Electronic Supplementary Information (ESI)

Pressure-induced Dehydrogenative Coupling of Methane to Ethane by Platinum-loaded Gallium Oxide Photocatalyst

Fumiaki Amano,^{1,2,*} Chiho Akamoto,¹ Mizuki Ishimaru,¹ Satoshi Inagaki,^{2,3} and Hisao Yoshida^{4,5}

¹ Department of Chemical and Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan.

² Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.

³ Division of Materials Science and Chemical Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.

⁴ Graduate School of Human and Environmental Studies, Kyoto University, Yoshidanihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan.

⁵ Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8520, Japan.

* E-mail: amano@kitakyu-u.ac.jp

1. Experimental details

1.1 Preparation of photocatalysts

TiO₂ ST-01 and TiO₂ P 25 were supplied from Ishihara Sangyo (Japan) and Nippon Aerosil (Japan), respectively. Y₂O₃, Nb₂O₅, Ta₂O₅, WO₃, ZnO, Ga₂O₃, GeO₂, and SnO₂ were purchased from Kojundo Chemical Laboratory (Japan). ZrO₂ and In₂O₃ were purchased from Wako Pure Chemicals (Japan). Hydrogen hexachloroplatinate(IV) hexahydrate (H₂PtCl₆•6H₂O) and tetraamineplatinum(II) chloride monohydrate (Pt(NH₃)₄Cl₂•H₂O) were purchased from Kanto Chemical (Japan).

Platinum cocatalyst was loaded on the oxide powder using an incipient wetness impregnation (IWI) method. The IWI is a conventional method to prepare highly dispersed metal-supported catalysts using a capillary action process. The powder (1.5 g) was mixed with an aqueous solution of H₂PtCl₆ (8.5 mmol L⁻¹, 900 µL, 0.1 wt% as Pt) and dried at 100 °C for 1 h. All of the supplied H₂PtCl₆ is deposited on the Ga₂O₃ surface after the evaporation to dryness. During photocatalytic reactions, the adsorbed Pt⁴⁺ species is quickly reduced to Pt⁰ by photoexcited electrons since it is a strong electron acceptor (PtCl₆²⁻ + 4e⁻ \rightarrow Pt + 6Cl⁻ E = 0.74 V vs. SHE). Therefore, Pt loaded metal oxide such as Pt/Ga₂O₃ can be formed under the photocatalytic reactions. We also tested Pt(NH₃)₄Cl₂ as a precursor for Pt cocatalyst. Pt²⁺ is also easily reduced by photoexcited electrons (Pt²⁺ + 2e⁻ \rightarrow Pt E = 1.19 V vs. SHE). The in-situ formation of Pt metal is guaranteed by the continuous H₂ evolution under photoirradiation.

1.2 Photocatalytic reaction

The photocatalyst powder (50 mg) was coated on a square area (5 cm \times 5 cm) of a glass plate using water and dried at room temperature. The photocatalyst coated on the glass substrate was

installed in a home-made stainless-steel reactor with a quartz window (5 cm \times 5 cm). The distance between the glass substrate and the quartz window is about 0.25 mm, which is the thickness of a rubber gasket. The feed gas was ultra-high purity CH₄ (99.9995%) and Ar (> 99.995%). The total flow rate was controlled to 20 mL min⁻¹ by mass flow controllers. Water vapor was introduced through a bubbler filled with deionized water at 25 °C. The pressure of water vapor was obtained from the dew point measured by a humidity transmitter (EE33, E+E Elektronik, Austria). A back-pressure valve was used to regulate the total pressure higher than 1 atm.

The light source was a 40-W low-pressure mercury lamp (wavelength 254 nm, Asumi Giken, Japan). The irradiance was measured by an optical power meter with a sensor for low-pressure mercury lamps (C9536 and H9535-254, Hamamatsu Photonics, Japan). The temperature of the reactor was cooled to 25 °C by a thermoelectric cooling device. The reactants and products were analyzed by online GC-8A gas chromatographs (Shimadzu, Japan) equipped with a thermal conductivity detector (TCD) and a flame ionization detector (FID). The column of MS-5A, Shincarbon ST, and Porapak-Q was used with a carrier of He, Ar, and N₂, respectively. The gas from the outlet was collected by GS5100 automatic gas samplers (GL Sciences, Japan).

1.3 Characterization

X-ray diffraction (XRD) measurement was carried out on a SmartLab diffractometer (Rigaku, Japan) using Cu Kα radiation. Scanning electron microscope (SEM) image was taken on JSM-7800F (JEOL, Japan). Transmission electron microscope (TEM) image was taken on JEM-3010 (JEOL, Japan) at 200 kV. Nitrogen adsorption isotherm was measured at -196 °C using a BELSORP-mini (Bel Japan, Japan) after evacuation at 200 °C for 2 h. Diffuse reflectance UV-

Vis spectrum was recorded on a UV-2600 spectrometer (Shimadzu, Japan) with an integrating sphere by using BaSO₄ powder as a reference. Thermogravimetry–differential thermal analysis (TG–DTA) was performed under air at a heating rate of 10 °C min⁻¹ using a Thermo plus TG8120 (Rigaku, Japan).

Electron spin resonance (ESR) spectrum was recorded on JES-FA200 (JEOL, Japan). The sample powder (200 mg) was pre-evacuated at 25 °C or 200 °C for 30 min. The measurement was performed by soaking the sample tube in liquid nitrogen (-196 °C). The sample was irradiated by UV light emitted from a 300-W xenon lamp (Asahi Spectra, Japan) with a bandpass filter (center wavelength 248 nm).

Sample	Supplier	Purity	Crystal system	Crystalline diameter ^c (nm)	XRD peak ^d
Y ₂ O ₃	Kojundo ^a	0.9999	Cubic 49		(222)
TiO ₂ (ST-01)	Ishihara Sangyo		Tetragonal8(Anatase)		Anatase (101)
TiO ₂ (P 25)	Nippon Aerosil		Tetragonal (Anatase, Rutile)	22	Anatase (101)
ZrO ₂	Wako ^b	0.98	Monoclinic	45	(-111)
Nb ₂ O ₅	Kojundo ^a	0.9999	Monoclinic	95	(110)
Ta ₂ O ₅	Kojundo ^a	0.999	Orthorhombic	279	(001)
WO ₃	Kojundo ^a	0.9999	Monoclinic, triclinic	113	(002)
ZnO	Kojundo ^a	0.9999	Hexagonal (Zincite)	190	(100)
Ga ₂ O ₃	Kojundo ^a	0.999	Monoclinic (β-Ga ₂ O ₃)	34	(002)
In ₂ O ₃	Wako ^b	0.999	Cubic	55	(222)
GeO ₂	Kojundo ^a	0.999997	Hexagonal	58	(101)
SnO ₂	Kojundo ^a	0.9999	Tetragonal	35	(110)

Table S1. Physical properties of metal oxide samples

^a Kojundo Chemical Laboratory

^b Wako Pure Chemical

^c Crystalline diameter was estimated from the full width at the half-maximum (FWHM) of the XRD peak by using the Scherrer equation.

^d Crystal lattice plane of the XRD peak for analysis of the crystalline diameter.

Sample	$S_{\rm BET} a ({\rm m}^2 {\rm g}^{-1})$	2 <i>r</i> ^{<i>b</i>} (nm)	$E_{\rm g}^{\ c} ({\rm eV})$	$X^{d}(eV)$	$E_{\rm CB} ^{e}$ (V vs. SHE)
Y ₂ O ₃	12.9	92	5.55	5.39	-1.82
TiO ₂ (ST-01)	302.3	5	3.23	5.81	-0.24
TiO ₂ (P 25)	50.7	30	3.05	5.81	-0.15
ZrO ₂	9.6	107	5.07	5.85	-1.12
Nb ₂ O ₅	2.4	559	3.07	6.21	0.24
Ta ₂ O ₅	1.7	388	3.85	6.26	-0.10
WO ₃	4.3	194	2.66	6.57	0.80
ZnO	3.4	309	3.21	5.95	-0.09
Ga ₂ O ₃	10.4	97	4.56	5.36	-1.36
In ₂ O ₃	2.7	311	2.73	5.25	-0.56
GeO ₂	1.9	724	5.93	6.38	-1.03
SnO ₂	11.0	78	2.69	6.22	0.43

Table S2. BET specific surface area (S_{BET}), average particle size (2r), optical band gap (E_g), electronegativity (X), and conduction band minimum (E_{CB}) of metal oxide samples.

^{*a*} S_{BET} was determined from the N₂ adsorption isotherm.

^b The average particle size was calculated from S_{BET} and the density (ρ) of the main crystalline component in the oxide powder, hypothetically assuming that the particles are spherical with radius (r).

$$2r = \frac{6}{S_{\text{BET}} \times \rho} \tag{1}$$

^{*c*} E_g was determined from the diffuse reflectance UV-visible spectra.

 d The X of metal oxide was obtained from the geometric mean of Mulliken's electronegativity of a neutral atom, which is the arithmetic mean of the electron affinity and the first ionization energy.

^{*e*} E_{CB} was estimated from the equation, $E_{CB} = -4.44 + X - 0.5 E_g$.

Figure S1. Schematic diagram of the experimental apparatus for the photocatalytic reaction.

Figure S2. SEM images of Ga₂O₃ powder (99.99%, Kojundo Chemical Laboratory).

Figure S3. XRD patterns of the commercial metal oxide powders.

Figure S4. Diffuse reflectance UV-visible spectra of the commercial metal oxide powders. The reflectance (R) was measured with respect to BaSO₄. Kubelka-Munk function, f(R), is converted from the R by the following equation.

$$f(R) = \frac{(1-R)^2}{2R}$$
(2)

Figure S5. Bandgap (E_g) and proposed band alignment of metal oxide samples. The E_g was obtained from the diffuse reflectance UV-visible spectra. The conduction band minimum (E_{CB}) was estimated from the E_g and the electronegativity (X) of the oxide using the equation, $E_{CB} = -4.44 + X - 0.5 E_g$. The valence band maximum (E_{VB}) was determined from the E_{CB} and the E_g .

Figure S6. Effect of Pt loading on the H₂ formation rate over Pt/Ga₂O₃ (100 mg) under 254-nm UV irradiation (33 mW cm⁻²) for 5 min and 65 min. The precursor was H₂PtCl₆. The amount of Pt loading was controlled by the concentration of the precursor solution in the IWI method. The right-side figure is the enlargement of the region of low Pt loading. The photocatalytic reaction was performed at total pressure (P_{total}) =101 kPa with CH₄/H₂O/Ar = 10/3/88.

Figure S7. Effect of Pt loading on the H₂ formation rate over Pt/Ga₂O₃ (100 mg) under 254-nm UV irradiation (33 mW cm⁻²) for 5 min and 65 min. The precursor was Pt(NH₃)₄Cl₂. The photocatalytic reaction was performed at $P_{\text{total}} = 101$ kPa with CH₄/H₂O/Ar = 10/3/88.

Figure S8. Time course of the production rates of H₂, O₂, and CO₂ with 0.1wt% Pt/Ga₂O₃ (100 mg) in the photocatalytic CH₄ conversion under UV light irradiation (254 nm, 33 mW cm⁻²). Total pressure (P_{total}) =101 kPa. CH₄/H₂O/Ar = 10/3/88. Photoirradiation was performed for the long term (1–23 h time on stream).

Figure S9. Time course of the production rate of H₂ with 0.02wt% Pt/Ga₂O₃ (100 mg) in the photocatalytic CH₄ conversion under UV light irradiation (254 nm, 33 mW cm⁻²). Total pressure (P_{total}) =101 kPa. CH₄/H₂O/Ar = 10/3/88. Photoirradiation was repeatedly performed two times (60–180 and 300–420 min time on stream).

Figure S10. Time courses of the formation rate of (a) C_2H_6 , (b) H_2 , (c) CO_2 , (d) O_2 , and (e) CO over Pt/Ga₂O₃ at different pressure of CH₄, $P(CH_4) = 50$, 100, 150, 200, and 300 kPa. $P(H_2O) = 3$ kPa. UV light (254 nm, 15 mW cm⁻²) was irradiated at 25 °C for 3 h (60–240 min time on stream).

Figure S11. Effect of $P(CH_4)$ on the apparent quantum efficiency (AQE) of Pt/Ga₂O₃ under 254-nm irradiation for H₂ evolution from CH₄ in the presence of H₂O (3 kPa).

Figure S12. Effect of $P(CH_4)$ on the stoichiometry of the products by Pt/Ga₂O₃ under 254-nm irradiation. Assuming dehydrogenative reactions, the production of 1 mol of C₂H₆, O₂, CO, and CO₂ is accompanied by the production of 1 mol, 2 mol, 3 mol, and 4 mol of H₂, respectively. The sum of each oxidized product multiplied by the stoichiometric coefficient should be equal to the produced H₂. The errors in the material balance were about 10% at $P(CH_4) > 100$ kPa. The deviations from the theoretical value at $P(CH_4) = 10$ and 50 kPa are because CO was not quantified in this region due to the issue in the resolution of GC analysis. The proposed schemes of dehydrogenative reactions are described as follows.

$$2CH_4 \rightarrow C_2H_6 + H_2 \tag{3}$$

$$2H_2O \rightarrow O_2 + 2H_2 \tag{4}$$

$$CH_4 + H_2O \rightarrow CO + 3H_2 \tag{5}$$

$$CH_4 + 2H_2O \rightarrow CO_2 + 4H_2 \tag{6}$$

Figure S13. TG-DTA curves of 0.1 wt% Pt/Ga₂O₃ before and after the photocatalytic reaction. The dashed and solid curves show the results of the fresh and the used Pt/Ga₂O₃, respectively. The measurement was performed under air. The weight loss of the used sample associated with the exotherm suggests the formation of carbon species during the photocatalytic reaction.

Figure S14. ESR spectra of Ga₂O₃ powder with (a) 10 kPa He and (b) 10 kPa CH₄ in a glass tube at -196 °C. The Ga₂O₃ was pretreated by evacuation at room temperature for 30 min. The dashed and solid curves show the spectra in the dark and after 248-nm UV irradiation for 1 min.

Figure S15. ESR spectra of the dehydrated Ga₂O₃ powder in (a) 10 kPa He and (b) 10 kPa CH₄ at -196 °C. The Ga₂O₃ was pretreated by evacuation at 200 °C for 30 min. The dashed and solid curves show the spectra in the dark and after 248-nm UV irradiation for 1 min.

Figure S16. Effect of light intensity on the rates of product formation over 0.1 wt% Pt/Ga₂O₃. The photocatalytic reaction was performed under 254-nm UV irradiation at P_{total} of 203 kPa (CH₄/H₂O = 200/3).

Figure S17. Diffuse reflectance UV-visible spectra of Ga₂O₃, 0.1 wt% Pt/Ga₂O₃ (fresh sample), and the 0.1 wt% Pt/Ga₂O₃ after photocatalytic reaction (used sample). The reflectance of the Pt/Ga₂O₃ was uniformly decreased at wavelengths longer than the interband transition after the photocatalytic reaction. The broad absorption of the used Pt/Ga₂O₃ suggests the formation of platinum metal nanoparticles.

Figure S18. TEM images of (a) fresh Pt/Ga₂O₃ and (b) Pt/Ga₂O₃ after the photocatalytic CH₄ conversion. The right-side image is the enlargement of the area enclosed by the white dashed square in the left side image.