Electronic Supporting Information

Robust thermal-energy-storage property associated with electronic phase transitions for quadruple perovskite oxides

Tasuku Uchimura,¹ Ikuya Yamada,^{1,*}

¹Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, 1-2

Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan

*Corresponding author (E-mail):yamada@mtr.osakafu-u.ac.jp

Experimental details

Sample Preparation

 $RCu_3Fe_4O_{12}$ (R = La, Pr, Nd, Sm, Gd, Dy) was synthesized by a high-pressure method according to the literature.¹ Stoichiometric amounts of rare-earth metal oxides (R_2O_3 ; R = Pr, Nd, Sm, Gd, Dy, 99.9%) or lanthanum nitrate [La(NO₃)₃ · 6H₂O (99.9%)], Cu(NO₃)₃ · 3H₂O (99.9%), Fe(NO₃)₃ · 9H₂O (99.9%) were dissolved into distilled water and stirred in nitric acid with excess amounts of citric acid and ethylene glycol. The mixture was continuously stirred and heated up to 573 K until the solution became a gel, then the gel was dried in the oven at 673 K for 1 h in the air. The obtained gel was grounded and calcined at 1173 K for 10 h under air. The obtained precursor of $RCu_3Fe_4O_y$ (y~10.5) and oxidizing agent of KClO₄ were mixed at the molar ratio of 4:1, and filled into a platinum capsule. The capsule was put into a octahedral-shaped (Mg, Co)O pressure-transmitting medium and compressed to 8 or 12 GPa by using Walker-type high-pressure apparatus. The capsule was heated at 1073 K for 30 min, then the applied pressure was slowly released. The obtained polycrystalline sample was ground into the powder with mortar and then washed with deionized water several times.

Characterization

Laboratory X-ray diffraction (XRD) were measured using X-ray diffractometer with Cu K α radiation (Ultima IV, Rigaku, Japan). Synchrotron XRD (SXRD) data were collected at temperatures between 200-400 K for LaCu₃Fe₄O₁₂ and GdCu₃Fe₄O₁₂ with a Debye-Scherrer camera installed at the BL02B2 beamline of SPring-8, Japan. The powder sample was contained in a Lindemann glass capillary tube with an inner diameter 0.2 mm. The wavelength used was determined to be 0.50020 Å using a CeO₂ standard. Structure parameters were refined by Rietveld analysis using the program RIETAN-FP.² The crystal structure was drawn using the VESTA-3 software.³

Differential scanning calorimetry (DSC) measurement was carried out in a nitrogen gas flow at temperatures between 300–500 K (LaCu₃Fe₄O₁₂), 125–500 K (PrCu₃Fe₄O₁₂), 125–500 K (NdCu₃Fe₄O₁₂), 125–

400 K (SmCu₃Fe₄O₁₂), 125–500 K (GdCu₃Fe₄O₁₂), 125–400 K (DyCu₃Fe₄O₁₂) using DSC7020 (Hitachi High-Technologies, Japan). Heating and cooling rates were fixed at 10 °C/min. Transition temperatures on heating/cooling process were defined by the endothermic/exothermic peaks in DSC curves. Latent heat capacity was calculated by integrating the area of endothermic/exothermic peaks, where the baseline was estimated by line.

Table S1. Transition temperature (T_t), specific transition enthalpy (ΔH), and specific transition entropy (ΔS) at heating/cooling process for $RCu_3Fe_4O_{12}$ (R = La, Pr, Nd, Sm, Gd, Dy).

R	$T_{t}(\mathbf{K})$	$\Delta H (\mathrm{J}~\mathrm{g}^{-1})$	$\Delta S \left(\mathrm{J} \ \mathrm{g}^{-1} \ \mathrm{K}^{-1} ight)$
La	368 / 363	25.4 / 25.6	0.0689 / 0.0704
Pr	342 / 331	21.4 / 21.2	0.0625 / 0.0640
Nd	334 / 327	20.1 / 19.7	0.0601 / 0.0600
Sm	285 / 278	19.4 / 19.8	0.0682 / 0.0712
Gd	254 / 235	15.0 / 15.3	0.0591 / 0.0651
Dy	227 / 217	5.94 / 2.97	0.0262 / 0.0137

	LaCu ₃ Fe ₄ O ₁₂	$GdCu_3Fe_4O_{12}$
space group	Im3	Im3
<i>a</i> (Å)	7.42104(7)	7.33174(2)
<i>y</i> (O)	0.3106(2)	0.3020(16)
z (O)	0.1704(2)	0.1757(18)
$U_{\rm iso}({\rm La/Gd}) \times 1000 ~({\rm \AA}^2)$	2.3(12)	3.95(6)
$U_{\rm iso}({\rm Cu}) \times 1000 ({\rm \AA}^2)$	6.0(13)	5.78(7)
$U_{\rm iso}({\rm Fe}) imes 1000 ({\rm \AA}^2)$	3.5(11)	2.64(7)
$U_{\rm iso}({\rm O}) imes 1000 ({\rm \AA}^2)$	5.0(4)	4.8(3)
R _{wp} (%)	7.318	6.112
<i>R</i> _B (%)	2.410	1.915
Goodness-of-fit	0.6374	0.6281

Table S2. Refined structure parameters for LaCu₃Fe₄O₁₂ and GdCu₃Fe₄O₁₂ at room temperature.^{*a*}

^{*a*}Atomic site: La/Gd 2*a* (0, 0, 0), Cu 6*b* (0, $\frac{1}{2}$, $\frac{1}{2}$), Fe 8*c* ($\frac{1}{4}$, $\frac{1}{4}$, $\frac{1}{4}$), O 24*g* (0, *y*, *z*); The occupancy factors *g*

for all sites were fixed at the unity.

Figure S1 Rietveld refinement results of SXRD data for (a) LaCu₃Fe₄O₁₂ and (b) GdCu₃Fe₄O₁₂ at 300 K. The wavelength was 0.50002 Å. Circles (black) and lines (red) indicate observed and calculated SXRD profiles, respectively. The vertical marks (green) indicate the Bragg reflection positions for LaCu₃Fe₄O₁₂ (top), LaFeO₃ (middle-up), α -Fe₂O₃ (middle-down), and CuO (bottom) for LaCu₃Fe₄O₁₂. SXRD patterns near 110 reflection for (c) LaCu₃Fe₄O₁₂ (300–400 K) and (d) GdCu₃Fe₄O₁₂ (200–300 K). The solid (red) and dashed (blue) lines represent the profiles on heating and cooling process, respectively.

References

- I. Yamada, H. Etani, K. Tsuchida, S. Marukawa, N. Hayashi, T. Kawakami, M. Mizumaki, K. Ohgushi,
 Y. Kusano, J. Kim, N. Tsuji, R. Takahashi, N. Nishiyama, T. Inoue, T. Irifune and M. Takano, *Inorg. Chem.*, 2013, 52, 13751–13761.
- 2 F. Izumi and K. Momma, Solid State Phenom., 2007, 130, 15–20.
- 3 K. Momma and F. Izumi, J. Appl. Crystallogr., 2011, 44, 1272–1276.