Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information for

An easy way to identify high performing covalent organic frameworks for hydrogen storage

Minman Tong^{‡a}, Weichen Zhu^{‡a}, Jian Li^b , Zhouyang Long^a, Zhao Shuang^a, Guojian Chen^{*a}, Youshi Lan^{*c}

Methods

COF structures

The CoRE COF database is updated to 449 structures in this work, including 49 3D-COFs and 400 2D-COFs (https://core-cof.github.io/CoRE-COF-Database/). Pore characterizations of largest cavity diameter (LCD), accessible surface area (S_{acc}) and void fraction (φ) are performed using the Zeo++ version 0.3.¹ The S_{acc} is calculated using a probe molecule with size equal to the kinetic diameter of N₂ (3.68 Å). The φ is computed with a probe size of 0.0 Å, which is the absolute amount unoccupied by the framework atoms.

Simulation details. Hydrogen adsorption in COFs is determined through Grand canonical Monte Carlo (GCMC) simulations using HT-CADSS code. H2 is described as a rigid, three-site model (H-H bond length of 0.741 Å) with a Lennard-Jones (LJ) site ($\sigma = 2.958$ Å and $\varepsilon/k_B = 36.7$ K) and negative charge of -0.936e placed at the center of mass of H₂ and positive charge of 0.468e (no LJ potentials) placed at the H nuclei.^{2,3} The quadratic Feynman–Hibbs correction⁴ is used to modify the Lennard-Jones potentials to account for quantum effects. The LJ parameters of the framework atoms of CoRE COFs are taken from DREIDING force field,⁵ and the missing parameters in some COFs are taken from the Universal force field (UFF). 6 COFs are considered as robust 'organic zeolites' as the organic groups are connected via covalent bonds⁷. To the best of our knowledge, in the 449 CoRE COFs, only LZU-301⁸ and COF-300⁹ have been reported to show crystal-structure transformation induced by tetrahydrofuran or H₂O molecules, and none of the CoRE COFs have been reported to exhibit gate-opening behavior for H₂ adsorption. Hence, the 'gate-opening' possibility is not considered in our simulation, and COFs are held as rigid frameworks in the simulations as others do. 10-12. All of the LJ cross potential parameters are described the Lorentz-Berthelot mixing rules. Partial point charges of the frameworks are determined by the charge equilibration method (QEq).¹³ A cutoff radius is set to 14.0 Å for the simulations, and the long-range interactions are handled by the Ewald summation technique. The numbers of the unit cells contained in the simulation box are COF-dependent, and no finite-size effects existed by checking the simulations with larger boxes. Periodic boundary conditions are considered in all three dimensions. Peng-Robinson equation of state is used to convert the pressure to the corresponding fugacity. Each GCMC simulation consists of 5×10⁶ equilibration steps and 5×10⁶ production steps. The simulation process involves five types of trials: translation, rotation, random swapping, deletion of molecules, and identifying changes.

The accuracy of our simulation models are confirmed by comparing the simulated hydrogen uptake with the experimental results of some measured COFs, as shown in Fig. S1.

The isosteric heats of adsorption (Q_{st}) under the adsorption conditions are calculated using the ensemble fluctuation method as follows, ¹⁴

$$Q_{st} = RT - \frac{\langle U_{ff}N \rangle - \langle U_{ff} \rangle \langle N \rangle}{\langle N^2 \rangle - \langle N \rangle \langle N \rangle} - \frac{\langle U_{fm}N \rangle - \langle U_{fm} \rangle \langle N \rangle}{\langle N^2 \rangle - \langle N \rangle \langle N \rangle}$$

where the brackets <...> denote the ensemble average, R is the gas constant, and N is the number of molecules adsorbed. The first and second terms are the contributions from the molecular thermal energy and adsorbate-adsorbate interaction energy $U_{\rm ff}$, respectively, while the remaining term is the contribution from the adsorbate-adsorbent interaction energy $U_{\rm fm}$. In the following, the contributions for the $Q_{\rm st}$ from the second and third terms are denoted as $Q_{\rm st,ff}$ and $Q_{\rm st,fm}$, respectively.

To compute the free energy profiles, we performed NVT-ensemble Monte Carlo simulations using the histogram-sampling (HS) method. ^{15, 16} In the HS method, a histogram is made of the particle positions, mapped on the reaction coordinate q. Then the histogram can be converted into a free-energy profile using $\beta F(q) = -\ln\langle P(q) \rangle$, where P(q) denotes the probability of finding a molecule at a given position q according to the histogram.

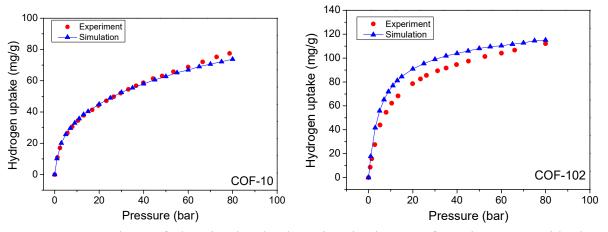
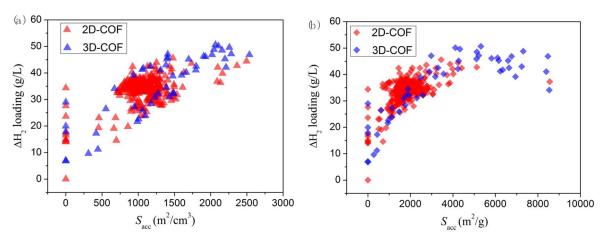
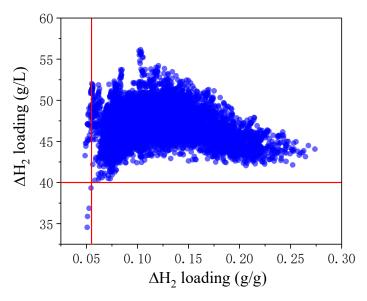


Fig. S1 Comparison of the simulated adsorption isotherms of H₂ in COFs with the experimental measurements.




Fig. S2 Relationship between the volumetric deliverable hydrogen capacity and (a) volumetric accessible surface area and (b) gravimetric accessible surface area.

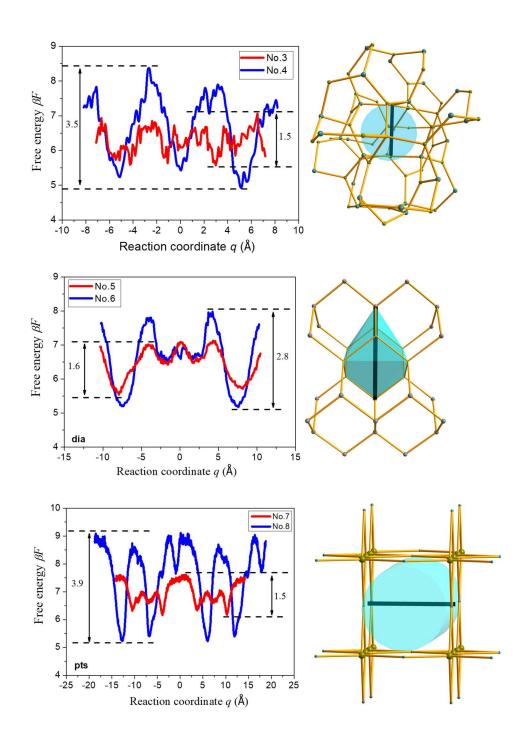
The relationship between deliverable hydrogen capacities and accessible surface area are also investigated (Fig. S2). The optimum region of accessible surface area for top performing COFs are not determined because this region is wide and the structure-performance trend is steady and not clear enough.

Table S1. The structure features of the hypothetical COFs with the highest volumetric deliverable hydrogen capacity in each topology.

Type	Name	LCD (Å)	φ	ΔH ₂ loading (g/L)	ΔH ₂ loading (g/g×100%)	Linker1	Linker2	Center	Framework
bor	COF108_EX T4_F_MOD 2-108_B3O3 _No1	15.06	0.779	55.8	10.3		1		
ctn	COF105_F_ MOD2-102_ B3O3_P1-10 2_C3N3_P2 _No1	9.51	0.778	56.1	10.3				
dia	linker100_C _linker88_C _dia_relaxed	9.83	0.812	53.8	12.7	*	/		
pts	linker100_C H_linker104 _N_pts_relax ed	11.03	0.821	52.5	13.0	**	/	*	

The highest volumetric deliverable hydrogen capacity achieved by each topology of COFs is present in Table S1. The LCD and ϕ of the listed four hypothetical COFs are generally consistent with the optimum LCD of ~10 Å and ϕ of ~0.8 analyzed from the CoRE COFs. But for the **bor**-type COFs, the optimum LCD is much larger to ~15 Å because the **bor**-type COFs typically show two kinds of cages (one big and one small).

Fig. S3 Volumetric and gravimetric deliverable hydrogen capacity of the 6893 hypothetical COFs. The red lines represent the DOE 2025 target of 40 g/L and 5.5 wt %.


Table S2. Textural and structural properties of the comparable COFs classified by topology (continued to Table 1).

Topology	No. Name	LCD (Å)	φ	ΔH_2 loading (g/L)	Q _{st} (kJ/mol)	Linker 1	Linker2	Center FC	Framework
	9. linker111_C_1 inker92_C_bo r_relaxed	14.23	0.800	51.2	3.9	15.9	/	140.1	
bor	10. COF108_EX T5_CH3_MO D1-108_SIO_ BUT_No1	bor	0.808	43.5	3.4	137.7	/	536.7	
	11. COF108_EX T4_F_MOD1- 108_B3O3-10 8_C3N3_No1	14.30	0.793	53.3	4.0	8.7	8.3	135.8	
bor	12. COF108_EX T5_CH3_MO D2-108_SIO_ BUT_No1	14.28	0.798	43.9	3.6	137.7	/	536.7	
	13. COF104_SPH _NO2_MOD2 -102_B3O3_P 1-102_PBB1_ P2_No1	10.90	0.790	52.1	4.3	8.8	16.6	306.3	
ctn	14. COF104_SPH _CF3_MOD1 -202_SIO_BU T_P1-202_SI O_OH_P2_N o1	10.90	0.803	47.5	3.5	35.5	136.5	289.1	

	15.								
	COF104_SPH	11.03			3.9		ı		
	_BR_MOD2-		0.795	51.1			•		
	102_C3N3_P			0111					
	1-102_N3B3_					0.2	17.2	240.6	张小山 经
	P2_No1					8.3	17.2	240.6	
ctn	16.								
	COF104_SPH	11.00					1.1.1		The story of the story of
	_CF3_MOD1			47.8					
	-202_SIO_BU		0.796		3.7				10 A 10 A
	T_P1-202_SI						+++		
	O_COOH_P2					55.0	126.5	200.1	
	_No1					55.9	136.5	289.1	
	17.							~/	
	COF104_SPH		0.807	53.0	3.5				
	_F_MOD3-10	11.15							
	2_N3B3_P1-1								
	02_PBB1_P2					17.1	16.6	242.2	ALL TO THE TANK OF THE PARTY.
	_No1					17.1	16.6	242.3	
ctn	18.								
	COF104_SPH	11.14	0.795		3.7		141	2	
	_CF3_MOD1			47.0			+ + + + + + + + + + + + + + + + + + + +		
	-202_SIO_BU						3		
	T_P1-202_SI						+++		
	O_CF3_P2_N					50.0	106.5	200.1	
	01					53.3	136.5	289.1	
	19.							\	
	COF104_SPH	11.07	0.792	51.9	3.9				
	_SO3H_MOD								
	1-102_B3O3_								
	P1-102_PBB1								
ctn	_P2_No1					8.8	16.6	311.5	
	20.					~	4		
	COF105-202_	11.09	0.775	46.8	5.0			HAH	PAGENTO AND
	SIO_BUT_P1								
						i i			
	-202_SIO_M						171		

dia	21. linker107_C_1 inker87_C_di a_relaxed	9.83	0.798	52.2	4.2	18.4	/	67.4	
uia	22. linker104_C_1 inker11_C_di a_relaxed	9.81	0.787	46.9	4.1	47.6	/	67.1	
pts	23. linker101_NH _linker107_C O_pts_relaxed	10.70	0.795	51.9	4.1	105.4	/	110.7	
	24. linker102_CH 2_linker104_ NH_pts_relax ed	10.69	0.798	48.6	4.0	101.8	/	230.7	

In Table S2, some SBUs of good performing COFs (Nos. 13, 19, 21, 23) show higher *FC* values than that of the corresponding bad performing ones. Their *FC* values are highlighted with red color. By taking COF pair Nos. 13 and 14 as an example, the FC value of the center fragment in COF No. 13 is 306.3, higher than that of the center fragment in COF No. 14 which is 289.1, with the complexity ratio of 306.3/289.1=1.1. However, the FC values of the linker fragments in COF No. 14 are much higher than that in COF No. 13, with the complexity ratios of 35.5/8.8=4.0 and 136.5/16.6=8.2. Especially, **ctn** COF contains more linker fragment than center fragment (the molar ratio of linker/center in **ctn** COF is 4/3). Therefore, the structure of COF No. 14 is more complicated than COF No.13. The situation of COFs Nos. 19, 21, 23 are similar with COF No. 13.

Fig. S4 Free-energy profile for H₂ in dia-type COFs No. 5 and No. 6 and pts-type COFs No. 7 and No. 8 (in Table 1) along the midlines at 77 K and infinite dilution. The black lines in the channels represent the reaction path.

From Table 1 and Table S2, we can see that the bad performing **bor**- and **ctn**-type COFs usually have the stereo linker of borosilicate cluster (recorded as SIO in the GCOF name, also shown in Fig. S5), a building unit originated from the classical COF-202¹⁷. Consider that the structure composition is reflected in the GCOF name, we make a simple elimination of **bor**- and **ctn**-type GCOFs with SIO and polyatomic functional groups because excess modifications bring structure complexity. After filtration, the minimum volumetric deliverable hydrogen capacity in the corresponding region can be improved from 42.5 to 49.1 g/L for **bor**-GCOFs and from 44.0 to 48.8 g/L for **ctn**-GCOFs (Fig. S6).

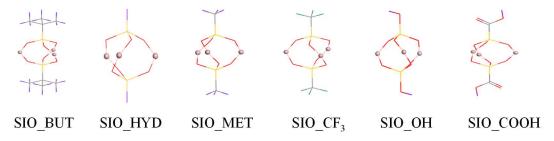
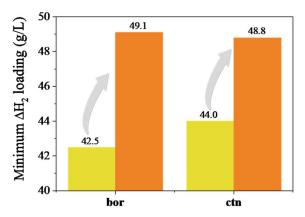



Fig. S5 A series of stereo linker of borosilicate clusters with three connection sites.

Fig. S6 The minimum volumetric deliverable hydrogen capacity in the intersectant shadow region shown in Fig. 2 (a) and (b) for **bor**-GCOFs and Fig. 2 (c) and (d) for **ctn**-GCOFs after elimination of GCOFs with SIO and polyatomic functional groups (NH₂, NO₂, CH₃, CF₃, SO₃H, COOH and C(CH₃)₃)

Knowing this principle, we seem able to understand why the reported best performing MOFs are always the classics with simple structures. ^{18-21,22} For example, recently, Ahmed et al. ¹⁹ computationally screened nearly half a million MOFs for H₂ storage and experimentally assessed the most promising ones. At the same operation condition to us, the top 2 MOFs are MOF-5 and IRMOF-20 that show volumetric deliverable hydrogen capacities higher than 50 g/L (51.9 and 51.0 g/L respectively). MOF-5 and IRMOF-20 share the cubic **pcu** topology formed by the same

Zn4O13 octahedral SBU and respectively the simple and flat benzene and thieno[3,2-b]thiophene links. These experimental results prove our finding that creating homogeneous energetic environment in nanoporous materials by using simple SBUs is significant for achieving high volumetric deliverable hydrogen capacity.

References

- 1. D. Ongari, P. G. Boyd, S. Barthel, M. Witman, M. Haranczyk and B. Smit, Langmuir, 2017, 33, 14529-14538.
- 2. F. Darkrim and D. Levesque, J. Chem. Phys., 1998, 109, 4981-4984.
- 3. A. Michels, W. de Graaff and C. A. Ten Seldam, *Physica*, 1960, **26**, 393–408
- 4. R. B. Getman, Y. Bae, C. E. Wilmer and R. Q. Snurr, Chem. Rev., 2012, 112, 703-723.
- 5. S. L. Mayo, B. D. Olafson and W. A. Goddard, J. Phys. Chem., 1990, 94, 8897-8909.
- A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard and W. M. Skiff, J. Am. Chem. Soc., 1992, 114, 10024-10035.
- 7. A. P. Cote, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger and O. M. Yaghi, Science, 2005, 310, 1166-1170.
- 8. Y. X. Ma, Z. J. Li, L. Wei, S. Y. Ding, Y. B. Zhang and W. Wang, J. Am. Chem. Soc., 2017, 139, 4995-4998.
- 9. Y. Chen, Z. L. Shi, L. Wei, B. Zhou, J. Tan, H. L. Zhou and Y. B. Zhang, J. Am. Chem. Soc., 2019, 141, 3298-3303.
- 10. G. Garberoglio. *Langmuir* 2007, 23, 12154-12158
- J. L. Mendoza-Cortés, S. S. Han, H. Furukawa, O. M. Yaghi, W. A. Goddard III, J. Phys. Chem. A 2010, 114, 10824–10833
- 12. K. Gopalsamy, C. Desgranges, J. Delhommelle, J. Phys. Chem. C 2017, 121, 24692-24700.
- 13. B. A. Wells, C. De Bruindickason and A. L. Chaffee, J. Phys. Chem. C, 2015, 119, 456-466.
- 14. F. Karavias and A. L. Myers, Langmuir, 1991, 7, 3118-3126.
- 15. E. Beerdsen, D. Dubbeldam and B. Smit, J. Phys. Chem. B, 2006, 110, 22754-22772.
- 16. B. Liu, Q. Yang, C. Xue, C. Zhong, B. Chen and B. Smit, J. Phys. Chem. C, 2008, 112, 9854-9860.
- 17. J. R. Hunt, C. J. Doonan, J. D. Levangie, A. P. Cote and O. M. Yaghi, J. Am. Chem. Soc., 2008, 130, 11872-11873.
- 18. A. Ahmed, Y. Liu, J. Purewal, L. D. Tran, A. G. Wongfoy, M. Veenstra, A. J. Matzger and D. J. Siegel, Energy Environ. Sci., 2017, 10, 2459-2471.
- 19. A. Ahmed, S. Seth, J. Purewal, A. G. Wongfoy, M. Veenstra, A. J. Matzger and D. J. Siegel, Nature Commun., 2019, 10, 1568.
- 20. D. A. Gomezgualdron, T. C. Wang, P. Garciaholley, R. M. Sawelewa, E. Argueta, R. Q. Snurr, J. T. Hupp, T. Yildirim and O. K. Farha, ACS Appl. Mater. Interfaces, 2017, 9, 33419-33428.
- 21. A. W. Thornton, C. M. Simon, J. Kim, O. Kwon, K. S. Deeg, K. Konstas, S. J. Pas, M. R. Hill, D. A. Winkler and M. Haranczyk, Chem. Mater., 2017, 29, 2844-2854.
- 22. P. Garciaholley, B. Schweitzer, T. Islamoglu, Y. Liu, L. Lin, S. Rodriguez, M. H. Weston, J. T. Hupp, D. A. Gomezgualdron and T. Yildirim, ACS Energy Lett., 2018, 3, 748-754.