Electronic Supplementary Information

Low-temperature molten salt synthesis of MoS₂@CoS₂ heterostructures for efficient hydrogen evolution reaction

Song He,^a Hongfang Du,*a Ke Wang,^a Qianchi Liu,^a Jinmeng Sun,^a Yuhang Liu,^a Zhuzhu Du,^a

Linghai Xie,^{a,c} Wei Ai,*a and Wei Huang*a,b,c

^aInstitute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China

^bKey Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China

^cKey Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), SICAM, Nanjing University of Posts & Telecommunications, Nanjing 210023, Jiangsu, China

*Correspondence authors. Email: iamhfdu@nwpu.edu.cn, iamwai@nwpu.edu.cn, iamwhuang@nwpu.edu.cn

1 Experimental Section

1.1 Chemicals

Cobalt nitrate hexahydrate ($Co(NO_3)_2 \cdot 6H_2O$, 99%, Adamas-beta), ammonium molybdate ($(NH_4)_6Mo_7O_{24} \cdot 4H_2O$, 99%, Adamas-beta), potassium thiocyanate (KSCN, 97.18%, Hushi) were bought from Tansoole. Nafion (5 wt.% in lower aliphatic alcohols and water mixture) was purchased from Sigma-Aldrich. All chemicals were used as received without further purification.

1.2 Synthesis of MoS₂@CoS₂, MoS₂, and CoS₂

For the synthesis of $MoS_2@CoS_2$ heterostructures, 0.1 g $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$, 0.8 g $Co(NO_3)_2\cdot 6H_2O$, and 20 g KSCN were mixed together, the molar ratio of Mo to Co was about 0.2. Next, the mixture was loaded to a beaker and heated to 300 °C in a muffle furnace for 2 h. A black and dense solid solution was obtained at the end of the reaction. The product was collected by dissolving the excessive KSCN with DI water, and washed with DI water and ethanol for several times. Finally, the $MoS_2@CoS_2$ powder was dried in a vacuum oven at 80 °C for 12 h. MoS_2 and CoS_2 were also synthesized under similar experimental procedures with $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$ and $Co(NO_3)_2\cdot 6H_2O$ as the precursor, respectively.

1.3 Synthesis of FeS₂, NiS₂, and SnS₂

For the synthesis of FeS₂, NiS₂ and SnS₂, an equimolar amount of Fe(NO₃)₂·9H₂O, NiSO₄, and SnCl₂ was used as the transition metal precursors, respectively. While the detail experimental procedures were similar to the preparation of MoS₂@CoS₂.

1.4 Characterizations

X-ray diffraction (XRD) data were recorded on an X-ray diffractometer (Bruker D8 ADVANCE) with Cu Ka radiation (λ = 1.5406 Å). Scanning electron microscopy (SEM) and EDS measurements were carried out with a scanning electron microscope (FEI Verios G4). Transmission electron microscopy (TEM) analysis was performed on a transmission electron microscope (FEI Talos F200X TEM). X-ray photoelectron spectroscopy (XPS) data were recorded with a Thermo Escalab 250Xi instrument (Thermo Fisher).

1.5 Electrochemical measurements

All electrochemical measurements were conducted with a CHI 760E potentiostat in a conventional three electrode setup, in which a graphite rod was served as counter electrode, a saturated calomel electrode (SCE) equipped with a salt bridge was applied as reference electrode, a glass carbon electrode (GCE, $\Phi = 4.0$ mm) was used as working electrode, and 0.5 M H₂SO₄ solution was used as electrolyte. For the preparation of catalyst ink, 10.0 mg catalyst and 2.0 mg carbon black were dispersed in 500 µL ethanol containing 25 µL Nafion (5 wt%), followed by treating in an ultrasonic bath for 15 minutes to get a homogeneous mixture. After then, 6.28 µL of the ink was transferred to a newly polished GCE and dried at room temperature. The loading of the active material was determined to be 1.0 mg cm⁻². Linear sweep voltammetry (LSV) curves were recorded at a scan rate of 5.0 mV s⁻¹. The electrochemical impedance spectroscopy (EIS) tests were conducted in a frequency range of 0.1-100K Hz with an AC amplitude of 5.0 mV under a static HER overpotential of 200 mV.

Stability probed via cyclic voltammetry (CV) cycles was conducted in a potential range of - $0.15 \sim 0.1$ V at a scan rate of 100 mV s⁻¹. All the potentials were converted to the reversible hydrogen electrode (RHE) via the Nernst equation: $E_{RHE} = E_{SCE} + 0.242 + 0.059$ pH (V).^{1, 2} All the electrochemical data were *i*R corrected according to the series resistance measured in EIS measurements.³

1.6 Theoretical calculations

All static calculations were carried out using spin-polarized density functional theory (DFT) with generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) as implemented in VASP 5.4.4 code.^{4, 5} The cutoff energy of plane-wave basis set was 400 eV and single gamma-point grid sampling was used for Brillouin zone integration. Atomic positions and cell parameters were optimized by conjugate gradient algorithm until the forces were less than 0.01 eV/Å. The hydrogen adsorption free energies were determined in the same way as in previous studies, which was estimated to be about 0.24 eV for ZPE, entropy and enthalpy correction.⁶ The horizontal lattice parameters of single layer MoS₂ was optimized with 5 Mo atoms × 6 Mo atoms in size (ICSD-84180).⁷ CoS₂(001)-p(3×3) slab model was adopted to model CoS₂ substrate with bottom S-Co-S layer was fixed. The lattice parameters of CoS₂ and heterojunction were kept as reported experimental results (ICSD-86351).⁸ Periodic boundary conditions were used in all directions and at least 12 Å of vacuum was used in the z-direction to separate the slabs.

2 Supporting figures

Fig. S1 XRD patterns of (a) $MoS_2@CoS_2$, (b) MoS_2 , and (c) CoS_2 .

Fig. S2 XRD patterns of (a) FeS_2 , (b) NiS_2 , and (c) SnS_2 .

Fig. S3 SAED pattern of $MoS_2@CoS_2$.

Fig. S4 (a) XPS survey and (b) Mo 3d spectra of MoS_2 ; (c) XPS survey and (d) Co 2p spectra of CoS_2 .

Contents Catalysts	S (Wt. %)	Mo (Wt. %)	Co (Wt. %)	S (At. %)	Mo (At. %)	Co (At. %)	Mo _(At. %) / Co _(At. %)
MoS ₂ @CoS ₂	47.72	24.93	27.35	67.32	11.73	20.95	0.6
MoS ₂	38.31	61.69		65.06	34.94		
CoS ₂	53.30		46.70	67.76		32.24	

Table S1 Chemical composition of MoS₂@CoS₂, MoS₂ and CoS₂ based on XPS results.

Fig. S5 Estimation of exchange current densities.

The exchange current density (i_0) is calculated via the extrapolation of corresponding Tafel plot. When the overpotential is 0, as revealed in Fig. S5, the log(j) values for MoS₂@CoS₂, MoS₂, CoS₂, and Pt/C are determined to be -0.55, -1.22, -1.5, and 0.28, respectively. Accordingly, the i_0 is calculated to be 0.28 mA cm⁻² for MoS₂@CoS₂, 6.08×10⁻² mA cm⁻² for MoS₂, 3.16×10⁻² mA cm⁻² for CoS₂, and 1.91 mA cm⁻² for Pt/C. Table S2 Catalytic performance comparison of $MoS_2@CoS_2$ with the recently reported MoS_2 - and CoS_2 -based HER catalysts.

Catalysts	η_{10}	Tafel (mV dec ⁻¹)	Reference	
Co ₉ S ₈ /MoS ₂ /Ni ₃ S ₂ -NF	103	55	J. Am. Chem. Soc., 2019, 141, 10417.	
MoS-CoS	134	60	Adv. Sci., 2019, 6, 1900140.	
MoS ₂ /CoS ₂ NT	90	30	J. Mater. Chem. A, 2019, 7, 13339	
CoS ₂ -C@MoS ₂	173	61	ACS Sustainable Chem. Eng., 2019, 7, 2899.	
S-MoS ₂ @C	136	78	Adv. Energy Mater., 2019, 9, 1802553.	
C09S8@M0S2	171	123	ACS Appl. Mater. Interfaces, 2018, 10, 1678.	
CoS _x @MoS ₂	239	103	ACS Sustainable Chem. Eng., 2018, 6, 12961	
MoS ₂ @NSCS	158	82	Appl. Catal., B, 2020, 263, 118352.	
NPC@MoS ₂	178	58	Catal. Today, 2019, 330 , 259.	
MoS ₂ /CoNi ₂ S ₄	81	67	Adv. Funct. Mater., 2019, 1908520.	
0.75-Sv-MoS ₂	194	78	Angew. Chem., 2019, 131, 2051.	
EA-2H/1T/rGO	186	49	Small, 2019, 15, 1804903.	
N-MoS ₂ /CN	114	46.8	J. Am. Chem. Soc., 2019, 141, 18578.	
Ag ₂ S/MoS ₂ /rGO	190	56	ACS Appl. Mater. Interfaces, 2019, 11, 22380.	
1D-DRHA MoS ₂	119	50.7	Appl. Catal., B, 2019, 258, 117964.	
Hexagonal MoS ₂ flakes	105	53	J. Mater. Chem. A, 2019, 7, 27603.	
MoS ₂ nanoscroll	153	73	ACS Energy Lett., 2019, 4, 2830.	
V-doped MoS ₂	194	59	Appl. Catal., B, 2019, 254, 432.	
3D-Co-MoS ₂ /G	143	71	Nano Energy, 2019, 61 , 611.	
1T-MoS ₂ /CC	151	55	Appl. Catal., B, 2019, 246, 296.	
Fractal-shaped MoS ₂	185	45	Nano Energy, 2018, 51 , 786.	
MoS ₂ ML	126	72	Adv. Energy Mater., 2018, 8, 1800734.	
Ni _{SA} -MoS ₂ /CC	110	74	Nano Energy, 2018, 53 , 458.	
MCM@MoS ₂ -Ni	161	81	Adv. Funct. Mater., 2018, 28, 1807086.	
NPNi-MoS ₂ /rGO	205	71	ACS Catal., 2018, 8, 8107.	
Cu _{2-x} S-MoS ₂	320	60	Chem. Mater., 2018, 30, 4489.	
$Mo_{0.5}W_{0.5}S_2$	138	55	ACS Catal., 2018, 8, 9529.	
MoS ₂ (11.1% S vacancy)	520	155	J. Am. Chem. Soc., 2018, 140, 16773.	
MoS ₂ -GNR	205	50	Adv. Funct. Mater., 2018, 28, 1802744.	
MoS ₂ -MoP/C	136	58	J. Mater. Chem. A, 2018, 6, 616.	
Co- ^s MoS ₂	220	92	Chem. Sci., 2018, 9, 4769.	
(1T/2H) MoS ₂ /α-MoO ₃	232	81	J. Mater. Chem. A, 2018, 6, 15320	
MoS ₂ /rGO	154	77	Chem. Commun., 2019, 55, 2078.	
MoS ₂ /MoP/NC	161	58	J. Mater. Chem. A, 2018, 6, 24783.	
MoS ₂ /CNT-2	194	53	Nanoscale, 2020, 12 , 1109.	
MoS ₂ @CoS ₂ -20%	96	60	This work	

Fig. S6 CV curves of (a) MoS₂@CoS₂, (b) MoS₂, and (c) CoS₂ acquired at scan rates of 0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18, and 0.20 V s⁻¹.

The electrochemical active surface area (ECSA) is measured via a double layer capacitance (C_{dl}) method.^{9, 10} In the non-Faradaic potential region, the measured current in CV is attributed to double-layer charging current (*i*), which is equal to the product of scan rate (*v*) and double layer capacitance (C_{dl}), as expressed by equation (1):

$$i = vC_{\rm dl} \tag{1}$$

Thus, a plot of a series *i* as a function of *v* yields a straight line whose slope is C_{dl} . Once the C_{dl} is obtained, the ECSA can be calculated according to equation (2):

$$ECSA = C_{dl}/C_s \tag{2}$$

Where the C_s is the specific capacitance of planar surface. In this work, a typical C_s value of 0.040 mF cm⁻² for MoS₂ material was adopted for the estimation of ECSA.¹¹

The catalyst inks were prepared via the aforementioned procedures except the absence of carbon black. For the determination of C_{dl}, CV curves were measured in a potential range of 0.57~0.67 V at scan rates of 0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18, and 0.20 V s⁻². The CV curves of MoS₂@CoS₂, MoS₂ and CoS₂ recorded at various scan rates are shown in Fig. S6. The anodic currents (*i_a*) and cathodic currents (*i_c*) at 0.62 V were extracted for further analysis. C_{dl} was then obtained by plotting *i*, 0.5(*i_a* – *i_c*), as a function of scan rate, and the results were shown in Fig. 3c. The C_{dl} of MoS₂@CoS₂, MoS₂ and CoS₂ are determined to be 0.606, 6.383 and 0.015 mF, respectively. Accordingly, the ECSA is calculated to be 15.15 cm² for MoS₂@CoS₂, 159.58 cm² for MoS₂, and 0.38 cm² for CoS₂ when a C_s of 0.040 mF is considered.

Fig. S7 Nyquist plots of $MoS_2@CoS_2$, MoS_2 and CoS_2 recorded at a static overpotential of 200 mV.

The impedance behaviors can be depicted with the equivalent circuit model as displayed in inset of Fig. S7. According to the fitted results, the electrochemical charge transfer resistance (R_{ct}) of MoS₂@CoS₂, MoS₂, and CoS₂ in HER are determined to be 46, 319, and 242 Ω , respectively. The series resistance of the electrochemical cell is determined to be 5.4 Ω according to the real component value of the impedance at the minimum of the Nyquist plot.¹²

Fig. S8 SEM image of $MoS_2@CoS_2$ acquired after 1000 continuous CV cycles in a potential range of $-0.15 \sim 0.1$ V at a scan rate of 100 mV s⁻¹.

Fig. S9 Top and side views of hydrogen adsorption configurations of (a) $MoS_2@CoS_2$ heterojunction, (b) MoS_2 (S-vacancy), and (c) CoS_2 (001).

Reference:

- J. Ekspong, R. Sandström, L. P. Rajukumar, M. Terrones, T. Wågberg and E. Gracia-Espino, Adv. Funct. Mater., 2018, 28, 1802744.
- X. Wu, S. Zhou, Z. Wang, J. Liu, W. Pei, P. Yang, J. Zhao and J. Qiu, *Adv. Energy Mater.*, 2019, 9, 1901333.
- 3. H. Zhang, L. Yu, T. Chen, W. Zhou and X. W. Lou, Adv. Funct. Mater., 2018, 28, 1807086.
- 4. G. Kresse and J. Furthmüller, Comput. Mater. Sci., 1996, 6, 15-50.
- 5. G. Kresse and J. Furthmüller, *Phys. Rev. B*, 1996, **54**, 11169-11186.
- J. K. Nørskov, T. Bligaard, A. Logadottir, J. Kitchin, J. G. Chen, S. Pandelov and U. Stimming, *J. Electrochem. Soc.*, 2005, 152, J23-J26.
- 7. X. Huang, Z. Zeng and H. Zhang, Chem. Soc. Rev., 2013, 42, 1934-1946.
- B. Dutta, Y. Wu, J. Chen, J. Wang, J. He, M. Sharafeldin, P. Kerns, L. Jin, A. M. Dongare, J. Rusling and S. L. Suib, *ACS Catal.*, 2019, 9, 456-465.
- H. Wang, X. Xiao, S. Liu, C. L. Chiang, X. Kuai, C. K. Peng, Y. C. Lin, X. Meng, J. Zhao, J. Choi, Y. G. Lin, J. M. Lee and L. Gao, *J. Am. Chem. Soc.*, 2019, 141, 18578-18584.
- C. C. L. McCrory, S. Jung, J. C. Peters and T. F. Jaramillo, *J. Am. Chem. Soc.*, 2013, 135, 16977-16987.
- 11. C. Wang, B. Tian, M. Wu and J. Wang, ACS Appl. Mater. Interfaces, 2017, 9, 7084-7090.
- 12. X. Tan, J. Shen, N. Semagina and M. Secanell, J. Catal., 2019, 371, 57-70.