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1. Experimental details 

1.1 Preparation of photocatalysts 

TiO2 ST-01 and TiO2 P 25 were supplied from Ishihara Sangyo (Japan) and Nippon Aerosil 

(Japan), respectively. Y2O3, Nb2O5, Ta2O5, WO3, ZnO, Ga2O3, GeO2, and SnO2 were purchased 

from Kojundo Chemical Laboratory (Japan). ZrO2 and In2O3 were purchased from Wako Pure 

Chemicals (Japan). Hydrogen hexachloroplatinate(IV) hexahydrate (H2PtCl6•6H2O) and 

tetraamineplatinum(II) chloride monohydrate (Pt(NH3)4Cl2•H2O) were purchased from Kanto 

Chemical (Japan). 

Platinum cocatalyst was loaded on the oxide powder using an incipient wetness impregnation 

(IWI) method. The IWI is a conventional method to prepare highly dispersed metal-supported 

catalysts using a capillary action process. The powder (1.5 g) was mixed with an aqueous 

solution of H2PtCl6 (8.5 mmol L−1, 900 µL, 0.1 wt% as Pt) and dried at 100 °C for 1 h. All of the 

supplied H2PtCl6 is deposited on the Ga2O3 surface after the evaporation to dryness. During 

photocatalytic reactions, the adsorbed Pt4+ species is quickly reduced to Pt0 by photoexcited 

electrons since it is a strong electron acceptor (PtCl62− + 4e− → Pt + 6Cl− E = 0.74 V vs. SHE). 

Therefore, Pt loaded metal oxide such as Pt/Ga2O3 can be formed under the photocatalytic 

reaction conditions. We also tested Pt(NH3)4Cl2 as a precursor for Pt cocatalyst. Pt2+ is also 

easily reduced by photoexcited electrons (Pt2+ + 2e− → Pt E = 1.19 V vs. SHE). The in-situ 

formation of Pt metal is guaranteed by the continuous H2 evolution under photoirradiation. 

 

1.2 Photocatalytic reaction 

The photocatalyst powder (50 mg) was coated on a square area (5 cm × 5 cm) of a glass plate 

using water and dried at room temperature. The photocatalyst coated on the glass substrate was 
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installed in a home-made stainless-steel reactor with a quartz window (5 cm × 5 cm). The 

distance between the glass substrate and the quartz window is about 0.25 mm, which is the 

thickness of a rubber gasket. The feed gas was ultra-high purity CH4 (99.9995%) and Ar (> 

99.995%). The total flow rate was controlled to 20 mL min−1 by mass flow controllers. Water 

vapor was introduced through a bubbler filled with deionized water at 25 °C. The pressure of 

water vapor was obtained from the dew point measured by a humidity transmitter (EE33, E+E 

Elektronik, Austria). A back-pressure valve was used to regulate the total pressure higher than 1 

atm. 

The light source was a 40-W low-pressure mercury lamp (wavelength 254 nm, Asumi Giken, 

Japan). The irradiance was measured by an optical power meter with a sensor for low-pressure 

mercury lamps (C9536 and H9535-254, Hamamatsu Photonics, Japan). The temperature of the 

reactor was cooled to 25 °C by a thermoelectric cooling device. The reactants and products were 

analyzed by online GC-8A gas chromatographs (Shimadzu, Japan) equipped with a thermal 

conductivity detector (TCD) and a flame ionization detector (FID). The column of MS-5A, 

Shincarbon ST, and Porapak-Q was used with a carrier of He, Ar, and N2, respectively. The gas 

from the outlet was collected by GS5100 automatic gas samplers (GL Sciences, Japan). 

 

1.3 Characterization 

X-ray diffraction (XRD) measurement was carried out on a SmartLab diffractometer (Rigaku, 

Japan) using Cu Kα radiation. Scanning electron microscope (SEM) image was taken on JSM-

7800F (JEOL, Japan). Transmission electron microscope (TEM) image was taken on JEM-3010 

(JEOL, Japan) at 200 kV. Nitrogen adsorption isotherm was measured at −196 °C using a 

BELSORP-mini (Bel Japan, Japan) after evacuation at 200 °C for 2 h. Diffuse reflectance UV-
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Vis spectrum was recorded on a UV-2600 spectrometer (Shimadzu, Japan) with an integrating 

sphere by using BaSO4 powder as a reference. Thermogravimetry–differential thermal analysis 

(TG–DTA) was performed under air at a heating rate of 10 °C min−1 using a Thermo plus 

TG8120 (Rigaku, Japan). 

Electron spin resonance (ESR) spectrum was recorded on JES-FA200 (JEOL, Japan). The 

sample powder (200 mg) was pre-evacuated at 25 °C or 200 °C for 30 min. The measurement 

was performed by soaking the sample tube in liquid nitrogen (−196 °C). The sample was 

irradiated by UV light emitted from a 300-W xenon lamp (Asahi Spectra, Japan) with a bandpass 

filter (center wavelength 248 nm). 
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Table S1.  Physical properties of metal oxide samples 

Sample Supplier Purity Crystal system Crystalline  
diameter c (nm) 

XRD peak d

Y2O3 Kojundo a 0.9999 Cubic 49 (222) 

TiO2 (ST-01) Ishihara  
Sangyo 

— Tetragonal  
(Anatase) 

8 Anatase  
(101) 

TiO2 (P 25) Nippon  
Aerosil 

— Tetragonal  
(Anatase, Rutile) 

22 Anatase  
(101) 

ZrO2 Wako b 0.98 Monoclinic 45 (−111) 

Nb2O5 Kojundo a 0.9999 Monoclinic 95 (110) 

Ta2O5 Kojundo a 0.999 Orthorhombic 279 (001) 

WO3 Kojundo a 0.9999 Monoclinic, triclinic 113 (002) 

ZnO Kojundo a 0.9999 Hexagonal (Zincite) 190 (100) 

Ga2O3 Kojundo a 0.999 Monoclinic  
(β-Ga2O3) 

34 (002) 

In2O3 Wako b 0.999 Cubic 55 (222) 

GeO2 Kojundo a 0.999997 Hexagonal 58 (101) 

SnO2 Kojundo a 0.9999 Tetragonal 35 (110) 

 

a Kojundo Chemical Laboratory 

b Wako Pure Chemical 

c Crystalline diameter was estimated from the full width at the half-maximum (FWHM) of the 
XRD peak by using the Scherrer equation. 

d Crystal lattice plane of the XRD peak for analysis of the crystalline diameter. 
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Table S2.  BET specific surface area (SBET), average particle size (2r), optical band gap (Eg), 

electronegativity (X), and conduction band minimum (ECB) of metal oxide samples. 

Sample SBET a (m2 g−1) 2r b (nm) Eg c (eV) X d (eV) ECB e (V vs. SHE) 

Y2O3 12.9 92 5.55 5.39 −1.82 

TiO2 (ST-01) 302.3 5 3.23 5.81 −0.24 

TiO2 (P 25) 50.7 30 3.05 5.81 −0.15 

ZrO2 9.6 107 5.07 5.85 −1.12 

Nb2O5 2.4 559 3.07 6.21 0.24 

Ta2O5 1.7 388 3.85 6.26 −0.10 

WO3 4.3 194 2.66 6.57 0.80 

ZnO 3.4 309 3.21 5.95 −0.09 

Ga2O3 10.4 97 4.56 5.36 −1.36 

In2O3 2.7 311 2.73 5.25 −0.56 

GeO2 1.9 724 5.93 6.38 −1.03 

SnO2 11.0 78 2.69 6.22 0.43 

 

a SBET was determined from the N2 adsorption isotherm. 

b The average particle size was calculated from SBET and the density (ρ) of the main crystalline 
component in the oxide powder, hypothetically assuming that the particles are spherical with 
radius (r). 

2𝑟 ൌ
6

𝑆BET ൈ 𝜌
ሺ1ሻ 

c Eg was determined from the diffuse reflectance UV-visible spectra. 

d The X of metal oxide was obtained from the geometric mean of Mulliken's electronegativity 
of a neutral atom, which is the arithmetic mean of the electron affinity and the first ionization 
energy. 

e ECB was estimated from the equation, ECB = −4.44 + X – 0.5 Eg. 

  



 

 S7

 

 

Figure S1.  Schematic diagram of the experimental apparatus for the photocatalytic reaction. 
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Figure S2.  SEM images of Ga2O3 powder (99.99%, Kojundo Chemical Laboratory). 
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Figure S3.  XRD patterns of the commercial metal oxide powders. 
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Figure S4.  Diffuse reflectance UV-visible spectra of the commercial metal oxide powders. The 

reflectance (R) was measured with respect to BaSO4. Kubelka-Munk function, f(R), is converted 

from the R by the following equation. 

𝑓ሺ𝑅ሻ ൌ
ሺ1 െ 𝑅ሻଶ

2𝑅
ሺ2ሻ 
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Figure S5.  Bandgap (Eg) and proposed band alignment of metal oxide samples. The Eg was 

obtained from the diffuse reflectance UV-visible spectra. The conduction band minimum (ECB) 

was estimated from the Eg and the electronegativity (X) of the oxide using the equation, ECB = 

−4.44 + X – 0.5 Eg. The valence band maximum (EVB) was determined from the ECB and the Eg. 

  

-2

-1

0

1

2

3

4

5
Y Tia Tib Zr Nb Ta W Zn Ga In Ge Sn

P
o

te
nt

ia
l /

 V
 v

s.
 S

H
E

Y2O3

ST-01 P25

ZrO
2

Nb2O5
Ta2O5

WO3

ZnO Ga2O3

In2O3

GeO2

SnO2

5.55

3.23 3.05

5.07

3.07
3.85

2.66

3.21

4.56

2.73
5.93

2.69 ECB

EVB



 

 S12

 

Figure S6.  Effect of Pt loading on the H2 formation rate over Pt/Ga2O3 (100 mg) under 254-nm 

UV irradiation (33 mW cm−2) for 5 min and 65 min. The precursor was H2PtCl6. The amount of 

Pt loading was controlled by the concentration of the precursor solution in the IWI method. The 

right-side figure is the enlargement of the region of low Pt loading. The photocatalytic reaction 

was performed at total pressure (Ptotal) =101 kPa with CH4/H2O/Ar = 10/3/88. 
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Figure S7.  Effect of Pt loading on the H2 formation rate over Pt/Ga2O3 (100 mg) under 254-nm 

UV irradiation (33 mW cm−2) for 5 min and 65 min. The precursor was Pt(NH3)4Cl2. The 

photocatalytic reaction was performed at Ptotal =101 kPa with CH4/H2O/Ar = 10/3/88. 
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Figure S8.  Time course of the production rates of H2, O2, and CO2 with 0.1wt% Pt/Ga2O3 (100 

mg) in the photocatalytic CH4 conversion under UV light irradiation (254 nm, 33 mW cm−2). 

Total pressure (Ptotal) =101 kPa. CH4/H2O/Ar = 10/3/88. Photoirradiation was performed for the 

long term (1–23 h time on stream). 
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Figure S9.  Time course of the production rate of H2 with 0.02wt% Pt/Ga2O3 (100 mg) in the 

photocatalytic CH4 conversion under UV light irradiation (254 nm, 33 mW cm−2). Total pressure 

(Ptotal) =101 kPa. CH4/H2O/Ar = 10/3/88. Photoirradiation was repeatedly performed two times 

(60–180 and 300–420 min time on stream). 
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Figure S10.  Time courses of the formation rate of (a) C2H6, (b) H2, (c) CO2, (d) O2, and (e) CO 

over Pt/Ga2O3 at different pressure of CH4, P(CH4) = 50, 100, 150, 200, and 300 kPa. P(H2O) = 

3 kPa. UV light (254 nm, 15 mW cm−2) was irradiated at 25 °C for 3 h (60–240 min time on 

stream). 
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Figure S11.  Effect of P(CH4) on the apparent quantum efficiency (AQE) of Pt/Ga2O3 under 

254-nm irradiation for H2 evolution from CH4 in the presence of H2O (3 kPa). 
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Figure S12. Effect of P(CH4) on the stoichiometry of the products by Pt/Ga2O3 under 254-nm 

irradiation. Assuming dehydrogenative reactions, the production of 1 mol of C2H6, O2, CO, and 

CO2 is accompanied by the production of 1 mol, 2 mol, 3 mol, and 4 mol of H2, respectively. The 

sum of each oxidized product multiplied by the stoichiometric coefficient should be equal to the 

produced H2. The errors in the material balance were about 10% at P(CH4) > 100 kPa. The 

deviations from the theoretical value at P(CH4) = 10 and 50 kPa are because CO was not 

quantified in this region due to the issue in the resolution of GC analysis. The proposed schemes 

of dehydrogenative reactions are described as follows. 

2CH4 → C2H6 + H2       (3) 

2H2O → O2 + 2H2       (4) 

CH4 + H2O → CO + 3H2      (5) 

CH4 + 2H2O → CO2 + 4H2      (6) 
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Figure S13.  TG-DTA curves of 0.1 wt% Pt/Ga2O3 before and after the photocatalytic reaction. 

The dashed and solid curves show the results of the fresh and the used Pt/Ga2O3, respectively. 

The measurement was performed under air. The weight loss of the used sample associated with 

the exotherm suggests the formation of carbon species during the photocatalytic reaction. 
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Figure S14.  ESR spectra of Ga2O3 powder with (a) 10 kPa He and (b) 10 kPa CH4 in a glass 

tube at −196 °C. The Ga2O3 was pretreated by evacuation at room temperature for 30 min. The 

dashed and solid curves show the spectra in the dark and after 248-nm UV irradiation for 1 min. 
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Figure S15.  ESR spectra of the dehydrated Ga2O3 powder in (a) 10 kPa He and (b) 10 kPa CH4 

at −196 °C. The Ga2O3 was pretreated by evacuation at 200 °C for 30 min. The dashed and solid 

curves show the spectra in the dark and after 248-nm UV irradiation for 1 min. 
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Figure S16.  Effect of light intensity on the rates of product formation over 0.1 wt% Pt/Ga2O3. 

The photocatalytic reaction was performed under 254-nm UV irradiation at Ptotal of 203 kPa 

(CH4/H2O = 200/3).  
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Figure S17.  Diffuse reflectance UV-visible spectra of Ga2O3, 0.1 wt% Pt/Ga2O3 (fresh sample), 

and the 0.1 wt% Pt/Ga2O3 after photocatalytic reaction (used sample). The reflectance of the 

Pt/Ga2O3 was uniformly decreased at wavelengths longer than the interband transition after the 

photocatalytic reaction. The broad absorption of the used Pt/Ga2O3 suggests the formation of 

platinum metal nanoparticles. 
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Figure S18.  TEM images of (a) fresh Pt/Ga2O3 and (b) Pt/Ga2O3 after the photocatalytic CH4 

conversion. The right-side image is the enlargement of the area enclosed by the white dashed 

square in the left side image. 


