Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020

SUPPORTING INFORMATION

Copper Catalysed Oxidative Sulfonylation of Branched Aldehydes Using the Acid Enhanced Reactivity of Manganese(IV) oxide.

Joe I. Higham and James A. Bull*

Department of Chemistry, Imperial College London, Molecular Science Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK

*E-mail: j.bull@imperial.ac.uk

Table of Contents	S2
General Experimental Considerations	
Optimisation of Reaction Conditions for Silver-Mediated Oxidative Coupling Reaction	S4
Investigation Into Acid Tuneable Oxidants	S9
Synthesis of Sulfinate Salts	S10
Manganese(IV) Oxide Mediated α –Sulfonylation	
Reaction Scope Varying the Sulfinate Salt	S15
Reaction Scope Varying the Aldehyde	S20
Derivatisation of Sulfonyl Aldehydes	S28
Gram Scale Synthesis	S29
¹ H and ¹³ C NMR spectra for selected compounds	
References	

General Experimental Considerations

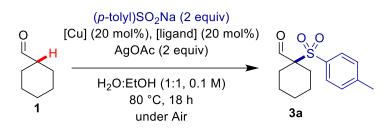
All reactions were run under an inert atmosphere (argon) with flame-dried glassware using standard techniques unless otherwise stated. Anhydrous solvents were obtained by filtration through drying columns (THF, diethyl ether, CH₂Cl₂). Acetic acid, copper(II) triflate (98% purity), manganese(IV) oxide (>99% purity) and bathophenanthroline (>99% purity) were purchased from Sigma Aldrich and used as provided. Commercial aldehydes were distilled. All other commercial reagents were used as supplied or purified by standard techniques where necessary.

All α -sulfonylation reactions were performed in microwave vials under air and sealed with Fisherbrand 20 mm aluminium, plain, centre hole, molded septa butyl, dark grey, 55° shore A, 3.0 mm caps when using polar solvents (AcOH, H₂O or Ethanol).

Flash column chromatography was performed using 230-400 mesh silica with the indicated solvent system according to standard techniques. Analytical thin-layer chromatography (TLC) was performed on precoated, glass-backed silica gel plates. Visualisation of the developed chromatogram was performed by UV absorbance (254 nm), aqueous potassium permanganate, p-anisaldehyde, phosphomolybdic acid or vanillin stains. Infrared spectra (v_{max} , FTIR ATR) were recorded in reciprocal centimeters (cm⁻¹). Nuclear magnetic resonance spectra were recorded on 400 MHz spectrometers. Chemical shifts for ¹H NMR spectra are recorded in parts per million from tetramethylsilane with the solvent resonance as the internal standard (chloroform δ = 7.27 ppm, or methanol δ = 3.31 ppm). Data is reported as follows: chemical shift [multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet and b = broad), coupling constant in Hz, integration, assignment]. ¹³C NMR spectra were recorded with complete proton decoupling. Chemical shifts are reported in parts per million from tetramethylsilane with the solvent resonance as the internal standard (chloroform: δ = 77.0 ppm, methanol δ = 49.0 ppm). J values are reported in Hz. Assignments of ¹H/¹³C spectra were made by the analysis of δ/J values, and COSY, HSQC, and HMBC experiments as appropriate. In cases where novel compounds are isolated as a mixture of diastereomers, both diastereomers were assigned in a single multiplet report with H_a/H_b and C_a/C_b being used to denote the proton and carbons of the two diastereomers respectively. In the case when known compounds are isolated as a mixture of diastereomers, cis- and trans-diastereomers are assigned in separate multiplet reports. ¹⁹F NMR spectra were recorded with or without complete proton decoupling. Decoupling is indicated as (¹⁹F{¹H}) and where relevant this is stated in each assignment and spectrum. ¹⁹F spectra are indirectly referenced to CFCl₃, automatically via direct measurement of the absolute frequency of the deuterium lock signal by the spectrometer hardware.

Melting points are uncorrected.

The high-resolution mass spectrometry (HRMS) analyses were performed using electrospray ion source (ESI) or pneumatically assisted atmospheric pressure chemical ionization (APCI) using an atmospheric solids analysis probe (ASAP). ESI was performed using a Waters LCT Premier equipped with an ESI source operated in positive or negative ion mode. The software used was MassLynx 4.1, this software does not account for the electron and all the calibrations/references are calculated accordingly, i.e. $[M+H]^+$ is detected and the mass is calibrated to output [M+H]. APCI was performed using an Orbitrap XL or Xevo G2S using an ASAP to insert samples into the APCI source. The sample was introduced at ambient temperature and the temperature increased until the sample vaporised.

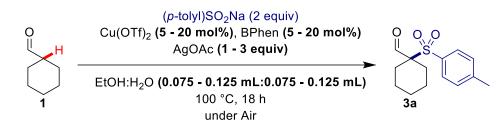

All raw and processed data for this manuscript can be found at the Imperial College London Research Data Repository:

https://doi.org/10.14469/hpc/6794

Optimisation of Reaction Conditions for Silver-Mediated Oxidative Coupling Reaction

Catalyst Screening.

Various copper salts were investigated (Table S1, Entries 1–5). Copper(II) triflate was identified as the most effective under catalytic conditions. Investigation into N,N bidentate ligand additives (entries 6–8) showed 1,10–phenanthroline as an effective ligand to promote the reaction (entry 7). Further investigation of substituted 1,10–phenanthrolines revealed bathophenanthroline as the most effective in terms of yield and mass recovery (entry 11). Conducting the reaction at higher temperature ensured full conversion to product (Entries 12,13).



Entry	Cu (mol%)	Ligand	RSM (%) ^a	Yield 3a (%) [°]	Total (%)
1 ^b	Cu(OAc) ₂ (100)	None	14	30	44
2	Cu(OAc) ₂ (20)	None	14	26	40
3	CuBr ₂ (20)	None	20	26	46
4	Cu(acac) ₂ (20)	None	15	28	43
5	Cu(OTf) ₂ (20)	None	18	33	51
6	Cu(OTf) ₂ (20)	2,2'-Bipyridine	17	48	65
7	Cu(OTf) ₂ (20)	1,10-Phenanthroline	18	52	70
8	Cu(OTf) ₂ (20)	Tetramethylethylenediamine	13	29	42
9	Cu(OTf) ₂ (20)	4,7-Dimethoxyphenanthroline	8	38	46
10	Cu(OTf) ₂ (20)	3,4,7,8-Tetramethylphenenanthroline	13	57	70
11	Cu(OTf) ₂ (20)	Bathophenanthroline	19	57	76
12 ^c	Cu(OTf) ₂ (20)	Bathophenanthroline	0	74	74
13 ^d	Cu(OTf) ₂ (20)	Bathophenanthroline	0	74	74

Table S1 – Optimisation of silver mediated α -sulfonylation. Reactions performed on 0.2 mmol scale. ^{*a*} Yield determined in situ using 1,3,5-trimethoxybenzene as an internal standard. ^{*b*} 1 equiv of Cu(OAc)₂ used. ^{*c*} Reaction performed at 95 °C and at 1 M. ^{*d*} Reaction performed at 110 ° C and at 1 M.

DOE Optimisation of Reaction Conditions

Using JMP Pro 14 software, the following factors were investigated using a response surface design: copper loading, ligand loading, volume of EtOH, volume of H_2O and oxidant loading were investigated as these had been previously shown to have a more significant impact on the yield. Temperature was fixed to 100 °C and time at 18 h. The ranges chosen are shown below: the JMP DoE software gave 26 experiments to run (Table S2).

Entry	Cat Loading (mol%)	Ligand Loading (mol%)	Vol. EtOH (mL)	Vol. EtOH (mL)	Oxidant equiv	Yield 3a (%)ª
1	5	20	0.125	0.125	3	24
2	20	5	0.075	0.125	1	39
3	5	20	0.075	0.075	3	36
4	12.5	12.5	0.125	0.1	2	53
5	20	20	0.125	0.075	3	34
6	20	20	0.075	0.1	1	38
7	5	5	0.075	0.125	3	42
8	5	5	0.075	0.075	1	24
9	5	20	0.125	0.075	1	24
10	12.5	5	0.1	0.1	2	54
11	5	5	0.125	0.125	1	32
12	20	5	0.125	0.125	3	46
13	12.5	20	0.075	0.125	1	50
14	20	5	0.125	0.075	1	47
15	12.5	12.5	0.075	0.075	2	56
16	5	20	0.1	0.125	2	34
17	5	5	0.125	0.075	3	55
18	20	20	0.075	0.125	3	37
19	12.5	12.5	0.1	0.1	3	48
20	5	12.5	0.075	0.1	2	26
21	5	12.5	0.1	0.1	1	35
22	20	12.5	0.1	0.125	2	53
23	12.5	5	0.1	0.1	2	54
24	20	20	0.125	0.125	1	48
25	20	20	0.1	0.075	2	58
26	20	5	0.075	0.075	3	41

Table S2 – Silver mediated α -Sulfonylation DoE data. Reactions performed on 0.2 mmol scale. ^a Yield determined in situ using 1,3,5-trimethoxybenzene as an internal standard.

The DoE software used this data to construct a model which both showed the goodness of fit of the data, comparing the predicted yield with the actual yield obtained (Figure S1). The experimental data was plotted against the predicted yield given by the red line shown in Figure S1. As the points do not deviate greatly from the trendline, the model fits well to the observed data. Experimental data points in red are highlighted as potential outliers by the software. Nonetheless, the R² value of this data is 0.95 indicating a 95% confidence in the results obtained from the data.

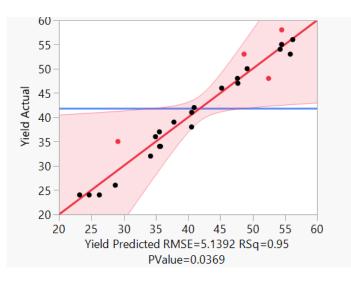


Figure S1 - Predicted vs actual yield.

The significance of each factor is shown below (Figure S2). Figure S2 denotes the log value of significance of each factor and combination of factors as calculated by JMP pro 14. A higher value for log worth signifies a higher relative significance of the factor with respect to yield of reaction. From this, it appears that the catalyst loading is most significant, with the interaction between catalyst and oxidant being next most significant.

Source	LogWorth	PValue
Cat. Loading(5,20)	2.005	0.00989
Cat. Loading*Cat. Loading	1.966	0.01081
Cat. Loading*Oxidant Loading	1.580	0.02631
Vol H2O*Vol H2O	1.495	0.03196
Ligand Loading*Oxidant Loading	1.330	0.04679
Vol EtOH*Vol EtOH	1.316	0.04834
Ligand Loading(5,20)	1.277	0.05280 ^
Ligand Loading*Vol EtOH	1.180	0.06603
Cat. Loading*Ligand Loading	1.015	0.09664
Vol EtOH(0.075,0.125)	0.604	0.24869 ^
Vol H2O(0.075,0.125)	0.589	0.25762 ^
Oxidant Loading*Oxidant Loading	0.501	0.31520
Ligand Loading*Ligand Loading	0.499	0.31711
Oxidant Loading(1,3)	0.378	0.41867 ^
Vol H2O*Oxidant Loading	0.295	0.50701
Vol EtOH*Oxidant Loading	0.223	0.59873
Cat. Loading*Vol H2O	0.170	0.67549
Ligand Loading*Vol H2O	0.114	0.76902
Vol EtOH*Vol H2O	0.043	0.90540
Cat. Loading*Vol EtOH	0.007	0.98317

Figure S2 - Significance of each factor and interaction

The interaction plot describes the interactions of each variable (Figure S3). By focusing on this plot row by row, it is possible to understand how each of the factors interact with one another. If two factors are interacting, it would be expected that their high and low extremes (in blue and red respectively) will have different profiles to one another.

Looking at the row of catalyst loading first (row 1), box 1b shows the variation in yield at 20 mol% catalyst (in blue) and at 5 mol% (in red) as ligand loading increases from 5 to 20 mol%. Higher catalyst loading gives overall higher yield, with the increased loading of ligand having a maximum 12.5 mol%. At the lower catalyst loading, the ligand appears to have a negative interaction leading to reduced yields at high ligand loading.

J. I. Higham and J. A. Bull

This could be due to the formation of less catalytically competent copper species which is unable to effectively coordinate the substrate. For volumes of both EtOH and H₂O (rows 3a,b and 4a,b), as the line profiles at high and low catalyst loadings are very similar, this implies that no significant interaction exists between the volume of either solvent and the catalyst loading. When comparing catalyst loading and oxidant loading (box 1e) at high catalyst loading, higher oxidants loadings were not well tolerated. However, the reverse is true at low catalyst loadings where more oxidant leads to higher yields.

The lower ligand loadings gave a consistently higher yield (for any loading shown, the red line (5 mol% ligand loading) is typically higher than the blue (20 mol% ligand loading). As discussed above, the same catalyst – ligand interaction is observed (box 2a) however the decrease in yield at the extremes is more pronounced as the ligand loading is kept constant and the catalyst loading is changed. A slight interaction between the volume of EtOH and ligand loading is implied (box 2c) however no interaction is observed between volume of H₂O and ligand loading (box 2d). Finally, like catalyst loading, the oxidant loading has an interaction with the ligand loading (box 2e).

Other than the interactions discussed previously, the volumes of each respective solvent do not have any significant interactions and best yields were observed at low H₂O volume and EtOH volume.

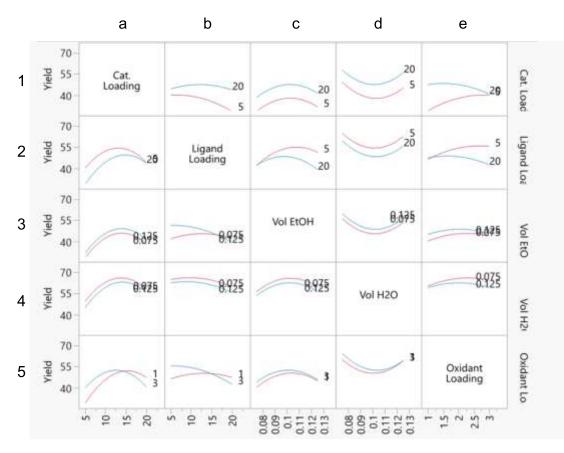


Figure S3 – DoE interaction plots

A key interaction observed from the DoE is that of oxidant and catalyst, at high catalyst loadings a low oxidant loading can be tolerated, so a model validation reaction was performed with the oxidant loading fixed at 1.5 equiv and with the loadings of other variables suggested by the model (Figure S4). Additionally, conditions which were predicted to maximise yield were also tested (Figure S5).

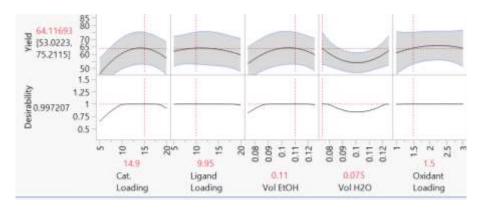


Figure S4 – Conditions predicted by model for maximum yield with 1.5 equiv of oxidant

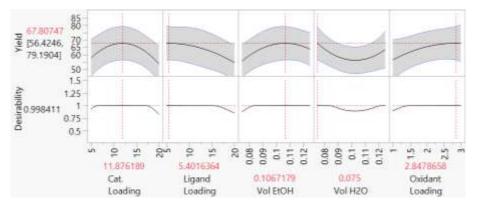
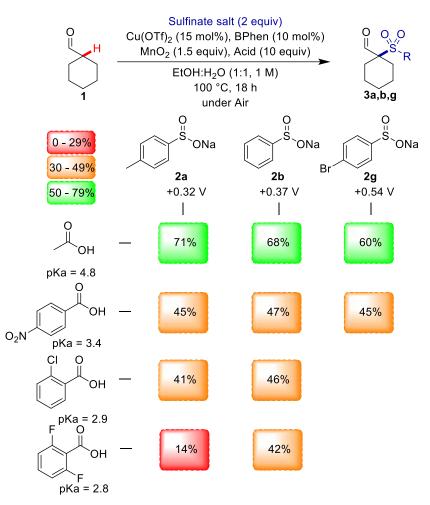


Figure S5 - Conditions predicted by model maximum yield

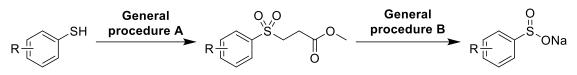

From the results obtained, the conditions predicted to give the highest yield with 1.5 equivalents of oxidant was in fact the highest overall yield and were chosen as the optimised conditions for this reaction (Table S3). In the absence of copper, ligand and oxidant under silver mediated conditions led to a significant reduction in yield (entries 2–4). When the reaction was performed under argon, a reduction in yield was observed implying oxygen is conducive to reactivity (entry 5). Using silver carbonate, manganese(III) acetate or MnO₂ in place of silver acetate under these conditions led to reduced yields (entries 6–8). In the presence of radical traps, the reaction does not proceed implying the silver mediated conditions proceed *via* a radical mechanism (entries 9,10).

	O H	(<i>p-</i> tolyl)SO ₂ Na (2 equiv) Cu(OTf) ₂ (15 mol%), BPhen (10 mol%) AgOAc (1.5 equiv)	
		EtOH:H ₂ O (1.15:1, 1.1 M) 100 °C, 18 h under Air	Ja Ja
Entry		Change to conditions	Yield 3a (%) ^a
1		None	72
2		No Cu	trace
3		No Ligand	47
4		No Ag	14
5		Under argon	46
6		0.75 equiv Ag ₂ CO ₃ instead of AgOAc	26
7		Mn(OAc)₃ instead of AgOAc	27
8		MnO ₂ instead of AgOAc	30
9		+ 2 equiv TEMPO	0
10		+ 2 equiv dihydroanthracene	0

Table S3 – Silver mediated α -Sulfonylation control reactions. Reactions performed on 0.2 mmol scale. ^a Yield determined in situ using 1,3,5–trimethoxybenzene as an internal standard.

Investigation Into Acid Tuneable Oxidants

To overcome the limitations of the substrate scope, a stronger oxidant was needed. As MnO₂ was compatible with the reaction conditions and we understood that the electrode potential of MnO₂ could be controlled by changing the pH of the system, we hypothesised that using MnO₂ under acidic conditions could allow it to be tuned to become a stronger oxidant for the reaction (see pourbaix diagram¹). An array of acids and sulfinates were tested to determine the most effective acid(s) to promote the reaction and identify any options for fine tuning with challenging substrates (Scheme S1b). From the results, it was clear that acetic acid was the most effective, likely due to it rendering the MnO₂ oxidising enough to promote the reaction even with the challenging salts without also enabling substrate/product degradation. Other stronger acids were less effective, and so led to MnO₂ becoming too oxidising. Therefore, acetic acid was selected for the optimised reaction conditions.


Scheme S1 – Acids and sulfinates of varying pKa and electrode potentials respectively.

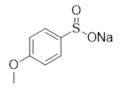
The MnO_2 is mostly insoluble at the start of the reaction. As the reaction progresses, the MnO_2 reacts over the 18 h reaction time, seen visually by the disappearance of the black powder.

To investigate the potential reaction of the sulfinate salt directly with MnO_2 , 2a was treated with MnO_2 in EtOH/H₂O and separately in EtOH/H₂O/AcOH. No products of homocoupling of the sulfinates were observed, but further analysis was prevented by the polar nature of the salts, and the presence of paramagnetic manganese species.

Synthesis of Sulfinate Salts

Sulfinate salts were prepared by two methods. Either using DABSO and an ArLi reagent,² or by the scheme shown below (Scheme S2).

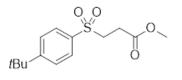
Scheme S2 – General scheme for the synthesis of sulfinate salts from thiols


General Procedure A: Synthesis of Sulfones

Thiol (1 equiv) was added to a stirring solution of methyl acrylate (1 equiv) in THF:H₂O (1:1, 0.3 M). Sodium acetate (0.15 equiv) was added and the reaction stirred for 18 h. The reaction was concentrated *in vacuo*, then the product was extracted from the aqueous phase with ethyl acetate, dried over Na₂SO₄, filtered and concentrated *in vacuo*. The residue was dissolved in CH₂Cl₂ (0.05 M) and *m*CPBA (3 equiv) was added at rt and the reaction was stirred until completion, as determined by TLC. The reaction was quenched by the addition of 1 M NaOH then the product was extracted with CH₂Cl₂, dried over Na₂SO₄, filtered and concentrated *in vacuo* to afford the sulfone product.

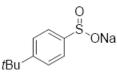
General Procedure B: Synthesis of Sulfinate Salts

Sodium hydride as a 60% dispersion in mineral oil (1.05 equiv) was added to a stirring solution of sulfone (1 equiv) in THF (0.17 M) at rt. After 30 min, anhydrous MeOH was added dropwise, then the reaction was concentrated *in vacuo*. The precipitate was filtered off and washed with hexane to afford the sulfinic acid sodium salt.


4-Methoxybenzenesulfinic acid sodium salt (2c)

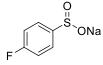
Procedure modified from Odell.² *n*BuLi (5.08 mL, 1.58 M in hexanes) was added dropwise to a stirring solution of 4-bromoanisole (1 mL, 8 mmol) in THF (10 mL) at -78 °C then stirred for 1 h at -78 °C. The aryl lithium solution was warmed to 0 °C and then added dropwise to another vessel containing DABSO (480 mg, 2 mmol) at -78 °C which was then stirred for 4 h at -78 °C. The reaction was quenched with the addition of aqueous

Na₂CO₃ (10% w/v, 10 mL) then the aqueous phase was washed with Et₂O (3 × 10 mL). The aqueous phase was then acidified by the careful dropwise addition of H₂SO₄ (95%, 3 mL) at 0 °C followed by extraction with Et₂O (3 × 10 mL). The organic phases were basified with Na₂CO₃ (10% w/v, 10 mL) and the organic phase was extracted with a saturated aqueous solution of Na₂CO₃ (10% w/v, 3 × 30 mL) and the aqueous phase was concentrated *in vacuo*. EtOH (20 mL) was added to the crude residue and heated to reflux, then filtered. This was repeated once more with the filtrate with EtOH (20 mL) then concentrated *in vacuo* to afford sulfinic acid sodium salt **2c** as a white powder (218 mg, 28%). m.p. = >300 °C. IR (film)/cm⁻¹ 2955, 2840, 1591, 1490, 1244, 1043, 974, 834, 790. ¹H NMR (400 MHz, CD₃OD) δ 7.58 (d, *J* = 8.7 Hz, 2 H, 2 × Ar–CH), 6.96 (d, *J* = 8.7 Hz, 2 H, 2 × Ar–CH), 3.81 (s, 3 H, CH₃). ¹³C NMR (101 MHz, CD₃OD) δ 162.2 (Ar–C_q), 149.2 (Ar–C_q), 126.7 (2 × Ar–CH), 114.7 (2 × Ar–CH), 55.8 (CH₃). Analytical data (IR, ¹H NMR, ¹³C NMR) is in agreement with the reported literature.³


Methyl 3-((4-(tert-butyl)phenyl)sulfonyl)propanoate (S1)

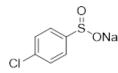
Prepared according to general procedure **A** using 4-*tert*-butylthiophenol (860 μ L, 5 mmol) which afforded sulfone **S1** as a white powder (1.52 g, quant). m.p. = 85–88 °C, R_f 0.11 (20% EtOAc:hexane). IR (film)/cm⁻¹ 2963, 2870, 1741 (C=O), 1595, 1319, 1252, 1156, 1111, 842, 764, 712. ¹H NMR (400 MHz, CDCl₃) δ 7.83

(d, *J* =8.6 Hz, 2 H, 2 × Ar–CH), 7.59 (d, *J* =8.6 Hz 2 H, 2 × Ar–CH), 3.65 (s, 3 H, CH₃), 3.43 (t, *J* = 7.7 Hz, 2 H, CH₂), 2.77 (t, *J* = 7.7 Hz, 2 H, CH₂), 1.36 (s, 9 H, C(CH₃)₃). ¹³C NMR (101 MHz, CDCl₃) δ 170.5 (C=O), 158.1 (Ar–C_q), 135.4 (Ar–C_q), 128.1 (2 × Ar–CH), 126.4 (2 × Ar–CH), 52.3 (CH₃) , 51.6 (CH₂), 35.3 (*C*_q(CH₃)₃), 31.1 (C_q(CH₃)₃, 27.7 (CH₂). HRMS (TOF-ESI⁺) m/z calcd. for C₁₄H₂₁O₄S [M+H]⁺: 285.1161; found: 285.1163.


4-(tert-Butyl)benzenesulfinic acid sodium salt (S2)

Prepared according to general procedure **B** using sulfone **S1** (1.32 g, 5 mmol) which afforded sulfinic acid sodium salt **S2** as a white solid (1.12 g, quant). m.p. = >300 °C. IR (film)/cm⁻¹ 3638, 3429, 2960, 2866, 1681, 1591, 1080, 1020, 834. ¹H NMR (400 MHz, CD₃OD) δ 7.59–7.56 (m, 2 H, 2 × Ar–CH), 7.49–7.46 (m, 2 H, 2 × Ar–CH), 1.33 (s, 9 H,

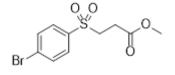
C(CH₃)). ¹³C NMR (101 MHz, CD₃OD) δ 153.9 (Ar–C_q), 153.5 (Ar–C_q), 126.0 (2 × Ar–CH), 124.7 (2 × Ar–CH), 35.3 (C_q(CH₃)₃), 31.5 (C_q(CH₃)₃). Analytical data (IR, ¹H NMR, ¹³C NMR) is in agreement with the reported literature.³


4-Fluorobenzenesulfinic acid sodium salt (S3)

4-Fluorothiophenol (532 μ L, 5 mmol), methyl acrylate (450 μ L, 5 mmol), THF:H₂O (1:1, 0.3 M) and sodium acetate (61 mg, 0.75 mmol) were added sequentially to the reactionthen stirred at rt overnight. The reaction was concentrated *in vacuo*, then the product was extracted from the aqueous phase with ethyl acetate, dried over Na₂SO₄, filtered and

concentrated *in vacuo*. The residue was dissolved in CH₂Cl₂ (100 mL) and *m*CPBA (2.9 g, 12.5 mmol) was added at rt and the reaction was stirred until completion, as determined by TLC. The reaction was quenched by the addition of 1 M NaOH then the product was extracted with CH₂Cl₂, dried over Na₂SO₄, filtered and concentrated *in vacuo*. The residue was dissolved in dry MeOH and THF (1:1, 0.5 M) under an atmosphere of argon, and sodium hydroxide (168 mg, 4.2 mmol) was added at 0 °C. The precipitate was filtered off and washed with hexane which afforded sulfinic acid sodium salt **S3** as a white powder (390 mg, 43%). m.p. = >300 °C. IR (film)/cm⁻¹ 3444, 3280, 1587, 1487, 1237, 1151, 1077, 1017, 980, 827, 712. ¹H NMR (400 MHz, MeOD) δ 7.70–7.65 (m, 2 H, 2 × Ar–CH), 7.17–7.12 (m, 2 H, 2 × Ar–CH). ¹³C NMR (101 MHz, MeOD) δ 164.9 (d, ¹*J*_{*C-F*} = 246.2 Hz, Ar–C_q), 153.5 (Ar–C_q), 127.5 (d, ³*J*_{*C-F*} = 8.6 Hz, 2 × Ar–CH), 116.1 (d, ²*J*_{*C-F*} = 22.1 Hz, 2 × Ar–CH). ¹⁹F NMR (377 MHz, MeOD) δ -114.69. Analytical data (IR, ¹H NMR, ¹³C NMR and ¹⁹F NMR) is in agreement with the reported literature.³

4-Chlorobenzenesulfinic acid sodium salt (S4)



4-Chlorothiophenol (720 mg, 5 mmol), methyl acrylate (450 μ L, 5 mmol), THF:H₂O (1:1, 0.3 M) and sodium acetate (61 mg, 0.75 mmol) were combined sequentially then stirred at rt overnight. The reaction was concentrated *in vacuo*, then the product was extracted from the aqueous phase with ethyl acetate, dried over Na₂SO₄, filtered and

concentrated *in vacuo*. The residue was dissolved in CH_2Cl_2 (100 mL) and *m*CPBA (2.9 g, 12.5 mmol) was added at rt and the reaction was stirred until completion, as determined by TLC. The reaction was quenched by the addition of 1 M NaOH then the product was extracted with CH_2Cl_2 , dried over Na_2SO_4 , filtered and concentrated *in vacuo*. The residue was dissolved in dry CH_2Cl_2 (45 mL) under an atmosphere of argon, and sodium hydroxide (5 M in MeOH, 948 µL) was added at 0 °C. The precipitate was filtered off and washed with hexane which afforded sulfinic acid sodium salt **S4** as a white powder (900 mg, 91%). m.p. = >300 °C. IR (film)/cm⁻¹ 3448, 3269, 2974, 1572, 1467, 1077, 1047, 977, 828, 738, 712. ¹H NMR (400 MHz, MeOD) δ 7.64–7.61 (m, 2 H, 2 × Ar–CH), 7.44–7.40 (m, 2 H, 2 × Ar–CH). ¹³C NMR (101 MHz, MeOD) δ 156.2 (Ar–Cq), 136.3

(Ar–C_q), 129.5 (2 × Ar–CH), 127.0 (2 × Ar–CH). Analytical data (IR, ¹H NMR and ¹³C NMR) is in agreement with the reported literature.³

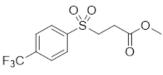
Methyl 3-((4-bromophenyl)sulfonyl)propanoate (S5)

Prepared according to general procedure **A** using *p*-bromothiophenol (0.95 g, 5 mmol) which afforded sulfone **S5** as a white solid (1.52 g, 99%). m.p. = 65–69 °C. R_f 0.11 (20% EtOAc:hexane). IR (film)/cm⁻¹ 2996, 3097, 2956, 1729 (C=O), 1573, 1248, 1162, 987, 798, 627. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* =

8.8 Hz, 2 H, 2 × Ar–CH), 7.74 (d, J = 8.8 Hz, 2 H, 2 × Ar–CH), 3.66 (s, 3 H, CH₃), 3.48–3.39 (t, J = 7.7 Hz, 2 H, CH₂), 2.77 (t, J = 7.7 Hz, 2 H, CH₂). ¹³C NMR (101 MHz, CDCl₃) δ 170.3 (C=O), 137.5 (Ar–C_q), 132.8 (2 × Ar–CH), 129.7 (2 × Ar–CH), 129.5 (Ar–C_q), 52.4 (CH₃), 51.5 (CH₂), 27.5 (CH₂). HRMS (FTMS + p APCI) m/z calcd. for C₁₀H₁₂O₄SBr [M+H]⁺: 306.9634; found: 306.9639.

4-Bromobenzenesulfinic acid sodium salt (2g)

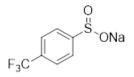
Prepared according to general procedure **B** using sulfone **S5** (1.43 g, 5 mmol) which afforded sulfinic acid sodium salt **2g** as a white powder (993 mg, 82%). m.p. = >300 °C. IR (film)/cm⁻¹ 3478, 3280, 2568, 2438, 1569, 1468, 998, 927. ¹H NMR (400 MHz, CD₃OD) δ 7.60–7.55 (m, 4 H, 4 × Ar–CH).¹³C NMR (101 MHz, CD₃OD) δ 156.6 (Ar–C_q), 132.5 (2 ×


Ar–CH), 127.3 (2 × Ar–CH), 124.5 (Ar–C_q). Analytical data (IR, ¹H NMR, ¹³C NMR) is in agreement with the reported literature.³

Methyl 3-((4-trifluoromethylphenyl)thio)propanoate (S6)

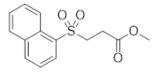
4-(Trifluoromethyl)thiophenol (1.4 mL, 10 mmol) was added to a stirring solution of methyl acrylate (0.9 mL, 10 mmol) in THF (16.7 mL) and water (16.7 mL). Sodium acetate (123 mg, 1.5 mmol) was added and the reaction stirred for 18 h.

The reaction was concentrated *in vacuo*, then the product was extracted from the aqueous phase with ethyl acetate (3 × 20 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo* to afford sulfide **S6** as a white solid (2.66 g, quant.). m.p. = 74–77 °C. R_f 0.50 (40% EtOAc:hexane). IR (film)/cm⁻¹ 2922, 2960, 1730 (C=O), 1603, 1438, 1323, 1252, 1163, 1096, 1062, 832, 674. ¹H NMR (400 MHz, CDCl₃) δ 7.58–7.53 (m, 2 H, 2 × Ar–CH), 7.40 (d, *J* = 7.9 Hz, 2 H, 2 × Ar–CH), 3.71 (s, 3 H, CH₃), 3.25 (t, *J* = 7.4 Hz, 2 H, CH₂), 2.68 (t, *J* = 7.4 Hz, 2 H, CH₂). ¹³C NMR (101 MHz, CDCl₃) δ 171.8 (C=O), 140.9 (Ar–Cq), 128.1 (4 × Ar–CH), 125.8 (q, ²*J*_{C–F} = 3.2 Hz, Ar–Cq), 125.3 (q, ¹*J*_{C–F} = 170 Hz, CF₃), 51.9 (CH₃), 33.7 (CH₂), 27.7 (CH₂). ¹⁹F NMR (377 MHz, CDCl₃) δ -62.48 (CF₃). HRMS (TOF-ESI⁻) m/z calcd. for C₁₁H₁₀O₂SF₃ [M-H]⁻: 263.0354; found: 263.0347.


Methyl 3-((4-(trifluoromethyl)phenyl)sulfonyl)propanoate (S7)

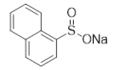
*m*CPBA (5.18 g, 30 mmol) was added to a stirring solution of sulfide **S6** (2.63 g, 10 mmol) in CH₂Cl₂ (200 mL) at rt. The reaction was quenched by the addition of 1M NaOH (100 mL) and the product was extracted with CH₂Cl₂ (3 × 100 mL), dried over Na₂SO₄, filtered then concentrated *in vacuo* which afforded sulfone

S7 as a colourless oil (2.89 g, 98%). $R_f 0.11$ (20% EtOAc:hexane). IR (film)/cm⁻¹ 3001, 1960, 1737 (C=O), 1402, 1323, 1263, 1151, 1122, 1062, 846, 775, 734. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, ³*J*_{*H*-*H*} = 8.1 Hz, 2 H, 2 × Ar-CH), 7.87 (d, ³*J*_{*H*-*H*} = 8.1 Hz, 2 H, 2 × Ar-CH), 3.66 (s, 3 H, CH₃), 3.48 (t, *J* = 7.6 Hz, 2 H, CH₂), 2.80 (t, *J* = 7.6 Hz, 2 H, CH₂). ¹³C NMR (101 MHz, CDCl₃) δ 170.1 (C=O), 142.1 (Ar-C_q), 128.9 (4 × Ar-CH), 126.6 (q, ²*J*_{*C*-*F*} = 3.8 Hz, Ar-C_q), 52.4 (CH₃), 51.5 (CH₂), 27.4 (CH₂). ¹⁹F NMR (377 MHz, CDCl₃) δ -63.26. Analytical data (IR, ¹H NMR, ¹³C NMR) is in agreement with the reported literature.⁴ It was not possible to observe the quaternary *C*F₃ signal due to C–F coupling.


4-(Trifluoromethyl)benzenesulfinic acid sodium salt (2h)

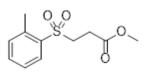
Synthesised according to general procedure **B** using sulfone **S7** (2.8 g, 9.45 mmol) which afforded sulfinic acid sodium salt **2h** as an off white solid (2.28 g, quant). m.p. = >300 °C. IR (film)/cm⁻¹3396, 1581, 1323, 1193, 1044, 972, 741, 693. ¹H NMR (400 MHz, CD₃OD) δ 7.84 (d, *J* = 8.1 Hz, 2 H, 2 × Ar–CH), 7.73 (d, *J* = 8.1 Hz, 2 H, 2 × Ar–CH). ¹³C

NMR (101 MHz, CD₃OD) δ 161.4 (Ar–C_q), 132.3 (q, ²J_{C–F} = 32.1 Hz, Ar–C_q), 126.4 (q, ³J_{C–F} = 3.9 Hz, 2 × Ar–CH), 126.0 (2 × Ar–CH), 125.5 (q, ¹J_{C–F} = 271.4 Hz, CF₃) ¹⁹F NMR (377 MHz, CD₃OD) δ -63.92. analytical data (IR, ¹H NMR, ¹³C NMR) is in agreement with the reported literature.³ Contains 8% of an inseparable impurity.


Methyl 3-(naphthalen-1-ylsulfonyl)propanoate (S8)

Prepared according to general procedure **A** using 1-napthalenethiol (690 μ L, 5 mmol) which afforded sulfone **S8** as a colourless oil (1.43 g, quant). m.p. = 95–99 °C. R_f 0.11 (20% EtOAc:hexane). IR (film)/cm⁻¹ 3064, 2983, 2937, 1733 (C=O), 1506, 1438, 1312, 1252, 1156, 1122, 1070, 9915, 772. ¹H NMR (400 MHz, CDCl₃) δ

8.75 (dq, J = 8.7, 0.9 Hz, 1 H, Ar–CH), 8.31 (dd, J = 7.3, 1.3 Hz, 1 H, Ar–CH), 8.17 (dt, J = 8.4, 1.3 Hz, 1 H, Ar–CH), 8.00 (ddt, J = 8.1, 1.3, 0.6 Hz, 1 H, Ar–CH), 7.75 (ddd, J = 8.7, 6.9, 1.4 Hz, 1 H, Ar–CH), 7.68–7.61 (m, 2 H, 2 × Ar–CH), 3.66–3.62 (t, J = 7.6 Hz, 2 H, CH₂), 3.59 (s, 3 H, CH₃), 2.82–2.73 (t, J = 7.6 Hz, 2 H, CH₂). ¹³C NMR (101 MHz, CDCl₃) δ 170.4 (C=O), 135.5 (Ar–CH), 134.2 (Ar–Cq), 133.4 (Ar–Cq), 130.9 (Ar–CH), 129.3 (Ar–CH), 129.0 (Ar–CH), 128.9 (Ar–Cq), 127.2 (Ar–CH), 124.4 (Ar–CH), 124.0 (Ar–CH), 52.2 (CH₃), 51.0 (CH₂), 27.6 (CH₂). Analytical data (IR, ¹H NMR, ¹³C NMR) is in agreement with the reported literature.


Naphthalene-1-sulfinic acid sodium salt (S9)

Prepared according to general procedure **B** using sulfone **S8** (1.25 g, 4.5 mmol). The crude sulfinic acid sodium salt was dissolved in hot EtOH, then crystallised by the addition of hexane (20 ml). the precipitate was filtered off and washed with hexane to give sulfinic acid sodium salt **S9** as a white solid (408 mg, 43%). m.p. = >300 °C. IR (film)/cm⁻¹ 3386,

3049, 1502, 1559, 1398, 1141, 1029, 951, 798, 772, 663. ¹H NMR (400 MHz, CD₃OD) δ 8.71 (ddt, *J* = 8.3, 1.5, 0.8 Hz, 1 H, Ar–CH), 8.02 (dd, *J* = 7.1, 1.3 Hz, 1 H, Ar–CH), 7.92–7.88 (m, 2 H, 2 × Ar–CH), 7.57–7.48 (m, 3 H, 3 × Ar–CH). ¹³C NMR (101 MHz, CD₃OD) δ 152.0 (Ar–C_q), 135.4 (Ar–C_q), 131.4 (Ar–C_q), 130.9 (Ar–CH), 129.4 (Ar–CH), 127.0 (Ar–CH), 126.9 (Ar–CH), 126.3 (Ar–CH), 124.8 (Ar–CH), 121.5 (Ar–CH). Analytical data (IR, ¹H NMR, ¹³C NMR) is in agreement with the reported literature.⁵

Methyl 3-(o-tolylsulfonyl)propanoate (S10)

Prepared according to general procedure **A** using 2-methylbenzenethiol (860 μ L, 5 mmol) which afforded sulfone **S10** as a colourless oil (1.15 g, 95%). R_f 0.05 (20% EtOAc:hexane). IR (film)/cm⁻¹3064, 2952, 1737 (C=O), 1439, 1364, 1312, 1248, 1223, 1148, 1125, 1058, 976, 730. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (dd, *J* = 7.7, 1.5 Hz, 1

H, Ar–CH), 7.54 (td, J = 7.7, 1.5 Hz, 1 H, Ar–CH), 7.41–7.35 (m, 2 H, 2 × Ar–CH), 3.62 (s, 3 H, OCH₃), 3.47 (t, J = 7.6 Hz, 2 H, CH₂), 2.77 (t, J = 7.6 Hz, 2 H, CH₂), 2.72 (s, 3 H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 170.5 (C=O), 138.3 (Ar–C_q), 136.4 (Ar–C_q), 134.0 (Ar–CH), 132.9 (Ar–CH), 130.4 (Ar–CH), 126.6 (Ar–CH), 52.3 (OCH₃), 50.4 (CH₃), 27.4 (CH₂), 20.3 (CH₂). HRMS (TOF-ESI⁺) m/z calcd. for C₁₄H₁₇NO₄NaS [M+MeCN+Na]⁺: 306.0776; found: 306.0768.

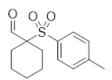
2-Methylbenzenesulfinic acid sodium salt (S11)

Prepared according to general procedure **B** using sulfone **S10** (872 mg, 4.5 mmol). The crude sulfinic acid sodium salt was dissolved in hot EtOH, then precipitated by the addition of hexane (20 ml). The precipitate was filtered off and washed with hexane to give sulfinic acid

sodium salt **S11** as a white solid (281 mg, 35%). m.p. = >300 °C. IR (film)/cm⁻¹ 3470, 3392, 3299, 1674, 999, 965, 752, 862. ¹H NMR (400 MHz, CD₃OD) δ 7.81 (dd, *J* = 7.1, 2.1 Hz, 1 H, Ar–CH), 7.26 (m, 2 H, 2 × Ar–CH), 7.14 (dd, *J* = 6.5, 2.1 Hz, 1 H, Ar–CH), 2.57 (s, 3 H, CH₃). ¹³C NMR (101 MHz, CD₃OD) δ 154.0 (Ar–C_q), 136.7 (Ar–C_q), 131.5 (Ar–CH), 130.4 (Ar–CH), 127.0 (Ar–CH), 122.9 (Ar–CH), 18.4 (CH₃). Analytical data (IR, ¹H NMR, ¹³C NMR) is in agreement with the reported literature.³

Manganese(IV) Oxide Mediated α -Sulfonylation

General Procedure C: Using MnO₂


Manganese(IV) oxide (1.5 equiv), copper(II) triflate (15 mol%), bathophenanthroline (10 mol%), sulfinic acid sodium salt (2 equiv), aldehyde (1 equiv), H_2O :EtOH:AcOH (1:1:1, 0.67 M) were added sequentially to a microwave vial under air, sealed and submerged in an oil bath preheated to 100 °C for 18 h. The reaction was allowed to cool to room temperature, diluted with EtOAc, filtered through silica eluting with EtOAc then concentrated *in vacuo*. The crude product was purified by flash column chromatography.

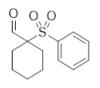
General Procedure D: Using AgOAc

Silver acetate (1.5 equiv), copper(II) triflate (15 mol%), bathophenanthroline (10 mol%), sulfinic acid sodium salt (2 equiv), aldehyde (1 equiv), H_2O :EtOH (1.15:1, 1.1 M) were added sequentially to a microwave vial under air, sealed and submerged in an oil bath preheated to 100 °C for 18 h. The reaction was allowed to cool to room temperature, diluted with EtOAc, filtered through silica eluting with EtOAc then concentrated *in vacuo*. The crude product was purified by flash column chromatography.

Reaction Scope Varying the Sulfinate Salts

1-(4-Methylbenzene-1-sulfonyl)cyclohexane-1-carbaldehyde (3a)

Prepared according to general procedure **C** (MnO₂) using cyclohexane carboxaldehyde **1** (48 μ L, 0.4 mmol) and 4-methylbenzenesulfinic acid sodium salt **2a** (142 mg, 0.8 mmol). Purification by flash column chromatography (5–20% Et₂O:pentane) afforded α -sulfonyl aldehyde **3a** as a yellow solid (83.3 mg, 78%). m.p. = 77–78 °C. R_f 0.09 (20% Et₂O:pentane).

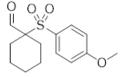

IR (film)/cm⁻¹ 2937, 2859, 1722 (C=O), 1595, 1454, 1316, 1144, 1088, 816. ¹H NMR (400 MHz, CDCl₃) δ 9.66 (s, 1 H, CHO), 7.59 (d, *J* = 8.1 Hz, 2 H, 2 × Ar–CH), 7.34 (d, *J* = 8.1 Hz, 2 H, 2 × Ar–CH), 2.45 (s, 3 H, CH₃), 2.27 (d, *J* = 13.3 Hz, 2 H, 2 × C_qCHH), 1.91 (ddd, *J* = 13.3, 13.3, 3.3 Hz, 2 H, 2 × C_qCHH), 1.80–1.75 (m, 2 H, 2 × C_qCH₂CHH), 1.66–1.62 (m, 1 H, C_qCH₂CH₂CHH), 1.22–1.07 (m, 3 H, 2 × C_qCH₂CHH + C_qCH₂CH₂CHH). ¹³C NMR (101 MHz, CDCl₃) δ 197.8 (CHO), 145.5 (Ar–C_q), 132.0 (Ar–C_q), 129.9 (2 × Ar–CH), 129.6 (2 × Ar–CH), 74.0 (C_q), 25.2 (2 × CH₂), 24.3 (CH₂), 21.9 (2 × CH₂), 21.7 (CH₃). HRMS (TOF-ESI⁺) m/z calcd. For C₁₄H₁₉O₃S [M+H]⁺: 267.1055; found: 267.1060.

Prepared on 2 mmol scale with manganese conditions to afford α -sulfonyl aldehyde **3a** (438 mg, 82%).

For procedure on 6 mmol scale, see section on gram scale synthesis.

Also prepared using silver mediated conditions according to general procedure D which afforded α -sulfonyl aldehyde **3a** (73.1 mg, 69%).

1-(Phenylsulfonyl)cyclohexane-1-carbaldehyde (3b)

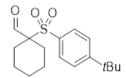


Prepared according to general procedure **C** using cyclohexane carboxaldehyde **1** (48 μ L, 0.4 mmol) and benzenesulfinic acid sodium salt **2b** (131 mg, 0.8 mmol). Purification by flash column chromatography (5–20% Et₂O:pentane) afforded α -sulfonyl aldehyde **3b** as a colourless oil (78.4 mg, 78% yield). R_f 0.21 (20% Et₂O:pentane). IR (film)/cm⁻¹ 2937, 2858, 1722 (C=O), 1446, 1308, 1144, 1088, 734, 690. ¹H NMR (400 MHz, CDCl₃) δ 9.67 (s, 1 H, CHO),

7.74–7.66 (m, 3 H, 3 × Ar–CH), 7.57–7.54 (t, J = 7.7 Hz, 2 H, 2 × Ar–CH), 2.27 (d, J = 13.0 Hz, 2 H, 2 × C_qCHH), 1.92 (ddd, J = 13.0, 13.0, 3.8 Hz, 2 H, 2 × C_qCHH), 1.81–1.75 (m, 2 H, 2 × C_qCH₂CHH), 1.66–1.63 (m, 1 H, C_qCH₂CH₂CH₂CH₁), 1.19–1.11 (m, 3 H, 2 × C_qCH₂CH₂CH₂CH₂CH₂CH₂CH₂CH₁). ¹³C NMR (101 MHz, CDCl₃) δ 197.6 (CHO), 135.0 (Ph–CH), 134.3 (Ph–CH), 129.9 (2 × Ph–CH), 129.0 (2 × Ph–CH), 74.0 (C_q), 25.1 (2 × CH₂), 24.3 (CH₂), 21.9 (2 × CH₂). HRMS (FTMS + p APCI) m/z calcd. For C₁₃H₁₇O₃S [M+H]⁺: 253.0893; found: 253.0890.

Also prepared using silver mediated conditions according to general procedure **D** which afforded α -sulfonyl aldehyde **3b** (54.2 mg, 54%).

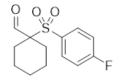
1-((4-Methoxyphenyl)sulfonyl)cyclohexane-1-carbaldehyde (3c)



Prepared according to general procedure **C** using cyclohexane carboxaldehyde **1** (48 μ L, 0.4 mmol) and 4-methoxybenzenesulfinic acid sodium salt **2c** (155 mg, 0.8 mmol). Purification by flash column chromatography (20% Et₂O:hexane) afforded α -sulfonyl aldehyde **3c** as a colourless oil (80.5 mg, 71% yield). R_f 0.14 (20% Et₂O:hexane). IR

(film)/cm⁻¹ 2937, 2855, 1722 (C=O), 1595, 1498, 1315, 1263, 1140, 1088, 1021, 834, 805, 667. ¹H NMR (400 MHz, CDCl₃) δ 9.65 (s, 1 H, CHO), 7.63 (d, *J* = 9.0 Hz, 2 H, 2 × Ar–CH), 6.99 (d, *J* = 9.0 Hz, 2 H, 2 × Ar–CH), 3.88 (s, 3 H, CH₃), 2.27 (ddd, *J* = 13.4, 2.9, 1.4 Hz, 2 H, 2 × C_qCHH), 1.89 (ddd, *J* = 13.4, 13.4, 3.7 Hz, 2 H, 2 × C_qCHH), 1.82–1.72 (m, 2 H, 2 × C_qCH₂CHH), 1.68–1.59 (m, 1 H, C_qCH₂CH₂CH₄), 1.23–1.07 (m, 3 H, 2 × C_qCH₂CH*H* + C_qCH₂CH₂CH₂CH₂CHH). ¹³C NMR (101 MHz, CDCl₃) δ 198.0 (CHO), 164.3 (Ar–C_q), 132.1 (2 × Ar–CH), 126.3 (Ar–C_q), 114.2 (2 × Ar–CH), 74.1 (C_q), 55.7 (CH₃), 25.3 (2 × CH₂), 24.4 (CH₂), 22.0 (2 × CH₂). HRMS (FTMS + p APCI) m/z calcd. For C₁₄H₁₉O₄S [M+H]⁺: 283.0999; found: 283.0995.

Also prepared using silver mediated conditions according to general procedure **D** which afforded α -sulfonyl aldehyde **3c** (48.1 mg, 43%).


1-((4-(tert-Butyl)phenyl)sulfonyl)cyclohexane-1-carbaldehyde (3d)

Prepared according to general procedure **C** using cyclohexane carboxaldehyde **1** (48 μ L, 0.4 mmol) and 4-(*tert*-butyl)benzenesulfinic acid sodium salt **S2** (176 mg, 0.8 mmol). Purification by flash column chromatography (10% Et₂O:pentane) afforded α -sulfonyl aldehyde **3d** as a white solid (82.2 mg, 67%). R_f 0.52 (20% Et₂O:pent). m.p. = 98–101 °C. IR (film)/cm⁻¹ 2941, 2863, 1722 (C=O), 1595, 1454, 1312, 1148, 1111, 1085, 839, 733.

¹H NMR (400 MHz, CDCl₃) δ 9.66 (s, 1 H, CHO), 7.63 (d, *J* = 8.7 Hz, 2 H, 2 × Ar–CH), 7.54 (d, *J* = 8.7 Hz, 2 H, 2 × Ar–CH), 2.28 (d, *J* = 12.1 Hz, 2 H, 2 × C_qCHH), 1.92 (ddd, *J* = 12.7, 12.7, 3.8 Hz, 2 H, 2 × C_qCHH), 1.80–1.75 (m, 2 H, 2 × C_qCH₂CHH), 1.66–1.62 (m, 1 H, C_qCH₂CH₂CHH), 1.34 (s, 9 H, C(CH₃)₃), 1.19–1.12 (m, 3 H, 2 × C_qCH₂CH₄ + C_qCH₂CH₂CH₂CH₄). ¹³C NMR (101 MHz, CDCl₃) δ 197.8 (CHO), 158.3 (Ar–C_q), 132.0 (Ar–C_q), 129.7 (2 × Ar–CH), 126.0 (2 × Ar–CH), 73.9 (C_q), 35.3 (2 × C_qC(CH₃)₃), 31.0 (3 × CH₃), 25.1 (2 × CH₂), 24.3 (CH₂), 21.9 (2 × CH₂). HRMS (TOF–ESI⁺) m/z calcd. For C₁₇H₂₅O₃S [M+H]⁺: 309.1524; found 309.1528.

1-((4-Fluorophenyl)sulfonyl)cyclohexane-1-carbaldehyde (3e)

Prepared according to general procedure **C** using cyclohexane carboxaldehyde **1** (48 μ L, 0.4 mmol) and 4-fluorobenzenesulfinic acid sodium salt **S3** (146 mg, 0.8 mmol). Purification by flash column chromatography (10–20% Et₂O:pentane) afforded α -sulfonyl aldehyde **3e** as a white solid (67.2 mg, 62%). R_f 0.34 (20% Et₂O:pentane).

m.p. = 106–107 °C. IR (film)/cm⁻¹ 2941, 2859, 1722 (C=O), 1592, 1320, 1144, 1088, 842, 663. ¹H NMR (400 MHz, CDCl₃) δ 9.66 (s, 1 H, CHO), 7.74–7.71 (m, 2 H, 2 × Ar–CH), 7.25–7.21 (m, 2 H, 2 × Ar–CH), 2.27 (ddd, *J* = 13.5, 2.9, 1.5 Hz, 2 H, 2 × C_qCHH), 1.91–1.88 (m, 2 H, 2 × C_qCH₂CHH), 1.81–1.76 (m, 2 H, 2 × C_qCH₂CHH), 1.64–1.63 (m, 1 H, C_qCH₂CH₂CHH), 1.19–1.12 (m, 3 H, 2 × C_qCH₂CHH + C_qCH₂CH₂CH₂CHH). ¹³C NMR (101 MHz, CDCl₃) δ 197.6 (CHO), 166.2 (d, ¹*J*_{C-F} = 257.7 Hz, F–Ar–C_q), 132.8 (d, ³*J*_{C-F} = 9.7 Hz, 2 × Ar–CH), 130.9 (d, ⁴*J*_{C-F} = 3.3 Hz, Ar–C_q), 116.4 (d, ²*J*_{C-F} = 22.7 Hz, 2 × Ar–CH), 74.0 (C_q), 25.2 (2 × CH₂), 24.3 (CH₂), 21.9 (2 × CH₂). ¹⁹F NMR (377 MHz, CDCl₃) δ -102.14. HRMS (TOF–ESI⁺) m/z calcd. For C₁₃H₁₆O₃SF [M+H]⁺: 271.0804; found: 271.0802.

1-((4-Chlorophenyl)sulfonyl)cyclohexane-1-carbaldehyde (3f)

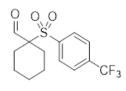
Prepared according to general procedure **C** using cyclohexane carboxaldehyde **1** (48 μ L, 0.4 mmol) and 4-chlorobenzenesulfinic acid sodium salt **S4** (158 mg, 0.8 mmol). Purification by flash column chromatography (10–20% Et₂O:pentane) afforded α -sulfonyl aldehyde **3f** as a white solid (73 mg, 64%). R_f 0.34 (20% Et₂O:pentane). m.p. = 85–

87 °C. IR (film)/cm⁻¹ 2929, 2862, 1722 (C=O), 1580, 1472, 1312, 1148, 1048, 734. ¹H NMR (400 MHz, CDCl₃) δ 9.66 (s, 1 H, CHO), 7.64 (d, *J* = 8.8 Hz, 2 H, 2 × Ar–CH), 7.53 (d, *J* = 8.8 Hz, 2 H, 2 × Ar–CH), 2.27 (d, *J* = 13.0 Hz, 2 H, 2 × C_qCHH), 1.91 (ddd, *J* = 13.0, 12.3, 3.8 Hz, 2 H, 2 × C_qCH₂CHH), 1.82–1.76 (m, 2 H, 2 × C_qCH₂CHH)), 1.67–1.64 (m, 1 H, C_qCH₂CH₂CHH), 1.29–1.11 (m, 3 H, 2 × C_qCH₂CHH + C_qCH₂CH₂CHH). ¹³C NMR (101 MHz, CDCl₃) δ 197.6 (CHO), 141.4 (Ar–C_q), 133.3 (Ar–C_q), 131.4 (2 × Ar–CH), 129.3 (2 × Ar–CH), 74.1 (C_q), 25.2 (2 × CH₂), 24.3 (CH₂), 21.9 (2 × CH₂). HRMS (TOF–ESI⁻) m/z calcd. For C₁₃H₁₄O₃SCI [M-H]⁻: 285.0352; found: 285.0347.

1-((4-Bromophenyl)sulfonyl)cyclohexane-1-carbaldehyde (3g)

S S Br

0 0 Š

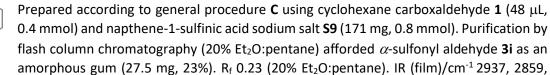

0

Prepared according to general procedure **C** using cyclohexane carboxaldehyde **1** (48 μ L, 0.4 mmol) and 4-bromobenzenesulfinic acid sodium salt **2g** (194 mg, 0.8 mmol). Purification by flash column chromatography (20% Et₂O:pentane) afforded α -sulfonyl aldehyde **3g** as a colourless oil (79.1 mg, 60% yield). R_f 0.38 (10% Et₂O:pentane).

IR (film)/cm⁻¹2941, 2859, 1722 (C=O), 1573, 1454, 1390, 1315, 1148, 1070, 1010, 958, 783, 746. ¹H NMR (400 MHz, CDCl₃) δ 9.66 (s, 1 H, CHO), 7.70 (d, *J* = 8.7 Hz, 2 H, 2 × Ar–CH), 7.56 (d, *J* = 8.7 Hz, 2 H, 2 × Ar–CH), 2.27 (d, *J* = 13.0, Hz, 2 H, 2 × C_qCHH), 1.91 (ddd, *J* = 13.0, 13.0, 3.6 Hz, 2 H, 2 × C_qCHH), 1.81–1.78 (m, 2 H, 2 × C_qCH₂CHH), 1.78–1.64 (m, 1 H, C_qCH₂CH₂CHH), 1.20–1.12 (m, 3 H, 2 × C_qCH₂CHH + C_qCH₂CH₂CHH). ¹³C NMR (101 MHz, CDCl₃) δ 197.5 (CHO), 133.8 (Ar–C_q), 132.3 (2 × Ar–CH), 131.4 (2 × Ar–CH), 130.0 (Ar–C_q), 74.1 (C_q), 25.1 (2 × CH₂), 24.3 (CH₂), 21.9 (2 × CH₂). HRMS (TOF–ESI⁻) m/z calcd. For C₁₃H₁₄O₃SBr [M-H]⁻: 328.9854; found: 328.9847.

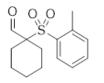
Also prepared using silver mediated conditions according to general procedure **D** which afforded α -sulfonyl aldehyde **3g** (42 mg, 32%).

1-((4-(Trifluoromethyl)phenyl)sulfonyl)cyclohexane-1-carbaldehyde (3h)


Prepared according to general procedure **C** using cyclohexane carboxaldehyde **1** (48 μ L, 0.4 mmol) and 4-(trifluoromethyl)benzenesulfinic acid sodium salt **2h** (186 mg, 0.8 mmol). Purification by flash column chromatography (10% EtOAc:pentane) afforded α -sulfonyl aldehyde **3h** as a colourless oil (79.3 mg, 62% yield). R_f 0.37 (10% EtOAc:pent). IR (film)/cm⁻¹ 2945, 2863, 1722 (C=O), 1405, 1319, 1133, 1110, 1062, 1017, 846, 708.

¹H NMR (400 MHz, CDCl₃) δ 9.69 (s, 1 H, CHO), 7.84 (d, *J* = 4.1 Hz, 4 H, 4 × Ar–CH), 2.27 (d, *J* = 13.0 Hz, 2 H, 2 × C_qCHH), 1.94 (ddd, *J* = 13.0, 13.0, 4.3 Hz, 2 H, 2 × C_qCHH), 1.83–1.79 (m, 2 H, 2 × C_qCH₂CHH), 1.66–1.65 (m, 1 H, C_qCH₂CH₂CH₂), 1.21–1.13 (m, 3 H, 2 × C_qCH₂CH*H* + C_qCH₂CH₂CH₂CH). ¹³C NMR (101 MHz, CDCl₃) δ 197.4 (CHO), 138.5 (Ar–C_q), 136.0 (q, ²*J*_{*C*-*F*} = 33.4 Hz, Ar–C_q), 130.7 (2 × Ar–CH), 126.1 (q, ⁴*J*_{*C*-*F*} = 3.7 Hz, 2 × Ar–CH), 125.5 (q, ¹*J*_{*C*-*F*} = 227 Hz, CF₃) 74.2 (C_q), 25.2 (2 × CH₂), 24.3 (CH₂), 21.9 (2 × CH₂). ¹⁹F NMR (377 MHz, CDCl₃) δ - 63.27. HRMS (TOF–ESI⁻) m/z calcd. For C₁₄H₁₄O₃SF₃ [M-H]⁻: 319.0616; found: 319.0623.

0_0 _S


Also prepared using silver mediated conditions according to general procedure **D** which afforded α -sulfonyl aldehyde **3h** (24.3 mg, 19%).

1-(Naphthalen-1-ylsulfonyl)cyclohexane-1-carbaldehyde (3i)

1718 (C=O), 1506, 1450, 1293, 1148, 1126, 958, 768, 675. ¹H NMR (400 MHz, CDCl₃) δ 9.65 (d, *J* = 1.1 Hz, 1 H, CHO), 8.88 (dd, *J* = 8.7, 1.1 Hz, 1 H, Ar–CH), 8.16 (d, *J* = 8.2 Hz, 1 H, Ar–CH), 8.10 (dd, *J* = 7.5, 1.3 Hz, 1 H, Ar–CH), 7.95–7.93 (m, 1 H, Ar–CH), 7.68–7.65 (m, 1 H, Ar–CH), 7.63–7.57 (m, 2 H, 2 × Ar–CH), 2.31 (ddd, *J* = 13.0, 2.9, 1.5 Hz, 2 H, 2 × C_qCH₁), 2.00 (ddd, *J* = 13.0, 13.0, 4.4 Hz, 2 H, 2 × C_qCH₂CH*H*), 1.81–1.71 (m, 2 H, 2 × C_qCH₂CHH), 1.67–1.59 (m, 1 H, C_qCH₂CH₂CHH), 1.26–1.10 (m, 3 H, 2 × C_qCH₂CH*H* + C_qCH₂CH₂CH*H*). ¹³C NMR (101 MHz, CDCl₃) δ 197.3 (CHO), 136.2 (Ar–CH), 134.2 (Ar–C_q), 133.6 (Ar–CH), 131.1 (Ar–C_q), 130.5 (Ar–C_q), 129.0 (Ar–CH), 128.7 (Ar–CH), 127.1 (Ar–CH), 125.2 (Ar–CH), 124.1 (Ar–CH), 75.8 (C_q), 25.5 (2 × CH₂), 24.4 (CH₂), 22.0 (2 × CH₂). HRMS (TOF–ESI⁺) m/z calcd. For C₁₉H₂₁O₃NNaS [M+MeCN+Na]⁺: 366.1140; found: 366.1134.

1-(o-Tolylsulfonyl)cyclohexane-1-carbaldehyde (3j)

Prepared according to general procedure **C** using cyclohexane carboxaldehyde **1** (48 μ L, 0.4 mmol) and 2-methylbenzenesulfinic acid sodium salt **S11** (128 mg, 0.8 mmol). Purification by flash column chromatography (10–20% Et₂O:pentane) afforded α -sulfonyl aldehyde **3j** as a colourless oil (38.9 mg, 37%). R_f 0.57 (20% Et₂O:pentane). IR (film)/cm⁻¹2937, 2859, 1722

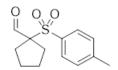
(C=O), 1454, 1312, 958, 805, 764, 689. ¹H NMR (400 MHz, CDCl₃) δ 9.66 (s, 1 H, CHO), 7.73 (dd, *J* = 8.0, 1.4 Hz, 1 H, Ar–CH), 7.37–7.30 (m, 2 H, 2 × Ar–CH), 2.63 (s, 3 H, CH₃), 2.34–2.29 (m, 2 H, 2 × C_qCHH), 1.94–1.93 (m, 2 H, 2 × C_qCH₂CHH), 1.81–1.76 (m, 2 H, 2 × C_qCH₂CHH), 1.64–1.63 (m, 1 H, C_qCH₂CH₂CH₂), 1.29–1.13 (m, 3 H, 2 × C_qCH₂CHH + C_qCH₂CH₂CH₂). ¹³C NMR (101 MHz, CDCl₃) δ 197.8 (CHO), 140.2 (Ar–C_q), 134.3 (Ar–CH), 133.4 (Ar–C_q), 133.3 (Ar–CH), 132.6 (Ar–CH), 126.4 (Ar–CH), 75.4 (C_q), 25.1 (2 × CH₂), 24.4 (CH₂), 22.0 (2 × CH₂) , 21.1 (CH₃). HRMS (TOF–ESI⁺) m/z calcd. For C₁₄H₁₉O₃S [M+H]⁺: 267.1055; found: 267.1054.

1-(Methylsulfonyl)cyclohexane-1-carbaldehyde (3k)

Prepared according to general procedure **C** using cyclohexane carboxaldehyde **1** (48 μ L, 0.4 mmol) and methanesulfinic acid sodium salt (81 mg, 0.8 mmol). Purification by flash column chromatography (5–20% Et₂O:pentane) afforded α -sulfonyl aldehyde **3k** a colourless oil (34.6 mg, 45%). R_f 0.17 (20% Et₂O:pentane). IR (film)/cm⁻¹ 2937, 3858, 1722 (C=O), 1453, 1293, 1133, 954, 752. ¹H NMR (400 MHz, CDCl₃) δ 9.68 (s, 1 H, CHO), 2.76 (s, 3 H, CH₃), 2.49 (d, *J* = 12.3 Hz, 2 H, 2 × C_qCHH), 1.98–1.85 (m, 4 H, 2 × C_qCHH + 2 × C_qCH₂CHH), 1.74–1.70 (m, 1 H, C_qCH₂CH₂CHH), 1.25–1.20 (m, 3 H, 2 × C_qCH₂CHH + C_qCH₂CH₂CHH). ¹³C NMR (101 MHz, CDCl₃) δ 199.3 (CHO), 72.8 (C_q), 36.1 (CH₃), 24.6 (2 × CH₂), 24.2 (CH₂), 21.9 (2 × CH₂). HRMS (TOF-ESI⁻) m/z calcd. For C₈H₁₃O₃S [M-H]⁻⁻: 189.0585; found 189.0590

1-(Cyclopropylsulfonyl)cyclohexane-1-carbaldehyde (3I)

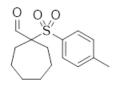
Prepared according to general procedure **C** using cyclohexane carboxaldehyde **1** (48 μ L, 0.4 mmol) and cyclopropanesulfinic acid sodium salt (102 mg, 0.8 mmol). Purification by flash column chromatography (30% Et₂O:hexane) afforded α -sulfonyl aldehyde **3I** as a colourless oil (47.5 mg, 55%). R_f 0.14 (30% Et₂O:hexane). IR (film)/cm⁻¹ 2937, 2858, 1722, 1453, 1315, 1289,


1133, 1189, 1043, 883, 831, 693. ¹H NMR (400 MHz, CDCl₃) δ 9.66 (s, 1 H, CHO), 2.56 (d, *J* = 12.2 Hz, 2 H, 2 × C_qCHH), 2.26 (tt, *J* = 8.0, 4.8 Hz, 1 H, SO₂CH), 1.93 (ddd, *J* = 12.2, 12.2, 4.4 Hz, 2 H, 2 × C_qCHH), 1.83 (m, 2 H, 2 H, 2 × C_qCHH), 2.26 (tt, *J* = 8.0, 4.8 Hz, 1 H, SO₂CH), 1.93 (ddd, *J* = 12.2, 12.2, 4.4 Hz, 2 H, 2 × C_qCHH), 1.83 (m, 2 H, 2 H, 2 × C_qCHH), 2.26 (tt, *J* = 8.0, 4.8 Hz, 1 H, SO₂CH), 1.93 (ddd, *J* = 12.2, 12.2, 4.4 Hz, 2 H, 2 × C_qCHH), 1.83 (m, 2 H, 2 × C_qCHH), 2.84 Hz, 2 H, 2 × C_qCHH), 1.83 (m, 2 H, 2 × C_qCHH), 1.85 (m, 2 H, 2 × C_qCHH), 2.84 Hz, 2 H, 2 × C_qCHH), 1.83 (m, 2 H, 2 × C_qCHH), 2.84 Hz, 2 H, 2 × C_qCHH), 1.83 (m, 2 H, 2 × C_qCHH), 1.85 (m, 2 H, 2 × C_qCH), 1.85 (m, 2 × C_qCH

× C_qCH_2CHH), 1.68 (s, 1 H, $C_qCH_2CH_2CHH$), 1.32–1.18 (m, 3 H, 2 × $C_qCH_2CH_2CH_2CH_2CH_2CH_2$), 1.16 (m, 2 H, SO₂CHCHHCHH), 1.06–0.98 (m, 2 H, SO₂CHCHHCHH). ¹³C NMR (101 MHz, CDCl₃) δ 198.5 (CHO), 73.6 (C_q), 26.2 (SO₂CH), 24.8 (2 × CH₂), 24.4 (CH₂), 21.9 (2 × CH₂), 4.8 (SO₂CHCH₂CH₂). HRMS (TOF–ESI⁺) m/z calcd. For $C_{10}H_{17}O_3S$ [M+H]⁺: 217.0898; found: 217.0894.

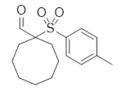
Reaction Scope Varying the Aldehyde

Cycloheptane carboxaldehyde **S12**, cyclooctane carboxaldehyde **S13** and 4-phenylcyclohexane carboxaldehyde **S15** were all prepared as previously reported.⁶


1-(4-Methylbenzene-1-sulfonyl)cyclopentane-1-carbaldehyde (4a)

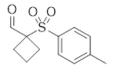
Prepared according to general procedure **C** using cyclopentanecarboxaldehyde (43 μ L, 0.4 mmol) and 4-methylbenzenesulfinic acid sodium salt **2a** (142 mg, 0.8 mmol). Purification by flash column chromatography afforded α -sulfonyl aldehyde **4a** as a colourless oil (66.7 mg, 66%). R_f 0.21 (20% Et₂O:pentane). IR (film)/cm⁻¹ 2960, 2874, 1722

(C=O), 1595, 1450, 1304, 1144, 1088, 1047, 816, 715, 663. ¹H NMR (400 MHz, CDCl₃) δ 9.77 (s, 1 H, CHO), 7.66 (d, *J* = 8.2 Hz, 2 H, 2 × Ar–CH), 7.34 (d, *J* = 8.2 Hz, 1 H, 2 × Ar–CH), 2.45 (s, 3 H, CH₃), 2.30 (m, 2 H, 2 × C_qCHH), 2.19–2.07 (m, 2 H, 2 × C_qCHH), 1.89–1.75 (m, 2 H, 2 × C_qCH₂CHH), 1.64–1.50 (m, 2 H, 2 × C_qCH₂CHH). ¹³C NMR (101 MHz, CDCl₃) δ 194.7 (CHO), 145.5 (Ar–C_q), 133.9 (Ar–C_q), 129.9 (2 × Ar–CH), 129.1 (2 × Ar–CH), 81.1 (C_q), 28.8 (2 × C_qCH₂CH₂), 25.7 (2 × C_qCH₂CH₂), 21.6 (CH₃). HRMS (FTMS + p APCI) m/z calcd. For C₁₃H₁₇O₃S [M+H]⁺: 253.0893; found 253.0885.


1-(4-Methylbenzene-1-sulfonyl)cycloheptane-1-carbaldehyde (5a)

Prepared according to general procedure **C** using cycloheptanecarboxaldehyde **S12** (53 μ L, 0.4 mmol) and 4-methylbenzenesulfinic acid sodium salt **2a** (142 mg, 0.8 mmol). Purification by flash column chromatography (10–20% Et₂O:pentane) afforded α -sulfonyl aldehyde **5a** as a colourless oil (82.3 mg, 73%). Rf 0.58 (20% Et₂O:pentane). IR (film)/cm⁻¹ 2926, 2855, 1722 (C=O), 1595, 1461, 1290, 1141, 1085, 1040, 902, 816, 726. ¹H NMR (400

MHz, CDCl₃) δ 9.65 (s, 1 H, CHO), 7.62 (d, *J* = 8.0 Hz, 2 H, 2 × Ar–CH), 7.34 (d, *J* = 8.0 Hz, 2 H, 2 × Ar–CH), 2.44 (s, 3 H, CH₃), 2.23–2.16 (m, 4 H, 2 × C_qCH₂), 1.82–1.71 (m, 2 H, 2 × C_qCH₂CHH), 1.60–1.45 (m, 4 H, 2 × C_qCH₂CH*H*+ 2 × C_qCH₂CH₂CH₂CH), 1.41–1.30 (m, 2 H, 2 × C_qCH₂CH₂CH*H*). ¹³C NMR (101 MHz, CDCl₃) δ 196.5 (CHO), 145.5 (Ar–C_q), 132.7 (Ar–C_q), 129.8 (2 × Ar–CH), 129.7 (2 × Ar–CH), 77.2 (C_q), 30.1 (2 × CH₂), 27.9 (2 × CH₂), 22.9 (2 × CH₂), 21.6 (CH₃). HRMS (FTMS–p APCI) m/z calcd. For C₁₅H₁₉O₃S [M-H]⁻: 279.1049; found 279.1048.


1-(4-Methylbenzene-1-sulfonyl)cyclooctane-1-carbaldehyde (6a)

Prepared according to general procedure **C** using cyclooctanecarboxaldehyde **S13** (59 μ L, 0.4 mmol) and 4-methylbenzenesulfinic acid sodium salt **2a** (142 mg, 0.8 mmol). Purification by flash column chromatography afforded α -sulfonyl aldehyde **6a** as a colourless oil (62.6 mg, 53%). R_f 0.50 (20% Et₂O:pentane). IR (film)/cm⁻¹ 2922, 2855, 1722 (C=O), 1594, 1476, 1446, 1300, 1144, 1084, 816, 712. ¹H NMR (400 MHz, CDCl₃) δ 9.67 (s,

1 H, CHO), 7.61 (d, J = 8.2 Hz, 2 H, 2 × Ar–CH), 7.34 (d, J = 8.2 Hz, 2 H, 2 × Ar–CH), 2.45 (s, 3 H, CH₃), 2.28 (ddd, J = 15.6, 9.0, 2.4 Hz, 2 H, 2 × C_qCHH), 2.16 (ddd, J = 15.6, 9.2, 2.4 Hz, 2 H, 2 × C_qCHH), 1.90–1.79 (m, 2 H, 2 × C_qCH₂CH₁), 1.60–1.34 (m, 8 H, 2 × C_qCH₂CH₂H + 2 × C_qCH₂CH₂CH₂CH₂ + C_qCH₂CH₂CH₂CH₂CH₂). ¹³C NMR (101 MHz, CDCl₃) δ 197.5 (CHO), 145.5 (Ar–C_q), 132.8 (Ar–C_q), 129.72 (2 × Ar–CH), 129.68 (2 × Ar–CH), 77.5 (C_q), 27.8 (2 × CH₂), 24.7 (CH₂), 23.7 (2 × CH₂), 22.2 (2 × CH₂), 21.7 (CH₃). HRMS (FTMS–p APCI) m/z calcd. For C₁₆H₂₁O₃S [M-H]⁻: 293.1206; found 293.1207.

1-(4-Methylbenzene-1-sulfonyl)cyclobutane-1-carbaldehyde (7a)

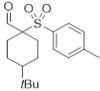
Prepared according to general procedure **C** using cyclobutanecarboxaldehyde (36 μ L, 0.4 mmol) and 4-methylbenzenesulfinic acid sodium salt **2a** (142 mg, 0.8 mmol). Purification by flash column chromatography afforded α -sulfonyl aldehyde **7a** as a colourless oil (9.7 mg, 10%). R_f 0.26 (20% Et₂O:pentane). IR (film)/cm⁻¹ 2955, 2851, 1722 (C=O), 1595, 1315,

1252, 1316, 1156, 1118, 1080, 1039, 816, 664. ¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, 1 H, CHO), 7.66 (d, *J* = 8.4 Hz, 2 H, 2 × Ar–CH), 7.36–7.34 (m, 2 H, 2 × Ar–CH), 2.80–2.72 (m, 2 H, 2 × C_qCHH), 2.45 (s, 3 H, CH₃), 2.44–2.38 (m, 2 H, 2 × C_qCHH), 2.09 (dtt, *J* = 11.5, 10.0, 4.9 Hz, 1 H, C_qCH₂CHH), 1.88 (dtt, *J* = 11.5, 10.0, 8.0 Hz, 1 H, C_qCH₂CHH). ¹³C NMR (101 MHz, CDCl₃) δ 193.5 (CHO), 145.6 (Ar–C_q), 133.1 (Ar–C_q), 130.1 (2 × Ar–CH), 128.7

 $(2 \times Ar-CH)$, 72.2 (C_q), 23.5 (2 × C_qCH₂), 21.7 (CH₃), 14.5 (C_qCH₂CH₂). HRMS (FTMS + p APCI) m/z calcd. For C₁₂H₁₅O₃S [M+H]⁺: 239.0736; found 239.0729.

4-(tert-Butyl)cyclohexane-1-carbaldehyde (S14)

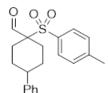
Procedure modified from Falck.⁷ KOtBu (359 mg, 3.20 mmol) was added to a stirred solution of (methoxymethyl)triphenylphosphonium chloride (1.09 g, 3.20 mmol) in anhydrous THF (2 mL) at rt and the reaction was stirred for 1 h. A solution of 4-(*tert*-butyl)cyclohexan-1-one (308 mg, 2.00 mmol) in anhydrous THF (2 mL) was added dropwise to the dark red solution


at 0 °C and then warmed to room temperature and stirred overnight. The reaction was quenched with addition of brine (5 mL) and the product extracted with EtOAc (3 × 20 mL), the combined organic layers were dried over Na₂SO₄, filtered and concentrated *in vacuo*. The intermediate enol ether was passed through a short pad of silica (10% Et₂O:pentane) and concentrated *in vacuo*. The intermediate was dissolved in THF (4 mL) and 6 M aqueous HCl (1 mL) was added and the reaction stirred at rt for 2 h. Brine (5 mL) was added to reaction, and the product was extracted with EtOAc (3 × 20 mL), the combined organic layers were dried over Na₂SO₄, filtered, then concentrated *in vacuo*. Purification by column chromatography (0–10% Et₂O:pentane) afforded aldehyde **S14** as a 1:2 mixture of *cis*- and *trans*-diasteromers as a colourless oil (203 mg, 60%). R_f 0.55 (10% Et₂O:pentane). IR (film)/cm⁻¹2941, 2859, 2706, 1722 (C=O), 1476, 1449, 1364, 924, 697.

Cis: ¹H NMR (400 MHz, CDCl₃) δ 9.73 (s, 1 H, CHO), 2.45–2.37 (m, 1 H, CHOC*H*), 2.30 (ddd, *J* = 13.6, 3.5, 1.8 Hz, 2 H, 2 × CHH), 1.72–1.64 (m, 2 H, 2 × CH*H*), 1.53 (td, *J* = 12.9, 5.2 Hz, 2 H, 2 × CHH), 1.11–0.90 (m, 3 H, 2 × CH*H* + C*H*C(CH₃)₃), 0.81 (s, 9 H, C(CH₃)₃). ¹³C NMR (101 MHz, CDCl₃) δ 206.1 (CHO), 47.8 (CHOCH), 46.5 (CHC(CH₃)₃), 27.4 (C(*C*H₃)₃), 25.5 (2 × CH₂), 24.1 (2 × CH₂).

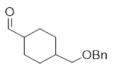
Trans: ¹H NMR (400 MHz, CDCl₃) δ 9.62 (d, *J* = 1.7 Hz, 1 H, CHO), 2.14 (ttd, *J* = 12.2, 3.7, 1.7 Hz, 1 H, CHOC*H*), 2.05–2.00 (m, 2 H, 2 × CH*H*), 1.94–1.89 (m, 2 H, 2 × C*H*H), 1.29–1.19 (m, 2 H, 2 × CH*H*), 1.09–0.96 (m, 3 H, 2 × C*H*H + C*H*C(CH₃)₃), 0.86 (s, 9 H, C(CH₃)₃). ¹³C NMR (101 MHz, CDCl₃) δ 205.0 (CHO), 50.5 (CHOCH), 47.6 (CHC(CH₃)₃), 32.5 (*C*(CH₃)₃), 27.5 (C(CH₃)₃), 26.5 (2 × CH₂), 26.2 (2 × CH₂).

Analytical data (IR, ¹H NMR and ¹³C NMR) is in agreement with the reported literature.⁸


4-(tert-Butyl)-1-(4-methylbenzene-1-sulfonyl)cyclohexane-1-carbaldehyde (8a)

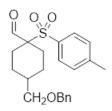
4-(*tert*-Butyl)cyclohexane-1-carboxaldehyde **S14** (70.8 mg, 0.4 mmol), manganese(IV) Oxide (52 mg, 0.6 mmol), copper(II) triflate (21.7 mg, 0.06 mmol), bathophenanthroline (13.3 mg, 0.04 mmol), 4-methylbenzenesulfinic acid sodium salt **2a** (142 mg, 0.8 mmol), water (200 μ L), ethanol (200 μ L) and acetic acid (200 μ L, 4 mmol) were added sequentially to a microwave vial under air and the reaction was submerged in an oil bath preheated to

100 °C for 18 h. The reaction was allowed to cool to room temperature, diluted with EtOAc (2 mL) then filtered through silica eluting with EtOAc (3 × 10 mL) the concentrated *in vacuo*. Purification by flash column chromatography (20% Et₂O:pentane) afforded α -sulfonyl aldehyde **8a** as white amorphous gum in an inseparable 1:1 mixture of *cis*- and *trans*-diastereomers (94.7 mg, 73%). R_f 0.27 (20% Et₂O:pentane). IR (film)/cm⁻¹ 2937, 2851, 1722 (C=O), 1443, 1297, 1141, 1085, 813. ¹H NMR (400 MHz, CDCl₃) δ 9.63 (s, 1 H, CH_aO), 9.62 (s, 1 H, CH_bO), 7.64 (d, *J* = 8.4 Hz, 2 H, 2 × Ar–CH_{a/b}), 7.58 (d, *J* = 8.4 Hz, 2 H, 2 × Ar–CH_{a/b}), 7.33 (d, *J* = 7.3 Hz, 4 H, 4 × Ar–CH_{a/b}), 2.44 (s, 3 H, C(H_{a/b})₃), 2.43 (s, 3 H, C(H_{a/b})₃), 2.42–2.31 (m, 4 H, 2 × C(H_{a/b})H_{a/b}), 1.97–1.83 (m, 4 H, 2 × C(H_{a/b})H_{a/b}), 1.83–1.76 (m, 2 H, 2 × C(H_{a/b})H), 1.69 (dt, *J* = 12.3, 3.7 Hz, 2 H, 2 × C(H_{a/b})H), 1.60 (ddd, *J* = 15.0, 13.2, 4.5 Hz, 2 H, 2 × C(H)H_{a/b}), 1.04–0.92 (m, 3 H, 2 × C(H)H_{a/b} + C(H_{a/b})Bu), 0.88 (s, 9 H, C(C(H_{a/b})₃)₃), 0.85–0.80 (m, 1 H, C(H_{a/b})tBu), 0.78 (s, 9 H, C(C(H_{a/b})₃)₃). ¹³C NMR (101 MHz, CDCl₃) δ 197.7 (CH_aO), 196.2 (CH_bO), 145.5 (2 × Ar–(C_{a/b})q), 133.2 (Ar–(C_{a/b})H), 73.9 (CHO(C_{a/b})q), 72.1 (CHO(C_{a/b})q), 46.44 ((C_{a/b})HtBu), 46.39 ((C_{a/b})HtBu), 32.5 (C_{a/b}(CH₃)₃), 32.2 (C_{a/b}(CH₃)₃), 27.4 (C(C_{a/b}(H₃)₃), 27.3 (C(C_{a/b}(H₃)₃), 27.3 (C(C_{a/b}(H₃)₃), 27.4 (C(C_{a/b}(H₃)₃), 27.4 (C(C_{a/b}(H₃)₃), 27.3 (C(C_{a/b}(H₃)₃), 27.4 (C(C_{a/b}(H₃)₃), 27.4 (C(C_{a/b}(H₃)₃), 27.4 (C(C_{a/b}(H₃)₃), 27.4 (C(C_{a/b}(H₃)₃), 27.3 (C(C_{a/b}(H₃)₃), 26.2 (4 × (C_{a/b})H₂), 25.7 (2 × (C_{a/b})H₂), 23.1 (2 × (C_{a/b})H₂), 21.7 (2 × Ar(C_{a/b})H₃). HRMS (TOF–ESI⁺) m/z calcd. For C₁₈H₂₇O₃S [M+H]⁺: 323.1681; found 323.1690.


4-Phenyl-1-(4-methylbenzene-1-sulfonyl)cyclohexane-1-carbaldehyde (9a)

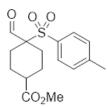
4-Phenylcyclohexane-1-carboxaldehyde **S15** (71.8 mg, 0.38 mmol), manganese(IV) oxide (52 mg, 0.6 mmol), copper(II) triflate (21.7 mg, 0.06 mmol), bathophenanthroline (13.3 mg, 0.04 mmol), 4-methylbenzenesulfinic acid sodium salt **2a** (142 mg, 0.8 mmol), water (200 μ L), ethanol (200 μ L) and acetic acid (200 μ L, 4 mmol) were combined sequentially to a microwave vial under air and heated to 100 °C for 18 h. The reaction was allowed to

cool to room temperature, diluted with EtOAc (2 mL) then filtered through silica eluting with EtOAc (3 × 10 mL) the concentrated *in vacuo*. Purification by flash column chromatography (20% Et₂O:pentane) afforded α -sulfonyl aldehyde **9a** as white amorphous gum in an inseparable 1:1 mixture of *cis*- and *trans*-diastereomers (51.7 mg, 40%). Rf 0.14 (20% Et₂O:pentane). IR (film)/cm⁻¹ 3056, 3026, 2930, 2862, 1722 (C=O), 1595, 1490, 1446, 1301, 1237, 1140, 1088, 816, 757, 701, 664 ¹H NMR (400 MHz, CDCl₃) δ 9.76 (s, 1 H, CH_aO), 9.71 (s, 1 H, CH_bO), 7.69–7.64 (m, 3 H, 3 × Ar–CH_{a+b}), 7.39–7.21 (m, 13 H, 13 × Ar–CH_{a/b}), 7.13–7.11 (m, 2 H, 2 × Ar–CH_{a/b}), 2.54–2.52 (m, 3 H, 2 × C_qC(*H_{a/b}*)H + PhCH_{a/b}), 2.48 (s, 3 H, C(H_{a/b})₃), 2.47 (s, 3 H, C(H_{a/b})₃), 2.45–2.39 (m, 5 H, 2 × C_qC(*H_{a/b}*)H + 2 × C_qC(H)*H_{a/b}* + PhCH_{a+b}), 2.15 (ddd, *J* = 13.6, 13.6, 4.1 Hz, 2 H, 2 × C_qCH(*H_{a/b}*)), 1.98–1.83 (m, 6 H, 2 × C_qC(*H₂C*)(*H_{a/b}*)H + 2 × C_qCH₂CH(*H_{a/b}*), 1.41–1.37 (m, 2 H, 2 × C_qCH₂C(*H_{a/b}*)H). ¹³C NMR (101 MHz, CDCl₃) δ 197.6 (C_{a/b}HO), 196.4 (C_{a/b}HO), 145.70 (Ar–(C_{a/b})_q), 145.67 (Ar–(C_{a/b})_q), 145.2 (Ar–(C_{a/b})_q), 145.1 (Ar–(C_{a/b})_q), 132.7 (Ar–(C_{a/b})_q), 132.1 (Ar–(C_{a/b})_q), 129.9 (2 × Ar–(C_{a/b})H), 129.8 (2 × Ar–(C_{a/b})H), 129.7 (2 × Ar–(C_{a/b})H), 126.5 (2 × Ar–(C_{a/b})H), 128.5 (3 × Ar–(C_{a/b})H), 127.0 (2 × Ar–(C_{a/b})H), 126.6 (2 × Ar–(C_{a/b})H), 126.5 (Ar–(C_{a/b})H), 126.5 (Ar–(C_{a/b})H), 25.5 (2 × (C_{a/b})H₂), 25.0 (2 × (C_{a/b})H₂), 21.71 (Ar(C_{a/b})H₃), 21.68 (Ar(C_{a/b})H₃). HRMS (TOF–ESI⁺) m/z calcd. For C₂₂H₂₅NO₃SNa [M+MeCN+Na]⁺: 406.1453; found 406.1444.


4-((Benzyloxy)methyl)cyclohexane-1-carbaldehyde (S16)

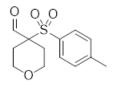
1,4-Cyclohexanedimethanol (720 mg, 5 mmol) in THF (5 mL) was added dropwise to a stirring solution of sodium hydride as a 60% dispersion in mineral oil (200 mg, 5 mmol) in THF (5 mL) and the resulting solution was stirred for 1 h at rt. Tetrabutylammonium lodide (928 mg, 2.5 mmol), and benzyl bromide (595 mL, 5 mmol) were added and the

reaction was stirred overnight at rt then at 60 °C for 30 min. The reaction was quenched by the addition of water (10 mL) and the product was extracted with Et₂O (3 × 10 mL), dried over Na₂SO₄, filtered and then concentrated in vacuo. Purification by flash column chromatography (20% Et₂O:pentane) afforded the monobenzyl protected alcohol intermediate. CH₂Cl₂ (100 mL) was added to mono-benzyl protected alcohol, then the reaction was cooled to 0 °C and Dess-Martin Periodinane (3.2 g, 5 mmol) was added and the reaction stirred for 1.5 h allowing to warm to rt. The reaction was quenched by the addition of a saturated solution of NaHCO_{3 (aq)} (100 mL) and the product was extracted with CH_2CI_2 (3 × 50 mL), dried over Na₂SO₄, filtered then concentrated in vacuo. Purification by flash column chromatography afforded aldehyde S16 as a colourless oil in an inseparable 1:2 mixture of cis- and trans-diastereomers (286.4 mg, 25% over 2 steps). Rf 0.23 (10% Et₂O:pentane). IR (film)/cm⁻¹ 2922, 2851, 2706, 1722 (C=O), 1450, 1360, 1092, 913, 734, 697. ¹H NMR (400 MHz, CDCl₃) δ 9.69 (s, 1 H, CH_aO), 9.62 (d, J = 1.6 Hz, 1 H, CH_bO), 7.38–7.27 (m, 10 H, 10 × Ar–CH_{a/b}), 4.50 (s, 2 H, OC(H_b)₂Ph), 4.48 (s, 2 H, OC(H_a)₂Ph), 3.30 (d, J = 6.4 Hz, 2 H, C(H_b)₂OBn), 3.26 (d, J = 6.3 Hz, 2 H, C(H_a)₂OBn), 2.42 (pent, J = 4.7 Hz, 1 H, CHOCH_a), 2.19 (ttd, J = 12.3, 3.5, 1.6 Hz, 1 H, CHOCH_b), 2.13–2.05 (m, 2 H, 2 × CHOCHC(H_a)H), 2.05–1.90 (m, 4 H, 2 × C(H_b)₂), 1.77–1.66 (m, 3 H, CH_aCH₂OBn + 2 × CH(H_a)CHCH₂OBn), 1.65– 1.58 (m, 3 H, 2 × CHOCHCH(H_a)+ CH_bCH₂OBn) 1.28 (qd, J = 12.9, 3.3 Hz, 2 H, 2 × CHOCHC(H_b)H), 1.15–0.98 (m, 4 H, 2 × C(H_a)HCHCH₂OBn + 2 × CHOCHCH(H_b)). ¹³C NMR (101 MHz, CDCl₃) δ 205.5 (CH_aO), 204.6 (CH_bO), 138.5 (Ar-(C_{a+b})_q), 128.3 (2 × Ar-(C_{a+b})H), 127.5 (3 × Ar-(C_{a+b})H), 75.6 (CHO(C_b)H), 74.9 (CHO(C_a)H), 73.0 (O(C_{a+b})H₂Ph), 50.4 ((C_b)H₂OBn), 47.3 ((C_a)H₂OBn), 37.7 ((C_b)HCH₂OBn), 36.8 ((C_a)HCH₂OBn), 28.7 (2 × (C_b)H₂), 26.4 (2 × (C_a)H₂), 25.5 (2 × (C_b)H₂), 23.7 (2 × (C_a)H₂). HRMS (ESI⁺) m/z calcd. For C₁₅H₂₁O₂ [M+H]⁺: 233.1542; found 233.1540.


4-((Benzyloxy)methyl)-1-(4-methylbenzene-1-sulfonyl)cyclohexane-1-carbaldehyde (10a)

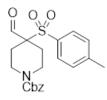
4-((Benzyloxy)methyl)cyclohexane-1-carbaldehyde **S16** (92.8 mg, 0.4 mmol), manganese(IV) oxide (52 mg, 0.6 mmol), copper(II) triflate (21.7 mg, 0.06 mmol), bathophenanthroline (13.3 mg, 0.04 mmol), 4-methylbenzenesulfinic acid sodium salt **2a** (142 mg, 0.8 mmol), water (200 μ L), ethanol (200 μ L) and acetic acid (200 μ L) were added sequentially to a microwave vial under air and the reaction was heated to 100 °C for 18 h. The reaction was allowed to cool to room temperature, diluted with EtOAc (2 mL) then

filtered through silica eluting with EtOAc ($3 \times 10 \text{ mL}$) the concentrated *in vacuo*. Purification by flash column chromatography (20% Et₂O:pentane) afforded α -sulfonyl aldehyde **10a** as a colourless oil in an inseparable 1:1 mixture of *cis*- and *trans*-diastereomers (112.2 mg, 73%). R_f 0.3 (30% Et₂O:pentane). IR (film)/cm⁻¹ 2930, 2855, 1722 (C=O), 1453, 1300, 1144, 1085, 910, 730, 673. ¹H NMR (400 MHz, CDCl₃) δ 9.65 (s, 1 H, CH_{a/b}O), 9.64 (s, 1 H, CH_{a/b}O), 7.61–7.58 (m, 4 H, 4 × Ar–CH_{a+b}), 7.37–7.29 (m, 14 H, 14 × Ar–CH_{a+b}), 4.53 (s, 2 H, OC(H_{a/b})₂Ph), 4.45 (s, 2 H, OC(H_{a/b})₂Ph), 3.46 (d, *J* = 7.0 Hz, 2 H, C(H_{a/b})₂OBn), 3.20 (d, *J* = 6.4 Hz, 2 H, C(H_{a/b})₂OBn), 2.45 (s, 6 H, C(H_{a+b})₃), 2.34 (d, *J* = 13.3 Hz, 2 H, 2 × CHOC_qCH_{a/b}H), 2.14 (ddd, *J* = 14.5, 10.8, 4.1 Hz, 2 H, 2 × CHOC_qCH_{a/b}H), 2.01–1.81 (m, 9 H, 4 × C(H_{a/b})₂+ CH_{a/b}CH₂OBn), 1.65–1.62 (m, 1 H, CH_{a/b}CH₂OBn), 1.53–1.45 (m, 2 H, 2 × CHH_{a/b}), 0.90–0.86 (m, 2 H, 2 × CHH_{a/b}). ¹³C NMR (101 MHz, CDCl₃) δ 197.6 (CH_{a/b}O), 197.1 (CH_{a/b}O), 145.6 (2 × Ar–(C_{a/b})_q), 138.33 (Ar–(C_{a/b})_q), 138.29 (Ar–(C_{a/b})_q), 132.1 (Ar–(C_{a/b})_q), 132.0 (Ar–(C_{a/b})_q), 129.9 (2 × Ar–(C_{a/b})H), 129.74 (2 × Ar–(C_{a/b})H), 129.69 (3 × Ar–(C_{a/b})H), 129.66 (2 × Ar–(C_{a/b})H), 128.40 (2 × Ar–(C_{a/b})H), 127.56 (Ar–(C_{a/b})H), 127.5 (2 × Ar–(C_{a/b})H), 74.7 (O(C_{a/b})H₂Ph), 74.1 ((C_{a/b})_q), 73.3 ((C_{a/b})H₂Ph), 73.0 ((C_{a/b})H₂OBn), 71.4 ((C_{a/b})H₂OBn), 36.6 ((C_{a/b})H₂)), 32.7 ((C_{a/b})H₂), 125.4 (2 × (C_{a/b})H₂), 23.1 (2 × (C_{a/b})H₃), 21.7 (4 × (C_{a/b})H₂). HRMS (ESI⁺) m/z calcd. For C₂₂H₂₆O₄SNa [M+Na]⁺: 409.1450; found 409.1443.


Methyl 4-formyl-4-(4-methylbenzene-1-sulfonyl)cyclohexane-1-carboxylate (11a)

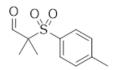
Methyl 4-formylcyclohexane-1-carboxylate (66.8 mg, 0.4 mmol), manganese(IV) oxide (52 mg, 0.6 mmol), copper(II) triflate (21.7 mg, 0.06 mmol), bathophenanthroline (13.3 mg, 0.04 mmol), 4-methylbenzenesulfinic acid sodium salt **2a** (142 mg, 0.8 mmol), water (200 μ L), ethanol (200 μ L) and acetic acid (200 μ L, 4 mmol) were combined sequentially to a microwave vial under air and heated to 100 °C for 18 h. The reaction was allowed to cool to room temperature, diluted with EtOAc (2 mL) then filtered through silica eluting with

EtOAc (3 × 10 mL) the concentrated *in vacuo*. Purification by flash column chromatography (20% Et₂O:pentane) afforded α -sulfonyl aldehyde **11a** a colourless oil in an inseparable 1:1 mixture of *cis*- and *trans*-diastereomers (57.2 mg, 44%). Rf 0.42 (20% Et₂O:pentane). IR (film)/cm⁻¹ 2952, 2866, 1729 (C=O), 1595, 1453, 1304, 1200, 1148, 1051, 947, 820, 664. ¹H NMR (400 MHz, CDCl₃) δ 9.68 (s, 1 H, CH_aO), 9.65 (s, 1 H, CH_bO), 7.60 (m, 4 H, 2 × Ar–CH_{a+b}), 7.35 (m, 4 H, 2 × Ar–CH_{a+b}), 3.72 (s, 3 H, CO₂C(H_{a/b})₃), 3.64 (s, 3 H, CO₂C(H_{a/b})₃), 2.57 (tt, *J* = 4.9, 3.6 Hz, 1 H, C(H_{a/b})CO₂Me), 2.46 (s, 3 H, ArC(H_{a/b})₃), 2.46 (s, 3 H, ArC(H_{a/b})₃), 2.57 (tt, *J* = 4.9, 3.6 Hz, 1 H, C(H_{a/b})CO₂Me), 2.46 (s, 3 H, ArC(H_{a/b})₃), 2.46 (s, 3 H, ArC(H_{a/b})₃), 2.41–2.34 (m, 2 H, 2 × CH_{a/b}H), 2.30–2.20 (m, 3 H, 2 × CHH_{a/b} + C(H_{a/b})CO₂Me), 2.15–2.09 (m, 4 H, 2 × CH_{a/b}H + 2 × CHH_{a/b}), 2.09–1.94 (m, 4 H, 2 × CH_{a/b}H) + 2 × CHH_{a/b}) 1.47–1.44 (m, 2 H, 2 × CH_{a/b}H), 1.34–1.30 (m, 2 H 2 × CHH_{a/b}). ¹³C NMR (101 MHz, CDCl₃) δ 197.4 (CH_aO), 197.0 (CH_aO), 178.6 ((C_{a/b})=O_{ester}), 173.9 ((C_{a/b})=O_{ester}), 145.9 (Ar–(C_{a/b})_q), 145.7 (Ar–(C_{a/b})_q), 52.0 (CO₂(C_{a/b})H₃), 51.8 (CO₂(C_{a/b})H₃), 41.3 ((C_{a/b})Ar–H), 129.7 (C_{a/b})Ar–H), 73.2 (2 × (C_{a/b})_q), 52.0 (CO₂(C_{a/b})H₃), 51.8 (CO₂(C_{a/b})H₃), 41.3 ((C_{a/b})HCO₂Me), 37.7 (C_{a/b})HCO₂Me), 24.4 (2 × (C_{a+b})H₂), 22.9 (2 × (C_{a+b})H₂), 22.0 (2 × (C_{a+b})H₂), 21.71 (Ar(C_{a/b})H₃), 21.69 (Ar(C_{a/b})H₃). HRMS (FTMS + p APCI) m/z calcd. For C₁₆H₂₁O₅S [M+H]⁺: 325.1104; found 325.1094.


4-(4-Methylbenzene-1-sulfonyl)tetrahydro-2H-pyran-4-carbaldehyde (12a)

Tetrahydro-2H-pyran-4-carbaldehyde (48.7 mg, 0.4 mmol), manganese(IV) oxide (52 mg, 0.6 mmol), copper(II) triflate (21.7 mg, 0.06 mmol), bathophenanthroline (13.3 mg, 0.04 mmol), 4-methylbenzenesulfinic acid sodium salt **2a** (142 mg, 0.8 mmol), water (200 μ L), ethanol (200 μ L) and acetic acid (200 μ L) were combined sequentially to a microwave vial under air and heated to 100 °C for 18 h. The reaction was allowed to cool to room

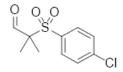
temperature, diluted with EtOAc (2 mL) then filtered through silica eluting with EtOAc (3 × 10 mL) the concentrated *in vacuo*. Purification by flash column chromatography (40% Et₂O:pentane) afforded α -sulfonyl aldehyde **12a** as a colourless oil (46.4 mg, 43%). R_f 0.02 (40% Et₂O:pentane). IR (film)/cm⁻¹ 2967, 2829, 2862, 1722 (C=O), 1595, 1315, 1245, 1316, 1156, 1103, 950, 816, 664. ¹H NMR (400 MHz, CDCl₃) δ 9.75 (s, 1 H, CHO), 7.62 (d, *J* = 8.4 Hz, 2 H, 2 × Ar–CH), 7.36 (d, *J* = 8.4 Hz, 2 H, 2 × Ar–CH), 3.96 (ddd, *J* = 12.3, 4.7, 1.3 Hz, 2 H, 2 × OCHH), 3.24 (ddd, *J* = 12.3, 12.3, 2.4 Hz, 2 H, 2 × OCH*H*), 2.46 (s, 3 H, CH₃), 2.28 (td, *J* = 12.3, 5.4 Hz 2 H, 2 × OCH₂CHH), 2.12 (dd, *J* = 13.5, 2.2 Hz, 2 H, 2 × OCH₂CHH). ¹³C NMR (101 MHz, CDCl₃) δ 196.8 (CHO), 146.0 (Ar–C_q), 131.5 (Ar–C_q), 129.9 (4 × Ar–CH), 71.6 (C_q), 63.7 (2 × CH₂), 25.2 (2 × CH₂), 21.7 (CH₃). HRMS (EI⁺) m/z calcd. For C₁₃H₁₆O₄S [M]⁺: 268.0769; found 268.0774.


Benzyl 4-formyl-4-(4-methylbenzene-1-sulfonyl)piperidine-1-carboxylate (13a)

4-Formyl-N-Cbz-piperidine (101.4 mg, 0.41 mmol), manganese(IV) oxide (52 mg, 0.6 mmol), copper(II) triflate (21.7 mg, 0.06 mmol), bathophenanthroline (13.3 mg, 0.04 mmol), 4-methylbenzenesulfinic acid sodium salt **2a** (142 mg, 0.8 mmol), water (200 μ L), ethanol (200 μ L) and acetic acid (200 μ L) were combined sequentially to a microwave vial under air and heated to 100 °C for 18 h. The reaction was allowed to cool to room

temperature, diluted with EtOAc (2 mL) then filtered through silica eluting with EtOAc (3 × 10 mL) then concentrated *in vacuo*. Purification by flash column chromatography (10% acetone:pentane) afforded α -sulfonyl aldehyde **13a** a colourless amorphous gum (74.2 mg, 44%). R_f 0.11 (10% acetone:pentane). IR (film)/cm⁻¹ 3034, 2956, 2863, 1699 (C=O), 1595, 1431, 1319, 1282, 1237, 1148, 1088, 700, 667. ¹H NMR (400 MHz, CDCl₃) δ 9.75 (s, 1 H, CHO), 7.60 (d, *J* = 8.4 Hz, 2 H, 2 × Ar–CH), 7.44–7.30 (m, 7 H, 7 × Ar–CH), 5.12 (s, 2 H, NCO₂CH₂), 4.21 (s, 2 H, 2 × CHH), 2.72 (s, 2 H, 2 × CHH), 2.47 (s, 3 H, CH₃), 2.27–2.05 (m, 4 H, 2 × CH₂). ¹³C NMR (101 MHz, CDCl₃) δ 196.6 (CHO), 154.8 (C=O_{carbamate}), 146.2 (Ar–C_q), 136.3 (Ar–C_q), 131.5 (Ar–C_q), 129.9 (2 × Ar–CH), 129.8 (2 × Ar–CH), 128.5 (2 × Ar–CH), 128.2 (Ar–CH), 128.0 (2 × Ar–CH), 72.4 (C_q), 67.5 (OCH₂Ph), 40.0 (CH₂), 24.8 (CH₂), 21.7 (CH₃). HRMS (FTMS + p APCI) m/z calcd. For C₂₁H₂₄NO₅S [M+H₃O]⁺: 402.1370; found 402.1355.

2-Methyl-2-(4-methylbenzene-1-sulfonyl)propanal (14a)



Prepared according to general procedure **C** using isobutyraldehyde (37 μ L, 0.4 mmol) and 4-methylbenzenesulfinic acid sodium salt **2a** (142 mg, 0.8 mmol). Purification by flash column chromatography (30% Et₂O:pentane) afforded α -sulfonyl aldehyde **14a** as white crystals (34.5 mg, 38%). R_f 0.35 (30% Et₂O:pentane). m.p. = 83–84 °C. IR (film)/cm⁻¹ 2986,

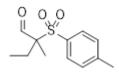
2937, 2848, 1729 (C=O), 1595, 1461, 1312, 1133, 1080, 916, 801, 715, 663. ¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, 1 H, CHO), 7.66 (d, *J* = 8.2 Hz, 2 H, 2 × Ar–CH), 7.36 (d, *J* = 8.2 Hz, 2 H, 2 × Ar–CH), 2.46 (s, 3 H, CH₃), 1.46 (s, 6 H, C(CH₃)₂). ¹³C NMR (101 MHz, CDCl₃) δ 196.3 (CHO), 145.7 (Ar–C_q), 132.2 (Ar–C_q), 129.8 (2 × Ar–CH), 129.7 (2 × Ar–CH), 70.9 (C_q), 21.7 (CH₃), 16.7 (C(CH₃)₂). HRMS (FTMS + p APCI) m/z calcd. For C₁₁H₁₅O₃S [M+H]⁺: 227.0736; found 227.0727.

Performed according to general procedure **C** using isobutyraldehyde (92.5 mL, 1 mmol) and 4methylbenzenesulfinic acid sodium salt **2a** (355 mg, 2 mmol). Purification by flash column chromatography (30% Et₂O:pentane) afforded α -sulfonyl aldehyde **14a** as a white solid (162 mg, 71%). Performed according to general procedure **C** using isobutyraldehyde (546 mL, 6 mmol) and 4methylbenzenesulfinic acid sodium salt **2a** (2.14 g mg, 12 mmol). Purification by flash column chromatography (30% Et₂O:pentane) afforded α -sulfonyl aldehyde **14a** as a white solid (886 mg, 65%).


2-Methyl-2-(4-chlorobenzene-1-sulfonyl)propanal (14f)

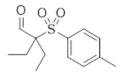
Prepared according to general procedure **C** using isobutyraldehyde (92.5 μ L, 1 mmol) and 4-chlorobenzenesulfinic acid sodium salt **S4** (395 mg, 2 mmol). Purification by flash column chromatography (20% Et₂O:pentane) afforded α -sulfonyl aldehyde **14f** as a white solid (71 mg, 29%). R_f 0.14 (30% Et₂O:pentane). m.p. = 99–100 °C. IR (film)/cm⁻¹

2986, 2937, 2848, 1729 (C=O), 1595, 1461, 1312, 1133, 1080, 916, 801, 715, 663. ¹H NMR (400 MHz, CDCl₃) δ 9.78 (s, 1 H, CHO), 7.71 (d, *J* = 8.9 Hz, 2 H, 2 × Ar–CH), 7.54 (d, *J* = 8.9 Hz, 2 H, 2 × Ar–CH), 1.47 (s, 6 H, C(CH₃)₂). ¹³C NMR (101 MHz, CDCl₃) δ 195.8 (CHO), 141.5 (Ar–C_q), 133.5 (Ar–C_q), 131.1 (2 × Ar–CH), 129.5 (2 × Ar–CH), 70.9 (C_q), 16.6 (C(CH₃)₂). HRMS (FTMS + p APCl) m/z calcd. For C₁₀H₁₂O₃SCl [M+H]⁺: 247.0190; found 247.0188.


2-Methyl-2-(4-trifluoromethylbenzene-1-sulfonyl)propanal (14h)

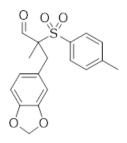
Prepared according to general procedure **C** using isobutyraldehyde (92.5 μ L, 1 mmol) and 4-(trifluoromethyl)benzenesulfinic acid sodium salt **2h** (464 mg, 2 mmol). Purification by flash column chromatography (20% Et₂O:pentane) afforded α -sulfonyl aldehyde **14h** as white solid (162 mg, 58%). R_f 0.10 (20% Et₂O:pentane). m.p. = 90–91

°C. IR (film)/cm⁻¹ 2982, 2945, 2847, 1743 (C=O), 1726, 1461, 1405, 1293, 1129, 838, 790, 742 ¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, 1 H, CHO), 7.93 (d, *J* = 8.2 Hz, 1 H, 2 × Ar–CH), 7.84 (d, *J* = 8.2 Hz, 1 H, 2 × Ar–CH), 1.50 (s, 6 H, C(CH₃)₂).¹³C NMR (101 MHz, CDCl₃) δ 195.6 (CHO), 138.7 (Ar–C_q), 136.1 (q, ²*J*_{C-F} = 33.2 Hz, Ar–C_q), 130.4 (2 × Ar–CH), 126.3 (q, ³*J*_{C-F} = 3.8 Hz, 2 × Ar–CH), 125.7 (q, ¹*J*_{C-F} = 270.0 Hz, CF₃), 71.0 (C_q), 16.6 (C(CH₃)₂). ¹⁹F NMR (377 MHz, CDCl₃) δ -63.32. HRMS (EI⁺) m/z calcd. For C₁₁H₁₁O₃F₃S [M]⁺: 280.0376; found 280.0390.


2-Methyl-2-(4-methylbenzene-1-sulfonyl)butanal (15a)

Prepared according to general procedure **C** using 2-methylbutyraldehyde (106 μ L, 1 mmol) and 4-methylbenzenesulfinic acid sodium salt **2a** (355 mg, 2 mmol). Purification by flash column chromatography (5–20% Et₂O:Pentane) afforded α -sulfonyl aldehyde **15a** as a yellow solid (176.6 mg, 73%). R_f 0.31 (60% CH₂Cl₂:pentane). m.p. = 62–63 °C. IR

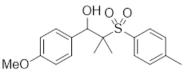
(film)/cm⁻¹ 2944, 2978, 2885, 1730 (C=O), 1300, 1148, 1080, 820, 719. ¹H NMR (400 MHz, CDCl₃) δ 9.74 (s, 1 H, CHO), 7.64 (d, *J* = 8.3 Hz, 2 H, 2 × Ar–CH), 7.35 (d, *J* = 8.3 Hz, 2 H, 2 × Ar–CH), 2.45 (s, 3 H, ArCH₃), 2.33 (dq, *J* = 15.1, 7.6 Hz, 1 H, CHHCH₃), 1.35 (s, 3 H CHOCCH₃), 0.89 (t, *J* = 7.6 Hz, 3 H, CH₂CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 196.8 (CHO), 145.6 (Ar–C_q), 132.5 (Ar–C_q), 129.8 (2 × Ar–CH), 129.7 (2 × Ar–CH), 74.5 (C_q), 22.5 (ArCH₃), 21.7 (CH₃), 12.5 (CH₂CH₃), 7.9 (CH₂CH₃). HRMS (TOF-ESI⁺) m/z calcd. for C₁₂H₁₇O₃S [M+H]⁺: 241.0898; found: 241.0903.


2-Ethyl-2-(4-methylbenzene-1-sulfonyl)butanal (16a)

Prepared according to general procedure **C** using 2-ethylbutyraldehyde (49 μ L, 0.4 mmol) and 4-methylbenzenesulfinic acid sodium salt **2a** (142 mg, 0.8 mmol). Purification by flash column chromatography (20% Et₂O:pentane) afforded α -sulfonyl aldehyde **16a** as a colourless oil (49.5 mg, 49%). R_f0.35 (20% Et₂O:pentane). IR (film)/cm⁻

¹ 2974, 2945, 1726 (C=O), 1595, 1434, 1315, 1148, 1126, 1080, 816, 738. ¹H NMR (400 MHz, CDCl₃) δ 9.68 (s, 1 H, CHO), 7.61 (d, *J* = 8.0 Hz, 1 H, 2 × Ar–CH), 7.35 (d, *J* = 8.0 Hz, 2 H, 2 × Ar–CH), 2.45 (s, 3 H, CH₃), 2.03 (dq, *J* = 15.0, 7.6 Hz, 4 H, 2 × CH₂), 1.00 (t, *J* = 7.6 Hz, 6 H, 2 × CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 197.5 (CHO), 145.5 (Ar–C_q), 132.9 (Ar–C_q), 129.8 (2 × Ar–CH), 129.4 (2 × Ar–CH), 21.7 (ArCH₃), 19.0 (2 × CH₂), 7.6 (2 × CH₃).* (EI⁺) m/z calcd. For C₁₃H₁₈O₃SNa [M+Na]⁺: 277.0874; found 277.0863.*quaternary carbon adjacent to aldehyde is underneath chloroform peak.

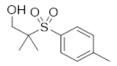
3-(Benzo[d][1,3]dioxol-5-yl)-2-methyl-2-(4-methylbenzene-1-sulfonyl)propanal (17a)



Manganese(IV) oxide (52 mg, 0.6 mmol), copper(II) triflate (21.7 mg, 0.06 mmol), bathophenanthroline (13.3 mg, 0.04 mmol), 4-methylbenzenesulfinic acid sodium salt **2a** (142 mg, 0.8 mmol), 2-Methyl-3-(3,4-methylenedioxyphenyl)propanal (66 μ L, 0.4 mmol), water (200 μ L), ethanol (200 μ L) and acetic acid (200 μ L) were combined sequentially to a microwave vial under air and heated to 100 °C for 18 h. The reaction was allowed to cool to room temperature, basified by the addition of a saturated solution of NaHCO_{3 (aq)} (1 mL) and the product extracted with CH₂Cl₂ (3 × 10 mL), dried

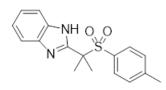
over Na₂SO₄, filtered and then the concentrated *in vacuo*. **[NOTE**: When purifying this compound at this scale, a short plug of silica (5 cm in height in a 2.5 cm diameter column) was used and a rapid column was employed as product instability was observed.] Purification by flash column chromatography (30% Et₂O: pentane) afforded α -sulfonyl aldehyde **17a** a yellow solid (67.8 mg, 49%). Rf 0.16 (30% Et₂O:pentane) m.p. = 161–165 °C. IR (film)/cm⁻¹ 3053, 2900, 2777, 1714 (C=O), 1595, 1487, 1442, 1297, 1241, 1140, 872, 813, 727. ¹H NMR (400 MHz, CDCl₃) δ 9.85 (s, 1 H, CHO), 7.66 (d, *J* = 8.4 Hz, 2 H, 2 × Ar–CH), 7.37 (d, *J* = 7.9 Hz, 2 H, 2 × Ar–CH), 6.69 (d, *J* = 8.5 Hz, 1 H, Ar–CH), 6.58–6.48 (m, 2 H, 2 × Ar–CH), 5.93 (d, *J* = 1.5 Hz, 1 H, OCHHO), 5.92 (d, *J* = 1.5 Hz, 1 H, OCHHO), 3.71 (d, *J* = 13.8 Hz, 1 H, CHHAr), 3.08 (d, *J* = 13.8 Hz, 1 H, CHHAr), 2.47 (s, 3 H, C_qCH₃), 1.26 (s, 3 H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 196.4 (CHO), 147.7 (Ar–Cq), 147.0 (Ar–Cq), 145.8 (Ar–Cq), 132.2 (Ar–Cq), 129.9 (4 × Ar–CH), 126.8 (Ar–Cq), 123.7 (Ar–CH), 110.5 (Ar–CH), 108.4 (Ar–CH), 101.1 (OCH₂O), 74.7 (Cq), 35.0 (CH₃), 21.7 (CH₂), 13.5 (CqCH₃). HRMS (FTMS + p APCI) m/z calcd. For C₁₈H₁₈O₅S [M]⁺⁺: 346.0869; found 346.0868.

Derivatisation of Sulfonyl Aldehydes


1-(4-Methoxyphenyl)-2-methyl-2-(4-methylphenylsulfonyl)propan-1-ol (18)

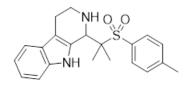
(4-Methoxyphenyl)magnesium bromide in THF (0.45 mL, 0.49 M) was added dropwise at 0 °C to a stirring solution of sulfonyl aldehyde **14a** (45 mg, 0.2 mmol) in THF (0.4 mL) and allowed to warm to rt overnight. the reaction was quenched by the addition of a saturated solution of NH₄Cl_(aq)

and the product extracted with CH₂Cl₂ (3 × 10 mL), dried over Na₂SO₄, filtered, then concentrated *in vacuo*. Purification by flash column chromatography (20% Et₂O:pentane) afforded alcohol **18** as a colourless oil (51.7 mg, 77%). R_f 0.08 (20% Et₂O:pentane). IR (film)/cm⁻¹ 3448 (O–H), 2937, 1607, 1509, 1461, 1278, 1248, 1073, 1025, 865, 839, 780, 771, 686. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.3 Hz, 2 H, 2 × Ar–CH), 7.42 (d, *J* = 8.3 Hz, 2 H, 2 × Ar–CH), 7.22 (d, *J* = 8.8 Hz, 2 H, 2 × Ar–CH), 6.84 (d, *J* = 8.8 Hz, 2 H, 2 × Ar–CH), 5.13 (s, 1 H, OH), 4.28 (d, *J* = 1.1 Hz, 1 H, OHC*H*), 3.79 (s, 3 H, OCH₃), 2.49 (s, 3 H, ArCH₃), 1.39 (s, 3 H, CCH₃(CH₃)), 0.92 (s, 3 H, CCH₃(CH₃)). ¹³C NMR (101 MHz, CDCl₃) δ 159.5 (Ar–C_q), 145.3 (Ar–C_q), 131.9 (Ar–C_q), 130.5 (2 × Ar–CH), 130.1 (Ar–C_q), 129.7 (2 × Ar–CH), 129.1 (2 × Ar–CH), 113.3 (2 × Ar–CH), 74.3 (OHCH), 66.6 (C_q), 55.2 (OCH₃), 21.7 (CCH₃(CH₃)), 21.6 (CCH₃(CH₃)), 13.8 (ArCH₃). HRMS (FTMS–pAPCI) m/z calcd. For C₁₈H₂₂O₄SNa [M+Na]⁺: 357.1137; found 357.1139.


2-Methyl-2(4-methylbenzene-1-sulfonyl)propan-1-ol (19)

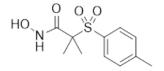
Sodium borohydride (23 mg, 0.6 mmol) was added to a stirred solution of **14a** (45 mg, 0.2 mmol) in ethanol (1 mL) at 0 °C. After 2 h, the reaction was quenched by the addition of water (10 mL), the product extracted from the aqueous phase with CH_2Cl_2 (3 × 10 mL) then dried over Na_2SO_4 , filtered and concentrated in vacuo which afforded alcohol **19** as

white crystals (23.7 mg, 52%). $R_f 0.09$ (30% Et_2O :hexane). m.p. = 89–90 °C. IR (film)/cm⁻¹ 3503 (O–H), 2981, 2937, 2877, 1595, 1282, 1125, 1080, 816, 715, 682. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 8.2 Hz, 2 H, 2 × Ar–CH), 7.38 (d, J = 8.2 Hz, 2 H, 2 × Ar–CH), 3.72 (s, 2 H, CH₂), 2.48 (s, 3 H, ArCH₃), 1.30 (s, 6 H, C(CH₃)₂). ¹³C NMR (101 MHz, CDCl₃) δ 145.2 (Ar–C_q), 131.8 (Ar–C_q), 130.1 (2 × Ar–CH), 129.7 (2 × Ar–CH), 66.3 (CH₂), 62.8 (C_q), 21.6 (ArCH₃), 19.2 (C(CH₃)₂). HRMS (ESI⁺) m/z calcd. For C₁₁H₁₇O₃S [M+H]⁺: 229.0989; found 229.0904.


2-(2-(4-Methylphenylsulfonyl)propan-2-yl)-1H-benzo[d]imidazole (20)

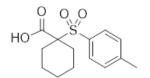
Using adapted procedure from Naali.⁹ **14a** (45 mg, 0.2 mmol), *o*-phenylene diamine (22 mg, 0.2 mmol), CAN (11 mg, 0.02 mmol), MeCN (0.1 M) and H_2O_2 (30% w/w in H_2O , 0.2 mL, 0.8 mmol) were added sequentially to a microwave vial under air, sealed and heated to 50 °C for 18 h. The reaction was diluted with water then the product was extracted with CH_2Cl_2 (3 × 10 mL), the organic phase

was dried over Na₂SO₄, filtered then concentrated *in vacuo*. Purification by flash column chromatography (40% Et₂O:pentane) afforded benzimidazole **20** as yellow crystals (48.5 mg, 77%). m.p. = 210–211 °C. R_f 0.08 (40% Et₂O:pentane). IR (film)/cm⁻¹ 3299 (N–H), 3034, 2989, 2963, 1621, 1520, 1443, 1416, 1155, 1282, 1121, 1073, 910, 816, 742, 712. ¹H NMR (400 MHz, CDCl₃) δ 10.69 (s, 1 H, NH), 7.66 (d, *J* = 7.9 Hz, 1 H, Ar–CH), 7.52 (d, *J* = 7.9 Hz, 1 H, Ar–CH), 7.30 (d, *J* = 8.3 Hz, 2 H, 2 × Ar–CH), 7.25 (d, *J* = 8.0 Hz, 2 H, 2 × Ar–CH), 7.14 (d, *J* = 8.0 Hz, 2 H, 2 × Ar–CH), 2.35 (s, 3 H, CH₃), 1.93 (s, 6 H, C(CH₃)₂).¹³C NMR (101 MHz, CDCl₃) δ 150.3 (NC_qNH), 145.4 (Ar–CH), 142.1 (Ar–C_q), 134.4 (Ar–C_q), 131.0 (Ar–CH), 129.5 (4 × Ar–CH), 123.8 (Ar–CH), 122.3 (Ar–CH), 119.7 (Ar–C_q), 111.3 (Ar–C_q), 63.9 (C_q), 21.6 (CH₃), 21.4 (C(*C*H₃)₂). HRMS (ESI⁺) m/z calcd. For C₁₇H₁₉N₂O₂S [M+H]⁺: 315.1167; found 315.1162.


1-(2-(4-Methylbenzene-1-sulfonyl)propan-2-yl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (21)

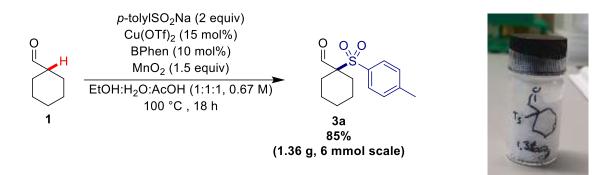
Using a method adapted from Chen.¹⁰ Tryptamine (32 mg, 0.2 mmol), **14a** (45 mg, 0.2 mmol), CH₂Cl₂ (0.32 mL) were added sequentially to a microwave vial, followed by trifluoroacetic acid (50 μ L) at rt. The reaction was monitored by TLC (\approx 2 h) after which the reaction was neutralised by the addition of a saturated aqueous solution of NaHCO₃ (1 mL) and the product was extracted

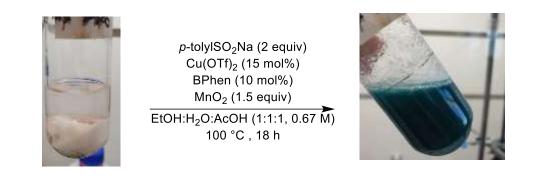
with CH₂Cl₂ (3 × 5 mL), dried over Na₂SO₄, filtered and concentrated *in vacuo*. Purification by flash column chromatography (50–100% EtOAc:Pentane) afforded sulfone **21** as a yellow oil (17.5 mg, 24%). R_f 0.5 (EtOAc). IR (film)/cm⁻¹ 3373 (N–H), 3056, 2986, 2933, 2840, 1621, 1461, 1282, 1148, 1118, 1073, 816, 738. ¹H NMR (400 MHz, CDCl₃) δ 9.99 (s, 1 H, NH), 7.89–7.79 (d, *J* = 8.0 Hz, 2 H, 2 × Ar–CH), 7.52 (dd, *J* = 7.8, 1.1 Hz, 1 H, Ar–CH), 7.48–7.36 (m, 3 H, 3 × Ar–CH), 7.20 (ddd, *J* = 8.0, 7.0, 1.2 Hz, 1 H, Ar–CH), 7.15–7.07 (m, 1 H, Ar–CH), 4.79 (s, 1 H, CHNH), 3.23–3.13 (ddd, *J* = 12.3, 12.3, 5.3 Hz, 1 H, CH₂CHHNH), 3.07 (ddd, *J* = 12.3, 6.7, 5.2 Hz, 1 H, CH₂CHHNH), 2.77 (m, 2 H, CH₂CH₂NH), 2.48 (s, 3 H, CH₃), 1.46 (s, 3 H, CH₃), 1.25 (s, 3 H, CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 145.2 (Ar–C_q), 135.4 (Ar–C_q), 132.0 (Ar–C_q), 131.2 (Ar–C_q), 130.7 (2 × Ar–CH), 129.7 (2 × Ar–CH), 126.8 (Ar–C_q), 121.8 (Ar–CH), 118.9 (Ar–CH), 117.9 (Ar–CH), 111.29 (Ar–CH), 111.25 (Ar–C_q) 68.5 (C_q), 53.3 (CHNH), 42.9 (CH₂CH₂NH), 22.5 (CH₂CH₂NH), 22.2 (CH₃), 21.7 (CH₃), 19.1 (CH₃). HRMS (ESI⁺)m/z calcd. For C₂₁H₂₅O₂S [M+H]⁺: 369.1637; found 369.1635.


N-Hydroxy-2-methyl-2-(4-methylphenylsulfonyl)propanamide (22)

Using a method adapted from De Luca.¹¹ Sulfonyl aldehyde **14a** (45 mg, 0.2 mmol) was added to a stirring solution of *N*-hydroxysuccinimide (24 mg, 0.21 mmol) and diacetoxyiodobenzene (70.8 mg, 0.21 mmol) in MeCN (0.28 mL) at 0 °C and stirred for 2 h. Hydroxyamine hydrochloride (50% w/w in H₂O, 0.4 mmol) was added and

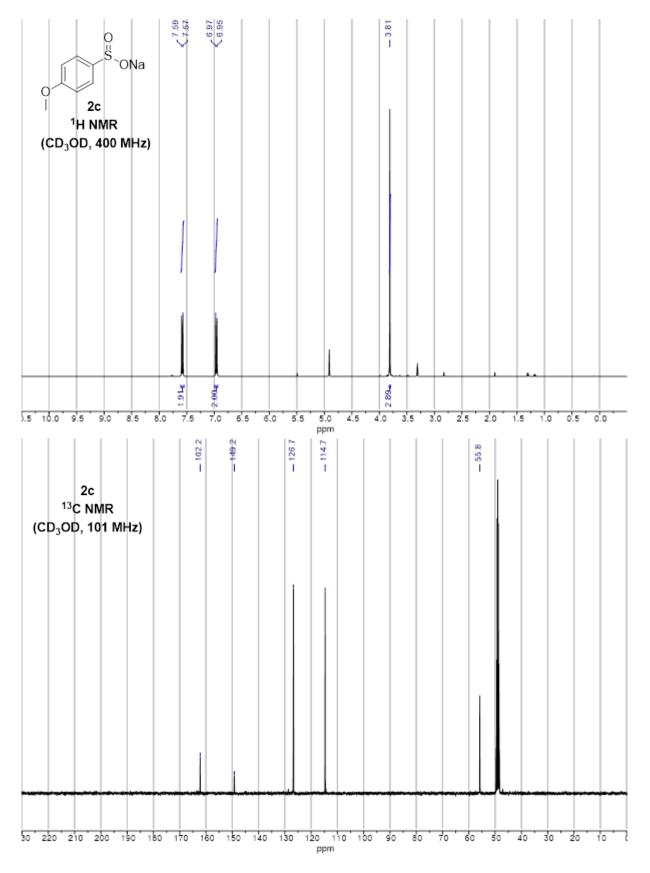
the reaction stirred overnight at rt. The reaction was concentrated *in vacuo*. Purification by flash column chromatography (20% Et₂O:pentane) afforded hydroxamic acid **22** as a white powder (15.9 mg, 31%). m.p. = 145–150 °C. R_f 0.20 (20% Et₂O:pentane). IR (film)/cm⁻¹ 3396 (O–H), 3045, 2989, 2937, 1595, 1409, 1274, 1151, 1125, 1080, 968, 842, 812, 715. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 8.3 Hz, 2 H, 2 × Ar–CH), 7.55 (s, 1 H, OH), 7.35 (m, 3 H, NH + 2 × Ar–CH), 2.46 (s, 3 H, CH₃), 1.50 (s, 6 H, C(CH₃)₂). ¹³C NMR (101 MHz, CDCl₃) δ 150.1 (C=O), 145.1 (Ar–C_q), 131.9 (Ar–C_q), 130.3 (2 × Ar–CH), 129.4 (2 × Ar–CH), 63.8 (C_q), 21.7 (CH₃), 19.4 (C(*C*H₃)₂). HRMS (FTMS-pAPCI) m/z calcd. For C₁₁H₁₆NO₄S [M+H]⁺: 258.0795; found 258.0805.

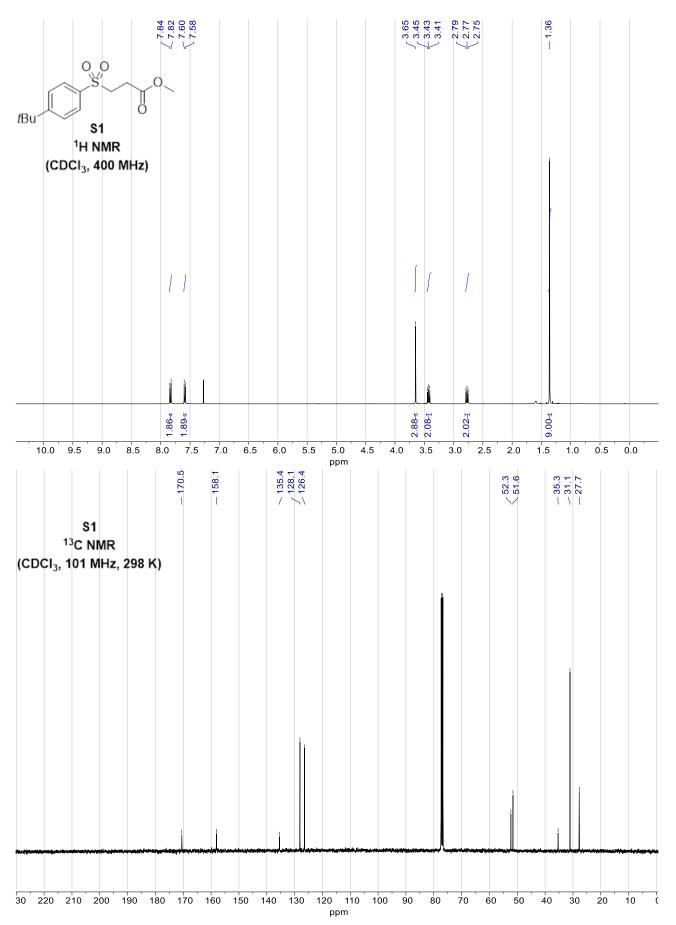

1-(4-Methylphenylsulfonyl)cyclohexane-1-carboxylic acid (23)

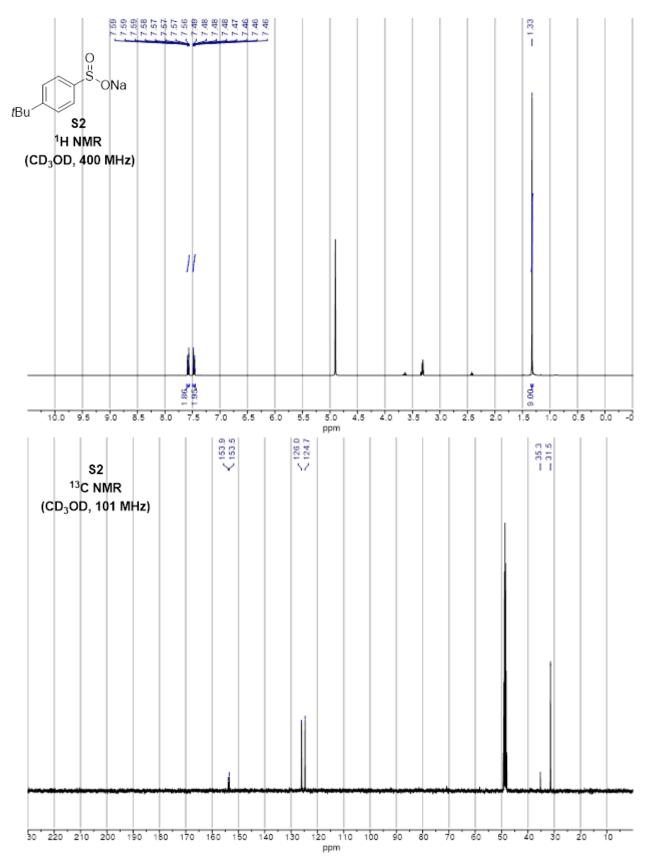

Using method adapted from Montanari.¹² Hydrogen peroxide (30% w/w in H₂O, 102 μ L, 1 mmol) and NaH₂PO₄ (261.8 mg, 2.2 mmol) in H₂O (1 mL) were added to a stirring solution of sulfonyl aldehyde **14a** (133 mg, 0.5 mmol) in MeCN (4 mL). NaClO₂ (180 mg, 2 mmol) in H₂O (1.6 mL) was added to the stirring solution at 0 °C. The reaction

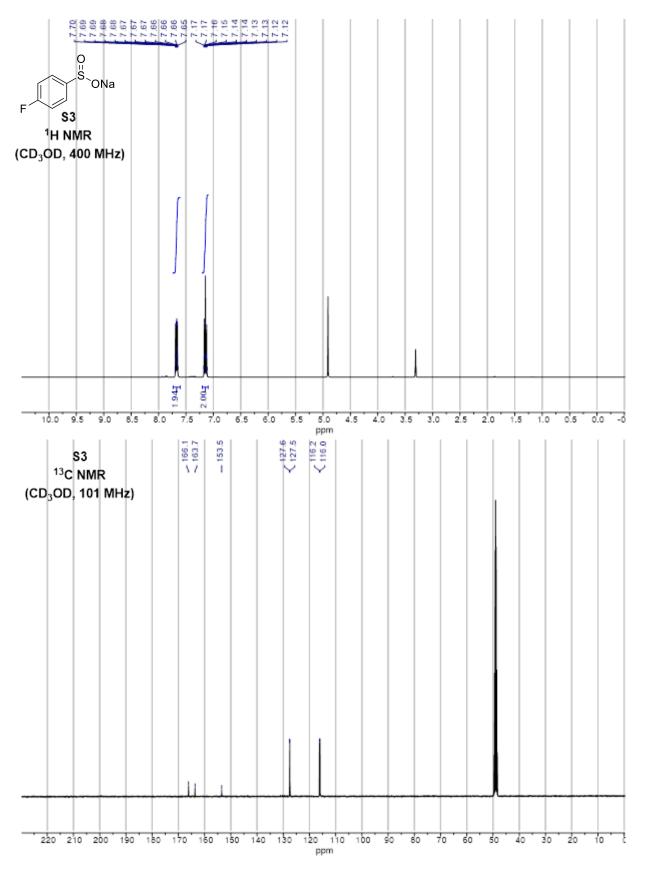
was stirred for 1.5 h, allowing the solution to slowly warm to rt. Na₂S₂O₃ was added to quench any unreacted NaClO₂ and H₂O₂, then the reaction was acidified by the addition of aqueous 1 M HCl and the product extracted with EtOAc ($3 \times 10 \text{ mL}$) and concentrated *in vacuo* to afford sulfonyl acid **23** as a white solid (124.4 mg, 88%). m.p. = 175–179 °C. IR (film)/cm⁻¹ 3045, 2937, 2858, 2546 (O–H, br), 1692 (C=O), 1595, 1312, 1264, 1148, 973, 820, 715. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.3 Hz, 2 H, 2 × Ar–CH), 7.35 (d, *J* = 8.3 Hz, 2 H, 2 × Ar–CH), 2.46 (s, 3 H, CH₃), 2.36 (d, *J* = 13.0 Hz, 2 H, 2 × C_qCHH), 1.93–1.80 (m, 4 H, 2 × C_qCHH + 2 × C_qCH₂CHH), 1.69 (d, *J* = 11.6 Hz, 1 H, C_qCH₂CH₂CHH), 1.39–1.15 (m, 3 H, 2 × C_qCH₂CHH + C_qCH₂CH₂CHH). ¹³C NMR (101 MHz, CDCl₃) δ 172.3 (C=O), 145.5 (Ar–C_q), 131.9 (Ar–C_q), 130.4 (2 × Ar–CH), 129.5 (2 × Ar–CH), 74.0 (C_q), 28.1 (2 × CH₂), 24.5 (CH₂), 23.0 (2 × CH₂), 21.7 (CH₃). HRMS (FTMS–pAPCI) m/z calcd. For C₁₄H₁₇O₄S [M-H]⁻: 281.0842; found 281.0851.

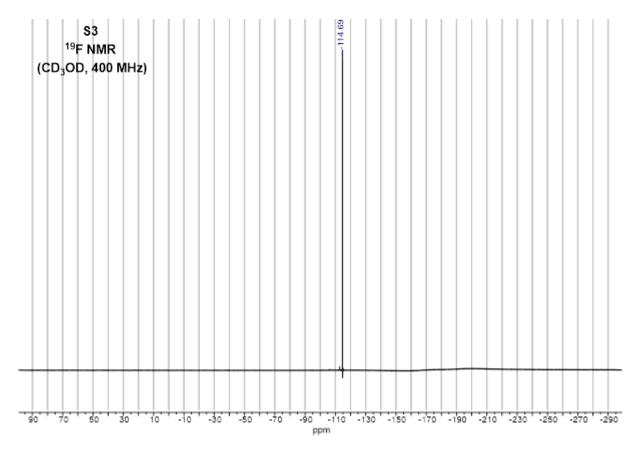
Gram Scale Synthesis

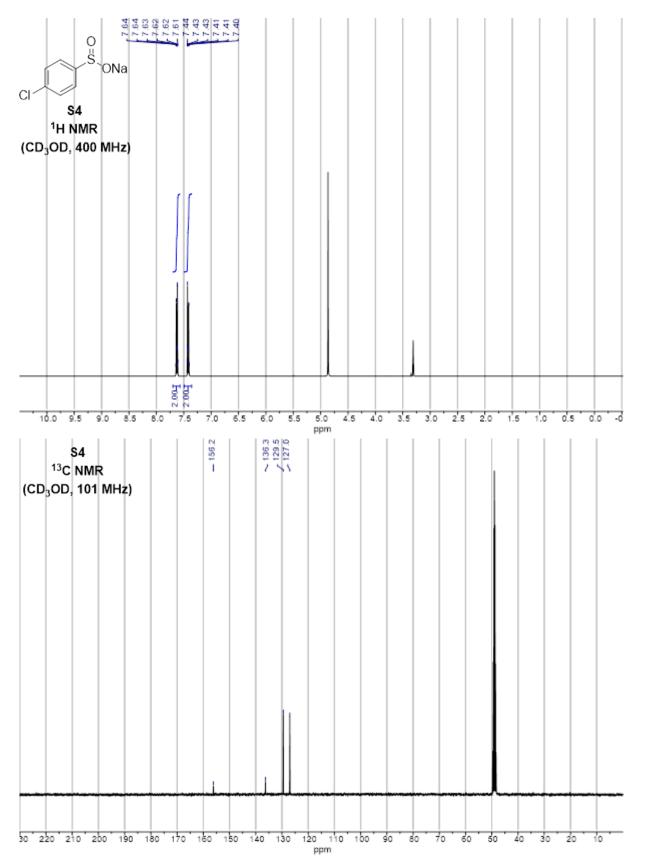


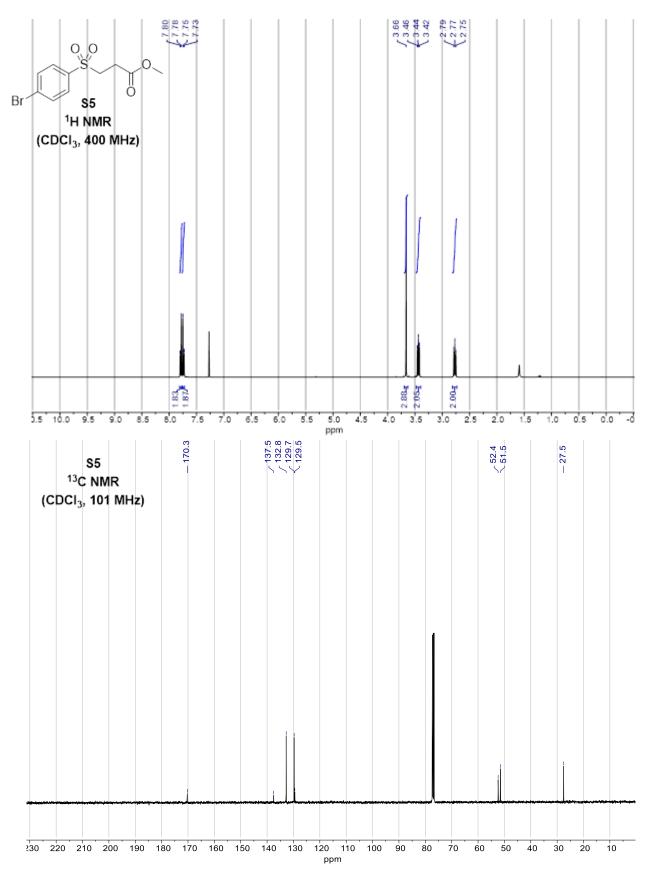

Manganese(IV) oxide (786.2 mg, 9 mmol), copper(II) triflate (324.7 mg, 0.9 mmol), Bathophenanthroline (199.2 mg, 0.6 mmol), 4-methylbenzenesulfinic acid sodium salt **2a** (2.14 g, 12 mmol), cyclohexane carboxaldehyde (726 μ L, 6 mmol), H₂O (3 mL), EtOH (3 mL) and AcOH (3 mL) were added sequentially to a 25 mL microwave vial under air, sealed and submerged in an oil bath preheated to 100 °C for 18 h so that the level of the oil was the same as the level of the solvent in the reaction. [**NOTE:** in the course of the reaction, a white precipitate forms early in the reaction (\approx 1 h) which can interfere with stirring, an increased stirring rate (1000 rpm) was employed to ensure constant stirring. In the majority of cases, the precipitate redissolves over the course of the reaction.]. The reaction was allowed to cool to room temperature, diluted with EtOAc (10 mL), filtered through silica eluting with EtOAc (3 × 10 mL) then concentrated *in vacuo*. Purification by flash column chromatography (5–20% Et₂O:pentane) afforded α -sulfonyl aldehyde **3a** as a yellow solid (1.36 g, 85%).

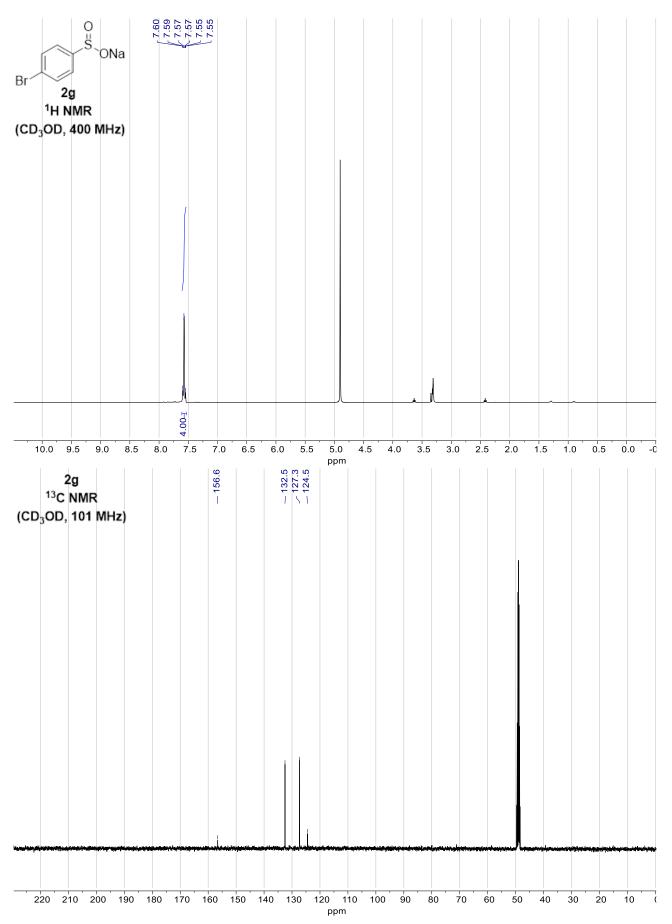

From left to right: Reaction mixture after addition of aldehyde and solvents. Reaction mixture after heating to 100 °C for 18 h.

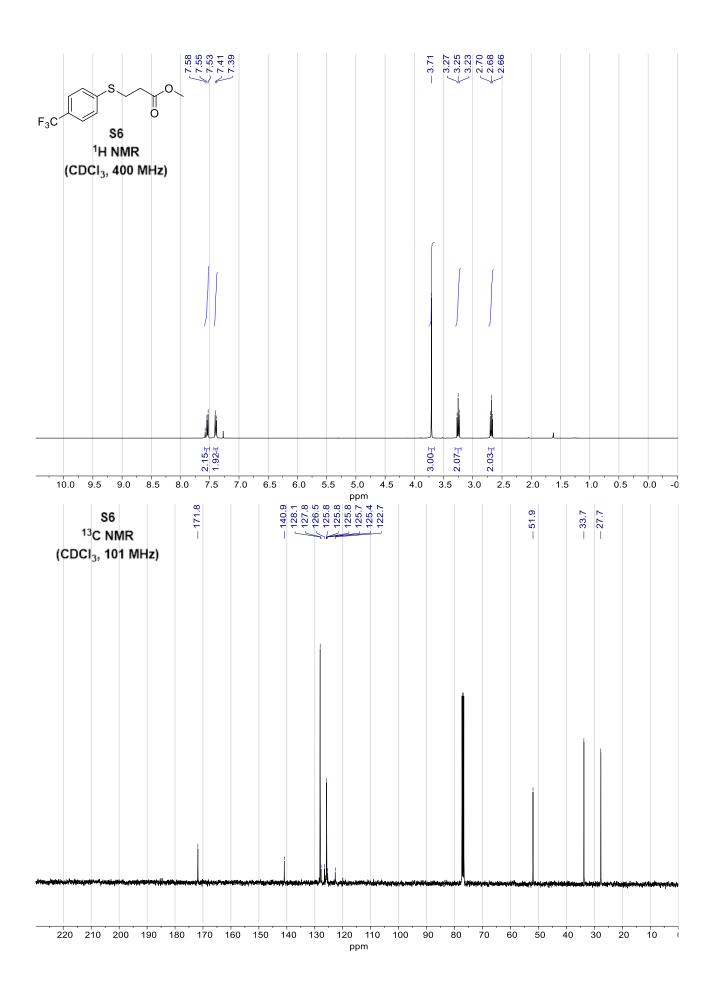

¹H and ¹³C Spectra of Selected Compounds

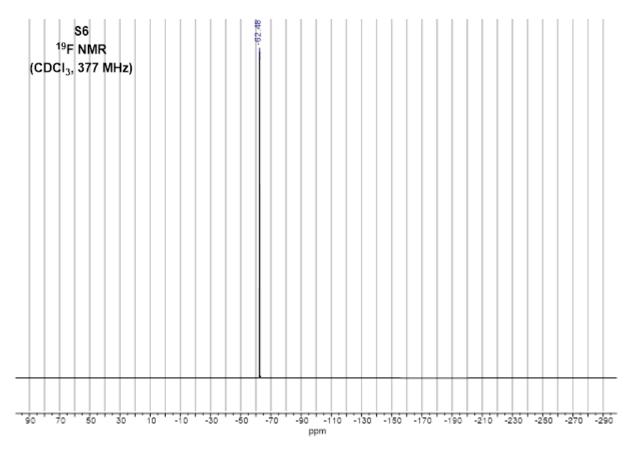


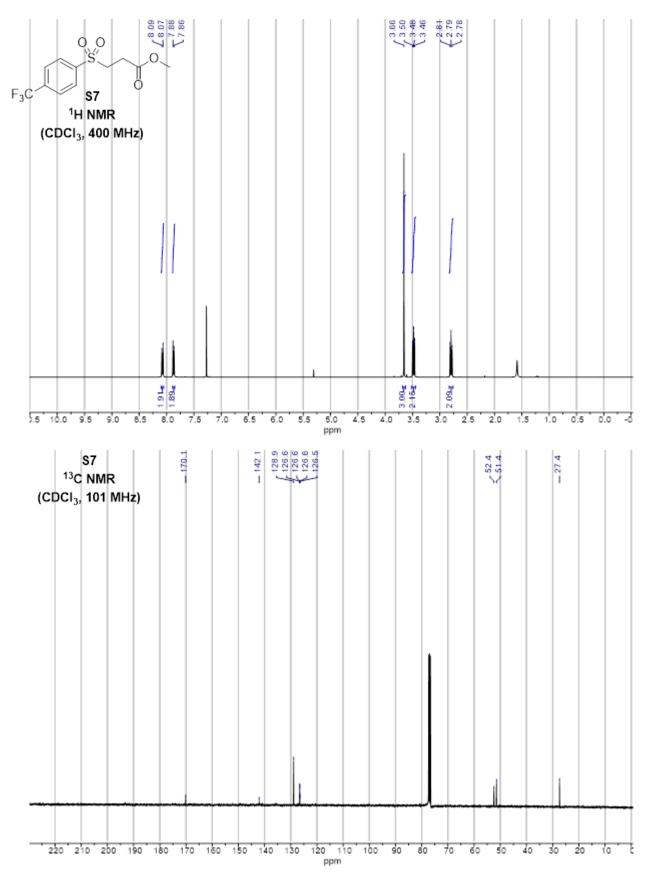


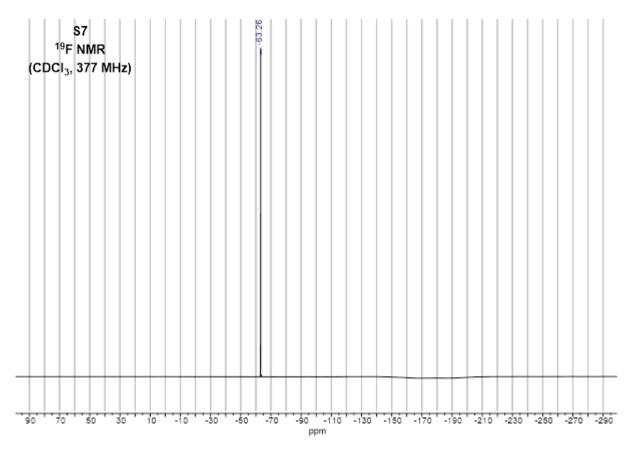

S32

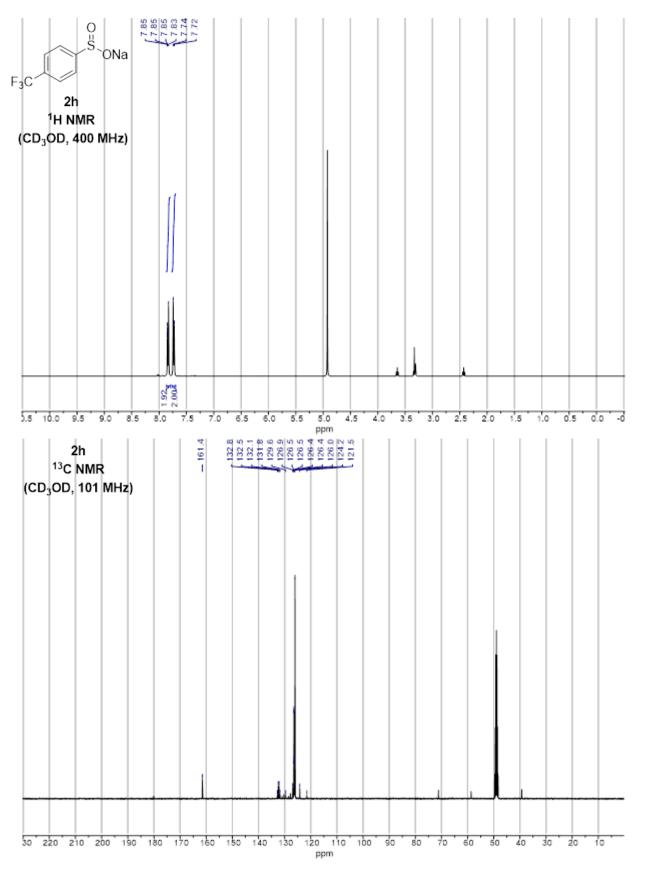


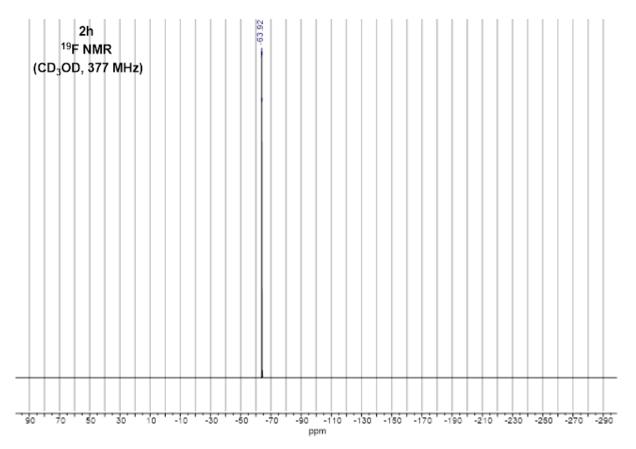


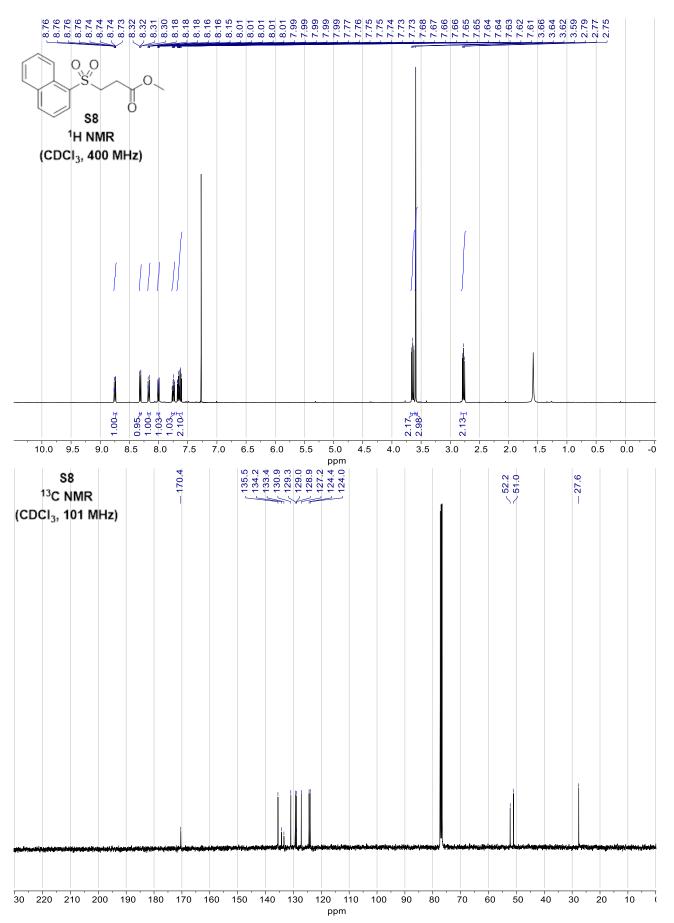


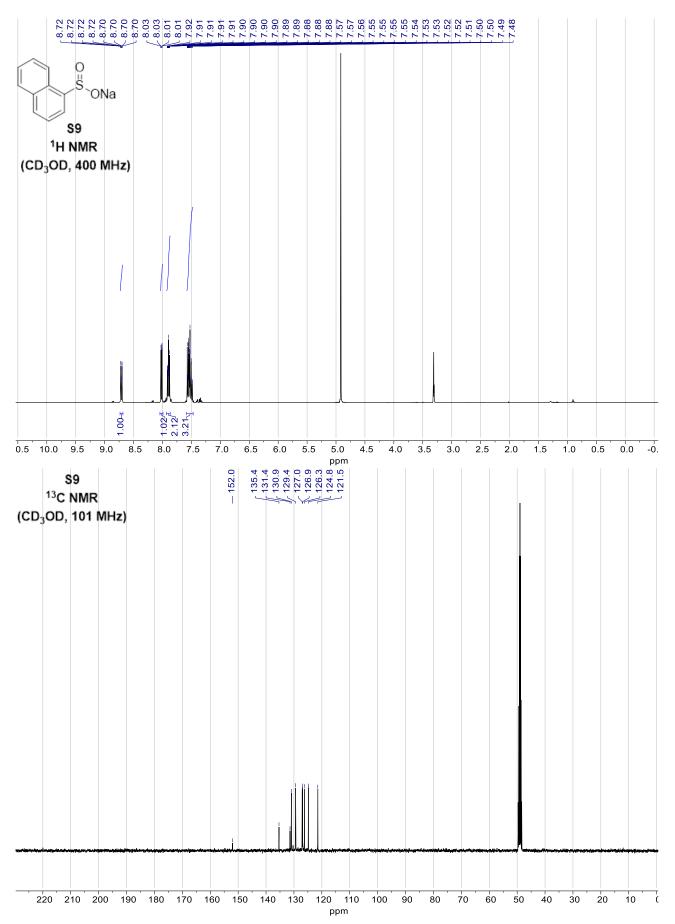


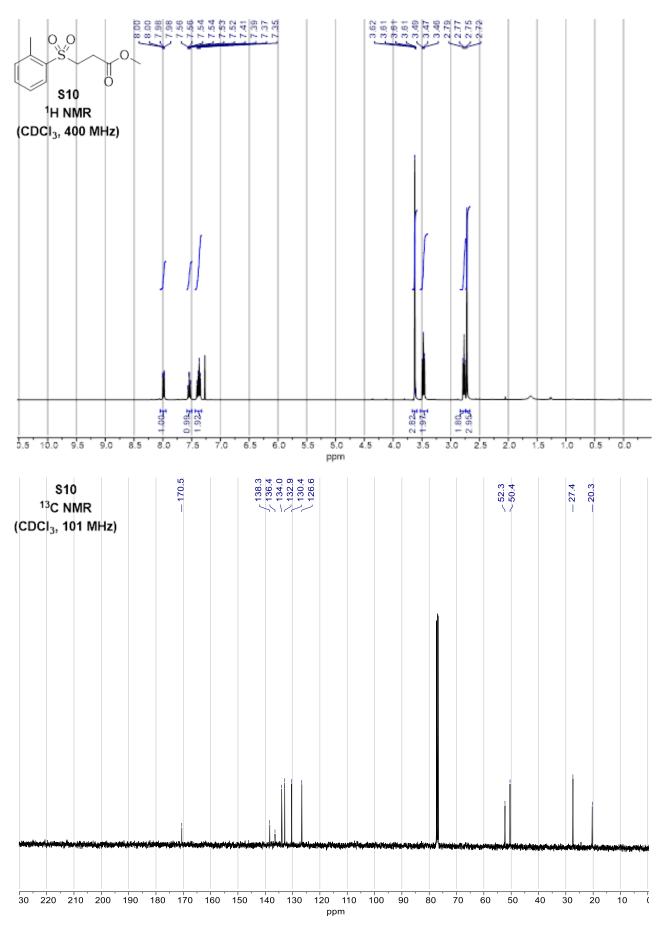


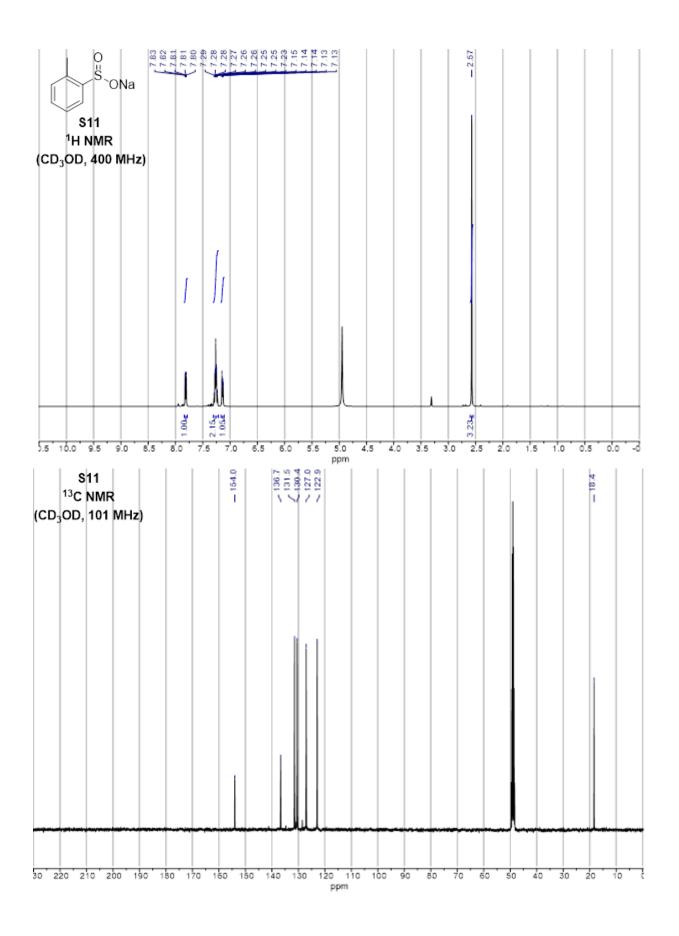


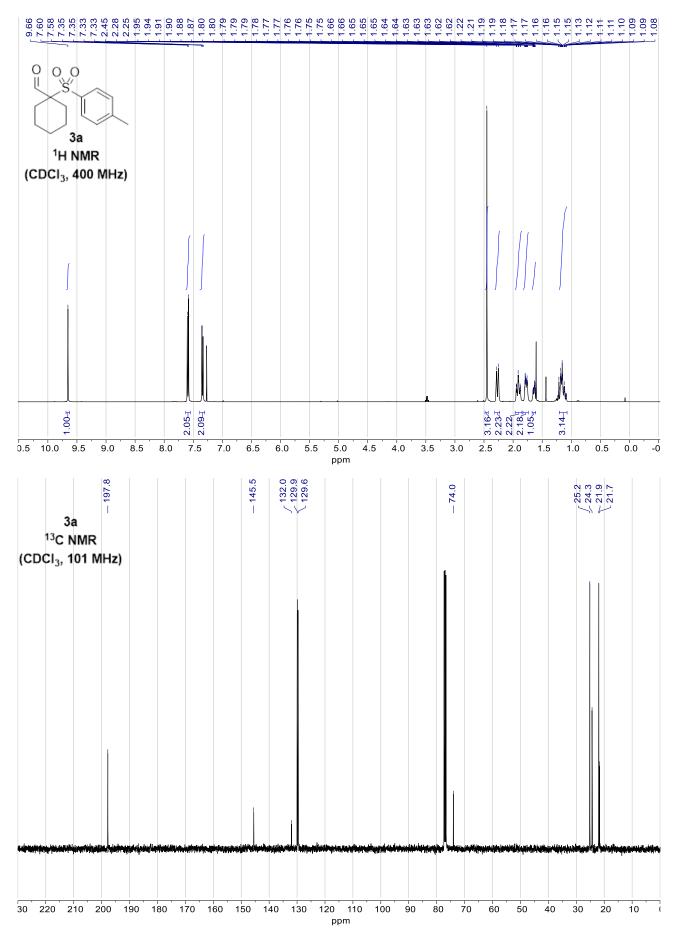


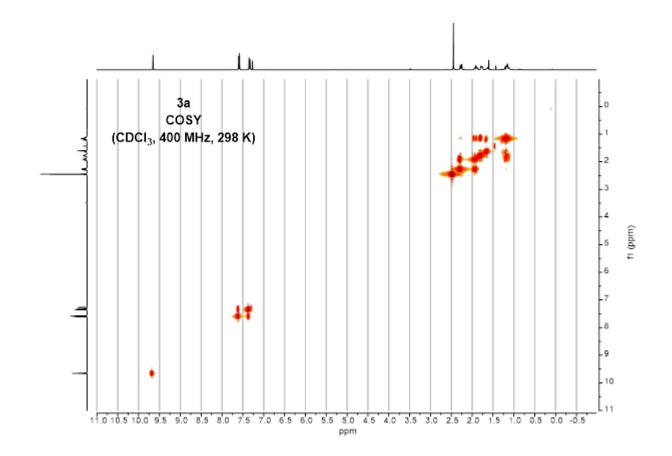

J. I. Higham and J. A. Bull

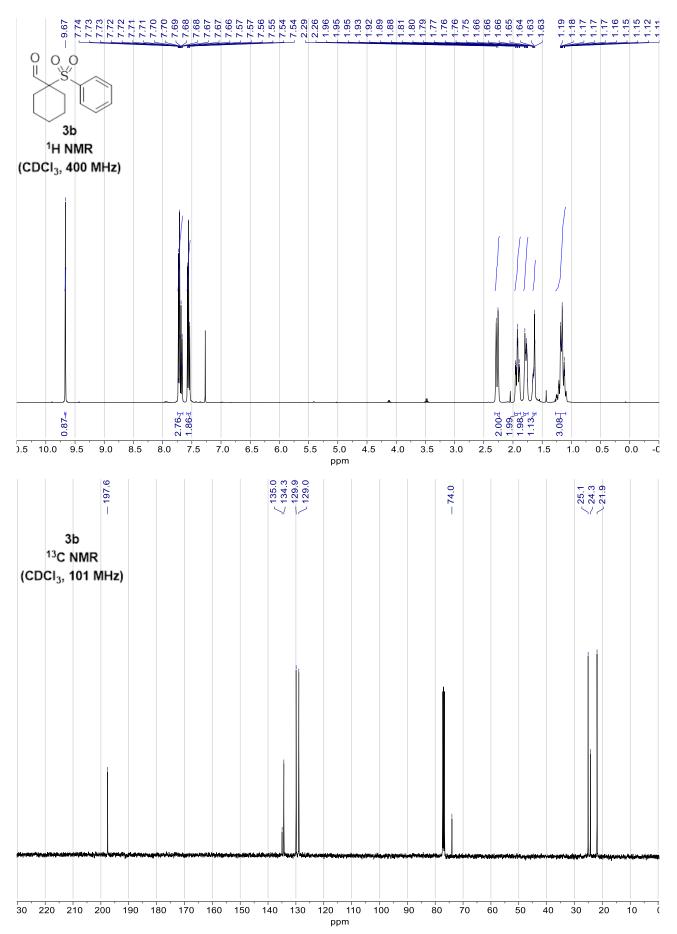


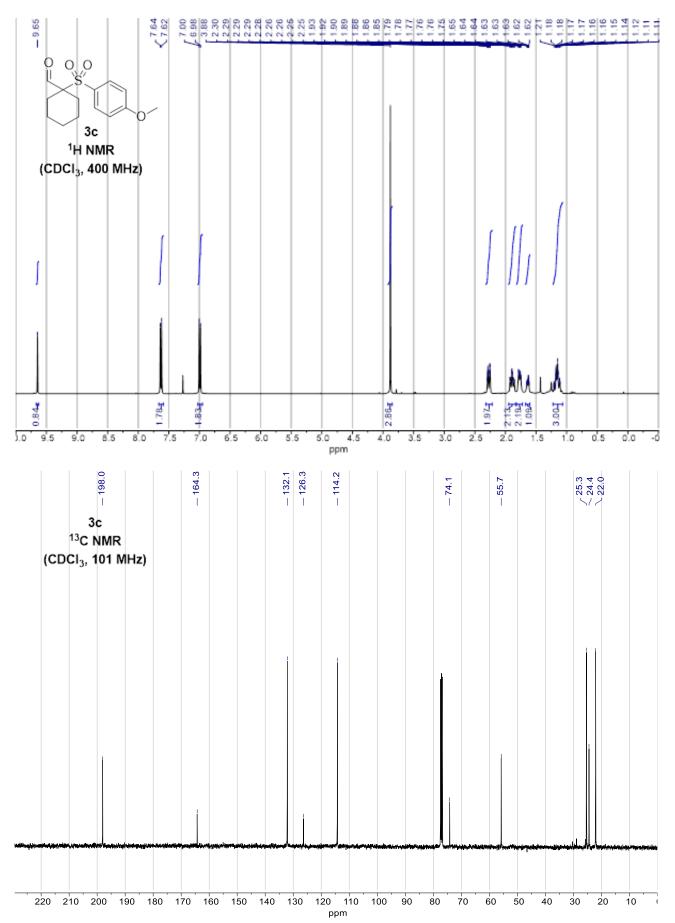


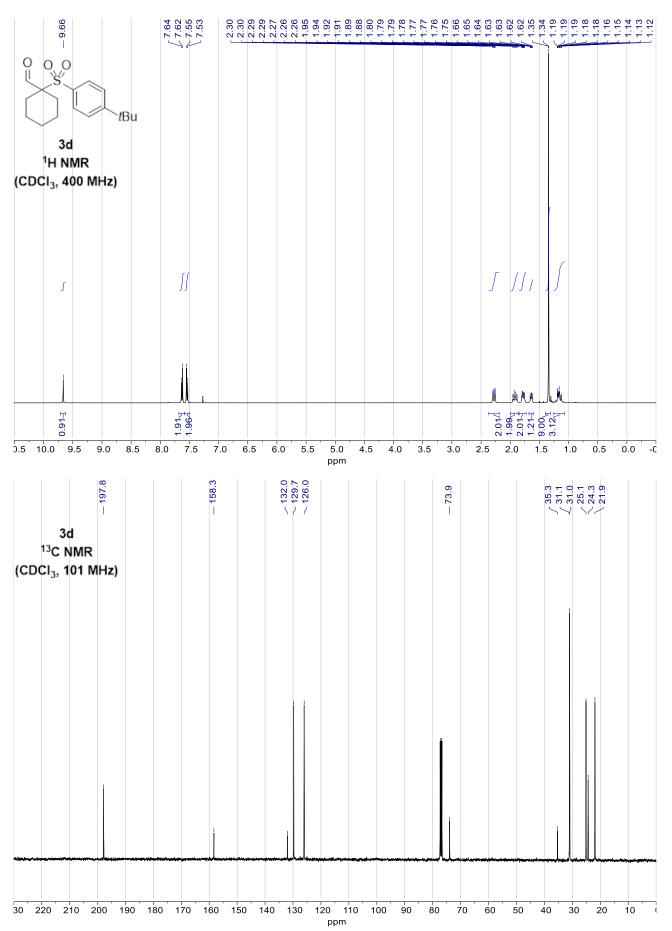


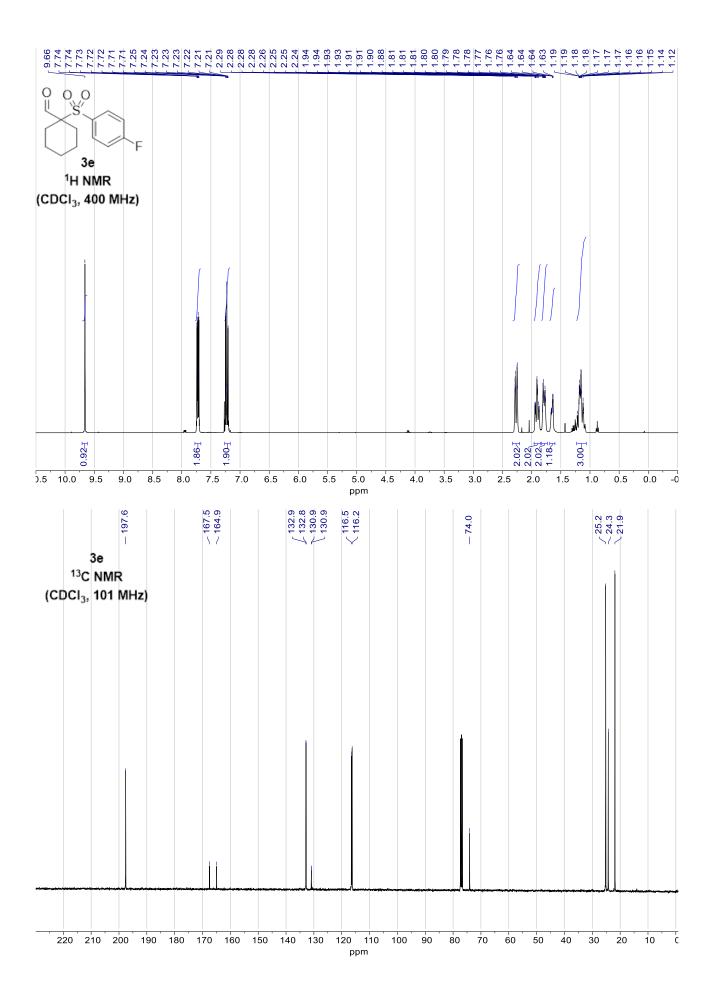


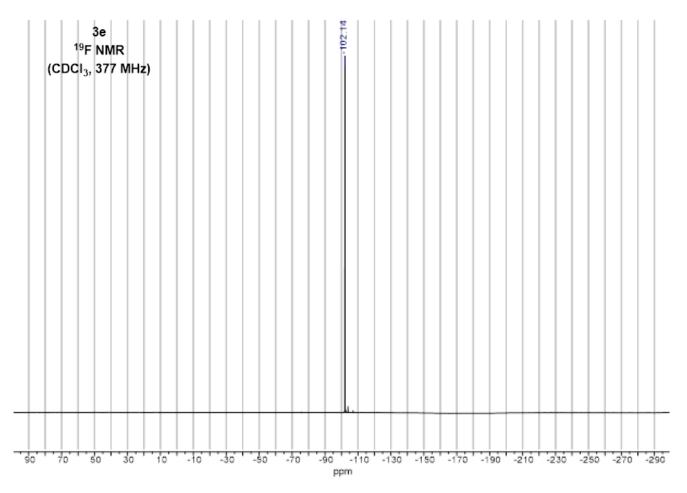


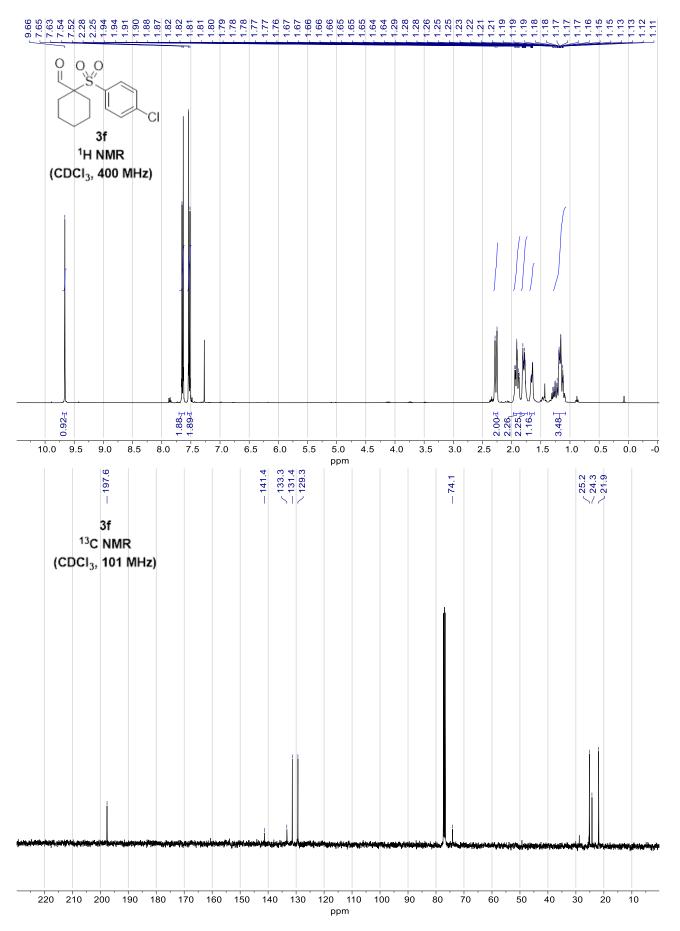


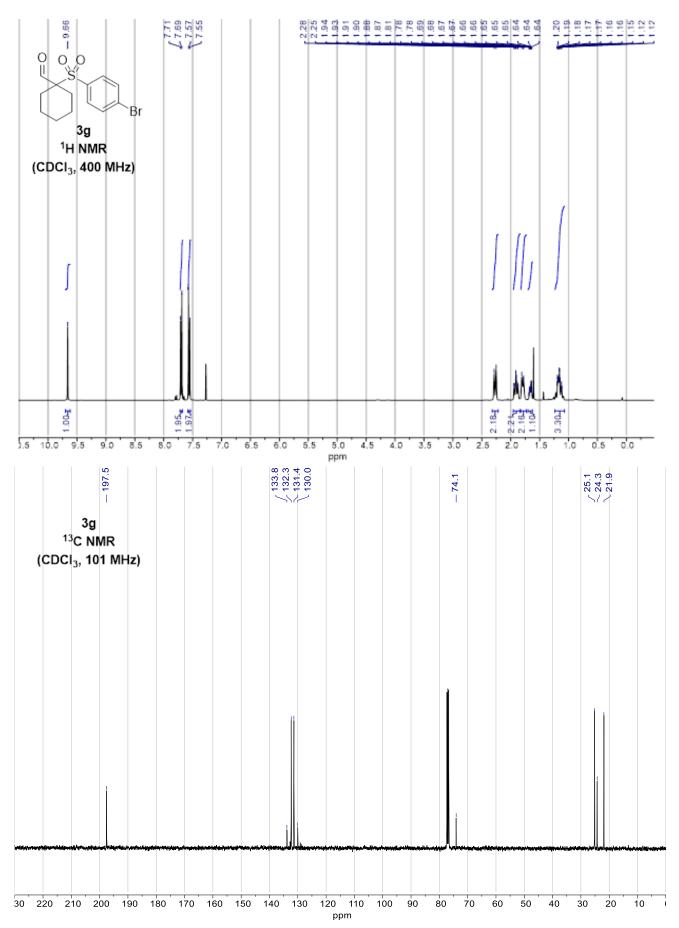

S47

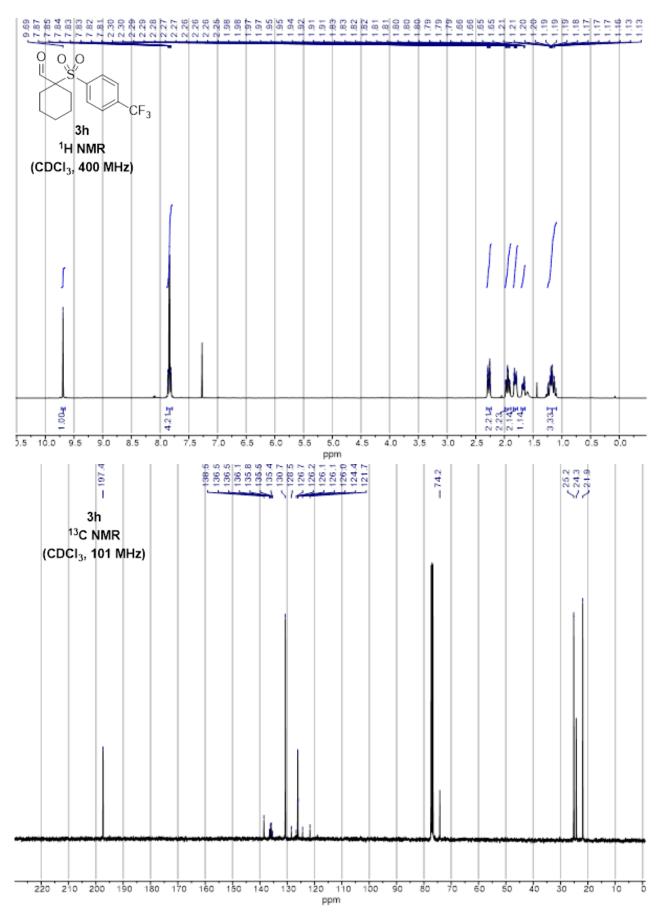


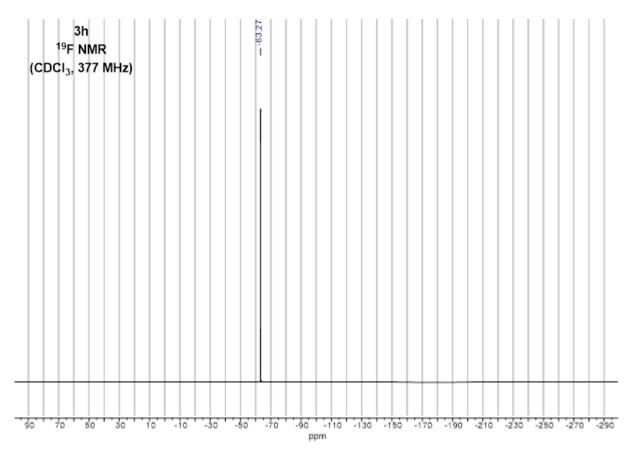


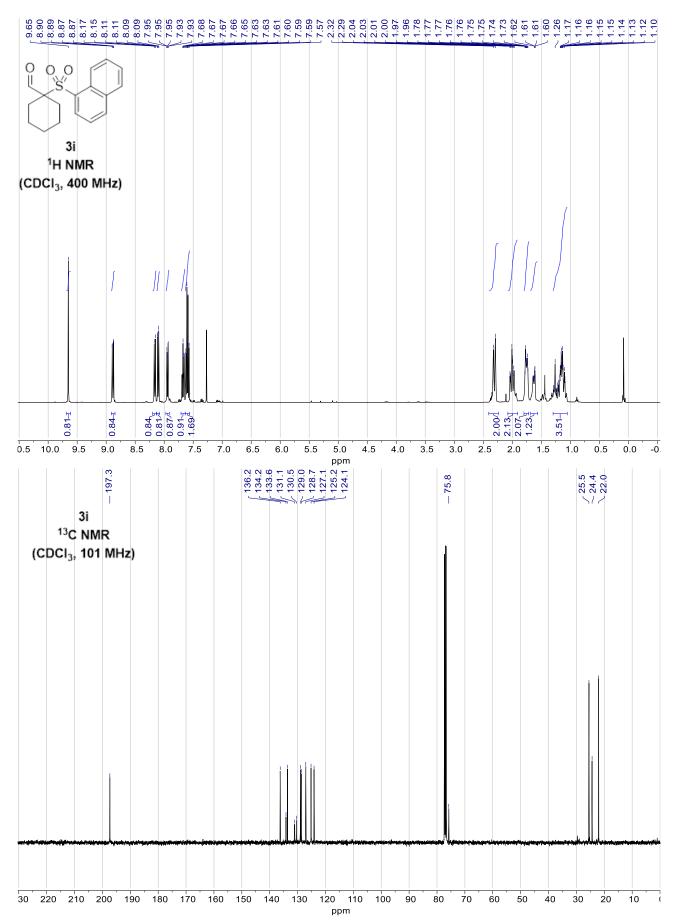


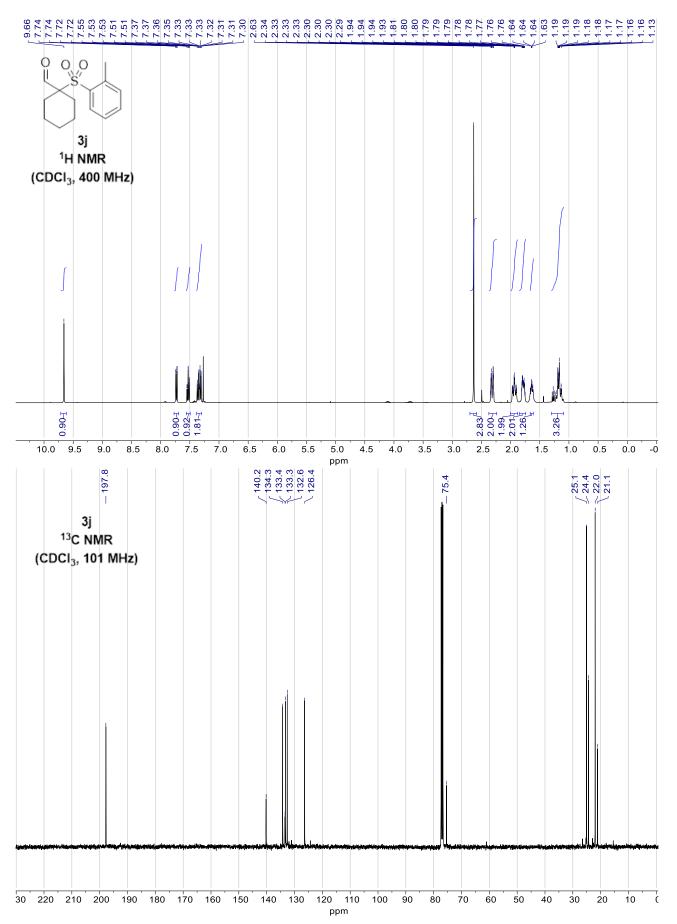


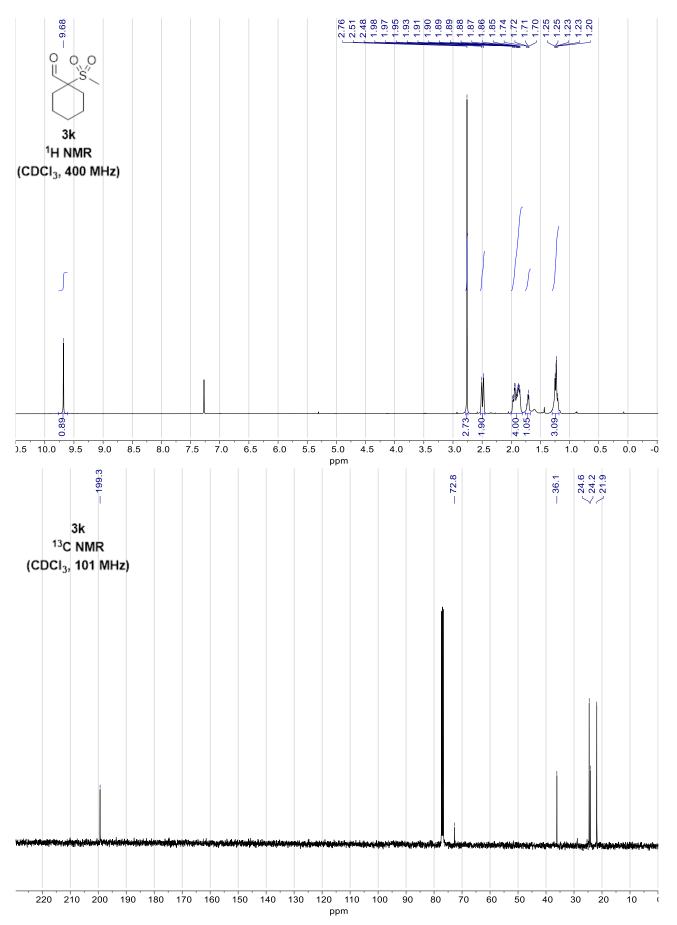


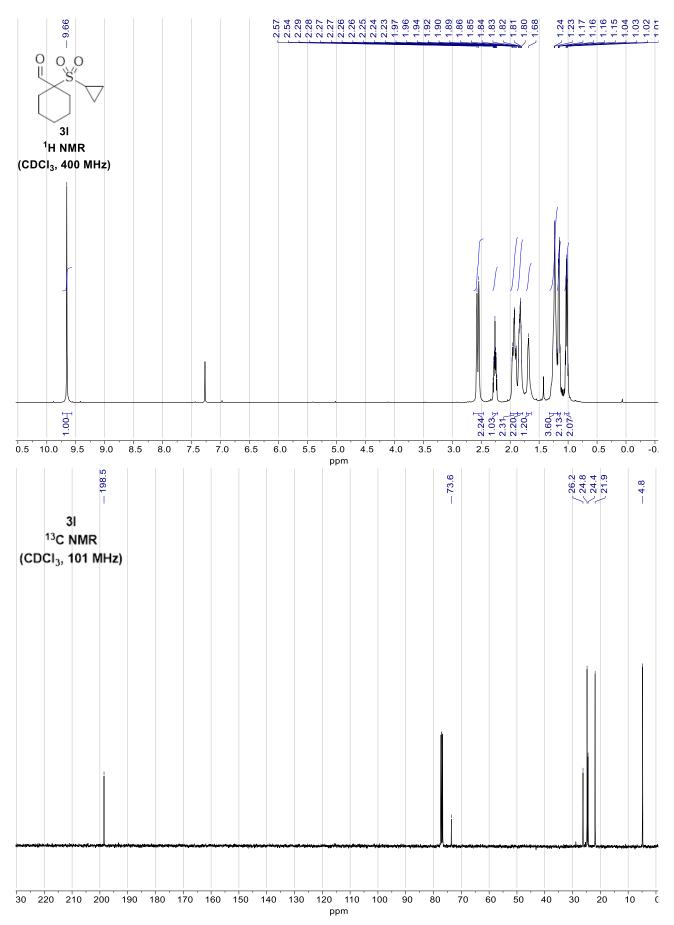


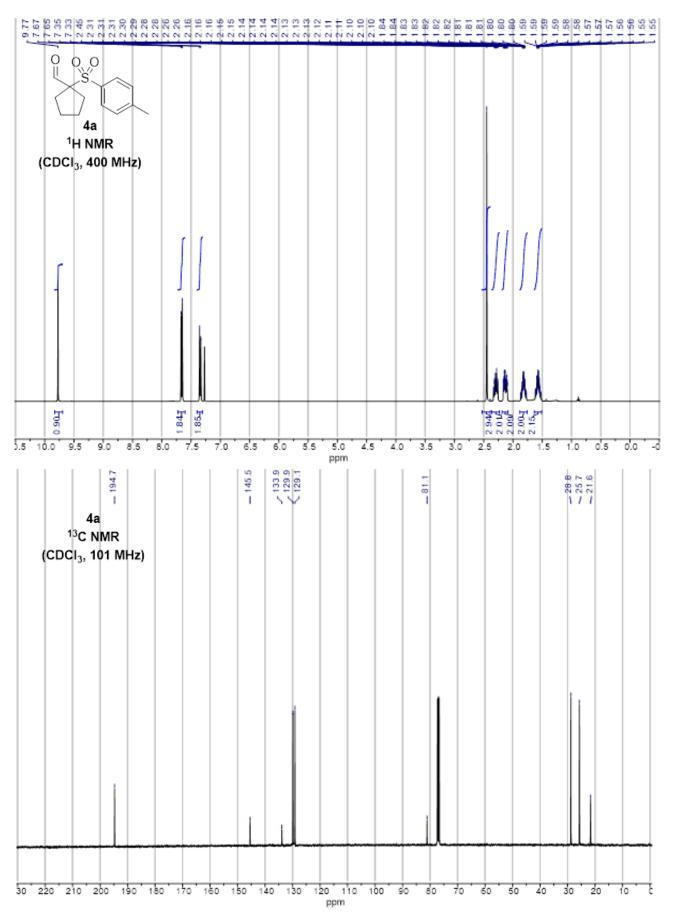


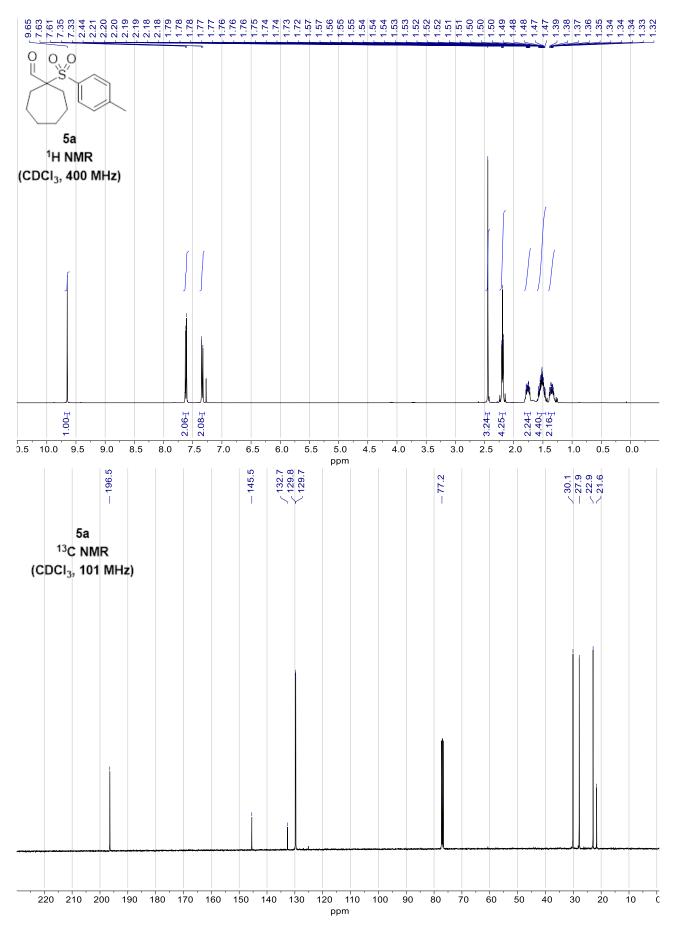


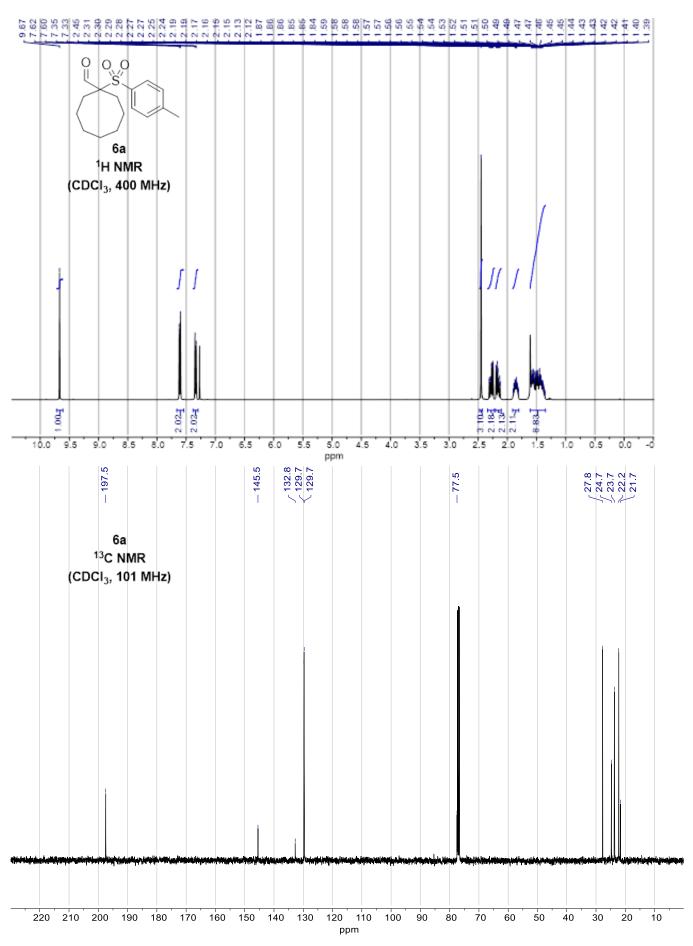


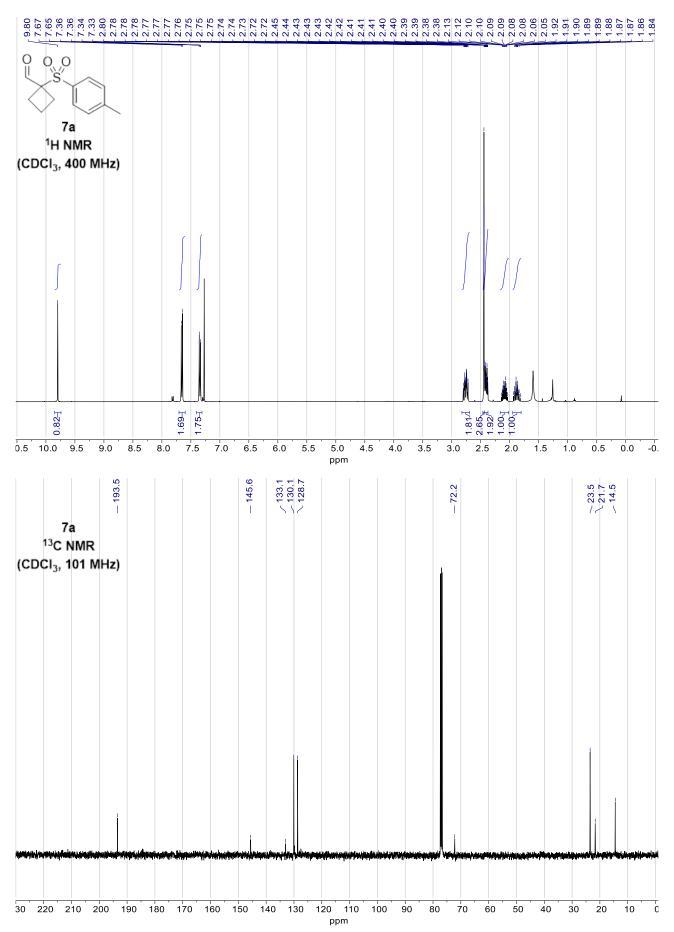


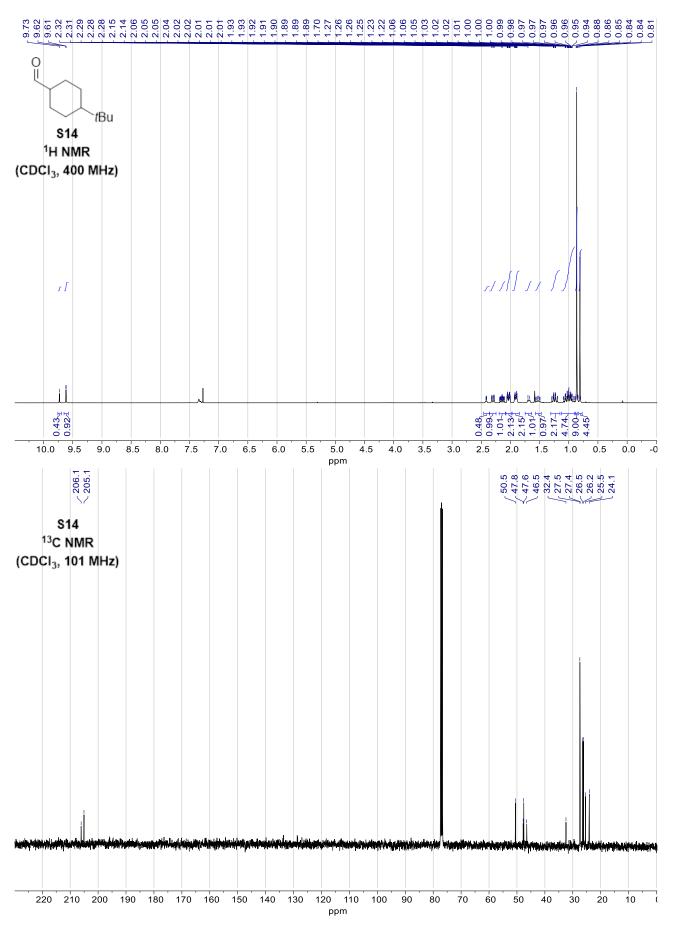


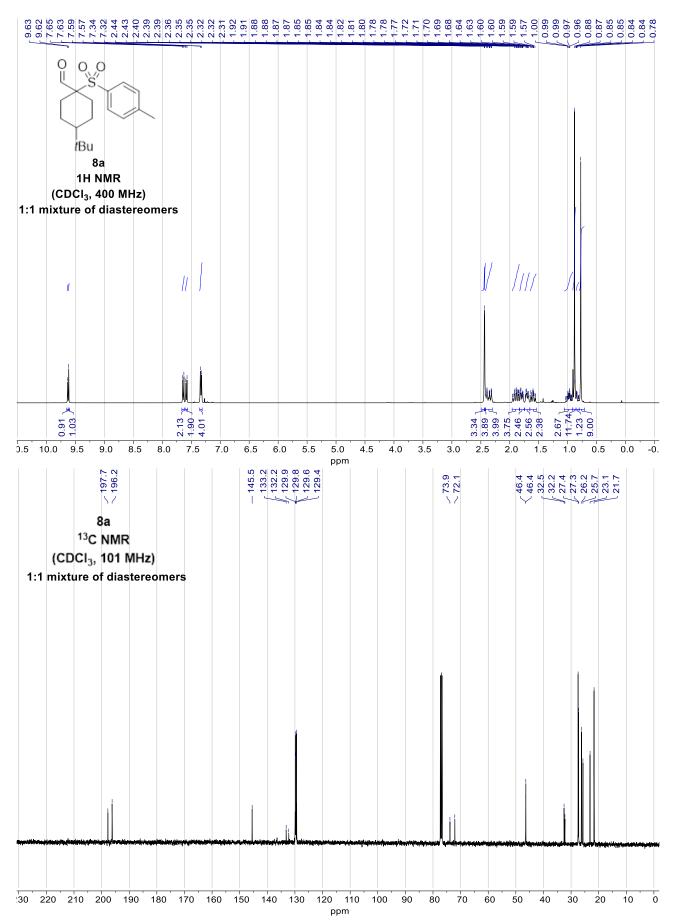


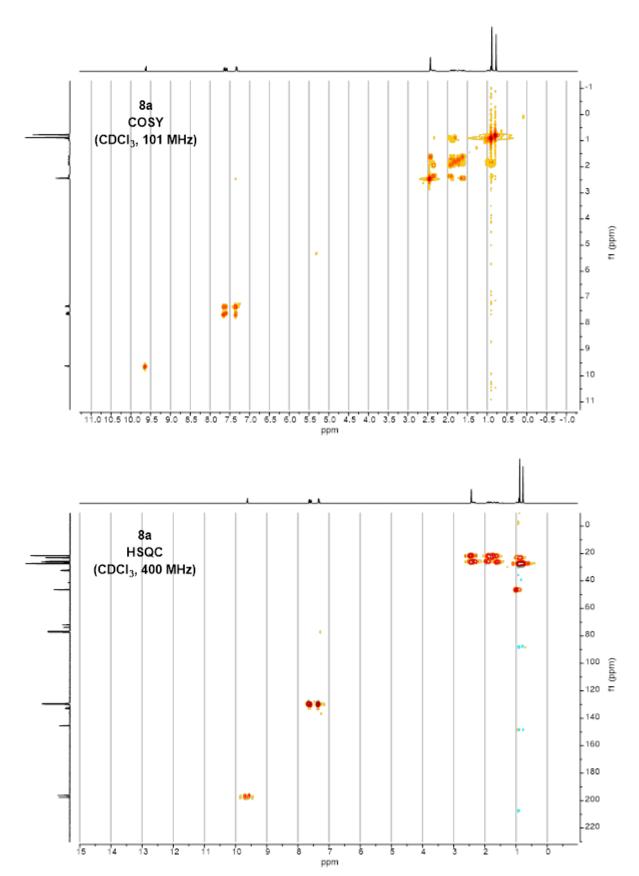


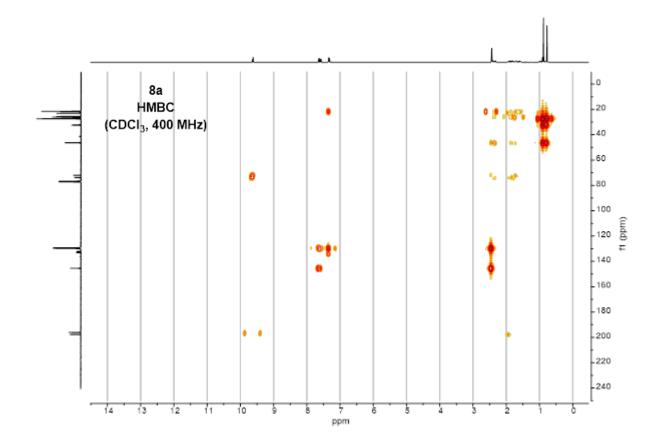


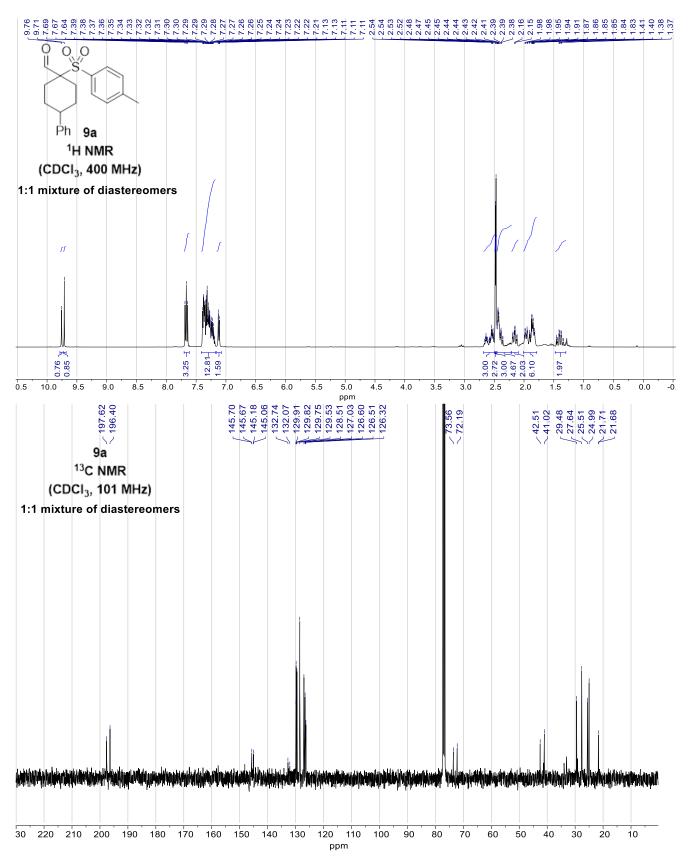


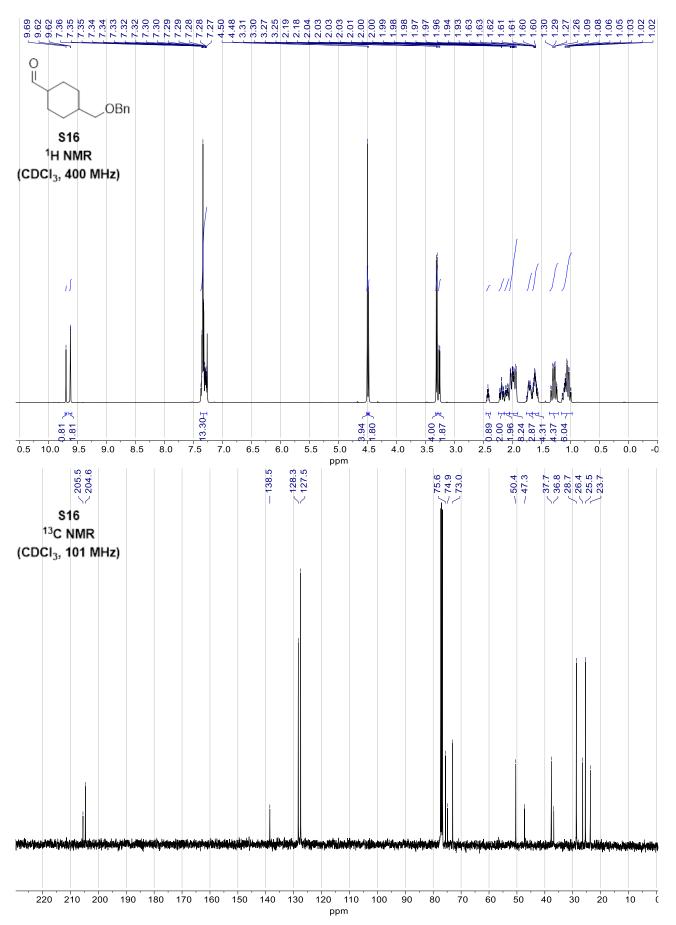


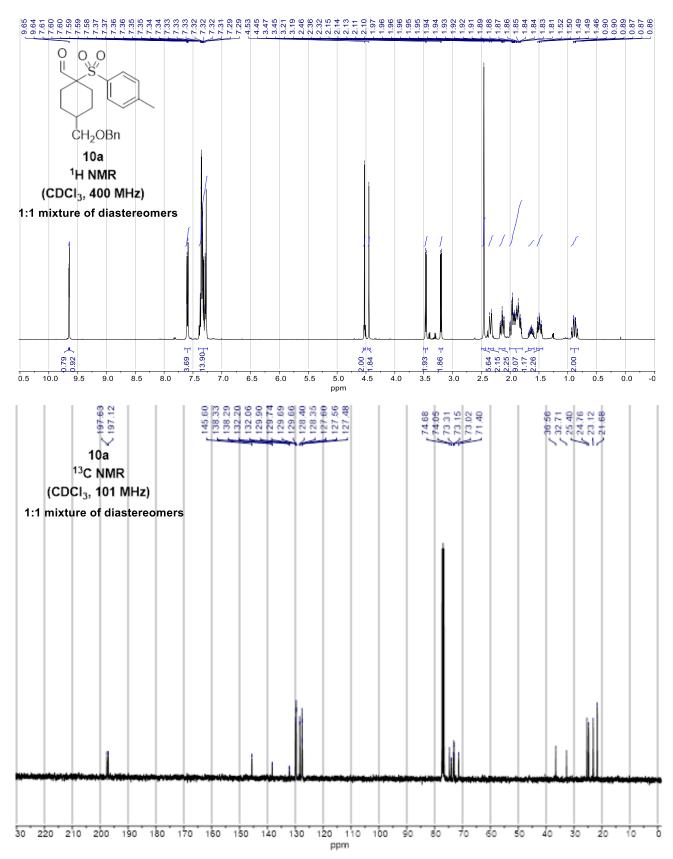


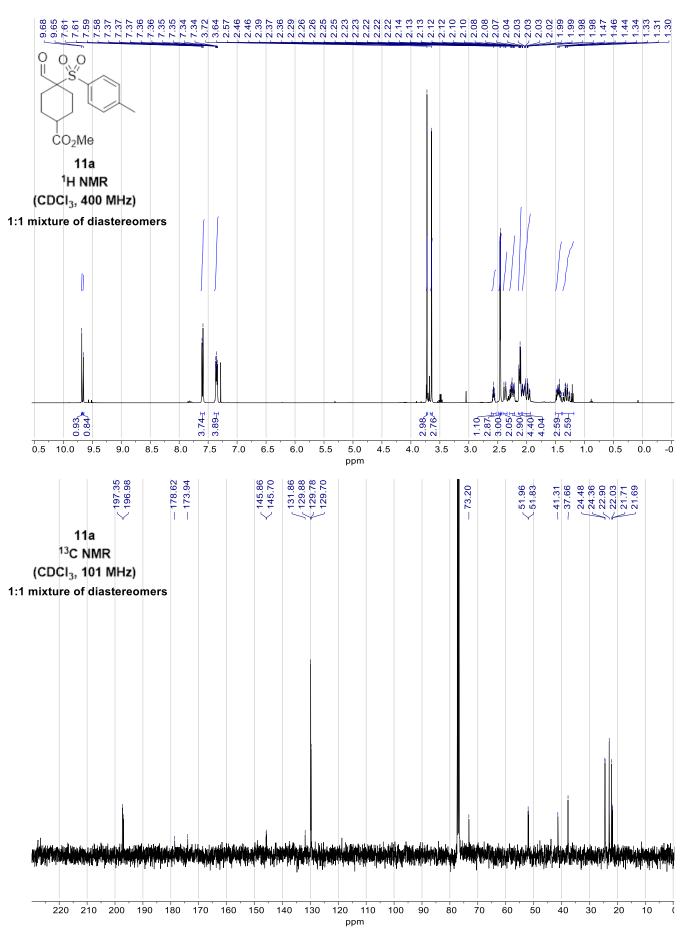


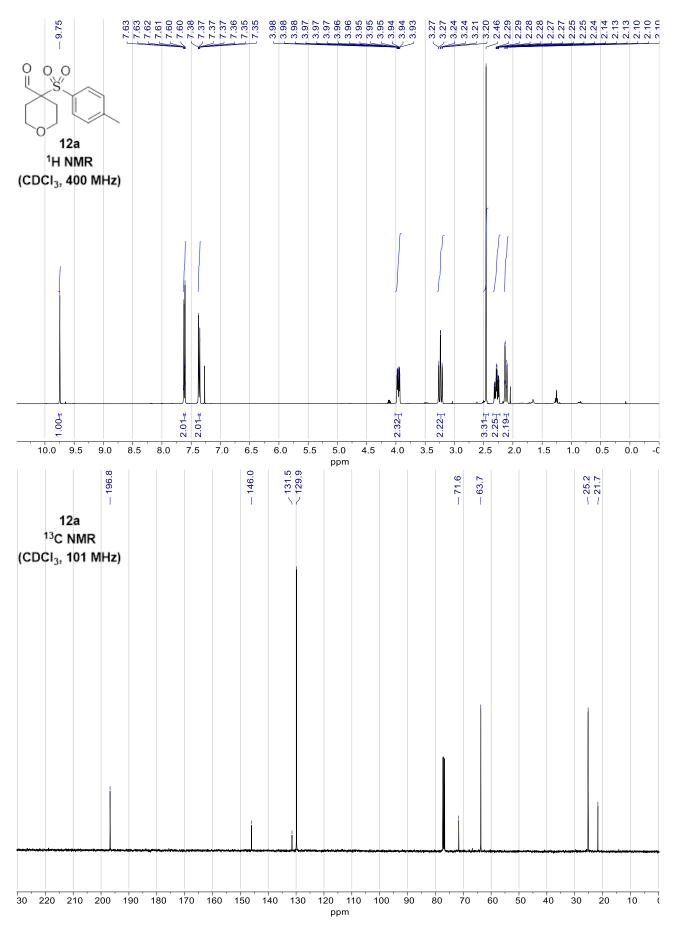


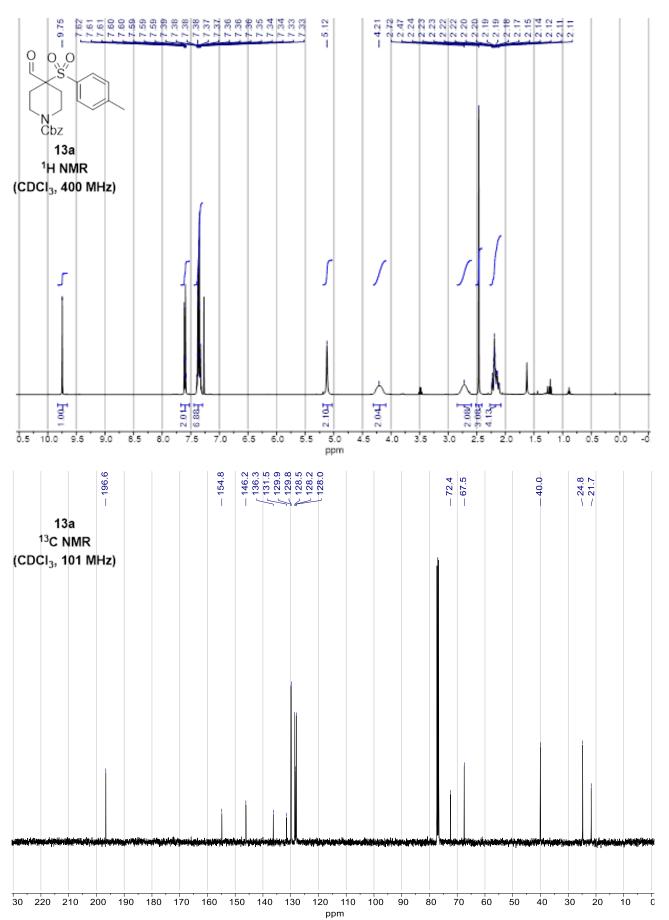


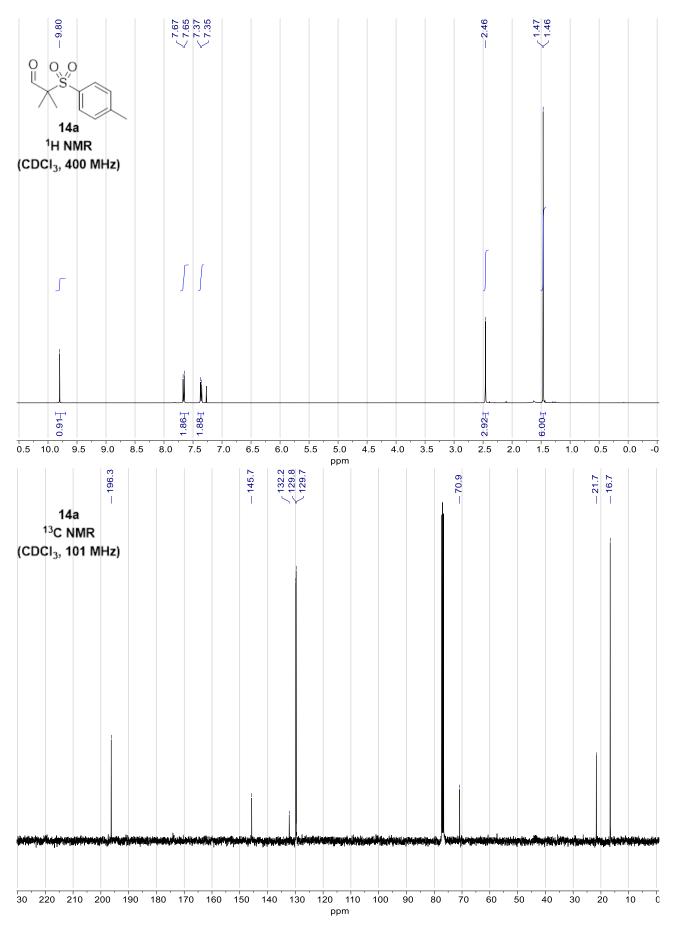


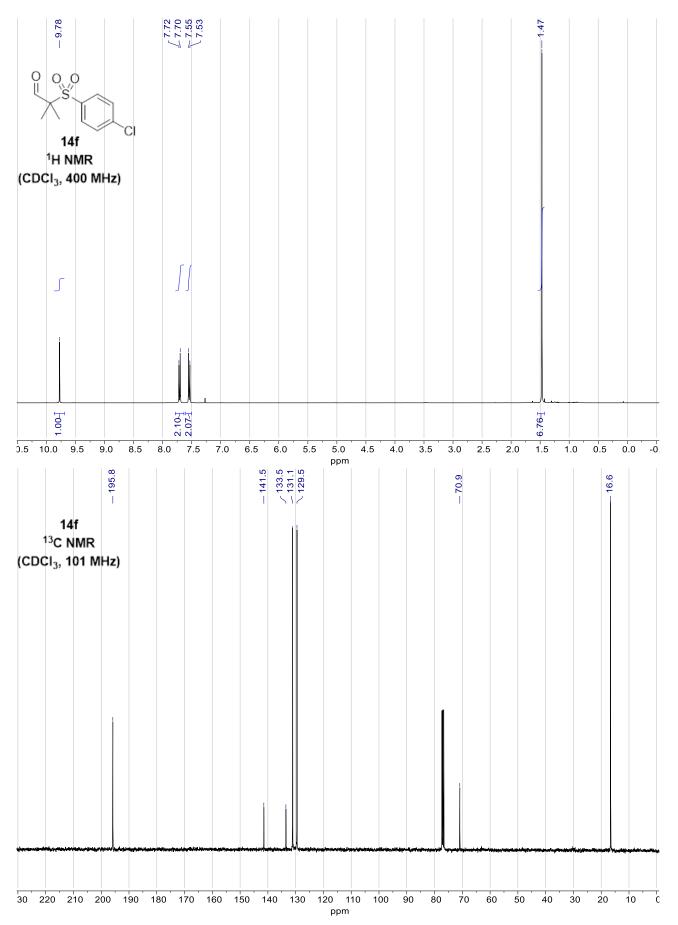


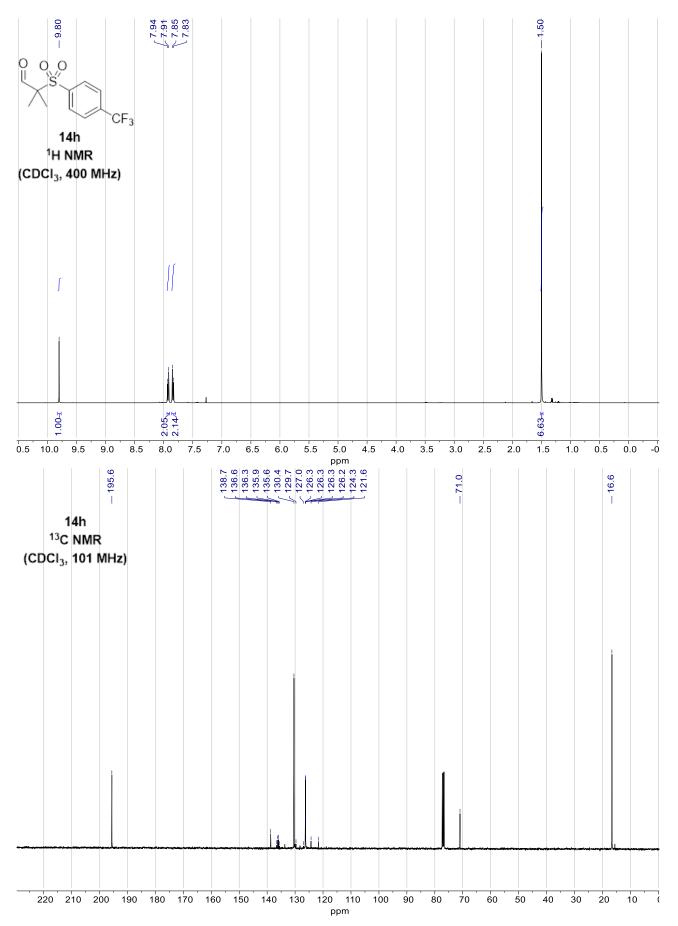


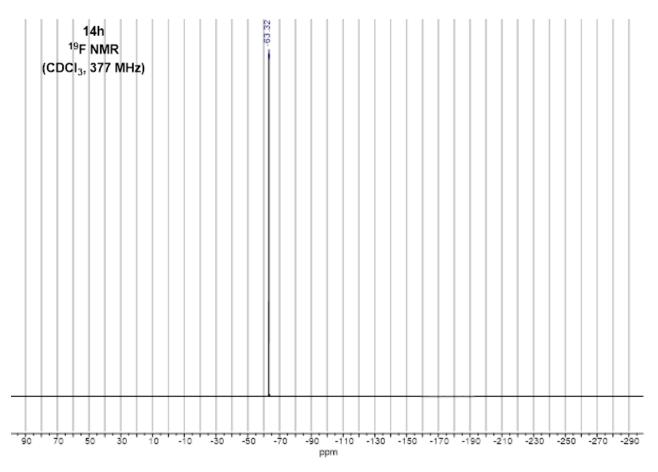


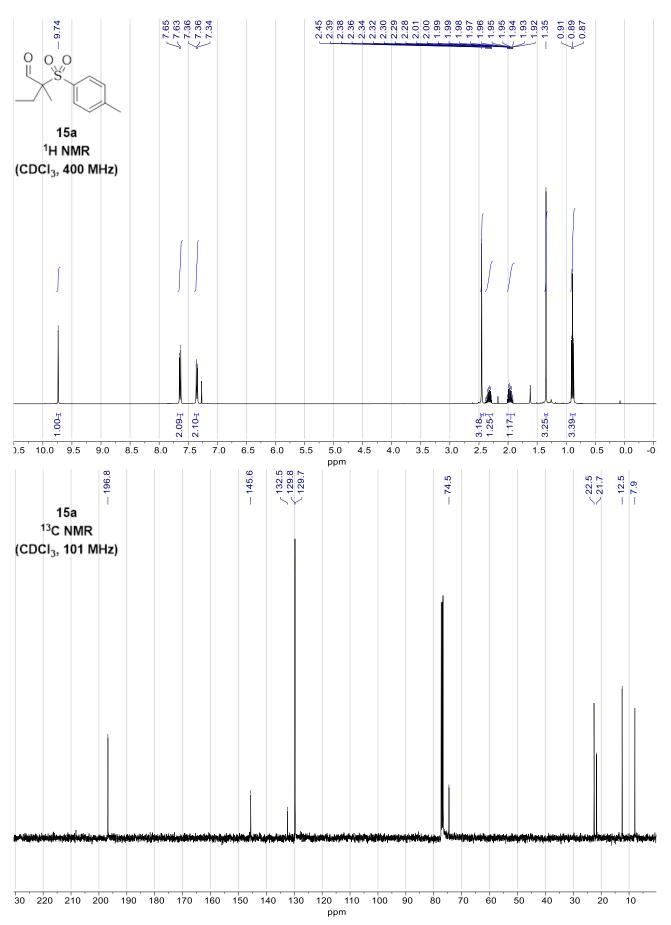


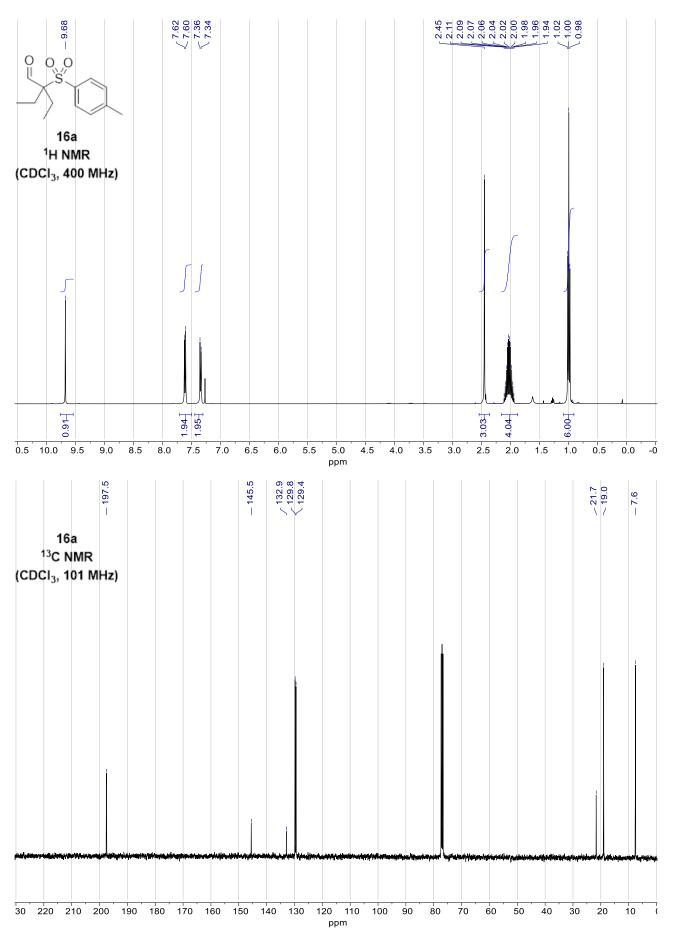


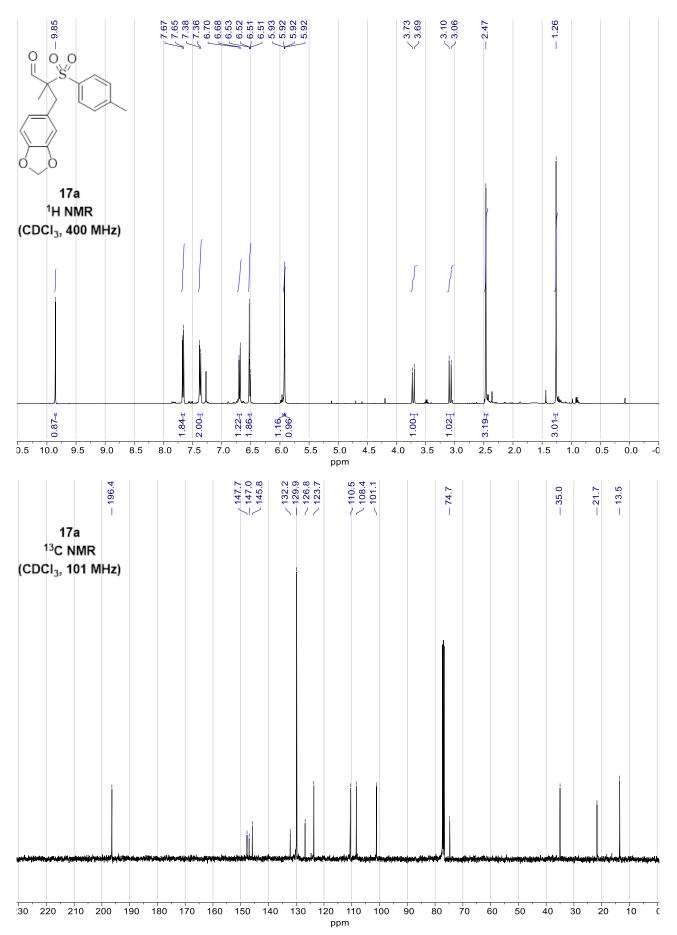


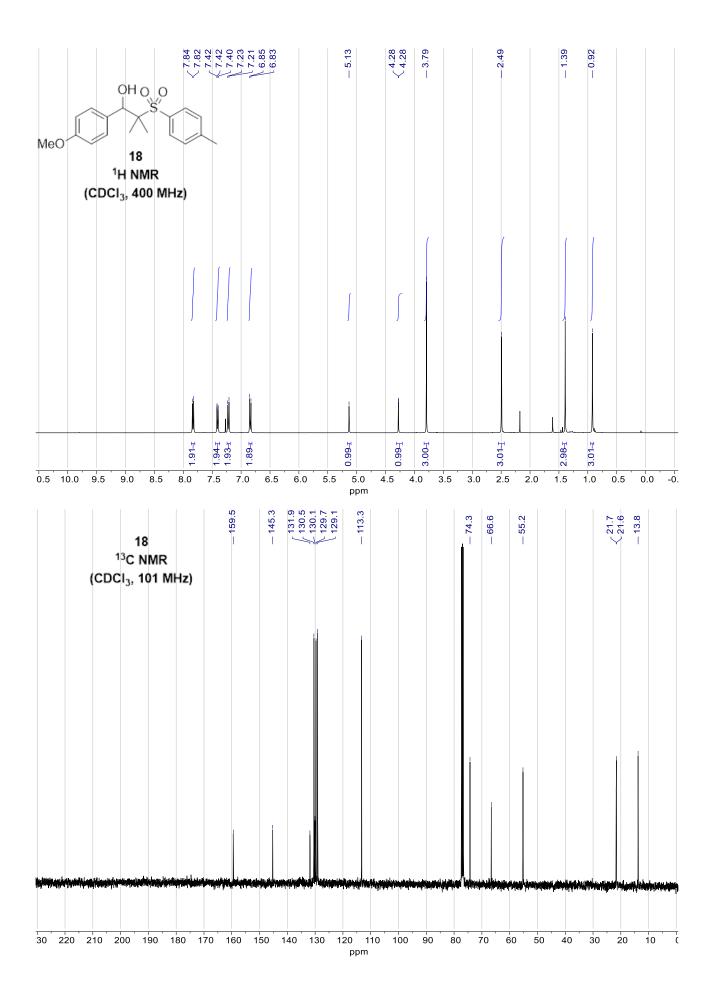


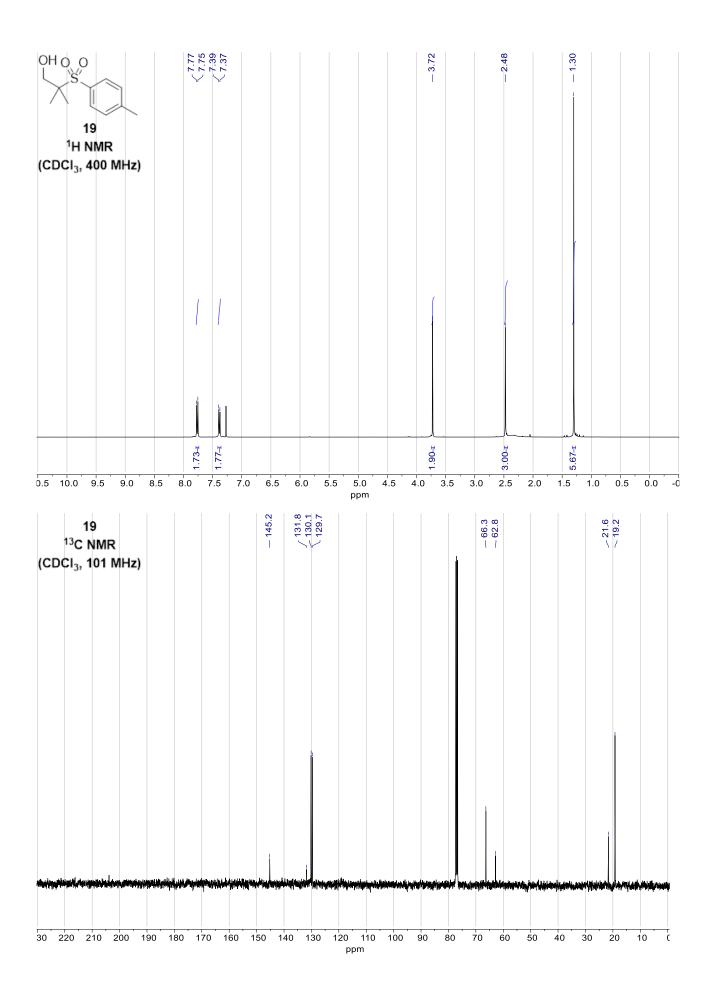


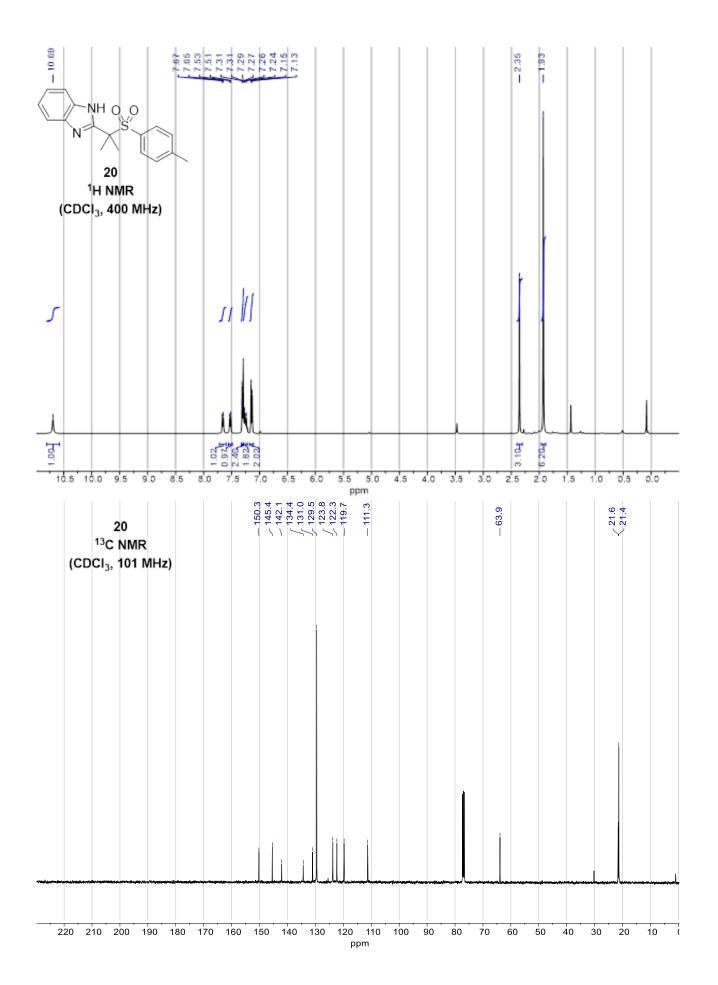


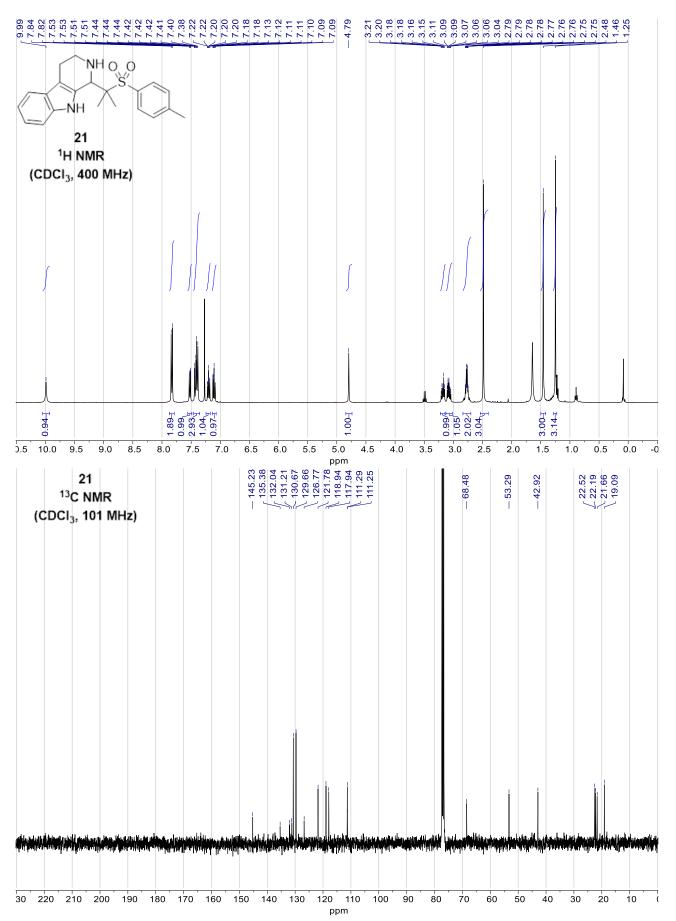


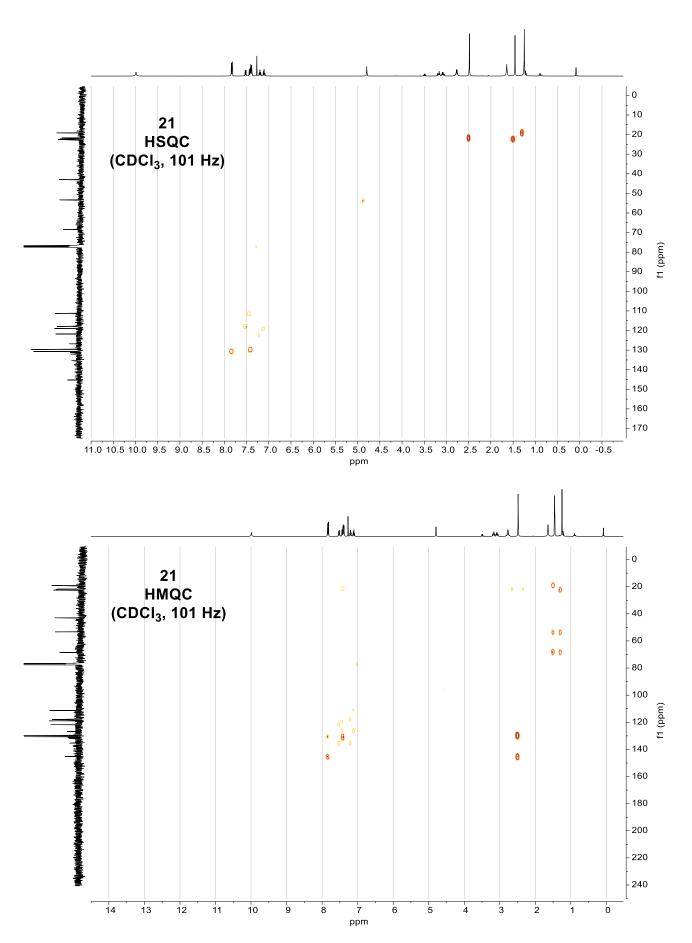


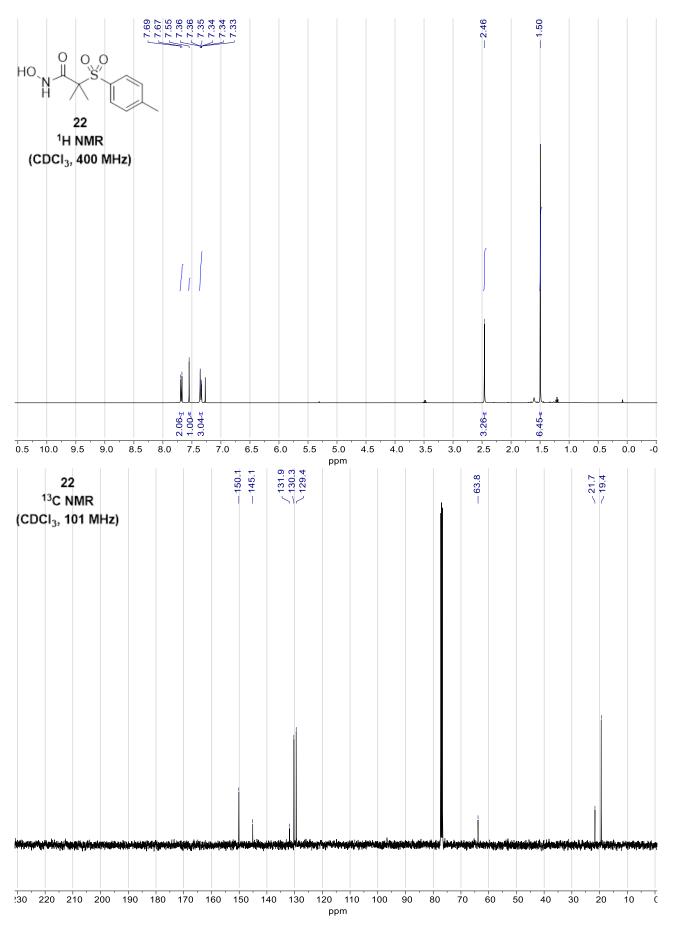


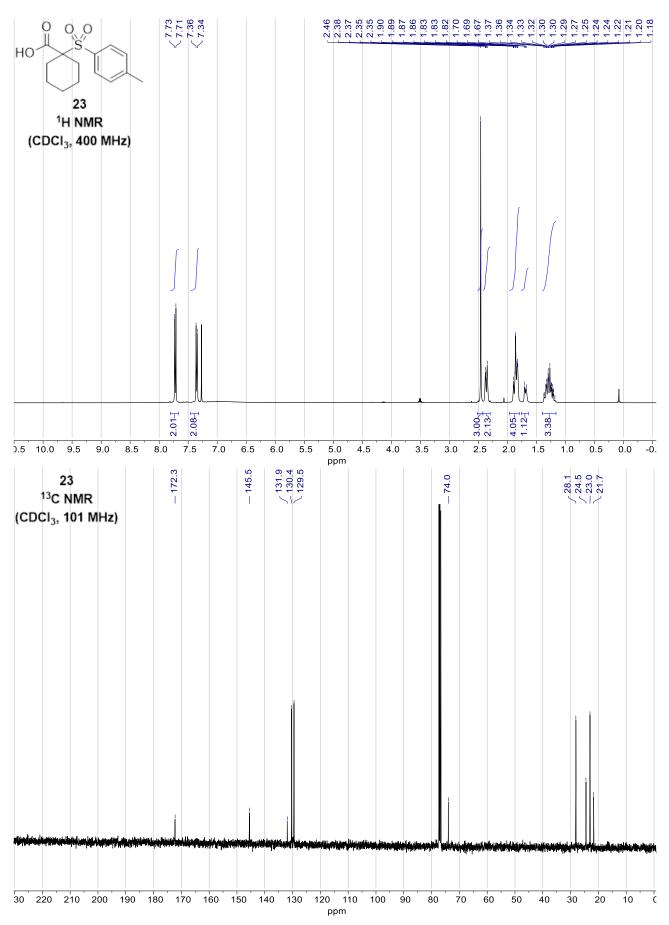












References

a) O. V. Boytsova, T. O. Shekunova and A. E. Baranchikov, *Russ. J. Inorg. Chem.*, 2015, **60**, 546–551. b) J. Hem, *US Geol. Surv. water-supply Pap. 1667-A*, 1963, 71.

- 2 B. Skillinghaug, J. Rydfjord and L. R. Odell, *Tetrahedron Lett.*, 2016, **57**, 533–536.
- 3 G. Bogonda, Di. V. Patil, H. Y. Kim and K. Oh, *Org. Lett.*, 2019, **21**, 3774–3779.
- 4 Y. Bin and R. Hua, *Molecules*, 2016, **22**, 39.
- 5 A. U. Meyer, K. Straková, T. Slanina and B. König, *Chem. Eur. J.*, 2016, **22**, 8694–8699.
- 6 S. St John-Campbell, A. J. P. White and J. A. Bull, *Org. Lett.*, 2020, 10.1021/acs.orglett.0c00124.
- 7 Munnuri, S.; Adebesin, A. M.; Paudyal, M. P.; Yousufuddin, M.; Dalipe, A.; Falck, J. R, *.J. Am. Chem. Soc.* 2017, **139**, 18288–18294
- 8 G. A. DiLabio, K. U. Ingold, M. D. Roydhouse and J. C. Walton, Org. Lett., 2004, 6, 4319–4322.
- 9 Bahrami, M. M. Khodaei and F. Naali, *J. Org. Chem.*, 2008, **73**, 6835–6837.

10 Z. Zhao, Y. Sun, L. Wang, X. Chen, Y. Sun, L. Lin, Y. Tang, F. Li and D. Chen, *Tetrahedron Lett.*, 2019, **60**, 800–804.

- 11 G. Dettori, S. Gaspa, A. Porcheddu and L. De Luca, *Adv. Synth. Catal.*, 2014, **356**, 2709–2713.
- 13 E. Dalcanale and F. Montanari, J. Org. Chem., 1986, **51**, 567–569.