Supporting Information

Facile assembly of three cycloalkyne-modules onto a platform compound bearing thiophene *S*,*S*-dioxide moiety and two azido groups

Tomohiro Meguro, Yuki Sakata, Takamoto Morita, Takamitsu Hosoya, and Suguru Yoshida*

Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan

Contents	
General Remarks	S1
Experimental Procedures	S2
Characterization Data of New Compounds	S20
References for Supporting Information	S31
¹ H and ¹³ C NMR Spectra of Compounds	S32

General Remarks

All reactions were performed with dry glassware under atmosphere of argon, unless otherwise noted. Analytical thin-layer chromatography (TLC) was performed on precoated (0.25 mm) silica-gel plates (Merck Chemicals, Silica Gel 60 F254, Cat. No. 105715). Column chromatography was conducted using silica-gel (Kanto Chemical Co., Inc., Silica Gel 60N, spherical neutral, particle size 40-50 µm). Preparative thin-layer chromatography (PTLC) was performed on silica-gel (Wako Pure Chemical Industries Ltd., Wakogel B5-F, Cat. No. 230-00043). Melting points (Mp) were measured on an OptiMelt MPA100 (Stanford Research Systems), and are uncorrected. ¹H NMR spectra were obtained with a Bruker AVANCE 500 spectrometer at 500 MHz. ¹³C NMR spectra were obtained with a Bruker AVANCE 500 spectrometer at 126 MHz. CDCl₃ (Kanto Chemical Co., Inc, Cat. No.07663-23) was used as a solvent for obtaining NMR spectra. Chemical shifts (δ) are given in parts per million (ppm) downfield from (CH₃)₄Si (δ 0.00 for ¹H NMR in CDCl₃) or the solvent peak (δ 77.0 for ¹³C NMR in CDCl₃) as an internal reference with coupling constants (*J*) in hertz (Hz). The abbreviations s, d, t, q, m, and br signify singlet, doublet, triplet, quartet, multiplet, and broad, respectively. IR spectra were measured by diffuse reflectance method on a Shimadzu IRPrestige-21 spectrometer attached with DRS-8000A with the absorption band given in cm⁻¹. High-performance liquid chromatography (HPLC) was performed on a Shimadzu Prominence HPLC system (CBM-20A lite, LC-20AD × 2, DGU-20A3R, SUS316L, and CTO-20A) equipped with a Shimadzu SPD-20A UV/Vis detector. High-resolution mass spectra (HRMS) were measured on a Bruker micrOTOF mass spectrometer under positive electrospray ionization $(ESI^{+}).$

CAUTION! Azido-containing compounds are presumed to be potentially explosive. Although we have never experienced such an explosion with azido compounds used in this study, all manipulations should be carefully carried out behind a safety shield in a hood.

Experimental Procedures

Conjugation of thiophene dioxide 7 with cyclooctyne 8

To a solution of 3-(4-(4-(azidomethyl)benzoyl)piperazin-1-yl)-2,4,5-trichlorothiophene *S*,*S*-dioxide (7) (23.1 mg, 49.9 µmol) dissolved in CH₂Cl₂ (1.0 mL) was added 5,6-didehydro-11,12-dihydrodibenzo[*a*,*e*]cyclooctene (8) (10.1 mg, 49.4 µmol) at room temperature. After stirring for 24 h at the same temperature, the mixture was concentrated under reduced pressure. The residue was purified by preparative TLC (EtOAc/*n*-hexane = 3/1) to give 3-(4-(4-(8,9-dihydro-1*H*-dibenzo[3,4:7,8]cycloocta[1,2-*d*][1,2,3]triazol-1-yl)methyl)benzoyl)piperazin-1-yl)-2,4,5-tetrachlorothiophene *S*,*S*-dioxide (9) (29.8 mg, 44.7 µmol, 90%) as a yellow solid.

Competition experiment using azides 10a and 10b with cyclooctyne 8

To a mixture of benzyl azide (**10a**) (13.2 mg, 99.1 µmol) and cyclohexyl azide (**10b**) (12.4 mg, 99.1 µmol) dissolved in CH₂Cl₂ (1.0 mL) was added 5,6-didehydro-11,12-dihydrodibenzo[*a*,*e*]cyclooctene (**8**) (20.2 mg, 98.9 µmol) at room temperature. After stirring for 24 h at the same temperature, the mixture was concentrated under reduced pressure. To the residue was added 1,1,2,2-tetrachloroethane (18.0 mg, 0.104 mmol) as an internal standard, dissolved in CDCl₃, and ¹H NMR analysis (400 MHz) was performed. Yield of **11a** + **11b** was determined to be quantitative (**11a**:**11b** = 60:40), by comparing the relative values of integration for the peaks observed at 5.56 ppm (s, 2H) for **11a** and 4.17–4.23 (m, 1H) for **11b** with that of 1,1,2,2-tetrachloroethane observed at 5.95 ppm (s, 2H).

Competition experiment using azides 10a and 10c with cyclooctyne 8

To a mixture of benzyl azide (10a) (13.2 mg, 99.1 µmol) and 2-azidoadamantane (10c) (17.7 mg, 99.9 µmol) dissolved in CH₂Cl₂ (1.0 mL) was added 5,6-didehydro-11,12-dihydrodibenzo[*a*,*e*]cyclooctene (8) (20.2 mg, 98.9 µmol) at room temperature. After stirring for 24 h at the same temperature, the mixture was concentrated under reduced pressure. To the residue was added 1,1,2,2-tetrachloroethane (16.0 mg, 92.5 µmol) as an internal standard, dissolved in CDCl₃, and ¹H NMR analysis (400 MHz) was performed. Yield of 11a + 11c was determined to be quantitative (11a:11c = 89:11), by comparing the relative values of integration for the peaks observed at 5.56 ppm (s, 2H) for 11a and 4.66 ppm (s, 1H) for 11c with that of 1,1,2,2-tetrachloroethane observed at 5.95 ppm (s, 2H).

Competition experiment using azides 10a and 10d with cyclooctyne 8

To a mixture of benzyl azide (10a) (13.3 mg, 99.9 μ mol) and 1-azidoadamantane (10d) (17.8 mg, 0.100 mmol) dissolved in CH₂Cl₂ (1.0 mL) was added 5,6-didehydro-11,12-dihydrodibenzo[*a,e*]cyclooctene (8) (20.2 mg, 98.9 μ mol) at room temperature. After stirring for 24 h at the same temperature, the mixture was concentrated under reduced pressure. To the residue was added 1,1,2,2-tetrachloroethane (15.7 mg, 90.7 μ mol) as an internal standard, dissolved in CDCl₃, and ¹H NMR analysis (400 MHz) was performed. Yield of 11a + 11d was determined to be 97% (11a:11d = 100:0), by comparing the relative values of integration for the peaks observed at 5.56 ppm (s, 2H) for 11a with that of 1,1,2,2-tetrachloroethane observed at 5.95 ppm (s, 2H).

Competition experiment using azide 10d and thiophene dioxide 12 with cyclooctyne 8

To a mixture of 1-azidoadamantane (**10d**) (13.4 mg, 75.6 μ mol), 3-(4-(*tert*-butoxycarbonyl)piperazin-1-yl)-2,4,5-trichlorothiophene *S*,*S*-dioxide (**12**) (30.3 mg, 75.1 μ mol) and 1,1,2,2-tetrachloroethane (18.3 mg, 0.106 mmol) as an internal standard, dissolved in CDCl₃ (1.0 mL) was added 5,6-didehydro-11,12-dihydrodibenzo[*a*,*e*]cyclooctene (**8**) (15.2 mg, 74.4 μ mol) dissolved in CDCl₃ (0.50 mL) at room temperature. After stirring for 24 h at the same temperature, the mixture was transferred into an NMR tube, and the ¹H NMR analysis (500 MHz) was performed. Yields of **11d** and **13** was determined to be 99% and 0% by comparing the relative values of integration for the peaks observed at 7.40–7.42 (m, 1H) for **11d** with that of 1,1,2,2-tetrachloroethane observed at 5.95 ppm (s, 2H).

Competition experiment using azide 10d and thiophene dioxide 12 with cycloalkyne 14

To a mixture of 1-azidoadamantane (**10d**) (13.4 mg, 75.1 μ mol), 3-(4-(*tert*-butoxycarbonyl)piperazin-1-yl)-2,4,5-trichlorothiophene *S*,*S*-dioxide (**12**) (30.3 mg, 75.6 μ mol) and 1,1,2,2-tetrachloroethane (17.4 mg, 0.101 mmol) as an internal standard, dissolved in CDCl₃ (1.0 mL) was added 4,8-ditosyl-4,8-diazacyclononyne (**14**) (32.4 mg, 74.9 μ mol) dissolved in CDCl₃ (0.50 mL) at room temperature. After stirring for 24 h at the same temperature, the mixture was transferred into an NMR tube, and the ¹H NMR analysis (400 MHz) was performed. Yields of **15** and **16** was determined to be 97% and 0% by comparing the relative values of integration for the peaks observed at 4.92 (s, 2H) for **15** with that of 1,1,2,2-tetrachloroethane observed at 5.95 ppm (s, 2H).

Synthesis of 1-(3-azidoadamantane-1-carboxamido)-3-azidomethyl-5-methoxycarbonylbenzene (20)

To a mixture of compound **18** (136 mg, 0.660 mmol) and 3-azidoadamantane-1-carboxylic acid (**19**) (171 mg, 0.773 mmol) dissolved in CH₂Cl₂ (5.0 mL) was added 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide hydrochloride (EDC·HCl) (153 mg, 0.798 mmol) and 4-(dimethylamino)pyridine (DMAP) (94.0 mg, 0.769 mmol) at room temperature. After stirring for 40 h at the same temperature, the mixture was concentrated under reduced pressure. The residue was added Et₂O (20 mL) and H₂O (20 mL). The mixture was extracted with Et₂O (20 mL × 2), and the combined organic extract was washed with brine (20 mL), dried (Na₂SO₄), and after filtration, the filtrate was concentrated under reduced pressure. The residue was concentrated under reduced pressure. The residue was purified by column chromatography (silica-gel 10 g, *n*-hexane/EtOAc = 1/1) to give 1-(3-azidoadamantane-1-carboxamido)-3-azidomethyl-5-methoxycarbonylbenzene (**20**) (221 mg, 0.540 mmol, 82%) as a colorless oil.

Synthesis of 1-(3-azidoadamantane-1-carboxamido)-3-azidomethyl-5-(4-(tert-butoxycarbonyl) piperazin-1-yl)carbonylbenzene 22

To a solution of compound **20** (227 mg, 0.554 mmol) in THF (2.0 mL) and MeOH (2.0 mL) was added aqueous 1.0 M NaOH (1.0 mL) at 0 °C. After gradually warming to room temperature, the mixture was stirred for 14 h, and to this was added 1 M HCl. The mixture was extracted with EtOAc ($20 \text{ mL} \times 3$), and the combined

organic extract was washed with brine (20 mL), dried (Na₂SO₄), and after filtration, the filtrate was concentrated under reduced pressure.

Without further purification the carboxylic acid was dissolved in CH_2Cl_2 (2.0 mL) and DMF (1 drop). To the solution was added (COCl)₂ (86.0 μ L, 1.00 mmol) at 0 °C. After gradually warming to room temperature, the mixture was stirred for 2 h, and then concentrated under reduced pressure.

Without further purification the benzoyl chloride was dissolved in CH_2Cl_2 (2.0 mL). To the solution was added *N*-Boc-piperazine **21** (398 mg 2.14 mmol) at room temperature, and the mixture was stirred for 12 h at the same temperature. The mixture was concentrated under reduced pressure. The residue was purified by column chromatography (silica-gel 20 g, EtOAc/*n*-hexane = 2/1 to 3/1) to give 1-(3-azidoadamantane-1-carboxamido)-3-azidomethyl-5-(4-(*tert*-butoxycarbonyl)piperazin-1-yl)carbonylbenzene (**22**) (270 mg, 0.479 mmol, 87% in 3 steps from **20**) as a colorless amorphous solid.

Synthesis of platform 24

To a solution of compound **22** (46.3 mg, 82.1 μ mol) dissolved in CH₂Cl₂ (1.0 mL) was carefully added trifluoroacetic acid (0.70 mL) at 0 °C. After gradually warming to room temperature, the mixture was stirred for 7 h. After cooling down to 0 °C, aqueous saturated NaHCO₃ (20 mL) was added the reaction mixture. The mixture was extracted with CH₂Cl₂ (20 mL × 3), and the combined organic extract was washed with brine (20 mL), dried (Na₂SO₄), and after filtration, the filtrate was concentrated under reduced pressure.

Without further purification the resulting mixture was dissolved in CH₂Cl₂ (1.0 mL). To the solution was added 2,3,4,5-tetrachlorothiophene *S*,*S*-dioxide (**23**) (60.9 mg, 0.240 mmol) dissolved in CH₂Cl₂ (1.0 mL) and triethylamine (11.0 μ L, 78.7 μ mol) at room temperature. After stirring for 6 h at the same temperature, the mixture was concentrated under reduced pressure. The residue was purified by preparative TLC (EtOAc/*n*-hexane = 2/1) to give the product **24** (45.6 mg, 67.0 μ mol, 82% in 2 steps from **22**) as a yellow solid.

A procedure for the reaction of platform 24 with cyclooctyne 8

To a solution of platform molecule **24** (14.4 mg, 21.1 μ mol) dissolved in CH₂Cl₂ (1.0 mL) was added 5,6didehydro-11,12-dihydrodibenzo[*a,e*]cyclooctene (**8**) (3.09 mg, 15.1 μ mol) at room temperature. After stirring for 24 h at the same temperature, the mixture was concentrated under reduced pressure. The residue was purified by preparative TLC (EtOAc/*n*-hexane = 3/1) to give platform–DBCO conjugate **S1** (12.6 mg, 14.2 μ mol, 94%) as a yellow solid. A procedure for the reaction of platform–DBCO conjugate S1 with cycloalkyne 14

To a solution of platform–DBCO conjugate **S1** (9.25 mg, 10.4 µmol) dissolved in CH₂Cl₂ (0.20 mL) was added 4,8-ditosyl-4,8-diazacyclononyne (14) (4.33 mg, 10.0 µmol) at room temperature. The mixture was stirred at 40 °C for 24 h. After cooling to room temperature, the mixture was concentrated under reduced pressure. The residue was purified by preparative TLC (CH₂Cl₂/MeOH = 15/1) to give platform–DBCO–DACN conjugate **S2** (12.9 mg, 9.79 µmol, 98%) as a yellow solid.

A procedure for the reaction of platform–DBCO–DACN conjugate S2 with cycloalkyne 25

To a solution of platform–DBCO–DACN conjugate **S2** (5.4 mg, 4.1 µmol) dissolved in CH₂Cl₂ (0.20 mL) was added (1α , 8α , 9α)-bicyclo[6.1.0]non-4-yn-9-ylmethanol (**25**) (0.81 mg, 5.4 µmol) at room temperature. After stirring for 24 h at the same temperature, the mixture was concentrated under reduced pressure. The residue was purified by preparative TLC (CH₂Cl₂/MeOH = 15/1) to give platform–DBCO–DACN–BCN conjugate **26** (5.3 mg, 3.8 µmol, 92%) as a colorless solid.

HPLC analysis of the sequential cycloaddition reaction in a one-pot manner

To a solution of platform molecule **24** (7.49 mg, 11.0 µmol) dissolved in CH₂Cl₂ (0.20 mL) was added 5,6didehydro-11,12-dihydrodibenzo[*a,e*]cyclooctene (**8**) (2.01 mg, 9.84 µmol) at room temperature. After stirring for 24 h at the same temperature, a part of the solution (0.20 µL) was analyzed by HPLC (column: *SHISEIDO* CAPCELL PAK MG II (4.6 mm × 150 mm); mobile phase: CH₃CN:H₂O = 60:40 (0–5 min), linear gradient from 60:40 to 99:1 (5–30 min); flow rate: 1.00 mL/min; detection: UV at 254 nm) (Figure S1-B).

To the remaining reaction mixture was added 4,8-ditosyl-4,8-diazacyclononyne (14) (4.78 mg, 11.1 μ mol) at room teperature. After stirring the mixture at 40 °C, a part of the solution (0.20 μ L) was analyzed by HPLC (column: *SHISEIDO* CAPCELL PAK MG II (4.6 mm × 150 mm); mobile phase: CH₃CN:H₂O = 60:40 (0–5 min), linear gradient from 60:40 to 99:1 (5–30 min); flow rate: 1.00 mL/min; detection: UV at 254 nm) (Figure S1-C).

To the remaining reaction mixture was added $(1\alpha,8\alpha,9\alpha)$ -bicyclo[6.1.0]non-4-yn-9-ylmethanol (**25**) (3.00 mg, 20.0 µmol) at room temperature. After stirring for 24 h at the same temperature, a part of the solution (0.20 µL) was analyzed by HPLC (column: *SHISEIDO* CAPCELL PAK MG II (4.6 mm × 150 mm); mobile phase: CH₃CN:H₂O = 60:40 (0–5 min), linear gradient from 60:40 to 99:1 (5–30 min); flow rate: 1.00 mL/min; detection: UV at 254 nm) (Figure S1-D). The remaining reaction mixture was concentrated under reduced pressure. The residue was purified by preparative TLC (CH₂Cl₂/EtOAc/MeOH = 7/7/1) to give platform–DBCO–DACN–BCN conjugate **26** (12.9 mg, 9.19 µmol, 93% in 3 steps) as a colorless solid.

Figure S1. (A) HPLC chart of **24**. (B) HPLC chart for the crude reaction mixture of first step. (C) HPLC chart for the crude reaction mixture of second step. (D) HPLC chart for the crude reaction mixture of third step; column: *SHISEIDO* CAPCELL PAK MG II (4.6 mm \times 150 mm); mobile phase: CH₃CN:H₂O = 60:40 (0–5 min), linear gradient from 60:40 to 99:1 (5–30 min); flow rate: 1.00 mL/min; detection: UV at 254 nm.

Preparation of authentic samples of platform-TESRA conjugates S3a and S3b

To a solution of platform molecule **24** (6.88 mg, 10.1 μ mol) dissolved in CH₂Cl₂ (0.30 mL) was added a solution of 1-(2-(2-(2-(2-(2-(2-(2-(2-(4-(3,6-bis(diethylamino)xanthylium-9-yl)-3-sulfonatobenzenesulfonamido) ethoxy)ethoxy)ethoxy)ethoxy)ethoxy)ethol -(3-(5H,6H-11,12-didehydrodibenzo[*b*,*f*]azocin-5-yl)-3-

oxopropylaminocarbonyloxymethyl)-1*H*-[1,2,3]triazole (**28a**) (8.89 mg, 9.03 µmol) at room temperature. After stirring for 24 h at the same temperature, the mixture was concentrated under reduced pressure. A part of the solution (0.20 µL) was analyzed by HPLC (Figure S2-A). The remaining residue was purified by flash column chromatography (silica-gel 4.0 g, CH₂Cl₂ only to CH₂Cl₂/EtOAc/MeOH = 7/7/1 to 5/5/1) to give platform–TESRA conjugate **S3a** (6.92 mg, 4.11 µmol, 46%) (Figure S2-B) as a purple solid and platform–TESRA conjugate **S3b** (7.29 mg, 4.33 µmol, 48%) as a purple solid (Figure S2-C).

Figure S2. (A) HPLC chart for the crude reaction mixture of **24** with **28a**; three main peaks were observed at Rt = 26.1 min (44%) for **S3a**, 26.5 min (9%) for **24** and 26.7 min (42%) for **S3b**. (B) HPLC chart of **S3a**. (C) HPLC chart of **S3b**; column: *SHISEIDO* CAPCELL PAK MG II (4.6 mm × 150 mm); mobile phase: CH₃CN:H₂O = 40:60 (0–5 min), linear gradient from 40:60 to 99:1 (5–30 min); flow rate: 1.00 mL/min; detection: UV at 254 nm.

Preparation of authentic samples of platform–TESRA–biotin conjugates S4aa, S4ab, S4ba, and S4bb

To a solution of platform–TESRA conjugate **S3a** (3.40 mg, 2.02 µmol) dissolved in CH₂Cl₂ (0.30 mL) was added 1-(2-(2-(2-(2-(biotinamido)ethoxy)ethoxy)ethoxy)ethyl)-4-(3-(4-tosyl-4,8-diazacyclononyn-8-yl carbonyl)propionylaminomethyl)-1*H*-[1,2,3]triazole (**28b**) (1.57 mg, 1.83 µmol) at room temperature. After stirring the mixture at 40 °C for 24 h, the mixture was concentrated under reduced pressure. A part of the solution (0.20 µL) was analyzed by HPLC (Figure S3-A). The remaining residue was purified by flash column chromatography (silica-gel 16 g, CH₂Cl₂ only to CH₂Cl₂/EtOAc/MeOH = 6/1/1 to 4/1/1 to 8/1/2) to give platform–TESRA–biotin conjugate **S4aa** (2.50 mg, ca. 66% purity determined by ¹H NMR analysis, ca. 0.650 µmol, ca. 36%) as a purple solid (Figure S3-B) and platform–TESRA–biotin conjugate **S4ab** (2.36 mg, ca. 62% purity determined by ¹H NMR analysis, ca. 0.576 µmol, ca. 31%) as a purple solid (Figure S3-C).

According to the procedure for the preparation of **S4aa** and **S4ab**, **S4ba** (1.78 mg, ca. 62% purity determined by ¹H NMR analysis, 0.434 μ mol, ca. 48%) (Figure S4-B) and **S4bb** (1.52 mg, ca. 66% purity determined by ¹H NMR analysis, 0.395 μ mol, ca. 44%) (Figure S4-C) were prepared using the corresponding platform–TESRA conjugate **S3b**.

Figure S3. (A) HPLC chart for the crude reaction mixture of **S3a** with **28b**; three main peaks were observed at Rt = 20.1 min (29%) for **S4aa**, 20.5 min (47%) for **S4ab** and 26.1 min (19%) for **S3a**. (B) HPLC chart of **S4aa**. (C) HPLC chart of **S4ab**; column: *SHISEIDO* CAPCELL PAK MG II (4.6 mm × 150 mm); mobile phase: CH₃CN:H₂O = 40:60 (0–5 min), linear gradient from 40:60 to 99:1 (5–30 min); flow rate: 1.00 mL/min; detection: UV at 254 nm.

Figure S4. (A) HPLC chart for the crude reaction mixture of **S3b** with **28b**; three main peaks were observed at Rt = 20.8 min (39%) for **S4ba**, 21.0 min (39%) for **S4bb** and 26.7 min (19%) for **S3b**. (B) HPLC chart of **S4ba**. (C) HPLC chart of **S4bb**; column: *SHISEIDO* CAPCELL PAK MG II (4.6 mm × 150 mm); mobile phase: CH₃CN:H₂O = 40:60 (0–5 min), linear gradient from 40:60 to 99:1 (5–30 min); flow rate: 1.00 mL/min; detection: UV at 254 nm.

To a solution of platform–TESRA–biotin **S4aa** (0.83 mg, ca. 66% purity determined by ¹H NMR analysis, ca. 0.22 μ mol,) dissolved in CH₂Cl₂ (0.30 mL) was added 4-(((1 α ,8 α ,9 α)-bicyclo[6.1.0]non-4-yn-9-ylmethoxycarbonyl)aminomethyl)-1-(4-(2-(2-(6-chlorohexoxy)ethoxy)ethylaminocarbonyl)benzyl)-1*H*-[1,2,3]triazole (**28c**) (0.33 mg, 0.54 μ mol) at room temperature. After stirring for 24 h at the same temperature, the mixture was concentrated under reduced pressure. A part of the solution (0.20 μ L) was analyzed by HPLC (Figure S5-A). The remaining residue was purified by flash column chromatography (silica-gel 1.0 g, CH₂Cl₂ only to CH₂Cl₂/MeOH = 5/1) to give platform–TESRA–biotin–HaloTag ligand conjugate **29aa** (1.02 mg, ca. 67% purity determined by ¹H NMR analysis, ca. 0.22 μ mol, ca. 100%). The product was determined by ¹H NMR, HPLC (Figure S5-B) and HRMS analyses.

According to the procedure for the preparation of **29aa**, **29ab** (1.48 mg, ca. 80% purity determined by ¹H NMR analysis, ca. 0.38 µmol, 95%) (Figure S6-B), **29ba** (1.70 mg ca. 69% purity determined by ¹H NMR analysis, 0.38 µmol, ca. 93%) (Figure S7-B), and **29bb** (1.62 mg, ca. 68% purity determined by ¹H NMR analysis, ca. 0.36 µmol, ca. 78%) (Figure S8-B) were prepared using the corresponding platform–TESRA–biotin conjugates **S4ab**, **S4ba**, and **S4bb**.

Figure S5. (A) HPLC chart for the crude reaction mixture of **S4aa** with **28c**; two peaks were observed at Rt = 20.7 min (15%) for **28c** and 24.9 min (70%) for **29aa**. (B) HPLC chart of **29aa**; column: *SHISEIDO* CAPCELL PAK MG II (4.6 mm × 150 mm); mobile phase: CH₃CN:H₂O = 40:60 (0–5 min), linear gradient from 40:60 to 99:1 (5–30 min); flow rate: 1.00 mL/min; detection: UV at 254 nm.

Figure S6. (A) HPLC chart for the crude reaction mixture of **S4ab** with **28c**; two main peaks were observed at Rt = 20.7 min (29%) for **28c** and 24.9 min (66%) for **29ab**. (B) HPLC chart of **29ab**; column: *SHISEIDO* CAPCELL PAK MG II (4.6 mm × 150 mm); mobile phase: CH₃CN:H₂O = 40:60 (0–5 min), linear gradient from 40:60 to 99:1 (5–30 min); flow rate: 1.00 mL/min; detection: UV at 254 nm.

Figure S7. (A) HPLC chart for the crude reaction mixture of **S4ba** with **28c**; two main peaks were observed at Rt = 20.7 min (20%) for **28c** and 25.5 min (55%) for **29ba**. (B) HPLC chart of **29ba**; column: *SHISEIDO* CAPCELL PAK MG II (4.6 mm × 150 mm); mobile phase: CH₃CN:H₂O = 40:60 (0–5 min), linear gradient from 40:60 to 99:1 (5–30 min); flow rate: 1.00 mL/min; detection: UV at 254 nm.

Figure S8. (A) HPLC chart for the crude reaction mixture of **S4bb** with **28c**; two main peaks were observed at Rt = 20.7 min (14%) for **28c** and 25.5 min (79%) for **29bb**. (B) HPLC chart of **29bb**; column: *SHISEIDO* CAPCELL PAK MG II (4.6 mm × 150 mm); mobile phase: CH₃CN:H₂O = 40:60 (0–5 min), linear gradient from 40:60 to 99:1 (5–30 min); flow rate: 1.00 mL/min; detection: UV at 254 nm.

A procedure for the reaction of platform 24 with cyclooctyne 28a

oxopropylaminocarbonyloxymethyl)-1*H*-[1,2,3]triazole (**28a**) (1.87 mg, 1.90 µmol) at room temperature. After stirring for 24 h at the same temperature, the mixture was concentrated under reduced pressure. A part of the solution (0.20 µL) was analyzed by HPLC (Figure S9-A). The remaining residue was purified by flash column chromatography (silica-gel 5 g, CH₂Cl₂ only to CH₂Cl₂/EtOAc/MeOH = 5/4/1 to CH₂Cl₂/MeOH = 8/1) to give platform–TESRA conjugates **S3a** + **S3b** (3.99 mg, ca. 78% purity determined by ¹H NMR analysis, ca. 1.84 µmol, ca. 97%) as a purple solid (Figure S9-B).

Figure S9. (A) HPLC chart for the crude reaction mixture of **24** with **28a**; three main peaks were observed at Rt = 26.1 min (44%) for **S3a**, 26.5 min (9%) for **24** and 26.7 min (42%) for **S3b**. (B) HPLC chart of **S3a** + **S3b**; column: *SHISEIDO* CAPCELL PAK MG II (4.6 mm × 150 mm); mobile phase: CH₃CN:H₂O = 40:60 (0–5 min), linear gradient from 40:60 to 99:1 (5–30 min); flow rate: 1.00 mL/min; detection: UV at 254 nm.

A procedure for the reaction of platform–TESRA conjugates S3a and S3b with cycloalkyne 28b

To a solution of platform–TESRA conjugate S3a + S3b (3.32 mg, ca. 78% purity determined by ¹H NMR analysis, ca. 1.54 µmol) dissolved in CH₂Cl₂ (0.30 mL) was added 1-(2-(2-(2-(2-(2-(biotinamido)ethoxy) ethoxy)ethoxy)ethoxy)ethyl)-4-(3-(4-tosyl-4,8-diazacyclononyn-8-ylcarbonyl)propionylaminomethyl)-1*H*-[1,2,3]triazole (**28b**) (1.23 mg, 1.43 µmol) at room temperature. After stirring the mixture at 40 °C for 24 h, the mixture was concentrated under reduced pressure. A part of the solution (0.20 µL) was analyzed by HPLC (Figure S10-A). The remaining residue was purified by flash column chromatography (silica-gel 4.0 g, CH₂Cl₂ only to CH₂Cl₂/MeOH = 9/1 to 4/1) to give platform–TESRA–biotin conjugate **S4aa** + **S4ab** + **S4ba** + **S4bb** (4.95 mg, ca. 76% purity determined by ¹H NMR analysis, ca. 1.48 µmol, quant.) as a purple solid (Figure S10-B).

Α	S4ab		—S4ba
	20.7 min	S4bb	20.8 min
	S4aa	21.0 mi	n
	20.5 min	S3a	S3b
	26	لیسی 5.1 min	26.7 min
В	S4ab		
			-S4ha
	20.7 min		-54Da
	20.7 min S4aa	S4bb	20.8 min
	20.7 min S4aa 20.5 min	S4bb 21.0 mi	20.8 min

Figure S10. (A) HPLC chart for the crude reaction mixture of **S3** with **28b**; six main peaks were observed at Rt = 20.5 min (15%) for **S4aa**, 20.7 min (21%) for **S4ab**, 20.8 min (16%) for **S4ba**, 21.0 min (16%) for **S4bb**, 26.1 min (4%) for **S3a**, and 26.7 min (7%) for **S3b.** (B) HPLC chart of **S4**; column: *SHISEIDO* CAPCELL PAK MG II (4.6 mm × 150 mm); mobile phase: CH₃CN:H₂O = 40:60 (0–5 min), linear gradient from 40:60 to 99:1 (5–30 min); flow rate: 1.00 mL/min; detection: UV at 254 nm.

A procedure for reaction of platform–TESRA–biotin conjugates **S4aa**, **S4ab**, **S4ba**, and **S4bb** with cycloalkyne **28c**

To a solution of platform–TESRA–biotin conjugates **S4aa** + **S4ab** + **S4ba** + **S4bb** (3.35 mg, ca. 76% purity determined by ¹H NMR analysis, ca 1.00 μ mol) dissolved in CH₂Cl₂ (0.30 mL) was added 4-((1 α ,8 α ,9 α)-bicyclo[6.1.0]non-4-yn-9-ylmethoxycarbonylaminomethyl)-1-(4-(2-(2-(6-chlored barane))) the lamino arrhemyl) hereafted a 21triagale (28 α) (1.12 mg - 1.84 μ mol) at room

chlorohexoxy)ethoxy)ethylaminocarbonyl)benzyl)-1*H*-[1,2,3]triazole (**28c**) (1.13 mg, 1.84 µmol) at room temperature. After stirring for 24 h at the same temperature, the mixture was concentrated under reduced pressure. A part of the solution (0.20 µL) was analyzed by HPLC (Figure S11-A). The remaining residue was purified by flash column chromatography (silica-gel 2.0 g, CH₂Cl₂/MeOH = 10/1 to 5/1) to give platform–TESRA–biotin–HaloTag-ligand conjugate **29aa** + **29ab** + **29ba** + **29bb** (4.24 mg, ca. 72% purity determined by ¹H NMR analysis, ca. 0.988 µmol, 99%) as a purple solid (Figure S11-B).

Figure S11. (A) HPLC chart for the crude reaction mixture of **S4** with **28c**; three main peaks were observed at Rt = 20.7 min (14%) for **28c**, 24.9 min (46%) for **29aa** and **29ab**, 25.5 min (32%) for **29ba** and **29bb**. (B) HPLC chart of **29**; column: *SHISEIDO* CAPCELL PAK MG II (4.6 mm × 150 mm); mobile phase: CH₃CN:H₂O = 40:60 (0–5 min), linear gradient from 40:60 to 99:1 (5–30 min); flow rate: 1.00 mL/min; detection: UV at 254 nm.

Characterization Data of New Compounds

1-Benzyl-8,9-dihydro-1*H*-dibenzo[3,4:7,8]cycloocta[1,2-d][1,2,3]triazole (**11a**)^{S11} was identical in spectra data with those reported in the literature.

3-(4-(4-(8,9-Dihydro-1*H*-dibenzo[3,4:7,8]cycloocta[1,2-*d*][1,2,3]triazol-1-yl)methyl)benzoyl)piperazin-1-yl)-2,4,5-trichlorothiophene *S*,*S*-dioxide (**9**)

Yellow solid; Mp 105 °C (decomp.); TLC R_f 0.37 (*n*-hexane/EtOAc = 1/3); ¹H NMR (CDCl₃, 500 MHz) δ 2.75–2.80 (m, 1H), 2.89–2.95 (m, 1H), 3.03–3.10 (m, 1H), 3.32–3.44 (m, 7H), 3.68–4.02 (br, 2H), 5.57 (d, 1H, J = 15.1 Hz), 5.62 (d, 1H, J = 15.1 Hz), 7.09 (d, 1H, J = 7.6 Hz), 7.14–7.24 (m, 6H), 7.28–7.35 (m, 4H), 7.53–7.55 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 32.7, 36.4, 41.6–42.6 (br), 47.3–48.1 (br), 49.8–50.5 (br, two signals overlapped), 51.6, 106.9, 126.0 (two signals overlapped), 126.4, 127.6, 127.7, 128.1, 128.8, 129.5, 129.9, 130.0, 130.1, 130.9, 131.7, 131.9, 134.0, 134.6, 137.5, 137.7, 141.3, 141.5, 147.0, 169.9; IR (KBr, cm⁻¹) 750, 986, 1152, 1261, 1431, 1566, 1638, 2930; HRMS (ESI⁺) m/z 688.0731 ([M+Na]⁺, C₃₂H₂₆³⁵Cl₃N₅NaO₃S⁺ requires 688.0714).

1-Cyclohexyl-8,9-dihydro-1*H*-dibenzo[3,4:7,8]cycloocta[1,2-*d*][1,2,3]triazole (11b)

Colorless solid; Mp 180–183 °C; TLC R_f 0.57 (*n*-hexane/EtOAc = 1/1); ¹H NMR (CDCl₃, 500 MHz) δ 1.17–1.25 (m, 1H), 1.29–1.44 (m, 2H), 1.69–1.82 (m, 3H), 1.98–2.06 (m, 2H), 2.29–2.42 (m, 2H), 2.86–2.94 (m, 1H), 3.07–3.14 (m, 2H), 3.37–3.45 (m, 1H), 4.17–4.23 (m, 1H), 7.11–7.20 (m, 4H), 7.26–7.28 (m, 1H), 7.33–7.39 (m, 2H), 7.50–7.51 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 24.9, 25.3, 25.5, 32.8, 32.9, 33.9, 36.6, 58.0, 125.9, 126.4, 127.0, 127.8, 128.8, 129.5, 130.0, 130.1, 130.8, 131.8, 132.9, 137.5, 141.7, 146.2; IR (KBr, cm⁻¹) 764, 984, 1169, 1263, 1340, 1452, 1502, 2934; HRMS (ESI⁺) *m*/*z* 352.1793 ([M+Na]⁺, C₂₂H₂₃N₃Na⁺ requires 352.1784).

1-(Adamantan-2-yl)-8,9-dihydro-1*H*-dibenzo[3,4:7,8]cycloocta[1,2-*d*][1,2,3]triazole (**11c**)

Colorless solid; Mp 210–212 °C; TLC R_f 0.66 (*n*-hexane/EtOAc = 1/1); ¹H NMR (CDCl₃, 500 MHz) δ 1.51–1.54 (m, 1H), 1.58–1.61 (m, 1H), 1.73–1.83 (m, 5H), 1.88–1.91 (m, 2H), 1.95–2.01 (br, 1H), 2.05–2.08 (m, 1H), 2.16–2.20 (m, 1H), 2.71–2.78 (br, 1H), 2.84–2.93 (m, 1H), 2.96–2.99 (m, 1H), 3.06–3.13 (m, 2H), 3.35–3.43 (m, 1H), 4.66 (s, 1H), 7.12–7.20 (m, 4H), 7.23 (ddd, 1H, J = 7.4, 7.4, 1.5 Hz), 7.29–7.35 (m, 2H), 7.50–7.52 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 27.0, 27.3, 30.8, 31.9, 32.1, 32.9, 33.0, 36.5, 37.6, 37.7, 38.3, 63.3, 125.9, 126.3, 127.8 (two signals overlapped), 128.1, 129.3, 130.0, 130.2, 130.7, 131.7, 133.4, 137.6, 141.1, 146.4; IR (KBr, cm⁻¹) 761, 966, 1024, 1157, 1263, 1332, 1452, 1502, 2907; HRMS (ESI⁺) *m/z* 382.2275 ([M+H]⁺, C₂₆H₂₈N₃⁺ requires 382.2278).

1-(Adamantan-1-yl)-8,9-dihydro-1*H*-dibenzo[3,4:7,8]cycloocta[1,2-d][1,2,3]triazole (11d)

Colorless solid; Mp 211–213 °C; TLC R_f 0.55 (*n*-hexane/EtOAc = 1/1); ¹H NMR (CDCl₃, 500 MHz) δ 1.64–1.71 (m, 6H), 2.12–2.15 (br, 3H), 2.24–2.26 (m, 3H), 2.35–2.37 (m, 3H), 2.83–3.00 (m, 3H), 3.24–3.29 (m, 1H), 7.03–7.05 (m, 1H), 7.11–7.17 (m, 3H), 7.24–7.28 (m, 3H), 7.40–7.42 (m, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 29.7, 32.7, 35.8, 36.3, 42.9, 63.0, 125.5, 125.9, 128.0, 129.1, 129.4, 129.8, 130.3, 130.6, 130.8, 131.2, 133.5, 138.0, 141.0, 148.2; IR (KBr, cm⁻¹) 735, 1011, 1101, 1125, 1263, 1308, 1325, 1358, 1435, 1452, 1479, 2853, 2909; HRMS (ESI⁺) *m/z* 404.2098 ([M+Na]⁺, C₂₆H₂₇N₃Na⁺ requires 404.2097).

1-(Adamantan-1-yl)-4,5,6,7,9,10-hexahydro-4,8-ditosyl-4,8-diazacyclonona[d][1,2,3]triazole (15)

Colorless solid; Mp 245 °C (decomp.); TLC R_f 0.24 (*n*-hexane/EtOAc = 1/1); ¹H NMR (CDCl₃, 500 MHz) δ 1.66–1.70 (m, 2H), 1.77–1.83 (m, 6H), 2.25–2.30 (br, 3H), 2.39–2.40 (m, 6H), 2.45 (s, 3H), 2.47 (s, 3H), 2.84–2.87 (m, 2H), 3.09–3.11 (m, 2H), 4.35 (s, 2H), 4.92 (s, 2H), 7.33–7.34 (AA'BB', 2H), 7.41–7.42 (AA'BB', 2H), 7.66–7.68 (AA'BB', 2H), 7.79–7.80 (AA'BB', 2H); ¹³C NMR (CDCl₃, 126 MHz) δ 21.5, 21.6, 29.6, 30.2, 35.7, 41.4, 41.6, 45.6, 47.5, 49.1, 63.8, 127.2, 127.5, 128.1, 129.8, 130.1, 133.9, 135.9, 143.75, 143.85, 144.1; IR (KBr, cm⁻¹) 652, 685, 700, 712, 739, 816, 1090, 1161, 1306, 1340, 1452, 2853, 2912; HRMS (ESI⁺) *m/z* 632.2320 ([M+Na]⁺, C₃₁H₃₉N₅NaO₄S₂⁺ requires 632.2336).

1-(3-Azidoadamantane-1-carboxamido)-3-(azidomethyl)-5-(methoxycarbonyl)benzene (20)

Colorless oil; TLC $R_f 0.77$ (*n*-hexane/EtOAc = 3/1); ¹H NMR (CDCl₃, 500 MHz) δ 1.67–1.73 (br, 2H), 1.81–1.87 (m, 4H), 1.90–1.95 (br, 4H), 1.96–2.04 (br, 2H), 2.35–2.42 (br, 2H), 3.93 (s, 3H), 4.40 (s, 2H), 7.44 (s, 1H), 7.75 (s, 1H) 7.97 (s, 2H); ¹³C NMR (CDCl₃, 126 MHz) δ 29.5, 34.7, 37.9, 40.4, 43.0, 44.0, 52.4, 54.2, 58.8, 120.6, 123.9, 124.8, 131.4, 137.1, 138.4, 166.2, 174.4; IR (KBr, cm⁻¹) 1220, 1425, 1537, 1543, 1657, 1724, 2091, 2925; HRMS (ESI⁺) *m/z* 432.1752 ([M+Na]⁺, C₂₀H₂₃N₇NaO₃⁺ requires 432.1755).

1-(3-Azidoadamantane-1-carboxamido)-3-azidomethyl-5-(4-(*tert*-butoxycarbonyl)piperazin-1-yl)carbonylbenzene (**22**)

Colorless amorphous solid; Mp 91–93 °C; TLC $R_f 0.55$ (*n*-hexane/EtOAc = 3/1); ¹H NMR (CDCl₃, 500 MHz) δ 1.47 (s, 9H), 1.65–1.72 (br, 4H), 1.80–1.87 (m, 4H), 1.88–1.92 (br, 2H), 1.97–2.01 (br, 2H), 2.34–2.40 (br, 2H), 3.33–3.59 (br, 6H), 3.67–3.81 (br, 2H), 4.36 (s, 2H), 7.08 (s, 1H), 7.58 (s, 1H), 7.61 (s, 1H), 7.69 (br s, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 28.3, 29.5, 34.7, 37.8, 40.4, 42.0–42.3 (br), 42.9, 44.0, 47.4–47.7 (br), 54.1, 58.9, 80.4, 118.6, 120.9, 121.9, 136.6, 137.1, 138.6, 154.5, 169.6, 174.5; IR (KBr, cm⁻¹) 1167, 1239, 1419, 1689, 2090; HRMS (ESI⁺) *m/z* 586.2846 ([M+Na]⁺, C₂₈H₃₇N₉NaO₄⁺ requires 586.2861).

2,3,5-Trichloro-4-(4-(1-(3-azidoadamantane-1-carboxamido)-3-azidomethylbenzene-5-carbonyl)piperazin-1-yl)thiophene *S*,*S*-dioxide (**24**)

Yellow solid; Mp 167 °C (decomp.); TLC R_f 0.38 (*n*-hexane/EtOAc = 3/1); ¹H NMR (CDCl₃, 500 MHz) δ 1.67–1.73 (br, 2H), 1.81–1.88 (m, 4H), 1.89–1.93 (br, 4H), 1.97–2.01 (m, 2H), 2.34–2.42 (br, 2H), 3.28–4.00 (br, 8H), 4.39 (s, 2H), 7.13 (s, 1H), 7.48 (s, 1H), 7.51 (s, 1H), 7.71 (s, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 29.5, 34.7, 37.9, 40.4, 42.0–42.6 (br), 43.0, 44.0, 47.5–48.0 (br), 49.8–50.5 (br, two signals overlapped), 54.1, 58.8, 107.0, 118.7, 120.9, 122.3, 130.1, 132.0, 136.1, 137.4, 138.5, 141.4, 169.5, 174.5; IR (KBr, cm⁻¹) 1151, 1169, 1239, 1326, 1419, 1437, 1451, 1543, 1564, 1610, 2091; HRMS (ESI⁺) *m/z* 680.1094 ([M+H]⁺, C₂₇H₂₉³⁵Cl₃N₉O₄S⁺ requires 680.1123).

Platform–DBCO conjugate S1

Yellow solid; Mp >300 °C; TLC R_f 0.38 (*n*-hexane/EtOAc = 3/1); ¹H NMR (CDCl₃, 500 MHz) δ 1.64–1.73 (br, 2H), 1.79–1.88 (m, 8H), 1.93–1.98 (br, 2H), 2.33–2.41 (br, 2H), 2.80–2.84 (m, 1H), 2.93–2.98 (m, 1H), 3.04–3.11 (m, 1H), 3.32–3.52 (m, 7H), 3.72–3.93 (br, 2H), 5.51 (d, 1H, *J* = 15.3 Hz), 5.59 (d, 1H, *J* = 15.3 Hz), 6.88 (s, 1H), 7.08 (d, 1H, *J* = 7.6 Hz), 7.15–7.26 (m, 5H), 7.30–7.36 (m, 2H), 7.47–7.51 (m, 2H), 7.81 (s, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 29.5, 32.9, 34.7, 36.4, 37.9, 40.4, 42.1–42.8 (br), 43.0, 44.0, 47.5–48.0 (br), 49.7–50.6 (br, two signals overlapped), 51.5, 58.8, 106.9, 119.0, 120.3, 121.8, 125.9, 126.1, 126.6, 128.3, 129.0, 129.4, 130.0, 130.1, 130.3, 131.0, 131.6, 132.0, 134.3, 136.1, 137.1, 137.6, 138.5, 141.4, 141.6, 147.1, 169.2, 174.4; IR (KBr, cm⁻¹) 1151, 1169, 1328, 1453, 1611, 2090; HRMS (ESI⁺) *m/z* 884.2068 ([M+H]⁺, C₄₃H₄₁³⁵Cl₃N₉O₄S⁺ requires 884.2062).

Platform–DBCO–DACN conjugate S2

Yellow solid; Mp 126 °C (decomp.); TLC R_f 0.22 (*n*-hexane/EtOAc = 3/1); ¹H NMR (CDCl₃, 500 MHz) δ 1.47–1.55 (br, 2H), 1.76–1.83 (m, 2H), 2.00–2.02 (m, 2H), 2.08–2.11 (m, 2H), 2.38–2.43 (m, 8H), 2.48–2.52 (m, 2H), 2.56–2.64 (br, 4H), 2.65–2.72 (br, 2H), 2.77–2.84 (m, 1H), 2.96–3.08 (m, 4H), 3.27–3.50 (m, 7H), 3.67–3.89 (br, 2H), 4.34 (s, 2H), 5.05 (s, 2H), 5.51 (d, 1H, J = 15.2 Hz), 5.56 (d, 1H, J = 15.2 Hz), 6.86 (s, 1H), 7.09 (d, 1H, J = 7.6 Hz), 7.12–7.14 (m, 1H), 7.16–7.20 (m, 3H), 7.26–7.27 (m, 2H), 7.32–7.33 (AA'BB', 2H), 7.35–7.36 (AA'BB', 2H), 7.50–7.52 (m, 1H), 7.55 (s, 1H), 7.60–7.62 (AA'BB', 2H), 7.74–7.76 (m, 3H), 8.35 (s, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 21.5, 21.7, 29.4, 29.6, 32.9, 34.7, 36.4, 37.5, 40.5, 40.8–40.9 (br), 41.4, 43.9, 45.4, 47.6–47.7 (br, two signals overlapped), 47.8, 49.4, 49.8–50.6 (br, two signals overlapped), 51.6, 64.3, 106.6, 119.0, 120.9, 121.5, 125.9, 126.0, 126.5, 127.1, 127.4, 127.7, 128.2, 129.0, 129.7, 129.8, 129.9, 130.0, 130.1, 130.5, 130.8, 131.7, 132.0, 133.4, 134.3, 135.1, 135.6, 137.1, 137.7, 139.0, 141.4, 141.5, 143.9, 144.2, 144.9, 146.8, 169.5, 174.5; IR (KBr, cm⁻¹) 550, 579, 737, 986, 1090, 1159, 1234, 1306, 1331, 1435, 1452, 1545, 1609, 1641; HRMS (ESI⁺) m/z 1338.3038 ([M+Na]⁺, C₆₄H₆₄³⁵Cl₃N₁₁NaO₈S₃⁺ requires 1338.3059).

Platform–DBCO–DACN–BCN conjugate 26

Colorless solid; Mp 160 °C (decomp.); TLC $R_f 0.56$ (CH₂Cl₂/MeOH = 9/1); ¹H NMR (CDCl₃, 500 MHz) δ 0.48–0.63 (br, 2H), 0.73–0.78 (m, 1H), 1.30–1.42 (br, 2H), 1.43–1.52 (m, 2H), 1.76–1.83 (m, 2H), 2.00–2.03 (m, 2H), 2.10–2.12 (m, 2H), 2.37–2.44 (m, 8H), 2.51–2.59 (m, 5H), 2.62–2.72 (br, 3H), 2.76–2.80 (m, 1H), 3.00–3.28 (m, 12H), 3.36–3.41 (m, 2H), 3.42–3.50 (br, 2H), 3.53–3.57 (m, 1H), 3.60–3.64 (m, 1H), 3.68–3.70 (m, 1H), 3.74–3.81 (m, 2H), 3.83–3.96 (br, 1H), 4.35 (s, 2H), 5.09 (s, 2H), 5.54 (d, 1H, *J* = 15.4 Hz), 5.59 (d, 1H, *J* = 15.4 Hz), 6.85 (s, 1H), 7.10–7.13 (m, 2H), 7.17–7.20 (m, 3H), 7.27–7.30 (m, 2H), 7.32–7.34 (m, 4H), 7.51–7.56 (m, 2H), 7.60–7.62 (m, 2H), 7.73–7.77 (m, 3H), 8.32 (s, 1H); ¹³C NMR (CDCl₃, 126 MHz) δ 21.5, 21.6, 29.4, 29.5, 30.1, 32.8, 34.6, 36.4, 37.4, 40.3, 40.6–40.7 (br), 41.4, 43.0, 43.8, 45.3, 47.8, 48.6, 49.1, 49.4, 49.6, 51.7, 61.8, 64.3, 66.3 (two signals overlapped), 66.7, 69.9, 70.4, 72.5, 119.0, 120.4, 121.5, 125.9, 126.0, 126.5, 127.1, 127.4, 127.7, 128.1, 129.0, 129.7, 129.8, 129.9 (two signals overlapped), 130.1, 130.4, 130.8, 131.5, 131.7, 133.2, 134.1, 134.2, 134.3, 135.1, 135.2, 136.6, 136.7, 137.7, 138.9, 141.4, 143.3, 143.8, 144.2, 144.7, 146.8, 169.4, 174.4; IR (KBr, cm⁻¹) 550, 1049, 1090, 1159, 1240, 1304, 1342, 1369, 1431, 1452, 1757, 1769, 2361, 2920; HRMS (ESI⁺) *m*/*z* 1426.4427 ([M+Na]⁺, C₇₄H₇₈³⁵Cl₃N₁₁NaO₇S₂⁺ requires 1426.4485).

Platform-TESRA conjugate S3a and S3b

Since NMR analysis of these compounds gave complex spectra, the purity of each product was confirmed by analytical reverse phase HPLC [column: *SHISEIDO* CAPCELL PAK MG II (4.6 mm \times 150 mm); mobile phase: CH₃CN:H₂O = 40:60 (0–5 min), linear gradient from 40:60 to 99:1 (5–30 min); flow rate: 1.00 mL/min; detection: UV at 254 nm]

Platform-TESRA conjugate S3a

Purple solid; TLC $R_{\rm f}$ 0.45 (CH₂Cl₂/MeOH = 9/1); HPLC analysis: Rt = 26.1 min; IR (KBr, cm⁻¹) 1028, 1171, 1180, 1246, 1275, 1337, 1416, 1452, 1466, 1591, 1649, 2090; HRMS (ESI⁺) m/z 862.7138 ([M+2Na]²⁺, C₇₉H₈₂³⁵Cl₃N₁₇Na₂O₁₃S₃²⁺ requires 862.7145).

Platform-TESRA conjugate S3b

Purple solid; TLC $R_f 0.45$ (CH₂Cl₂/MeOH = 9/1); HPLC analysis: Rt = 26.7 min; IR (KBr, cm⁻¹) 1028, 1180, 1246, 1275, 1337, 1416, 1450, 1466, 1591, 2100; HRMS (ESI⁺) m/z 862.7146 ([M+2Na]²⁺, C₇₉H₈₂³⁵Cl₃N₁₇Na₂O₁₃S₃²⁺ requires 862.7145).

Platform-TESRA-biotin conjugate S4aa, S4ab and S4ba, S4bb

Since NMR analysis of these compounds gave complex spectra, the purity of each product was confirmed by analytical reverse phase HPLC [column: *SHISEIDO* CAPCELL PAK MG II (4.6 mm × 150 mm); mobile phase: $CH_3CN:H_2O = 40:60 (0-5 min)$, linear gradient from 40:60 to 99:1 (5–30 min); flow rate: 1.00 mL/min; detection: UV at 254 nm]

Platform-TESRA-biotin conjugate S4aa

Purple solid; TLC $R_f 0.58$ (CH₂Cl₂/MeOH = 5/1); HPLC analysis: Rt = 20.1 min; IR (KBr, cm⁻¹) 748, 1134, 1248, 1275, 1339, 1591, 2924; HRMS (ESI⁺) m/z 1291.9006 ([M+2Na]²⁺, C₁₁₈H₁₃₉³⁵Cl₃N₂₆Na₂O₂₂S₅²⁺ requires 1291.9022).

HPLC chart:

Platform–TESRA–biotin conjugate **S4ab**

Purple solid; TLC $R_f 0.58$ (CH₂Cl₂/MeOH = 5/1);HPLC analysis: Rt = 20.5 min; IR (KBr, cm⁻¹) 750, 1076, 1134, 1159, 1180, 1259, 1339, 1416, 1454, 1591, 1649, 2924; HRMS (ESI⁺) m/z 1291.9003 ([M+2Na]²⁺, C₁₁₈H₁₃₉³⁵Cl₃N₂₆Na₂O₂₂S₅²⁺ requires 1291.9022).

Platform–TESRA–biotin conjugate S4ba

Purple solid; TLC $R_f 0.58$ (CH₂Cl₂/MeOH = 5/1); HPLC analysis: Rt = 20.8 min; IR (KBr, cm⁻¹) 748, 761, 1134, 1248, 1275, 1339, 1591, 1649, 1721, 2926; HRMS (ESI⁺) m/z 1291.9009 ([M+2Na]²⁺, C₁₁₈H₁₃₉³⁵Cl₃N₂₆Na₂O₂₂S₅²⁺ requires 1291.9022).

Platform–TESRA–biotin conjugate **S4bb**

Purple solid; TLC $R_f 0.58$ (CH₂Cl₂/MeOH = 5/1); HPLC analysis: Rt = 21.0 min; IR (KBr, cm⁻¹) 750, 762, 1180, 1248, 1260, 1275, 1339, 1591, 1722, 2853, 2924; HRMS (ESI⁺) m/z 1291.8985 ([M+2Na]²⁺, C₁₁₈H₁₃₉³⁵Cl₃N₂₆Na₂O₂₂S₅²⁺ requires 1291.9022).

Platform-TESRA-biotin-HaloTag-ligand conjugates 29aa, 29ab, 29ba, and 29bb

Since NMR analysis of these compounds gave complex spectra, the purity of each product was confirmed by analytical reverse phase HPLC [column: *SHISEIDO* CAPCELL PAK MG II (4.6 mm × 150 mm); mobile phase: $CH_3CN:H_2O = 40:60 (0-5 min)$, linear gradient from 40:60 to 99:1 (5–30 min); flow rate: 1.00 mL/min; detection: UV at 254 nm]

Platform-TESRA-biotin-HaloTag-ligand conjugate 29aa

Purple solid; TLC $R_f 0.58$ (CH₂Cl₂/MeOH = 5/1); HPLC analysis: Rt = 24.9 min; IR (KBr, cm⁻¹) 1180, 1246, 1275, 1339, 1416, 1454, 1591, 1643, 1714, 2855; HRMS (ESI⁺) m/z 1566.0672 ([M+2Na]²⁺, C₁₅₀H₁₈₃³⁵Cl₄N₃₁Na₂O₂₅S₄²⁺ requires 1566.0711).

Platform-TESRA-biotin-HaloTag ligand conjugate 29ab

Purple solid; TLC $R_f 0.58$ (CH₂Cl₂/MeOH = 5/1); HPLC analysis: Rt = 24.9 min; IR (KBr, cm⁻¹) 1076, 1136, 1159, 1180, 1246, 1275, 1339, 1420, 1591, 1719, 2856; HRMS (ESI⁺) m/z 1566.0676 ([M+2Na]²⁺, C₁₅₀H₁₈₃³⁵Cl₄N₃₁Na₂O₂₅S₄²⁺ requires 1566.0711).

Platform-TESRA-biotin-HaloTag-ligand conjugate 29ba

Purple solid; TLC $R_f 0.58$ (CH₂Cl₂/MeOH = 5/1); HPLC analysis: Rt = 25.5 min; IR (KBr, cm⁻¹) 748, 1082, 1136, 1161, 1182, 1261, 1275, 1339, 1420, 1591, 1717, 1734, 2855; HRMS (ESI⁺) m/z 1566.0689 ([M+2Na]²⁺, C₁₅₀H₁₈₃³⁵Cl₄N₃₁Na₂O₂₅S₄²⁺ requires 1566.0711).

Platform-TESRA-biotin-HaloTag-ligand conjugate 29bb

Purple solid; TLC $R_f 0.58$ (CH₂Cl₂/MeOH = 5/1); HPLC analysis: Rt = 25.5 min; IR (KBr, cm⁻¹) 748, 1080, 1132, 1267, 1275, 1339, 1591, 1732, 2340, 2360, 2855; HRMS (ESI⁺) m/z 1566.0716 ([M+2Na]²⁺, C₁₅₀H₁₈₃³⁵Cl₄N₃₁Na₂O₂₅S4²⁺ requires 1566.0711).

References for Supporting Information

- S1 T. Meguro, S. Yoshida and T. Hosoya, Chem. Lett., 2017, 46, 1137.
- S2 G.-J. Boons, J. Guo, X. Ning and M. Wolfert, WO 2009/067663, 2009.
- S3 J. Xu and Q. Song, Org. Chem. Front., 2017, 4, 938.
- S4 S.-K. Chen, W.-Q. Ma, Z.-B. Yan, F.-M. Zhang, S.-H. Wang, Y.-Q. Tu, X.-M. Zhang and J.-M. Tian, J. Am. Chem. Soc., 2018, 140, 10099.
- S5 R. Ni, N. Mitsuda, T. Kashiwagi, K. Igawa and K. Tomooka, Angew. Chem., Int. Ed., 2014, 54, 1190.
- S6 T. Meguro, S. Yoshida and T. Hosoya, Chem. Lett., 2017, 46, 473.
- S7 J.-P. Berndt, A. Engel, R. Hrdina, S. Dehnen and P. R. Schreiner, Organometallics, 2019, 38, 329.
- S8 M. S. Raasch, J. Org. Chem., 1980, 45, 856.
- S9 J. Dommerholt, S. Schmidt, R. Temming, L. J. A. Hendriks, F. P. J. T. Rutjes, J. C. M. van Hest, D. J. Lefeber, P. Friedl and F. L. van Delft, *Angew. Chem., Int. Ed.*, 2010, **49**, 9422.
- S10 S. Yoshida, T. Kuribara, H. Ito, T. Meguro, Y. Nishiyama, F. Karaki, Y. Hatakeyama, Y. Koike, I. Kii and T. Hosoya, *Chem. Commun.*, 2019, **55**, 3556.
- S11 Q. Li, T. Dong, X. Liu and X. Lei, J. Am. Chem. Soc., 2013, 135, 4996.

¹H and ¹³C NMR Spectra of Compounds

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra of **9** (CDCl₃)

 ^1H NMR (500 MHz) and ^{13}C NMR (126 MHz) spectra of **11b** (CDCl₃)

 ^1H NMR (500 MHz) and ^{13}C NMR (126 MHz) spectra of 11c (CDCl_3)

 ^1H NMR (500 MHz) and ^{13}C NMR (126 MHz) spectra of 11d (CDCl_3)

 ^1H NMR (500 MHz) and ^{13}C NMR (126 MHz) spectra of **15** (CDCl₃)

 ^1H NMR (500 MHz) and ^{13}C NMR (126 MHz) spectra of **20** (CDCl₃)

 ^1H NMR (500 MHz) and ^{13}C NMR (126 MHz) spectra of **22** (CDCl₃)

 ^1H NMR (500 MHz) and ^{13}C NMR (126 MHz) spectra of **24** (CDCl_3)

^1H NMR (500 MHz) and ^{13}C NMR (126 MHz) spectra of S1 (CDCl₃)

 ^1H NMR (500 MHz) and ^{13}C NMR (126 MHz) spectra of S2 (CDCl₃)

 ^1H NMR (500 MHz) and ^{13}C NMR (126 MHz) spectra of **26** (CDCl₃)

¹H NMR (500 MHz) spectrum of **S3a** (CDCl₃)

¹H NMR (500 MHz) spectrum of **S3b** (CDCl₃)

¹H NMR (500 MHz) spectrum of **S4aa** (CDCl₃)

¹H NMR (500 MHz) spectrum of S4ab (CDCl₃)

¹H NMR (500 MHz) spectrum of **S4ba** (CDCl₃)

¹H NMR (500 MHz) spectrum of **S4bb** (CDCl₃)

¹H NMR (500 MHz) spectrum of **29aa** (CDCl₃)

¹H NMR (500 MHz) spectrum of **29ab** (CDCl₃)

¹H NMR (500 MHz) spectrum of **29ba** (CDCl₃)

¹H NMR (500 MHz) spectrum of **29bb** (CDCl₃)

