Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020

Controlled Release of the Guest Molecule via Borate Formation of Fluorinated Boronic Ester Cage

Hisatsugu Takata, Kosuke Ono and Nobuharu Iwasawa*

Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan *e-mail: niwasawa@chem.titech.ac.jp

Table of contents

1.	General methods	2
2.	Preparation of 2,4,6-trifluoro-1,3,5-benzenetribronic tris(pinacol) ester 2	2
3.	Self-assembly of <i>o</i> -xylene@ <i>homo</i> -[3 + 2]- F ₆ and preparation of apohost <i>homo</i> -[3 + 2]- F ₆	4
4.	Kinetics study	6
5.	X-ray crystallographic analysis of <i>o</i> -xylene@ <i>homo</i> -[3+2]-F ₆	17
6.	References	19

1. General methods

All operations were performed under air unless otherwise noted. ¹H- and ¹³C-NMR spectra were recorded on a JEOL AL-400 (400 MHz for ¹H and 100 MHz for ¹³C), a JEOL AL-300 (300 MHz for ¹H and 75 MHz for ¹³C) or a JEOL Lamda-300 (75 MHz for ¹³C) spectrometer using CHCl₃ (¹H, δ = 7.26) and CDCl₃ (¹³C, δ = 77.0) as an internal standard. ¹¹B NMR spectra were recorded on a JEOL ECX-400 (127 MHz) spectrometer using BF₃ • OEt₂ (¹¹B, δ = 0.00) as an external standard. IR spectra were recorded on an IR-810 or an FT/IR-460 plus (JASCO Co., Ltd). Tetrahydrofuran (THF) was purified by solvent system of Glass-Contour. Other solvents were distilled according to the usual procedures and stored over molecular sieves unless otherwise noted. High resolution mass analyses (FAB) were performed on a JEOL JMS-700 mass spectrometer using (2-nitrophenyl)octylether or NBA as a matrix. Elemental analyses were performed on a Perkin-Elmer 2400 instrument. Isothermal titration calorimetry (ITC) measurements were performed on a MicroCal system, iTC₂₀₀ model (DKSH Japan Co., Ltd.). *o*-xylene@*homo*-[**3**+2]-**H**₆ was prepared by recrystallization of *homo*-[**4**+2]-**H**₆^{S1} from *o*-xylene. Racemic tetrol **1** was prepared according to the literature procedure.^{S2}

2. Preparation of 2,4,6-trifluoro-1,3,5-benzenetriboronic tris(pinacol) ester 2

1,3,5-Trifluorobenzene (0.21 mL, 2.0 mmol), bis(pinacolato)diboron (2.44 g, 9.61 mmol), [Ir(OMe)(cod)]₂ (40.0 mg, 0.060 mmol) and 4,4'-di-*tert*-butyl-2,2'-bipyridine (32.2 mg, 0.120 mmol) were mixed in THF (6.0 mL) under Ar. The mixture was refluxed for 10 h. The mixture was cooled and the solvent was removed under vacuum. The crude product was washed with *n*-hexane to remove unreacted B₂pin₂. Recrystallization from ethanol afforded the pure product (877 mg, 86%). ¹H NMR (300 MHz, CDCl₃): δ 1.32 (s, 36H); ¹³C NMR (100 MHz, CDCl₃): δ 173.1 (dt, *J* = 256, 16.7 Hz), 101.5, 84.0, 24.7; IR (ATR): 2978, 1590, 1384, 1373, 1325, 1273, 1140, 966, 873, 846, 786, 743, 681, 668, 655 cm⁻¹; HR-MS (FAB, *m/z*): [M]⁺ calcd. for C₂₄H₃₆B₃F₃O₆, 510.2743; found, 510.2856.

3. Self-assembly of *o*-xylene@homo-[3+2]-F₆ and preparation of apohost homo-[3+2]-F₆

2,4,6-Trifluoro-1,3,5-benzenetriboronic acid tris(pinacol) ester 2 (27.2 mg, 53 mmol) was added to a solution of *rac*-tetrol 1 (20.8 mg, 75 mmol) in methanol/*o*-xylene (3.5 mL/0.1 mL). After the mixture was stirred at room temperature for 24 h, *o*-xylene@*homo*-[3+2]-F₆ was obtained as a white powder by filtration (25.6 mg, 20 mmol, 82%).

o-xylene@*homo*-[**3**+**2**]-**F**₆: ¹H NMR (500 MHz, CDCl₃): δ 7.47 (s, 6H), 5.92 (d, *J* = 5.5 Hz, 6H), 5.50 (dd, *J* = 5.5, 3.5 Hz, 2H), 4.72 (d, *J* = 5.5 Hz, 6H), 3.82 (dd, *J* = 5.5, 3.5 Hz, 2H), 1.56 (s, 18H), 1.18 (s, 18H), 0.34 (s, 6H).

apohost *homo*-[3+2]- F_6 : *o*-xylene@[3+2]- F_6 was suspended in Et₂O and the mixture was sonicated. White precipitate was collected by filtration and dried under vacuum to give the desired apohost.

¹H NMR (300 MHz, CDCl₃): δ 7.15 (s, 6H), 5.82 (d, *J* = 5.7 Hz, 6H), 4.74 (d, *J* = 5.7 Hz, 6H), 1.26 (s, 18H), 1.19 (s, 18H); ¹³C NMR (100 MHz, CDCl₃): δ 176.7 (dt, *J* = 269, 16.7 Hz), 149.4, 141.7, 119.8, 100.7, 89.8, 82.3, 46.9, 31.1, 21.5; ¹¹B NMR (127 MHz, CDCl₃): δ 29.2; IR (ATR): 2955, 1594, 1364, 1341, 1308, 1280, 1256, 1159, 1119, 1018, 999, 877, 832, 795, 705, 658, 619 cm⁻¹; HR-MS (FAB, *m/z*) [M]⁺ calcd. for C₆₀H₅₄B₆F₆O₁₂, 1145.4114; found, 1145.4064.

4. Kinetic study

o-xylene@*homo*-[**3**+**2**]-**H**₆ (1.2 mg, 1.0 μ mol) was placed in an NMR tube and dissolved in CDCl₃ (0.5 mL) at -60 °C. ¹H NMR spectra of the mixture was recorded at 20 °C periodically.

Fig. S1 Guest-release of *o*-xylene@*homo*-[3+2]-H₆ at 20 °C. (a) Time-dependent ¹H NMR spectra (t = 5 min, 20 min, 2 h) (b) Table of time dependence of concentration of *o*-xylene@[3+2]-H₆ (c) First-order plot $(k = 3.82 \times 10^{-4} \text{ s}^{-1})$.

Similar examinations were carried out at various temperatures in order to determine activation parameters of the guest-release by Arrhenius plot.

homo-[3+2]-H6	<u>10°C</u>	
t/s	[SM]/mM	[SM]/[SM]0
0	2.009	1.0000
1200	1.765	0.8785
2400	1.544	0.7685
3600	1.391	0.6924
4800	1.207	0.6008
6000	1.05	0.5226

homo-[3+2]-H6	<u>15°C</u>		
t/s	[SM]/mM	[SM]/[SM]0	
0	1.953	1.0000	[SM]0
360	1.842	0.9432	[SM]/
960	1.591	0.8146	
1560	1.4	0.7168	
2160	1.288	0.6595	
2760	1.066	0.5458	

Fig. S2 Guest-release of *o*-xylene@*homo*-[3+2]-H₆ at various temperatures.

homo-[3+2]-H6	<u>Arrhenius Plot</u>	0.00140
		0.00120
T-1/K-1	k	$y = 4,721,076,825,983.25 e^{-10,920.55 \times 10}$
0.003289	0.00116	
0.003341	0.000685	0.00040
0.003394	0.000382	0.00020
0.00345	0.00021	0.00000
0.003507	0.000107	0.00325 0.0033 0.00335 0.0034 0.00345 0.0035 0.00355 T-1/K-1

Fig. S3 Arrhenius plot of guest-release of o-xylene@homo-[3+2]-H₆.

(at 20 °C)

 $E_a = 10920.55R \text{ J mol}^{-1} = 90.793 \text{ kJ mol}^{-1} = 21.7 \text{ kcal mol}^{-1}$ $\ln (k/T) = -(\Delta H^{\ddagger}/R)(1/T) + \ln (k_B/h) + (\Delta S^{\ddagger}/R)$ $\Delta H^{\ddagger} = -10607R \text{ J mol}^{-1} = 21.1 \text{ kcal mol}^{-1}$ $\Delta S^{\ddagger} = R(22.44 - 23.759) = -2.6 \text{ cal mol}^{-1} \text{ K}^{-1}$ $\Delta G^{\ddagger} = \Delta H^{\ddagger} - T\Delta S^{\ddagger} = 21.9 \text{ kcal mol}^{-1}$ (*R*: gas constant, *h*: Planck constant, *k_B*: Boltzmann constant)

Guest-release of o-xylene@homo-[3+2]-H₆ in the presence of additive

(TMP = 2,2,6,6-Tetramethylpiperidine)

Fig. S4 Guest-release of o-xylene@homo-[3+2]-H₆ in the presence of various additives at 20 °C.

Guest-release of o-xylene@homo-[3+2]-F6

o-xylene@*homo*-[**3**+**2**]-**F**₆ (1.2 mg, 10 mmol) was placed in an NMR tube and dissolved in CDCl₃ (0.5 mL) at room temperature. ¹H NMR spectra of the mixture was recorded at 20 °C periodically.

Fig. S5 Guest-release of *o*-xylene@*homo*-[3+2]-F₆ at 20 °C. Time-dependent ¹H NMR spectra (t = 5 min, 8 h, 2 d).

<i>homo</i> -[3+2]-F6	<u>25°C</u>	
t/s	[SM]/mM	[SM]/[SM]0
0	1.724	1.0000
2400	1.681	0.9751
4800	1.653	0.9588
7200	1.626	0.9432
9600	1.587	0.9205

<i>homo</i> -[3+2]-F6	<u>30°C</u>	
t/s	[SM]/mM	[SM]/[SM]0
0	1.852	1.0000
1500	1.802	0.9730
3000	1.754	0.9471
4500	1.695	0.9152
6000	1.639	0.8850
7500	1.6	0.8639

<i>homo</i> -[3+2]-F6	<u>35°C</u>	
t/s	[SM]/mM	[SM]/[SM]0
0	1.613	1.0000
1800	1.515	0.9392
3600	1.449	0.8983
5400	1.389	0.8611
7200	1.342	0.8320
9000	1.282	0.7948

Fig. S6 Guest-release of o-xylene@homo-[3+2]-F6 at various temperatures.

Fig. S7 Arrhenius plot of guest-release of o-xylene@homo-[3+2]-F₆.

(at 20 °C)

 $E_a = 8880.47R \text{ J mol}^{-1} = 73.832 \text{ kJ mol}^{-1} = 17.6 \text{ kcal mol}^{-1}$ $\ln (k/T) = - (\Delta H^{\ddagger}/R)(1/T) + \ln (k_B/h) + (\Delta S^{\ddagger}/R)$ $\Delta H^{\ddagger} = -8573.2R \text{ J mol}^{-1} = 17.0 \text{ kcal mol}^{-1}$ $\Delta S^{\ddagger} = R(11.56-23.759) = -24.2 \text{ cal mol}^{-1} \text{ K}^{-1}$ $\Delta G^{\ddagger} = \Delta H^{\ddagger} - T\Delta S^{\ddagger} = 24.1 \text{ kcal mol}^{-1}$

(*R*: gas constant, *h*: Planck constant, *k_B*: Boltzmann constant)

<u>Guest-release of *o*-xylene@*homo*-[3+2]-F₆ in the presence of additive</u>

<i>homo-</i> [3+2]-F6	<u>+ DMAP</u>		1.2
t/s	[SM]/mM	[SM]/[SM]0	1.0
0	1.266	1.0000	
100	1	0.7899	
200	0.8403	0.6637	0.4
300	0.6557	0.5179	$y = e^{-0.00209 x}$
400	0.5525	0.4364	0.2 R ² = 0.99606
500	0.4662	0.3682	0.0 0 100 200 300 400 500 600 700
600	0.3509	0.2772	t/s
<i>homo</i> -[3+2]-F6	+ DABCO		1.2
			1.0
t/c	[CM]/mM		

Table S1 Acceleration effect of additives

Effect of DMAP concentration to the guest-release of o-xylene@homo-[3+2]-F₆

Fig. S8 Effect of DMAP concentration to the guest-release of o-xylene@homo-[3+2]-F₆

Fig. S10 ¹H NMR spectrum (500 MHz, 300 K) of a CDCl₃ solution of *o*-xylene@*homo*-[3+2]- F_6 30 min after the addition of DMAP (10 equivalents).

Fig. S11 ¹¹B NMR spectra (160 MHz, 300 K) of (a) *homo*-[3+2]-F₆ and (b) *homo*-[3+2]-F₆+DMAP (10 equivalents).

Fig. S12 ITC analysis (25 °C) of *homo*-[3+2]-F₆ with DMAP.

Association constant $K = 716 (M^{-1})$

Table S2 Acceleration effect of additives in the case of 2-methylanisole@[3+2]-F₆

2-methylanisole@[3+2]-F₆ was obtained by similar procedure by using 2-methylanisole instead of *o*-xylene. Stimuli-responsive guest-release was also observed by using DMAP (13 equiv.) as additive (Table S2, Fig. S13, 14).

			1.2						
2-methylanisole									
homo-[3+2]-F6	<u>20°C</u>		1.0	and the second s					
			0.8		.				
t/s	[SM]/mM	[SM]/[SM]0	[SM]		and the second s				
0	2	1.0000	[SM]/			· · · · · · · · · · · · · · · · · · ·			
3600	1.6	0.8000	0.4		···	000564 x		******* *	
7200	1.299	0.6494	0.2		$y = e^{-3x}$	288707			
10800	1.526	0.5263			N = 0.90	500707			
14400	0.847	0.4237	0.0	0 50	00 100	000	15000	20000	25000
19800	0.699	0.3497				t/s			

Fig. S13 Guest-release of 2-methylanisole@homo-[3+2]-F₆.

Fig. S14 ¹H NMR spectrum of (a) 2methylanisole@[3+2]-F₆ and (b) 5 min after the addition of DMAP (13 equiv.).

5. X-ray crystallographic analysis of *o*-xylene@*homo*-[3+2]-F₆

The single crystal of *o*-xylene@*homo*-[3+2]- F_6 suitable for X-ray crystallographic analysis was obtained by slow cooling of hot *o*-xylene solution of *homo*-[3+2]- F_6 . Because of highly disordered guest molecules, residual densities remain around the guest molecules and some A and B level alerts remains. The responses of A and B alerts were described below.

_vrf_DIFMN02_global

;

Because of highly disordered guest molecules (o-xylene), residual densities remain around the guest molecules.

;

_vrf_PLAT097_global

;

Because of highly disordered guest molecules (o-xylene), residual densities remain around the guest molecules.

;

_vrf_PLAT098_global

;

Because of highly disordered guest molecules (o-xylene), residual densities remain around the guest molecules.

;

_vrf_PLAT934_global

;

Because of highly disordered guest molecules (*o*-xylene), some reflections did not match between observation and calculations.

_vrf_PLAT043_global

Hydrogen atoms of *o*-xylene molecules are not considered in the refinements, because *o*-xylene molecules are highly disordered. This caused the calculated and reported molecular weight difference.

_vrf_PLAT084_global

```
;
```

:

:

Because of highly disordered guest molecules (o-xylene), R-factors are somewhat high.

;

_vrf_PLAT315_global

;

Hydrogen atoms of *o*-xylene molecules are not considered in the refinements, because *o*-xylene molecules are highly disordered.

; _vrf_PLAT972_global

;

Because of highly disordered guest molecules (*o*-xylene), residual densities remain around the guest molecules.

Fig. S15 Ellipsoid drawing of the crystal structure of *o*-xylene@*homo*-[3+2]-F₆ at 50% probability. All hydrogen atoms are omitted for clarity. (C = gray, O = red, B = pink, F = yellow).

Table S2 Crystal data and structure refineme	nt for o-xylene@homo-[3+2]-	F ₆			
Identification code	shelx				
Empirical formula	C ₈₈ H ₉₄ B ₆ F ₆ O ₁₂				
Formula weight	1514.42				
Temperature	173(2) K				
Wavelength	0.71073 Å				
Crystal system	monoclinic				
Space group	<i>C</i> 2/c				
Unit cell dimensions	a = 18.0660(7) Å	$\alpha = 90^{\circ}$.			
	b = 19.9550(7) Å	$\beta = 108.477(1)^{\circ}.$			
	<i>c</i> = 24.1330(8) Å	$\gamma = 90^{\circ}$.			
Volume	8251.6(5) Å ³				
Ζ	4				
Density (calculated)	1.219 Mg/m ³				
Absorption coefficient	0.087 mm^{-1}				
F(000)	3176				
Crystal size	$0.20 \text{ x} 0.20 \text{ x} 0.20 \text{ mm}^3$				
Theta range for data collection	3.05 to 27.42°.				
Index ranges	-23<=h<=23, -25<=k<=25, -	28<=1<=31			
Reflections collected	39870				
Independent reflections	9398 [R(int) = 0.0237]				
Completeness to theta = 25.24°	99.8 %				
Absorption correction	Semi-empirical from equival	ents			
Max. and min. transmission	0.9827 and 0.9827				
Refinement method	Full-matrix least-squares on F ²				
Data / restraints / parameters	39870 / 23 / 460				
Goodness-of-fit on F ²	1.931				
Final R indices [I>2sigma(I)]	$R_1 = 0.1295, wR_2 = 0.4076$				
R indices (all data)	$R_1 = 0.1456, wR_2 = 0.4332$				
Largest diff. peak and hole	2.253 and -2.782 e.Å ⁻³				

6. References

- S1 H. Takahagi, S. Fujibe and N. Iwasawa, *Chem. Eur. J.* 2009, **15**, 13327–13330.
- S2 H. Sakurai, N. Iwasawa and K. Narasaka, Bull. Chem. Soc. Jpn. 1996, 69, 2585–2594.