Electronic Supplementary Information

Difluoroboron β-diketonate based Thermometer with Temperature-Dependent Emission Wavelength

Jian-Xin Wang,^a Yi-Shuai Yu,^b Li-Ya Niu,^a Bo Zou,^b Kai Wang^{*b} and Qing-Zheng Yang^{*a}

^aKey Laboratory of Radiopharmaceuticals Ministry of Education, College of Chemistry Beijing Normal University, Beijing 100875, P.R. China

^bState Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, P. R. China.

Materials and methods	2
Synthesis and Characterization	3
Supplementary Figures and Tables	6
HRMS	30
NMR Spectra	32
Reference	35

Materials and methods

All chemicals were purchased from commercial suppliers and used without further purification. NMR spectra were recorded with a JEOL-400 or JEOL-600 spectrometers. High-resolution mass spectra were measured on a Bruker Solarix XR Fourier Transform Ion Cyclotron Resonance Mass Spectrometer. Powder X-Ray Diffraction spectrum was recorded on X pert pro MPD diffractometer while diffuse reflection absorption spectrum was recorded with Hitachi UV-3600 plus. The emission (temperature-dependent) spectra and lifetime were recorded on Edinburgh FLS980 spectrometer. The temperature-dependent single crystal structure was measured on the XtaLAB PRO 007HF (Mo) single crystal X-ray diffractometer. The film samples of **WBF1** on the quartz sheet are obtained by the spin coating with 10 mM solution of **WBF1** in chloroform. The crystalline samples for the photophysical measurements are obtained by slow evaporation of a mixed solution of dichloromethane and hexane.

Synthesis and Characterization

Synthesis of compound **WB1**:^{1, 2} 3'-Methoxyacetophenone (1 g, 6.7 mmol) was added to a highpressure tube in 5 mL anhydrous THF under N₂ atmosphere, then NaH (57-63% oil dispersion, 0.5 g, 12.0 mmol) and methyl 3,5-di-tert-butylbenzoate (1.65 g, 6.7 mmol) were added to the mixture. The reaction mixture was allowed to stir for 20 h at 60 °C under N₂ atmosphere. Upon cooling to room temperature, 200 ml of water was added and the pH was adjusted to 3 with HCl (aq). After extracted with CH₂Cl₂ for three times, the combined organic phase was dried over anhydrous Na₂SO₄, followed by filtration and evaporation of the solvent, purified by column chromatography using CH₂Cl₂/petroleum ether (1:2, v/v) as eluent to afford 2.31 g of compound **WB1** as white solid (yield: 94%). ¹H NMR (600 MHz, Chloroform-*d*) δ 16.95(s, 1 H), 7.80 (d, *J* = 1.8 Hz, 2 H), 7.64 (t, *J* = 1.8 Hz, 1 H), 7.56 (d, *J* = 7.8 Hz, 1 H), 7.55-7.53 (d, 1 H), 7.40 (t, *J* = 7.9 Hz, 1 H), 7.11-7.08 (dd, J = 8.1, 2.3 Hz, 1 H), 6.80 (s, 1 H), 3.89 (s, 3 H), 1.39 (s, 18 H). ¹³C NMR (150 MHz, Chloroform-d) δ 187.4, 185.6, 160.2, 151.6, 137.5, 135.4, 129.9, 127.2, 121.6, 119.8, 118.6, 112.4, 93.8, 55.7, 35.32, 31.64 (d, J = 19.5 Hz). HRMS: calc. for [M+H⁺] 367.2266, found 367.2267.

Synthesis of compound **WBF1**: To a solution of compound **WB1** (2.31 g, 6.30 mmol) in 80 mL CH₂Cl₂ was added Et₃N (1.6 mL, 12.0 mmol) and BF₃/Et₂O (3.78 mL, 30 mmol). After stirring at room temperature for 2 h in the dark, 100 mL of water was added, the organic layer was collected, washed with saturated aqueous NH₄Cl and dried over anhydrous Na₂SO₄. Followed by filtration and evaporation of the solvent, purified by column chromatography using CH₂Cl₂/petroleum ether (1:2, v/v) as eluent to afford 2.47 g of **WBF1** as yellow solid (yield: 95%). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.94 (d, *J* = 1.7 Hz, 2 H), 7.77 (t, *J* = 1.7 Hz, 1 H), 7.70 (d, *J* = 7.5 Hz, 1 H), 7.68-7.66 (dd, J = 8.3, 2.4 Hz, 1 H), 7.46 (t, *J* = 8.0 Hz, 1 H), 7.22 (dd, *J* = 8.3, 2.6 Hz, 1 H), 7.13 (s, 1 H), 3.91 (s, 3 H), 1.38 (s, 18 H). ¹³C NMR (150 MHz, Chloroform-*d*) δ 184.6, 182.4, 160.2, 152.1, 133.6, 131.7, 130.1, 123.2, 121.4, 113.3, 93.8, 55.7, 35.2, 31.4.HRMS: calc. for [M+Na⁺] 437.2066, found: 437.2070.

Synthesis of compound **WB2**: 4'-tert-Butylacetophenone (1 g, 5.5 mmol) was added to a highpressure tube in 10 mL anhydrous THF under N₂ atmosphere, then NaH (57-63% oil dispersion, 1 g, 24.0 mmol) and methyl m-anisate (930 mg, 5.5 mmol) were added to the mixture. The reaction mixture was allowed to stir for 24 h at 60 °C under N₂ atmosphere. Upon cooling to room temperature, 100 ml of water was added and the pH was adjusted to 3 with HCl (aq). After extracted with CH_2Cl_2 for three times, the combined organic phase was collected and dried over anhydrous Na₂SO₄. Followed by filtration and evaporation of the solvent, purified by column chromatography using CH_2Cl_2 /petroleum ether (1:2, v/v) as eluent to afford 1.56 g of compound **WB2** as white solid (yield: 96%). ¹H NMR (400 MHz, Chloroform-d) δ 16.94 (s, 1 H), 7.93 (d, J = 8.7 Hz, 2 H), 7.58-7.52 (m, 2 H), 7.52-7.48 (m, 2 H), 7.38 (t, J = 7.9 Hz, 1 H), 7.08 (dd, J = 8.1, 2.3 Hz, 1 H), 6.83 (s, 1H), 3.87 (s, 3 H), 1.36 (s, 9 H). ¹³C NMR (100 MHz, Chloroform-d) δ 185.6, 159.9, 156.4, 137.3, 132.8, 129.7, 127.2, 125.8, 119.7, 118.6, 112.1, 93.2, 55.5, 35.2, 31.2. HRMS: calc. for [M+H⁺] 311.1641, found 311.1646.

Synthesis of compound **WBF2**: To a solution of compound **WB2** (1.56 g, 5.28 mmol) in 50 mL CH₂Cl₂ was added Et₃N (840 μ L, 6.0 mmol) and BF₃/Et₂O (3.78 mL, 30 mmol). After stirring at room temperature for 1 h in the dark, 100 mL of water was added, the organic layer was collected, washed with saturated aqueous NH₄Cl and dried over anhydrous Na₂SO₄. Followed by filtration and evaporation of the solvent, purified by column chromatography using CH₂Cl₂/petroleum ether (1:2, v/v) as eluent to afford 1.80 g of **WBF2** as white solid (yield: 95%). ¹H NMR (600 MHz, Chloroform-d) δ 8.08 (d, J = 8.1 Hz, 2 H), 7.69 (d, J = 7.8 Hz, 1 H), 7.65 (d, J = 1.9 Hz, 1 H), 7.56 (d, J = 8.6 Hz, 2 H), 7.45 (d, J = 8.0 Hz, 1 H), 7.21 (dd, J = 8.3, 2.4 Hz, 1 H), 7.14 (s, 1 H), 3.90 (s, 3 H), 1.36 (s, 9 H). ¹³C NMR (100 MHz, Chloroform-d) δ 183.1, 182.4, 160.2, 160.0, 133.5, 130.1, 129.1, 126.3, 121.7, 121.4, 113.0, 93.5, 55.7, 35.6, 31.0.HRMS: calc. for [M+NH₄⁺] 376.1891, found: 376.1891.

Synthesis of compound WBF3: 4'-methylacetophenone (1 g, 7.5 mmol) was added to a highpressure tube in 10 mL anhydrous THF under N₂ atmosphere, then NaH (57-63% oil dispersion, 1 g, 24.0 mmol) and methyl m-Anisate (1.25 g, 7.5 mmol) were added to the mixture. The reaction mixture was allowed to stir for 24 h at 60 °C under N₂ atmosphere. Upon cooling to room temperature, 100 ml of water was added and the pH was adjusted to 3 with HCl (aq). After extracted with CH₂Cl₂ for three times, the combined organic phase was dried over anhydrous Na₂SO₄, followed by filtration and evaporation of the solvent to afford WB3 and used without further purification. 20 mL of CH_2Cl_2 was added to WB3, then Et_3N (1.6 mL, 12.0 mmol) and BF₃/Et₂O (3.78 mL, 30 mmol) was added. After stirring at room temperature for 1 h in the dark, 100 mL of water was added. The organic layer was collected, washed with saturated aqueous NH₄Cl and dried over anhydrous Na₂SO₄. Followed by filtration and evaporation of the solvent, purified by column chromatography using CH_2Cl_2 /petroleum ether (1:2, v/v) as eluent to afford 1.65 g of **WBF3** as yellow solid (yield: 72%). ¹H NMR (400 MHz, Chloroform-d) δ 8.04 (d, J = 8.3 Hz, 2 H), 7.68 (d, J = 8.0 Hz, 1 H), 7.66-7.61 (m, 1 H), 7.44 (t, J = 8.0 Hz, 1 H), 7.35 (d, J = 8.2 Hz, 2 H), 7.21 (dd, J = 8.3, 2.2 Hz, 1 H), 7.13 (s, 1 H), 3.89 (s, 3 H), 2.47 (s, 3 H). ¹³C NMR (100 MHz, Chloroformd) δ 183.2, 182.5, 160.2, 147.1, 133.6, 130.1, 130.1, 129.3, 129.2, 121.7, 121.4, 113.1, 93.4, 55.8, 22.1. HRMS: calc. for [M+NH₄⁺] 334.1420, found: 334.1420.

Supplementary Figures and Tables

Fig. S1. a)-c) The absorption spectrum of complexes WBF1-3 in different solvents, respectively.

Fig. S2. a)-c) The fluorescence spectrum of complexes WBF2-3 in different solvents, respectively.

Fig. S3. a)-c) The time-resolved emission at the maximal emission wavelength of complexes WBF1-3 in different solvents, respectively.

	Solvents	^α λ _{abs} (nm)	^{<i>b</i>} ε*10 ⁴ (cm ⁻¹ M ⁻¹)	^c λ _{em} (nm)	^d Φ _f	^e τ _f /ns
WBF1	Toluene	388	3.71	440	0.34	2.55
	CHCl₃	389	4.26	445	0.21	1.70
	THF	388	4.05	465	0.11	4.91
	DCM	388	4.56	470	0.28	3.20
	Acetone	388	3.98	500	0.29	7.96
	CH₃OH	370	3.69	520	0.01	2.06
WBF2	Toluene	388	4.36	441	0.38	2.53
	CHCl₃	388	4.81	445	0.23	1.77
	THF	389	5.09	464	0.12	5.09
	DCM	388	4.99	472	0.28	3.32
	Acetone	387	4.66	502	0.09	7.74
	CH₃OH	373	4.18	521	0.01	2.07
WBF3	Toluene	388	4.61	440	0.37	2.52
	CHCl₃	388	5.16	446	0.24	1.83
	THF	387	5.27	465	0.11	4.99
	DCM	387	5.61	471	0.28	3.35
	Acetone	387	4.87	500	0.24	7.53
	СН₃ОН	372	4.57	519	0.01	1.91

 Table S1. The collected photophysical data of complexes WBF1-3 in different solvents.

^{*a*}Absorption maximum. ^{*b*}Extinction coefficients calculated at the absorption maxima. ^{*c*}Fluorescence emission maxima. ^{*d*}The absolute fluorescence quantum yields. ^{*e*}Fluorescence lifetime were measured with a 375 nm EPLEDs (picosecond pulsed LEDs) light source and monitored at the emission maximum. All fluorescence lifetimes are fitted with single-exponential decays unless indicated.

Fig. S4. a) The intramolecular torsion at different temperatures. Molecular stacking structures of complex **WBF1** along the b) a-axis, c) b-axis and d) c-axis directions, hydrogen atoms are omitted for clarity.

Fig. S5. Single-crystal structure of **WBF1**: Temperature-dependent partial packing modes, hydrogen atoms are omitted for clarity.

CCDC number	1943072	1943071	1943070	1943069
Temperature	400 K	350 К	300 K	250 K
Empirical formula	$C_{24}H_{29}BF_2O_3$	$C_{24}H_{29}BF_2O_3$	C ₂₄ H ₂₉ BF ₂ O ₃	$C_{24}H_{29}BF_2O_3$
Formula weight	414.28	414.28	414.28	414.28
Color of crystal	Green	green	green	yellow
Crystal system	triclinic	triclinic	triclinic	triclinic
Unit cell dimensions	a = 8.5049(7) Å b = 9.9575(9) Å c=15.6872(12) Å α= 74.405(7)° β= 86.917(7)° γ= 66.543(8)°	a = 8.4132(7) Å b = 9.9177(8) Å c= 15.6851(11) Å α= 74.475(7)° β= 86.897(6)° γ= 66.845(8)°	a = 10.1611(6) Å b= 15.2065(9) Å c = 16.1543(9) Å α= 70.258(5)° β= 78.911(5)° γ=79.039(5)°	a = 10.1447(6) Å b= 15.1024(8) Å c = 16.1256(8) Å α= 70.107(5)° β= 78.921(4)° γ=78.570(5)°
Volume (Å ³)	1171.72(19)	1157.49(17)	1142.10(2)	1128.05(2)
z	2	2	4	4
ρ _{calc} g/cm ³	1.174	1.189	1.205	1.220

 Table S2. Collected single crystal data of WBF1 at different temperature.

CCDC number	1943068	1943067	1943066
Temperature	200 K	150 K	100 K
Empirical formula	C24H29BF2O3	C ₂₄ H ₂₉ BF ₂ O ₃	$C_{24}H_{29}BF_2O_3$
Formula weight	414.28	414.28	414.28
Color of crystal	yellow	orange	orange
Crystal system	triclinic	triclinic	triclinic
Unit cell dimensions	a = 10.1293(6) Å b = 14.9169(7) Å c = 16.0997(7) Å α = 70.326(4)° β = 79.384(4) ° γ = 77.847(4)°	a = 10.1217(5) Å b = 14.7660(7) Å c = 16.0705(7) Å α = 70.555(4)° β = 79.713(4) ° γ = 77.319(4)°	a = 10.1095(5) Å b= 14.6951(6) Å c = 16.0516(6) Å α= 70.598(4)° β= 79.739(4)° γ= 77.184(4)°
Volume (ų)	1111.10(2)	1097.52(19)	1089.49(17)
z	4	4	4
ρ _{calc} g/cm ³	1.238	1.254	1.263

Fig. S6. a) The intramolecular torsion at different temperatures. Molecular stacking structures of complex **WBF2** along the b) a-axis, c) b-axis and d) c-axis directions, hydrogen atoms are omitted for clarity.

Fig. S7. Single-crystal structure of **WBF2**: Temperature-dependent partial packing modes, hydrogen atoms are omitted for clarity.

 Table S3. The intermolecular distance and the molecular torsion of WBF2 at different temperature.

Temperature	400 K	300 K	200 K	100 K
d(intermolecular) /Å	3.862	3.782	3.725	3.675
Torsion (C1-C2-C3-O1)/°	0.88	2.20	1.87	1.46
Torsion (O2-C4-C5-C6)/°	7.49	6.90	7.00	7.27

Table S4.	Collected	single cr	ystal data	of WBF2 at	t different te	mperature.
-----------	-----------	-----------	------------	------------	----------------	------------

CCDC number	1977233	1977234	1977249	1977245
Temperature	400 K	300 K	200 K	100 K
Empirical formula	C ₂₀ H ₂₁ BF ₂ O ₃	C ₂₀ H ₂₁ BF ₂ O ₃	C ₂₀ H ₂₁ BF ₂ O ₃	C ₂₀ H ₂₁ BF ₂ O ₃
Formula weight	358.18	358.18	358.18	358.18
Color of crystal	yellow	yellow	yellow	yellow
Crystal system	orthorhombic	orthorhombic	orthorhombic	orthorhombic
Unit cell dimensions	a = 7.1936(15) Å b = 10.205(3) Å c=50.76 (4) Å α= 90° β= 90° γ= 90°	a = 7.2099(10) Å b = 10.1738(9) Å c= 49.415(6) Å α= 90° β= 90° γ= 90°	a = 7.1750(2) Å b= 10.0917(3) Å c = 49.0041(13) Å α= 90° β= 90° γ= 90°	a = 7.1609(2) Å b= 10.0337(3) Å c = 48.7164(15) Å α= 90° β= 90° γ= 90°
Volume (ų)	3727(3)	3624.7(7)	3548.29(17)	3500.29(18)
z	8	8	8	8
ρ _{calc} g/cm ³	1.277	1.313	1.341	1.359

Fig. S8. a) The intramolecular torsion at different temperatures. Molecular stacking structures of complex **WBF3** along the b) a-axis, c) b-axis and d) c-axis directions, hydrogen atoms are omitted for clarity.

Fig. S9. Single-crystal structure of **WBF3**: Temperature-dependent partial packing modes, hydrogen atoms are omitted for clarity.

 Table S5. The intermolecular distance and the molecular torsion of WBF3 at different temperature.

Temperature	400 K	300 К	200 К	100 KV
d(intermolecular) /Å	4.872	4.828	4.784	4.749
Torsion (C1-C2-C3-O1)/°	13.31	12.21	10.82	9.52
Torsion (O2-C4-C5-C6)/°	3.75	4.67	5.20	6.26

 Table S6. Collected single crystal data of WBF3 at different temperature.

CCDC number	1977246	1977247	1977250	1977251
Temperature	400 K	300 K	200 K	100 K
Empirical formula	C ₁₇ H ₁₅ BF ₂ O ₃	C ₁₇ H ₁₅ BF ₂ O ₃	$C_{17}H_{15}BF_2O_3$	C ₁₇ H ₁₅ BF ₂ O ₃
Formula weight	316.10	316.10	316.10	316.10
Color of crystal	yellow	yellow	yellow	yellow
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic
Unit cell dimensions	a = 7.9445(7) Å b = 19.2382(16) Å c=10.3606 (11) Å α= 90° β= 104.183(10)° γ= 90°	a = 7.8494(4) Å b = 19.1910(10) Å c= 10.3146(5) Å α= 90° β= 103.760(5)° γ= 90°	a = 7.7481(4) Å b= 19.1442(7) Å c = 10.2334(4) Å α= 90° β= 103.133(4)° γ=90°	a = 7.6754(4) Å b= 19.1327(9) Å c = 10.1490(5) Å α= 90° β= 102.782(5)° γ=90°
Volume (ų)	1535.2(3)	1509.18(14)	1478.23(11)	1453.46(13)
Z	4	4	4	4
ρ _{calc} g/cm ³	1.368	1.391	1.420	1.445

Fig. S10. The diffuse reflection absorption spectrum of complex WBF1-3 crystals.

Fig. S11. Powder X-Ray diffraction spectrum of WBF1.

Fig. S12. The temperature-dependent emission spectra of WBF1 a) powder and b) film samples.

Fig. S13. Temperature-dependent time-resolved emission at the maximal emission wavelength of **WBF1** a) crystals, b) powder and c) film samples.

Temperature/K	Crystals	Powder	Film
	Lifetime/ns	Lifetime/ns	Lifetime/ns
380	21.49	21.48	10.71
360	23 21	23 21	11 57

320	27.53	27.52	15.44
300	31.78	32.04	20.21
280	36.57	39.81	25.71
260	41.94	43.92	30.38
240	47.36	49.48	37.02
220	51.66	58.23	45.66
200	57.39	67.02	50.75
180	$τ_1/ns$ 7.48, 10.3% $τ_2/ns$ 72.19, 89.7% $τ_{average}/ns$ 65.52	74.34	τ ₁ /ns 18.15, 12.2% τ ₂ /ns 62.26, 87.8% τ _{average} /ns 56.88
160	τ_1/ns 16.18, 6.2% τ_2/ns 72.12, 93.8% $\tau_{average}/ns$ 68.65	79.77	τ ₁ /ns 19.03, 13.4% τ ₂ /ns 66.23, 86.6% τ _{average} /ns 59.91
140	$\tau_1/ns 17.55, 8.2\%$ $\tau_2/ns 77.48, 91.8\%$ $\tau_{average}/ns 72.56$	83.81	τ ₁ /ns 22.28, 16.5% τ ₂ /ns 69.12, 83.5% τ _{average} /ns 61.39
120	τ_1/ns 15.09, 7.1% τ_2/ns 77.88, 92.9% $\tau_{average}/ns$ 73.42	84.17	τ ₁ /ns 20.15, 13.4% τ ₂ /ns 67.48, 86.6% τ _{average} /ns 61.14
100	$\tau_1/ns 8.96, 6.9\%$ $\tau_2/ns 75.51, 93.1\%$ $\tau_{average}/ns 70.92$	τ ₁ /ns 3.46, 2.1% τ ₂ /ns 87.22, 97.9% τ _{average} /ns 85.46	τ ₁ /ns 20.31, 14.7% τ ₂ /ns 67.92, 85.3% τ _{average} /ns 60.92
77	τ_1/ns 7.73, 9.0% τ_2/ns 72.75, 91.0% $\tau_{average}/ns$ 66.89	τ ₁ /ns 3.26, 1.9% τ ₂ /ns 87.38, 98.1% τ _{average} /ns 85.78	τ_1 /ns 18.59, 14.2% τ_2 /ns 67.06, 85.8% $\tau_{average}$ /ns 60.18

Fig. S14. The linear relationship between the maximal emission wavelength and temperature of **WBF1** a) powder and b) film samples.

Fig. S15. The CIE chromaticity diagram showing the temperature dependence of the (x,y) color coordinates of **WBF1** a) crystals, b) powder (inset: The photographs of gradient fluorescence of **WBF1** film in a quartz tube) and c) film samples, respectively.

Fig. S16. Temperature-dependent a) emission spectrum and b) time-resolved emission at the maximal emission wavelength. c) CIE chromaticity diagram showing the temperature dependence of the (x,y) color coordinates of **WBF2** crystals.

Table S8: The fluorescence lifetime of WBF2 crystals at different temperature.

Temperature/K	Lifetime/ns
380	5.51
360	6.29
340	7.97
320	9.93
300	12.41
280	15.15
260	16.63
	τ ₁ /ns 13.59, 75.2%
240	τ ₂ /ns 31.24, 24.8 %
	$\tau_{average}/ns$ 17.97
	τ ₁ /ns 14.26, 75.8%
220	τ₂/ns 30.22, 24.2 %
	$\tau_{average}/ns$ 18.12
	τ ₁ /ns 13.58, 63.7%
200	τ ₂ /ns 26.26, 36.3 %
	$\tau_{average}/ns$ 18.18
	τ ₁ /ns 13.17, 74.7%
180	τ ₂ /ns 33.11, 25.3 %
	$\tau_{average}/ns$ 18.21
	τ ₁ /ns 11.56, 67.9%
160	τ ₂ /ns 32.51, 32.1 %
	$\tau_{average}/ns$ 18.28
	τ ₁ /ns 14.43, 72.1%
140	τ ₂ /ns 31.70, 27.9 %
	$\tau_{average}/ns$ 19.25
	τ ₁ /ns 15.34, 75.2%
120	τ ₂ /ns 35.55, 23.4 %
	$\tau_{\text{average}}/\text{ns}$ 20.07
	τ ₁ /ns 15.79, 75.7%
100	τ ₂ /ns 35.91, 24.3 %
	$\tau_{average}/ns$ 20.68
	τ ₁ /ns 16.10, 75.5%
77	τ ₂ /ns 36.52, 24.5%
	$\tau_{average}/ns$ 21.10

Fig. S17: Temperature-dependent a) emission spectrum and b) time-resolved emission at the maximal emission wavelength. c) CIE chromaticity diagram showing the temperature dependence of the (x,y) color coordinates of **WBF3** crystals.

Table S9: The fluorescence lifetime of WBF3 crystals at different temperature.

Temperature/K	Lifetime/ns
380	12.55
360	13.28
340	14.87
320	16.28
300	19.99
280	21.81
260	23.95
240	27.36
220	τ ₁ /ns 16.76, 15.9% τ ₂ /ns 34.11, 84.1% τ _{average} /ns 31.35
200	$τ_1/ns$ 12.59, 7.1% $τ_2/ns$ 35.68, 92.9% $τ_{average}/ns$ 34.04
180	τ ₁ /ns 15.02, 9.9% τ ₂ /ns 40.05, 90.1% τ _{average} /ns 37.57
160	τ ₁ /ns 17.24, 13.7% τ ₂ /ns 44.26, 86.3% τ _{average} /ns 40.55
140	τ ₁ /ns 19.47, 15.9% τ ₂ /ns 47.01, 84.1% τ _{average} /ns 42.63
120	τ ₁ /ns 18.45, 14.9% τ ₂ /ns 47.13, 85.1% τ _{average} /ns 42.85
100	τ_1 /ns 15.77, 11.1% τ_2 /ns 46.75, 88.9% $\tau_{average}$ /ns 43.31
77	$τ_1/ns$ 17.26, 12.7% $τ_2/ns$ 46.76, 87.3% $τ_{average}/ns$ 43.01

Fig. S18. a) The emission spectra measured at 380 K before and after 5 hours heating of the a) crystal, b) powder and c) film samples of **WBF1**.

Fig. S19. The wavelength of maximum emission peak measured at 77 K and 380 K of a) crystal b) powder and c) film samples of **WBF1**.

HRMS

Fig. S20. High-resolution mass spectrum of WBF1.

Fig. S21. High-resolution mass spectrum of WBF2.

Fig. S22. High-resolution mass spectrum of WBF3.

NMR Spectra

Fig. S23. ¹H NMR spectrum of **WBF1** in CDCl₃ (500µL).

Fig. S24. ¹³C NMR spectrum of WBF1 in CDCl₃ (500µL).

Fig. S25. ¹H NMR spectrum of WBF2 in CDCl₃ (500 μ L).

Fig. S26. ¹³C NMR spectrum of **WBF2** in CDCl₃ (500μL).

Fig. S27. ¹H NMR spectrum of **WBF3** in CDCl3 (500μL).

Fig. S28. ¹³C NMR spectrum of **WBF3** in CDCl₃ (500μL).

References

- 1. J. X. Wang, L. Y. Niu, P. Z. Chen, Y. Z. Chen, Q. Z. Yang and R. Boulatov, *Chem. Commun.*, 2019, **55**, 7017-7020.
- P. Z. Chen, H. Zhang, L. Y. Niu, Y. Zhang, Y. Z. Chen, H. B. Fu and Q. Z. Yang, *Adv. Funct. Mater.*, 2017, 27, 1700332.