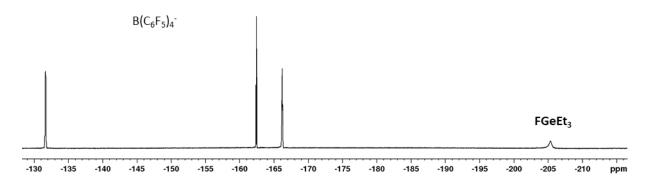


Figure S34. ¹⁹F NMR spectrum of the catalytic dehydrofluorination of fluoroheptane in *o*-dichlorobenzene-d₄.

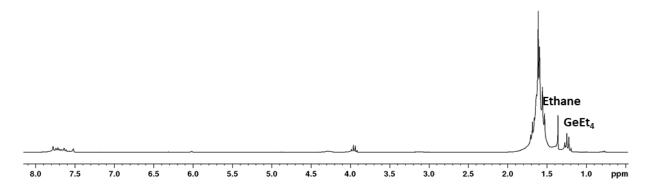


Figure S35. ¹H NMR spectrum of the activation of fluoroethane in *o*-dichlorobenzene-d₄.

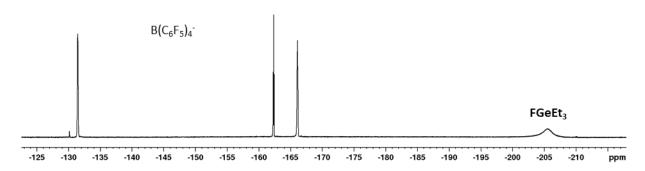
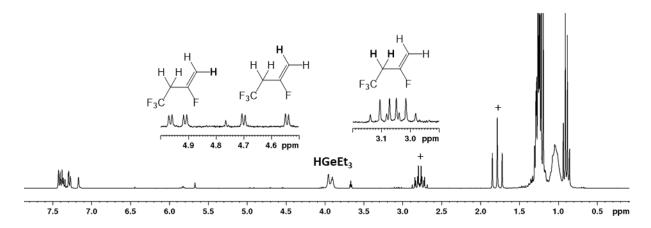
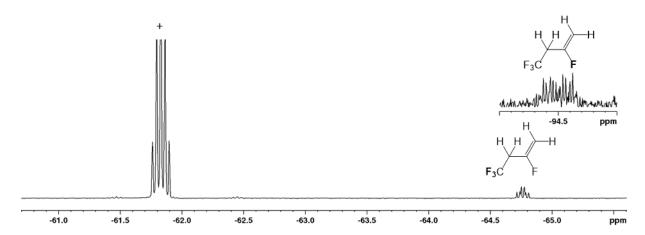




Figure S36. ¹⁹F NMR spectrum of the activation of fluoroethane in o-dichlorobenzene-d₄.

Figure S37. ¹H NMR spectrum of the dehydrofluorination of 1,1,1,3,3-pentafluorobutane (+) in *o*-dichlorobenzene-d₄.

Figure S38. Section of the ¹⁹F NMR spectrum of the dehydrofluorination of 1,1,1,3,3-pentafluorobutane (+) in *o*-dichlorobenzene-d₄.

7. References

- S. Popov, B. Shao, A. L. Bagdasarian, T. R. Benton, L. Zou, Z. Yang, K. N. Houk and H. M. Nelson, *Science*,
 2018, 361, 381-387.
- [2] G. M. Sheldrick, *SADABS*, Program for Empirical Absorption Correction, Version SADABS-2014/5, Bruker Analytical X-ray Systems, Madison, WI, USA, **2011**.
- [3] G. M. Sheldrick, *SHELXT-2014*, Program for Crystal Structure Solution, University of Göttingen, Germany, **2013**; G. M. Sheld-rick, *SHELXL-2013*, Program for Crystal Structure Refinement, University of Göttingen, Germany, **2013**.