Table of Contents

I. General	
II. Experimental details	
III. DOSY experiments	
IV. Computational details	
V. Thermogravimetric analysis	
VI. Gas adsorption analysis	
VII. Crystallographic details	
VIII. MS- and CID- experiments	
IX. IR Spectra	
X. NMR spectra	
XI. MS spectra	
XII. References	
XIII. Appendix	

I. General

Solvents and commercial starting materials were purchased from Sigma Aldrich, TCI, Fisher Scientific, J&K scientific and abcr GmbH and used as received. Dry solvents were obtained from an MBraun solvent purification system. Reactions were monitored by thin layer chromatography (TLC) carried out on silica gel plates (ALUGRAM[®] Xtra SIL G/UV254, Macherey Nagel) using UV light for detection. Column chromatography was carried out with silica gel (Silica 60 M, 0.04-0.063 mm, Macherey Nagel) using eluents as specified. Flash column chromatography was carried out on a Biotage[®] Selekt system using the SNAP Sphär60 columns.

NMR measurements

NMR spectra were recorded on a Bruker Avance III 300 and a Bruker Avance III 600 spectrometer at 25 °C using residual protonated solvent signals as internal standards for ¹H and ¹³C{¹H} spectra (¹H: δ (CDCl₃) = 7.26 ppm; ¹³C{¹H}: δ (CDCl₃) = 77.16 ppm). Hexafluorobenzene was used as internal standard for ¹⁹F titration spectra (¹⁹F spectra δ (CDCl₃) = 0.00 ppm). Splitting patterns are abbreviated as follows: singlet (s), doublet (d), triplet (t), quartet (q), quintet (p), heptet (hept), multiplet (m), and broad (br).

IR

Infrared spectra were recorded with a Shimadzu IR Affinity-1 with ATR technique.

Mass spectrometry (MALDI)

Matrix-assisted Laser Desorption/Ionization mass spectrometry was performed on a MALDI-TOF/TOF UltrafleXtreme (Bruker Daltonics, Billerica, Massachusetts) using dithranol as matrix.

Mass spectrometry (CI)

Samples ionized by chemical ionization were measured using a Finnigan Trace DSQ Single Quadrupole GC/MS by Thermo Fisher Scientific (Waltham, Massachusetts, US). The samples were heated either to 40 °C or to 300 °C.

Mass spectrometry (ESI)/MS-CID-experiments

High resolution mass spectra were obtained on an Agilent 6210 ESI-TOF (Agilent Technologies, Santa Clara, CA, USA) using a flow rate of 4 μ L/min, a spray voltage of 4 kV and desolvation gas pressure of 15 psi (1 bar). Additional MS measurements and collision-induced dissociation (CID) tandem MS experiments were conducted on a Synapt G2-S HDMS (Waters Co., Milford, MA, USA) with a flow rate of 10 μ L/min, a spray voltage of 2.63 kV, source temperature of 80 °C, sample cone voltage of 121 V and source offset of 64 V, respectively. For CID, a nitrogen-containing trap cell was used with collision

voltages between 0 and 60 V. All ions were generated by electrospray ionization (ESI) in the positive mode. Samples were sprayed from CH_2Cl_2/CH_3CN (9:1) solutions at concentration of ~10 μ M. Host-guest complexes were generated by addition of 20 μ L of the corresponding aromatic guest to 1 mL of the 10 μ M host solution and subsequent vortexing.

BET measurements

Initially all samples of **FC1** were subjected to a single point BET surface analysis to check for sufficient porosity allowing a full gas adsorption analysis. These measurements were conducted using a Macsorb HM Model-1210 (Mountech Co., Ltd., Tokio, Japan). The samples were deaerated at 70°C for 1 hour. The consistency of the measurement was ensured by triplicate repetition.

The BET-surface of **FC1** samples, which were identified to be porous via single point BET measurements, was determined via BET-isothermal analysis on a QUANTACHROME Nova 4200e S/N (Quantachrome Instruments, Florida, USA). The samples were evacuated at 80 °C for 16 hours prior to the measurement. **TGA**

Thermogravimetric analysis was carried out under argon using a PerkinElmer Thermogravimetric Analyzer Pyris 1 in a temperature range from 30 °C to 800 °C at a step rate of 10 °C/min and holding a constant temperature at 800 °C for 5 minutes.

SEM

Scanning electron microscopy was carried out using a REM Leo 1430 VP, (Carl Zeiss NTS GmbH, Oberkochen, Germany) using 12 kV acceleration voltage. The samples were coated with a monolayer of gold beforehand using an automatic sputter coater from Agar Scientific (Essex, UK).

II. Experimental details

Synthetic overview

Synthesis of 1,3,5-tris(chloromethyl)-2,4,6-trifluorobenzene (3)

A two-neck round bottomed flask was charged with 1,3,5-trifluorobenzene (2.5 g, 24 mmol) and (chloromethyl)methylether (32.6 g, 430 mmol, 18 eq.) was added. The solution was degassed by bubbling with nitrogen before AlCl₃ (38.0 g, 288 mmol, 12 eq.) was added in 6 portions under a continuous nitrogen stream over 30 min at 0 °C. After complete addition of AlCl₃, the resulting orange mixture was stirred at 0 °C for 30 min and was then heated to 40 °C for 16 hours under a nitrogen atmosphere. The reaction mixture was allowed to cool to room temperature, was poured onto ice and stirred for two additional hours. The resulting mixture was extracted with dichloromethane (3 x 150 mL). The combined organic phases were neutralized with saturated sodium bicarbonate solution and were dried over anhydrous MgSO₄. The solvent was evaporated under reduced pressure to give 1,3,5-chloromethyl-2,4,6-trifluorobenzene (**3**) as an off-white solid (5.8 g, 21 mmol, 89% yield).

¹**H** NMR (300 MHz, CDCl₃): δ = 4.64 ppm (s, 6H, CH₂); ¹⁹**F** NMR (282 MHz, CDCl₃): δ = -114.57 ppm (s, 3F, Ar-F); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ = 159.51 (dt, *J* = 257.6, 10.4 Hz, C-F), 111.27 (dd, *J* =

24.4, 19.8 Hz, C-CH₂), 32.03 ppm (s); **IR**: $\tilde{\nu} = 3041.7$, 2991.6, 2789.1, 1722.4, 1660.7, 1622.1, 1469.8, 1438.9, 1365.6, 1267.2, 1257.6, 1190.1, 1097.5, 995.3, 974.4, 937.4, 787.0, 760.0, 734.9, 713.7, 694.4, 667.4, 638.4, 615.3 cm⁻¹; **CI-MS**: [M-Cl+H]⁺ calc.: 241 m/z; found: 241 m/z. This compound was reported previously.^[1]

Synthesis of 1,3,5-tris(azidomethyl)-2,4,6-trifluorobenzene (4)

A 250 mL round-bottomed flask was charged with 1,3,5-tris(chloromethyl)-2,4,6-trifluorobenzene (**3**) (5.6 g, 20 mmol) and sodium azide, (4.3 g, 66 mmol, 3.3 eq.) to which 80 mL of dry acetone was added. The resulting suspension was refluxed for 16 hours. The reaction mixture was allowed to cool to room temperature, before dry ethyl ether (80 mL) was added. The mixture was washed with water (3 x 80 mL) and the organic phase was washed with brine, (2 x 50 mL) before it was dried over anhydrous MgSO₄. The solvent was evaporated under reduced pressure to yield the azido compound (**4**) as a colourless oil (4.5 g, 15 mmol, 75%).

¹**H** NMR (300 MHz, CDCl₃): $\delta = 4.45$ ppm (s, 6H, CH₂); ¹⁹**F** NMR (282 MHz, CDCl₃): $\delta = -114.52$ ppm (s, 3F, Ar-F); ¹³C{¹H} NMR (75 MHz, CDCl₃) $\delta = 160.04$ (dt, J = 254.2, 10.9 Hz), 108.91 (dd, J = 25.6, 20.8 Hz), 42.05 – 41.61 ppm (m); **IR**: $\tilde{\nu} = 2467.0$, 2420.7, 2090.8, 1722.4, 1626.0, 1467.8, 1450.5, 1342.5, 1251.8, 1219.0, 1097.5, 1008.8, 881.5, 858.3, 779.2, 752.2, 715. 6, 640.4, 625.0, 603.7 cm⁻¹; due to the very labile nature of triazide **4**, high-resolution MS data could not be obtained, ionization by different techniques led to unspecific fragments; **CI-MS**: [M-N₃+H]⁺ calc.: 255 m/z; found: 255 m/z.

Synthesis of 1,3,5-tris(aminomethyl)-2,4,6-trifluorobenzene (2)

In a 250 mL Schlenk flask 1,3,5-tris(azidomethyl)-2,4,6-trifluorobenzene (**4**) (2.4 g, 8.0 mmol) was dissolved in 100 mL absolute ethanol. To this solution 300 mg of palladium on carbon (10 w%) were added. The atmosphere inside the flask was exchanged with hydrogen gas twice before it was stirred for four hours under 1 bar of hydrogen gas. The resulting suspension was filtered through two filter papers and the solvent was evaporated under reduced pressure to give 1,3,5-tris(aminomethyl)-2,4,6-trifluorobenzene (**2**) as an off-white hygroscopic solid (1.5 g, 6.8 mmol, 85%).

¹**H** NMR (300 MHz, CDCl₃) δ = 3.89 (s, 6H, CH₂), 1.45 ppm (broad s, 6H, NH₂); ¹⁹**F** NMR (282 MHz, CDCl₃) δ = -123.61 ppm (s, 3F, Ar-F); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ = 158.4 (dt, *J* = 246.1, 12.1 Hz, C3), 115.6 - 115.0 (m, C2), 34.3 ppm (s, C1); **IR**: $\tilde{\nu}$ = 3361.3, 3289.4, 2951.5, 2885.0, 2667.1, 1621.8, 1457.0, 1383.7, 1312.3, 1170.6, 1089.6, 913.1, 821.5, 744.4, 622.9, 607.5, 537.1, 520.7 cm⁻¹; **ESI-HRMS**: calc. [C₉H₁₂F₃N₃ + H]⁺ = 220.1056 m/z, found: 220.1059 m/z;

Synthesis of trimethylbenzene-1,3,5-tricarboxylate (5)

Benzene-1,3,5-tricarboxylic acid (10.00 g, 47.59 mmol) was suspended in a mixture of 150 mL methanol and concentrated sulfuric acid (3.1 mL, 58.16 mmol, 1.2 eq.) and heated to 60 °C for 21 hours. The suspension was allowed to cool to room temperature and saturated sodium hydrogen carbonate solution was added slowly. The mixture was filtered and the residue was washed with 150 mL water while the filtrate was extracted with diethyl ether (2 x 100 mL). The combined organic phases were dried over Na₂SO₄. The precipitate and the organic phase were combined and the solvent was removed under reduced

pressure to give trimethyl-1,3,5-benzenetricarboxylate (5) as a colourless solid (11.26 g, 44.74 mmol, 94 %).

¹**H** NMR (300 MHz, CDCl₃): δ = 8.86 (s, 3H, Ar-H), 3.98 ppm (s, 9H, CH₃-O).

This compound was reported previously.^[2]

Synthesis of 1,3,5-tris(hydroxymethyl)benzene (6)

Trimethyl-1,3,5-benzenetricarboxylate (**5**) (10.57 g, 41.9 mmol) in 170 mL dry THF was added dropwise to a suspension of LiAlH₄ (7.10 g, 187.1 mmol, 4.5 eq.) in 80 mL dry THF at 0 °C. After addition, the mixture was allowed to warm to room temperature while stirring for 14 hours under a nitrogen atmosphere. 100 g of a 1:1 mixture of Celite and NaHSO₄ were added in small portions. At 0 °C, 7 mL water and 7 mL 15 % NaOH solution were added dropwise. The mixture was diluted with THF and filtered and the residue was washed with diethyl ether. The solvent was removed under reduced pressure yielding 1,3,5-tris(hydroxymethyl)benzene (**6**) as a pale-yellow solid (6.49 g, 38.6 mmol, 92 %).

¹**H** NMR (300 MHz, D₂O): δ = 7.32 (s, 3H, Ar-H), 4.65 ppm (s, 6H, CH₂).

This compound was reported previously.^[2]

Synthesis of 1,3,5-triformylbenzene (1)

1,3,5-tris(hydroxymethyl)benzene (6) (4.082 g, 24.27 mmol) was suspended in 240 mL CH₂Cl₂. 7.5 g Celite were added and the suspension was stirred for 15 minutes. PCC (15.70 g, 72.81 mmol, 3.0 eq.) was added and the mixture was stirred overnight. The reaction mixture was diluted with diethyl ether (80 mL) and stirred for another 30 minutes. The precipitate was filtered off. The residue was extracted with CH₂Cl₂. The solvent was removed under reduced pressure. The crude product was dissolved in CH₂Cl₂

and filtered over silica gel to give 1,3,5-triformylbenzene (1) as a colourless solid (3.402 g, 20.87 mmol, (86 %).

¹**H NMR** (300 MHz, CDCl₃): δ = 10.21 (s, 3H, CHO), 8.64 ppm (s, 3H, Ar-H).

This compound was reported previously.^[3]

Synthesis of [4+4] imine-cages FC1

Method A:

1,3,5-triformylbenzene (1) (104 mg, 6.4 mmol, 0.8 eq.) was dissolved in 100 mL of dry methanol inside a 250 mL round bottomed flask. A solution of 1,3,5-tris(aminomethyl)-2,4,6-trifluorobenzene (2) (175 mg, 8.0 mmol, 1.0 eq.) in 100 mL dry methanol was added dropwise over the period of one hour. The resulting solution was stirred for two days at room temperature. The resulting precipitate was filtered off and washed with 50 mL of cold methanol to give the [4+4] imine cage **FC1** as a white solid (200 mg, 1.5 mmol, 95%).

Method B:

1,3,5-Triformylbenzene (1) (104 mg, 6.4 mmol, 0.8 eq.) was dissolved in 100 mL of DCM/methanol 3:1 inside a 250 mL Erlenmeyer flask. A solution of 1,3,5-tris(aminomethyl)-2,4,6-trifluorobenzene (2) (175 mg, 8.0 mmol, 1.0 eq.) in 100 mL DCM/methanol 3:1 was carefully layered on top of the formylbenzene 1 solution. The resulting bi-layered solution was left standing without stirring for three days. The resulting precipitate was filtered off and washed with cold methanol (50 mL) to yield the [4+4] imine cage FC1 as transparent thin needles (140 mg, 1.1 mmol, 67%).

¹**H** NMR (300 MHz, CDCl₃): $\delta = 8.37$ (s, 12H, Ar-H), 7.97 (s, 12H, CHN), 4.76 ppm (s, 24H, CH₂-N); ¹⁹**F** NMR (282 MHz, CDCl₃): $\delta = -119.17$ ppm (s, 12F, Ar-F); due to the poor solubility of FC1 no ¹³C{¹H} could be obtained, we provided an elemental analysis additionally; **IR**: $\tilde{v} = 2987.7$, 2968.5, 2868.2, 1672.3, 1643.4, 1624.1, 1464.0, 1452.0, 1388.8, 1365.6 1330.9, 1253.7, 1224.8, 1149.6, 1041.6, 1018.4, 993.3, 970.2, 891.1, 866.0, 702.1, 684.7, 655.8, 611.4 cm⁻¹; **ESI-HRMS**: calc. $[C_{72}H_{48}F_{12}N_{12} + H]^+ = 1309.4006 \text{ m/z}$, found: 1309.3985 m/z; **Anal. Calcd.** for $C_{72}H_{48}F_{12}N_{12}x$ 4.5 H₂O: C: 62.20, H: 4.13, N: 12.09; found: C: 62.36, H: 4.30, N: 12.41.

Reduction of [4+4] imine cage, FC1L

Cage FC1 (100 mg, 0.80 mmol) was suspended in 200 mL of methanol and sodium borohydride (500 mg, excess) was added in portions at room temperature. After one hour, the reaction mixture was heated to reflux and more sodium borohydride (300 mg) was added. The resulting mixture was refluxed for two days. After allowing the mixture to cool to room temperature, the solvent was evaporated and the residue was taken up with 100 mL of 2M HCl and made basic with 4M KOH again. The aqueous phase was extracted with DCM (3 x 100mL) and the combined organic phases were dried over MgSO₄. The solvent was evaporated under reduced pressure to yield the locked cage $FC1_L$ as a white solid (24 mg, 0.18 mmol, 23% yield).

¹H NMR (300 MHz, CDCl₃): $\delta = 6.98$ (s, 12H, Ar-H), 3.82 - 3.64 (m, 48H, CH₂-NH₂-CH₂), 1.58 ppm (br s, 24H, NH₂); ¹⁹F NMR (282 MHz, CDCl₃): $\delta = -120.65$ ppm (s, 12F, Ar-F); Due to the low solubility of the compound sufficient ¹³C NMR data could not be obtained. FT-IR (ATR): \tilde{v} (cm⁻¹) = 2989.7, 2968.5, 2953.02, 2900.9, 2881.7, 2866.2, 2850.8, 2833.4, 1726.3, 1668.43, 1622.1, 1600.9, 1504.5, 1452.4, 1444.7, 1363.7, 1325.1, 1317.4, 1236.4, 1220.94, 1192.01, 1157.29, 1097.5, 1089.8, 1057.0, 995.3, 925.8, 854.5, 841.0, 748.4, 731.0, 719.5, 663.5, 619.2, 607.6; ESI-HRMS: calc. $[C_{72}H_{48}F_{12}N_{12} + 3H]^{3+} = 445.2010$ m/z, found: 445.2007 m/z; calc. $[C_{72}H_{48}F_{12}N_{12} + 2H]^{2+} = 667.2978$ m/z, found: 667.2968 m/z.

III. DOSY experiments

DOSY NMR experiments were recorded at 298 K and calibrated using known self-diffusion values for the solvents used (D_{solv}) .^[4] The hydrodynamic radii were estimated using the unmodified Stokes-Einstein-equation. This equation was solved for r_H using values for η from the literature.^[5]

$$D = \frac{k_B T}{6\pi \eta r_H}$$

- D is the measured diffusion coefficient $(m^2 s^{-1})$
- k_B is the Boltzmann constant (1.3806485 * 10⁻²³ m² kg s⁻² K⁻¹)
- T is the temperature (K)
- r_H is the hydrodynamic radius of the analyte (m)
- η is the viscosity of the solvent at temperature T (kg m^{-1} s^{-1})

The hydrodynamic radii were estimated to be $r_{\rm H} = 0.71$ nm for FC1 and $r_{\rm H} = 0.76$ nm for FC1_L respectively.

comparable to structurally similar [4+4]-cages previously reported in the literature.^[3]

Table S1: Hydrodynamic radii of different structurally related [4+4]-imine cages.

	FC1	3-Et-Et	3-Et-H
hydrodynamic radius rн (nm)	0.71	0.89	0.87

The hydrodynamic radius is lower for FC1 because of the missing bulky substituents that are required for the synthesis of the **3-Et-Et** and **3-Et-H** cages.

IV. Computational details

Quantum mechanical calculations were performed by applying density functional theory All geometry optimizations were performed with the Gaussian16 program.^[11] Geometries were optimized using first B3LYP, followed by M062X functionals and the def2-TZVP basis set for H, C, N and F atoms. Stationary points were characterized by vibrational analyses. Figure **S3** gives an overview of all optimized structures. The geometries are nearly equivalent for B3LYP and M062X, therefore only M062X-optimized ones are shown.

Figure S3: DFT-optimized geometries of FC1, FC1_{Lpuffy} and FC1_{Lcollapsed} (from left to right) using M062X/def2-TZVP level of theory. The collapsed geometry of FC1_L is more stable than the puffy geometry of FC1_L by 9.6 kcal mol⁻¹.

MM2 calculations

Figure S4: Energy plot of the rotation around the C_{sp2} - C_{sp3} -bond of an aminomethyl substituent of 1,3,5-triethyl-2,4,6-tris(aminomethyl)benzene (MM2 calculation).

Figure S5: Rotational energy around the C_{sp2} - C_{sp3} -bond of an aminomethyl substituent of 1,3,5-tris(aminomethyl)-2,4,6-trifluorobenzene (2) (MM2 calculations).

V. Thermogravimetrical analysis

Figure S6: Thermogravimetric curves of a crystalline sample of FC1 (black line) and of a powdered sample of FC1 (red line). The initial dip in the red curve stems from remaining moisture, even though the sample was previously evacuated at 40 °C and 10^{-2} mbar for 24 hours. The increase in weight starting at about 680 °C is caused by a corrosion of the instruments by release of HF due to the moisture in the gas flow. Onset decomposing temperatures are 361.5 °C (powdered FC1) and 373.1 °C (crystalline FC1).

VI. Gas adsorption analysis

Cas	FC1 (cryst.)		FC1 (powder)	
Gas	uptake (mmol/g)	in weight %	uptake (mmol/g)	in weight %
N ₂	7.6	22.14	6.8	19.10
H ₂	7.5	1.51	5.4	11.42
CO ₂	4.2	18.98	2.6	1.06

Table S2: Gas uptake of differently processed samples of FC1.

Figure S7: a) adsorption (solid symbol) and desorption (hollow symbol) of nitrogen (blue) and hydrogen (red) for a crystalline **FC1** sample; b) adsorption (solid symbol) and desorption (hollow symbol) of nitrogen (blue) and hydrogen (red) for a powdered **FC1** sample; c) adsorption (solid symbol) and desorption (hollow symbol) for carbon dioxide of a crystalline **FC1** sample; d) adsorption (solid symbol) and desorption (hollow symbol) for carbon dioxide of a powdered **FC1** sample; d) adsorption (solid symbol) and desorption (hollow symbol) for carbon dioxide of a powdered **FC1** sample.

VII. Crystallographic details

Single crystals used directly as obtained from the synthetic mixture were mounted using a microfabricated polymer film crystal-mounting tool (dual-thickness MicroMount, MiTeGen) using low viscosity oil perfluoropolyether PFO-XR75 to reduce the X-ray absorption and scattering. A data set of a colourless needle with dimensions of 157.0 x 34.0 x 33.4 μ m of **FC1** was collected at the P11 beamline at PETRA III, DESY^[6,7] in August 2019 with a wavelength of 0.619900 Å and a PILATUS detector, using P11 Crystallography Control GUI at 200(2) K. Initial data reduction was carried out using XDS (V. 1 Nov 2016). The structure was then refined by full-matrix least-squares methods on F^2 (SHELXL-2014).^[8-10] The hydrogen atoms were placed at calculated positions and refined by using a riding model.

Because of the inherent difficulty to obtain a suitable data set, hampered by disorder of the imine bonds, disordered solvents within the cavities and poor diffraction phenomena, it was decided together with the crystallographic expert team of the Max-Planck-Institut für Kohlenforschung not to submit the data set to the Cambridge Crystallographic Data Centre, therefore neither the CCDC number nor checkcif is supplied with this supporting material. It is of course available from the author by request, as is the raw data.

The structure was refined using (geometrical) constraints including simu, delu, isor, dfix and affix 66 for parts of the **FC1** cage. Imine bonds show disorder to some extent, which was treated with fvar refinement, if sufficient electron density was present. Inside the cavity, neither chloroform nor methanol molecules could be located from the electron density map. The cavities are filled with partially or completely disorded solvent, which were not removed using SQUEEZE but refined as oxygen atoms to remove electron density from system and enable further cage refinement. This is common for large supramolecular systems and sufficient to discuss cage geometry and packing within the crystal but no bond length or intermolecular contacts are given.

Figure S9: Synchrotron data set of **FC1** showing the asymmetric unit with thermal ellipsoids set at 50% probability. The structure was measured at 200 K and solved in the monoclinic space group $P2_1$ with $R_{Int} = 0.0693$, $R_1 = 0.2287$ and $wR_2 = 0.5134$. The structure shows various C-H···F contacts between alternating hydrogenated and fluorinated ports of the windows.

Figure S10: Asymmetric unit of FC1 showing the asymmetric unit with a space-filling representation.

Figure S11: View of the unit cell of **FC1** along the crystallographic *a* axis. The infinite pores along the cages can be clearly seen.

PXRD

Figure S12: Powder XRD spectra of a powder (top) and crystalline (middle) **FC1** sample. The spectra at the bottom was calculated from the single-crystal XRD data and is in good agreement with the crystalline sample. As can be seen by the broader signals and the noise in the spectrum in the top the crystallinity of the powdered sample is the lowest.

VIII. MS and CID experiments

Figure S13: (a) ESI-MS spectrum (CH₂Cl₂/CH₃CN = 9:1) of the protonated imine cage [**FC1**+H]⁺, inlet showing the weak dimer signal at m/z 2618. (b) CID Experiment (collision voltage: 60 V) of the mass-selected signal m/z 1309.

Figure S14: CID experiments of the imine cage FC1 with mass selected signals (a) m/z 1309 and (b) m/z 2618 at different collision voltages.

Figure S15: High resolution mass spectrum of the protonated imine cage $[FC1+H]^+ m/z$ calcd. for C₇₂H₄₈N₁₂F₁₂: 1309.4006 $[FC1+H]^+$, found: 1309.3969 ($\Delta = 2.8$ ppm).

Figure S16: ESI-MS spectrum (CH₂Cl₂/CH₃CN = 9:1) of the protonated imine cage $[FC1+H]^+$ and its benzonitrile complex.

Figure S17: CID experiments with imine cage FC1 and its benzonitrile complex: mass-selected signal for the protonated host-guest complex at m/z 1412 before (top) and after increase of collision voltage to 20 V (bottom).

Figure S18: ESI-MS spectrum H₂O/iPrOH/HCOOH (50:50:1) of the protonated amine cage $[FC1_L+2H]^{2+}m/z$ at 667, inlet showing the weak single charged ion $[FC1_L+H]^+$ signal at m/z 1334.

Table S3: Qualitative screening of guests for the imine cage FC1 and amine cage FC1_L.

For NMR titration experiments, the same substrates as listed above were used. A stock solution of FC1 in CDCl₃ (c = 0.16 mM) was mixed with a stock solution of the substrates (1 and 10 eq.) in CDCl₃. The mixture was sonicated at room temperature for 30 min and the corresponding solutions were then subjected to NMR analysis. In neither case, a shift in neither ¹H nor ¹⁹F NMR could be observed for the substrates.

IX. IR spectra

Figure S19: AT-IR spectrum of 1,3,5-tris(chloromethyl)-2,4,6-trifluorobenzene 3.

Figure S20: AT-IR spectrum of 1,3,5-tris(azidomethyl)-2,4,6-trifluorobenzene 4.

Figure S21: AT-IR spectrum of 1,3,5-tris(aminomethyl)-2,4,6-trifluorobenzene 2.

Figure S22: AT-IR spectrum of FC1 in crystalline form.

Figure S23: AT-IR spectrum of amine cage $FC1_L$.

X. NMR spectra

Figure S24: ¹H NMR spectrum (300 MHz, CDCl₃) of 1,3,5-tris(chloromethyl)-2,4,6-trifluorobenzene 3. *water

Figure S25: ¹⁹F NMR spectrum (282 MHz, CDCl₃) of 1,3,5-tris(chloromethyl)-2,4,6-trifluorobenzene 3.

Figure S26: ¹³C{¹H]</sup> NMR spectrum (80 MHz, CDCl₃) of 1,3,5-tris(chloromethyl)-2,4,6-trifluorobenzene **3**.

-4.45

Figure S27: ¹H NMR spectrum (300 MHz, CDCl₃) of 1,3,5-tris(azidomethyl)-2,4,6-trifluorobenzene 4. *water

Figure S28: ¹⁹F NMR spectrum (282 MHz, CDCl₃) of 1,3,5-tris(azidomethyl)-2,4,6-trifluorobenzene 4.

Figure S29: ¹³C{¹H] NMR spectrum (80 MHz, CDCl₃) of 1,3,5-tris(azidomethyl)-2,4,6-trifluorobenzene 4.

-1.43

Figure S30: ¹H NMR spectrum (300 MHz, CDCl₃) of 1,3,5-tris(aminomethyl)-2,4,6-trifluorobenzene 2. *ethanol

Figure S31: ¹⁹F NMR spectrum (282 MHz, CDCl₃) of 1,3,5-tris(aminomethyl)-2,4,6-trifluorobenzene 2.

Figure S32: ¹³C{¹H] NMR spectrum (80 MHz, CDCl₃) of 1,3,5-tris(aminomethyl)-2,4,6-trifluorobenzene 2.

Figure S33: ¹H NMR spectrum (300 MHz, CDCl₃) of 1,3,5-tris(methylcarboxylate)benzene 5.

Figure S34: ¹H NMR spectrum (300 MHz, D₂O) of 1,3,5-tris(hydroxymethyl)benzene 6.

Figure S35: ¹H NMR spectrum (300 MHz, CDCl₃) of 1,3,5-triformylbenzene 1. *CH₂Cl₂

Figure S36: ¹H NMR spectrum (300 MHz, CDCl₃) of [4+4] imine cage FC1. * water

Figure S37: ¹⁹F NMR spectrum (282 MHz, CDCl₃) of [4+4] imine cage FC1.

Figure S38: ¹H NMR spectrum (282 MHz, CDCl₃) of [4+4] amine cage FC1_L.

Figure S39: ¹⁹F NMR spectrum (282 MHz, CDCl₃) of [4+4] amine cage FC1.

XI. MS spectra

Figure S40: CI-MS spectrum of 1,3,5-tris(chloromethyl)-2,4,6-trifluorobenzene **3** at 300°C. The corresponding $[M+H]^+$ ion (276 m/z) shows a loss of an Cl-fragment (35 m/z) resulting in a fragmented ion of $[M-Cl+H]^+$ (241 m/z).

Figure S41: CI-MS spectrum of 1,3,5-tris(azidomethyl)-2,4,6-trifluorobenzene **4** at 40°C. The corresponding $[M+H]^+$ ion (297 m/z) shows a loss of an N₃-fragment (42 m/z) resulting in a fragmented ion of $[M-N_3+H]^+$ (255 m/z).

Figure S42: ESI-MS spectrum of 1,3,5-tris(aminomethyl)-2,4,6-trifluorobenzene **2**. The corresponding $[M+H]^+$ ion (found 220.1059 m/z) shows a good correspondence to the theoretical value of calc. 220.1056 m/z.

Figure S43: ESI-HRMS spectrum of **FC1**_L. The found $[M+3H]^{3+}$ ion mass: 445.2007 m/z corresponds very well to the calculated triply charged m/z = 445.2010.

XI. References

- [1] S. M. F. Vilela, J. A. Fernandes, D. Ananias, L. D. Carlos, J. Rocha, J. P. C. Tomé and F. A. Almeida Paz, *CrystEngComm*, 2014, **16**, 344.
- [2] M. P. Castaldi, S. E. Gibson, M. Rudd and A. J. P. White, *Chem. Eur. J.*, 2006, **12**, 138.
- [3] J. C. Lauer, W.-S. Zhang, F. Rominger, R. R. Schröder and M. Mastalerz, *Chem. Eur. J.*, 2018, 24, 1816.
- [4] S. Viel, F. Ziarelli, G. Pages, C. Carrara, S. Caldarelli, J. Magn. Reson., 2008, 190, 113.
- [5] Y. H. Zhao, M. H. Abraham and A. M. Zissimos, J. Org. Chem, 2003, 68, 7368.
- [6] A. Burkhardt *et al.*, Status of the crystallography beamlines at PETRA III, *Eur. Phys. J. Plus* 131:56 (2016).
- [7] A. Meents *et al.*, Development of an in-vacuum x-ray microscope with cryogenic sample cooling for beamline P11 at PETRA III, *Proceedings of SPIE* 8851, 88510K (**2013**).
- [8] G. M. Sheldrick, SADABS, program for empirical absorption correction of area detector data, University of Göttingen, Göttingen, **1996**.
- [9] G. M. Sheldrick, SHELXT-2013, Program for Crystal Structure Solution, University of Göttingen, Göttingen, **2013**.
- [10] G. M. Sheldrick, SHELXL-2014, Program for Crystal Structure Refinement, University of Göttingen, Göttingen, 2014.
- [11] Frisch, M. J. et al.; Gaussian16 Revision B.01. (2016).

XII. Cartesian coordinates of calculated POCs FC1, FC1_{Lpuffy} and FC1_{Lcollapsed}

Symbol	X	Y	Z
С	-26.606.010	-33.513.990	30.932.160
С	-33.208.370	-38.808.580	19.872.950
С	-26.326.480	-47.291.650	11.317.820
С	-12.823.230	-50.069.570	13.347.120
С	-0.6256180	-44.577.940	24.276.430
С	-13.220.090	-36.445.350	33.215.050
С	-0.6729190	-31.151.430	45.365.210
С	-47.217.950	-35.428.130	16.886.000
С	-0.5933080	-58.820.610	0.3696740
Ν	0.5652030	-32.237.690	47.514.870
Ν	-53.314.280	-26.037.990	22.716.090
Ν	0.6633850	-59.509.030	0.2845510
С	12.059.920	-68.286.980	-0.7441470
С	10.726.490	-27.049.460	60.128.380
С	-66.674.310	-11.151.250	0.9218980
С	-65.225.850	-12.373.680	-0.4503570
С	-64.534.030	-0.1670200	-13.275.350
С	-65.190.170	10.890.640	-0.7461670
С	-66.616.050	13.147.230	0.6141260
С	-67.183.170	0.1811620	14.082.840
F	-64.555.870	-24.720.340	-0.9657400
F	-64.526.620	21.592.510	-15.485.140
С	-62.997.080	-0.3504480	-28.142.810
С	-66.824.310	27.037.270	11.971.310
С	-66.890.240	-23.190.730	18.265.250
Ν	-49.072.280	-0.5941900	-31.771.640
С	-42.526.580	0.3932840	-36.117.960
С	-28.551.120	0.2942960	-40.760.860
С	-22.526.250	-0.9398690	-43.199.810
С	-0.9734650	-0.9918730	-48.596.500
С	-0.2945950	0.1935400	-51.367.730
С	-0.8640520	14.247.460	-48.450.580
С	-21.560.100	14.679.520	-43.284.410
С	-0.3101830	-22.695.720	-51.783.680
С	-0.0978540	26.583.410	-50.892.250
С	16.412.470	-60.100.210	-19.308.990

Cartesian coordinates of FC1 M062X/def2-TZVP

С	0.7549270	-56.755.780	-29.422.670
С	10.817.910	-49.083.720	-40.475.750
С	23.901.370	-44.528.850	-40.935.550
С	33.499.100	-47.330.120	-31.350.730
С	29.233.890	-55.036.610	-20.643.850
F	-0.5004590	-61.354.560	-28.494.240
F	27.570.840	-37.008.160	-51.408.930
С	47.550.230	-41.972.260	-32.222.510
С	0.0764970	-45.541.210	-51.116.000
Ν	-0.6904070	-33.784.280	-47.121.300
С	20.593.290	0.9893030	58.212.510
С	13.525.780	-0.1917150	59.781.740
С	18.857.790	-14.567.560	57.948.850
С	32.112.490	-14.960.690	53.912.890
С	39.922.600	-0.3706850	51.787.200
С	33.711.570	0.8484170	53.997.290
F	40.869.640	19.647.980	52.072.660
F	0.0650230	-0.1000920	63.543.570
F	37.754.110	-26.919.050	52.118.980
С	54.047.160	-0.4645950	46.641.760
С	14.305.430	23.300.410	60.935.980
Ν	-53.244.350	32.335.370	12.463.390
С	-25.442.300	30.601.370	35.550.220
С	-32.897.020	35.193.280	24.782.240
С	-26.920.580	43.725.450	15.539.410
С	-13.593.960	47.391.940	16.919.360
С	-0.6043500	42.302.210	27.481.620
С	-11.970.610	33.937.600	36.847.910
С	-0.4423910	28.612.110	48.338.730
С	-0.7804300	56.946.790	0.7275530
С	-46.882.210	30.842.900	23.260.180
С	0.7592990	59.233.620	-25.956.780
С	15.016.530	62.338.770	-14.674.440
С	28.186.420	58.027.060	-14.733.320
С	33.987.900	50.922.630	-25.134.430
С	25.704.740	48.149.450	-35.881.150
С	12.532.520	52.329.150	-36.896.140
F	-0.5179050	63.253.450	-26.396.520
С	0.4031330	49.184.450	-48.922.890
F	30.785.980	40.994.850	-46.072.090
С	48.256.010	46.130.220	-24.535.510
F	35.816.650	61.004.230	-0.4203550
С	0.8902580	69.474.760	-0.2911500

Ν	0.8175020	28.737.180	48.906.240
С	52.878.890	12.496.730	0.1999390
С	51.623.060	11.319.580	-11.879.110
С	51.243.050	-0.1242830	-17.672.720
С	52.095.410	-12.715.240	-0.9719560
С	53.396.730	-11.450.390	0.3996860
С	53.720.510	0.1200790	0.9935750
С	54.687.520	0.2635400	24.569.420
С	51.533.750	-26.174.350	-15.683.720
С	50.653.100	23.354.740	-20.333.630
N	53.699.520	-0.7280080	32.313.200
Ν	47.947.820	-28.137.260	-27.629.680
F	38.110.300	-57.865.460	-11.015.110
F	-68.345.450	0.3443890	27.342.060
N	-0.4510930	37.726.640	-46.146.970
N	0.4490470	59.771.450	0.7035120
N	49.316.760	34.881.670	-15.382.130
Н	-32.109.290	-27.079.680	37.697.930
Н	-31.447.440	-51.595.760	0.2770640
Н	0.4212240	-46.739.220	25.977.130
Н	-13.447.690	-26.309.480	52.585.320
Н	-51.979.210	-41.380.680	0.8983910
Н	-12.485.720	-64.624.830	-0.2931910
Н	20.695.840	-73.468.490	-0.3305450
Н	0.4738290	-75.731.070	-10.736.400
Н	0.2662690	-24.861.310	67.199.080
Н	17.166.350	-34.698.260	64.477.090
Н	-68.794.900	-12.190.830	-31.249.860
Н	-66.999.940	0.5328310	-33.199.250
Н	-72.776.880	33.543.530	0.5577110
Н	-71.439.590	26.679.750	21.875.700
Н	-72.991.760	-21.007.600	27.017.590
Н	-71.317.450	-31.639.340	12.901.200
Н	-47.008.620	13.929.230	-36.899.610
Н	-27.933.020	-18.552.520	-41.167.860
Н	0.7003400	0.1511230	-55.687.310
Н	-26.064.670	24.341.270	-41.332.890
Н	0.5559580	-21.943.560	-58.498.490
Н	0.8123300	25.476.400	-56.943.120
Н	54.168.560	-48.405.540	-26.358.130
Н	50.811.700	-42.175.840	-42.615.160
Н	0.6030000	-43.933.030	-60.569.080
Н	-0.6183070	-53.833.060	-52.368.790

Н	59.360.150	0.4614390	49.000.460
Н	59.132.500	-12.957.260	51.511.250
Н	0.7048430	22.207.200	69.065.000
Н	22.079.760	30.228.220	64.142.100
Н	-30.095.340	24.137.440	42.925.870
Н	-32.871.790	47.453.040	0.7284750
Н	0.4377460	45.048.870	28.483.960
Н	-10.509.730	24.432.810	56.476.180
Н	-14.946.060	61.556.290	0.0321760
Н	-51.365.030	25.945.210	32.011.740
Н	-0.2389670	57.727.080	-51.059.890
Н	10.539.860	47.459.500	-57.545.090
Н	51.630.140	43.594.330	-34.627.650
Н	54.532.550	54.172.440	-20.681.070
Н	16.426.370	75.847.340	0.1717560
Н	0.0662220	75.751.560	-0.6430650
Н	53.080.930	22.408.420	0.6375090
Н	50.240.360	-0.2407650	-28.401.220
Н	54.032.010	-20.200.900	10.357.670
Н	56.054.690	12.864.270	28.317.410
Н	54.285.520	-34.450.130	-0.9016120
Н	51.089.210	21.683.150	-31.182.260

Cartesian coordinates of FC1Lpuffy M062X/def2-TZVP

Symbol	Х	Y	Z
С	17.011.010	-28.262.610	-45.941.190
С	0.9504410	-37.943.670	-39.260.550
С	-0.4076020	-38.881.560	-41.903.730
С	-10.249.380	-30.334.960	-51.003.710
С	-0.2631490	-20.742.250	-57.482.960
С	11.035.650	-19.659.960	-55.045.580
С	19.020.020	-0.8772390	-61.681.720
С	15.814.640	-47.171.930	-29.129.300
С	-25.098.200	-31.353.740	-53.253.540
Ν	17.535.050	0.3720080	-54.295.610
Ν	29.976.580	-49.232.790	-31.720.090
Ν	-32.172.680	-27.789.020	-41.040.200
С	-46.661.030	-28.480.520	-42.317.480
С	24.969.470	14.712.900	-60.322.260
С	37.609.520	-53.575.710	-0.8834420
С	29.556.740	-57.529.590	0.1705130
С	30.980.930	-53.038.870	14.773.810

С	41.084.690	-43.815.810	16.864.620
С	49.654.030	-39.169.450	0.6971790
С	47.459.040	-44.294.070	-0.5700260
F	19.898.320	-66.478.580	-0.0743490
F	42.952.420	-39.288.760	29.325.260
С	22.256.380	-57.961.010	25.951.850
С	60.625.420	-29.371.760	0.9966480
С	36.110.350	-58.983.720	-22.811.770
Ν	0.9910650	-50.264.610	26.974.070
С	0.2220260	-54.227.940	38.717.220
С	-10.266.080	-45.972.450	40.259.130
С	-21.393.990	-48.444.240	32.290.950
С	-33.094.040	-41.132.720	33.896.990
С	-33.452.610	-30.972.900	43.397.010
С	-22.421.140	-28.185.070	51.352.140
С	-10.905.610	-35.824.820	49.737.020
С	-45.259.610	-43.986.730	25.518.210
С	-22.747.710	-16.992.480	61.386.910
С	-52.969.100	-23.948.510	-29.470.630
С	-53.185.950	-32.106.830	-18.238.100
С	-58.107.350	-28.224.250	-0.5892940
С	-62.863.240	-15.215.540	-0.5168200
С	-63.212.320	-0.6360070	-15.799.880
С	-58.047.730	-11.186.870	-27.747.880
F	-48.504.400	-44.541.560	-19.494.060
F	-67.423.850	-10.937.510	0.6741630
С	-68.217.710	0.7723760	-14.444.030
С	-57.865.900	-37.278.370	0.6072370
Ν	-45.351.120	-35.860.150	13.410.870
С	34.128.520	41.758.260	-34.781.180
С	34.621.660	30.851.050	-43.374.310
С	24.198.500	26.874.600	-51.554.530
С	12.635.010	34.531.180	-50.688.580
С	11.152.080	45.549.150	-42.449.190
С	22.170.780	48.711.920	-34.602.740
F	21.139.430	59.281.930	-26.446.120
F	46.013.110	23.830.310	-43.788.070
F	0.2311270	31.058.390	-58.465.670
С	-0.1640740	53.359.720	-41.683.460
С	45.681.380	45.249.690	-25.858.620
Ν	55.428.270	-15.856.930	11.686.250
С	61.334.320	16.897.110	0.4828220
С	60.956.360	0.7754470	15.246.190

С	55.581.140	11.669.510	27.493.300
С	50.979.720	24.594.190	29.449.510
С	51.585.580	33.649.140	18.860.990
С	56.644.920	29.908.000	0.6507380
С	56.761.440	39.519.310	-0.5061610
С	45.110.350	28.872.790	42.616.250
С	66.233.300	-0.6217640	13.410.740
С	0.2942170	20.127.430	59.476.020
С	0.9573690	31.065.940	54.147.060
С	0.1520600	40.499.880	47.978.770
С	-12.292.000	39.696.820	47.150.570
С	-17.961.480	28.387.670	52.802.490
С	-10.801.660	18.381.690	59.187.690
F	10.284.340	10.632.090	65.445.760
С	-17.320.980	0.6245870	65.138.550
F	-31.296.270	27.130.850	52.148.080
С	-20.578.900	50.196.750	40.341.320
F	0.7524760	51.195.810	42.565.000
С	24.501.430	32.507.900	54.655.470
Ν	46.204.040	36.109.480	-14.516.200
С	-27.170.820	55.813.860	-0.5229920
С	-34.793.010	52.317.690	0.5801160
С	-46.038.670	44.269.740	0.3958560
С	-49.625.590	39.728.940	-0.8636210
С	-41.864.950	43.470.980	-19.589.060
С	-30.729.170	51.579.170	-18.029.890
С	-22.565.500	55.834.460	-29.941.100
С	-61.476.210	30.659.610	-10.521.720
С	-31.059.890	56.847.160	19.649.070
Ν	-0.9544090	49.288.380	-30.116.140
Ν	-57.054.810	16.983.630	-12.968.620
F	-58.037.430	-0.2914310	-38.277.700
F	55.549.090	-40.310.380	-15.600.270
Ν	-18.261.470	-0.4496760	55.321.490
Ν	30.683.970	26.683.940	42.815.440
Ν	-22.489.290	47.039.770	26.241.260
Н	27.631.700	-27.483.190	-43.906.210
Н	-10.104.750	-46.278.630	-36.740.640
Н	-0.7337440	-13.915.970	-64.481.420
Н	15.289.680	-0.7059630	-71.817.170
Н	29.544.120	-11.857.580	-62.570.240
Н	14.834.010	-42.782.410	-19.141.450
Н	10.183.810	-56.621.040	-28.894.200

Н	-27.998.330	-25.105.760	-61.830.210
Н	-27.813.930	-41.663.630	-55.727.830
Н	20.562.690	0.2343630	-44.704.230
Н	31.236.720	-52.215.260	-41.329.390
Н	-29.382.300	-18.494.900	-38.067.180
Н	-50.548.810	-22.461.070	-50.627.090
Н	-49.357.530	-38.889.180	-44.240.640
Н	35.503.760	12.244.570	-62.146.580
Н	20.394.010	16.913.420	-69.997.040
Н	19.531.630	-68.358.080	24.033.030
Н	28.057.470	-57.763.090	35.276.390
Н	65.480.830	-32.225.460	19.331.630
Н	68.198.260	-29.993.250	0.2047560
Н	46.042.480	-61.246.770	-26.702.860
Н	30.461.460	-68.375.020	-22.307.660
Н	12.053.800	-40.353.380	27.489.440
Н	-0.0477080	-64.750.850	37.435.520
Н	0.8174120	-53.564.060	47.952.270
Н	-20.946.390	-56.292.690	24.818.460
Н	-42.557.840	-25.213.120	44.740.090
Н	-0.2329090	-33.953.390	56.134.440
Н	-45.309.440	-54.486.420	22.479.230
Н	-54.290.010	-42.347.390	31.608.620
Н	-32.963.900	-15.475.340	64.970.240
Н	-16.628.480	-19.713.870	70.126.360
Н	-75.283.620	0.8243910	-0.6060830
Н	-73.667.100	10.505.110	-23.491.890
Н	-66.647.060	-35.189.880	12.338.620
Н	-58.627.380	-47.640.560	0.2734480
Н	-43.847.510	-26.120.760	15.847.700
Н	0.0678670	63.971.380	-40.540.190
Н	-0.7105100	52.190.230	-51.130.230
Н	55.015.350	44.159.660	-31.428.570
Н	44.864.370	55.762.360	-22.823.050
Н	49.790.800	-13.255.070	0.3654810
Н	65.380.310	13.955.070	-0.4802110
Н	55.063.060	0.4488660	35.606.080
Н	48.125.970	43.836.660	20.358.380
Н	55.886.200	49.834.180	-0.1332140
Н	66.287.300	38.833.980	-10.395.790
Н	49.489.730	23.035.580	50.754.070
Н	47.655.350	39.427.260	44.466.240
Н	71.838.420	-0.9196840	22.319.370

Н	73.309.300	-0.6375040	0.4984020
Н	-11.676.460	0.3226950	74.067.440
Н	-27.435.070	0.8780740	68.364.060
Н	-30.107.780	51.262.320	45.708.330
Н	-15.409.740	59.788.090	40.953.150
Н	27.016.860	43.134.280	55.879.950
Н	28.332.920	27.219.970	63.398.970
Н	37.250.980	36.039.680	-0.9730730
Н	-18.337.460	61.976.670	-0.3952660
Н	-52.156.830	41.628.050	12.537.360
Н	-44.675.640	39.988.070	-29.473.230
Н	-28.291.780	53.958.930	-39.146.680
Н	-20.766.160	66.617.560	-29.467.350
Н	-68.130.590	31.401.680	-0.1788690
Н	-67.267.520	33.841.180	-19.239.560
Н	-25.570.660	66.285.720	19.154.870
Н	-40.247.230	58.744.120	25.420.600
Н	-10.807.400	39.214.730	-30.180.510
Н	-51.035.260	13.958.200	-0.5375690
Н	-0.9216640	-0.5944360	50.940.680
Н	26.534.760	30.674.270	34.452.230
Н	-26.576.660	37.792.730	25.314.410

Cartesian coordinates of FC1Lcollapsed M062X/def2-TZVP

Symbol	Χ	Y	Z
С	-49.164.620	25.616.140	-21.142.810
С	-38.460.630	31.017.780	-28.165.440
С	-26.100.320	24.693.750	-27.452.770
С	-24.192.760	13.451.360	-19.493.470
С	-35.086.130	0.8141870	-12.711.090
С	-47.630.070	14.086.490	-13.559.800
С	-59.342.860	0.7504070	-0.6832240
С	-40.543.330	43.586.270	-36.314.850
С	-10.417.250	0.7534700	-17.616.070
Ν	-65.382.240	-0.2234490	-15.944.160
Ν	-43.536.810	55.211.390	-27.898.800
Ν	-10.213.970	-0.6936340	-19.131.210
С	-0.9742810	-11.891.680	-32.905.880
С	-73.626.290	-12.239.090	-0.9305760
С	-21.408.760	56.950.680	-17.226.220
С	-10.005.010	51.818.160	-23.070.590

С	0.0016720	44.961.320	-16.356.090
С	-0.1690170	43.872.370	-0.2671260
С	-12.656.660	48.898.480	0.4267450
С	-22.312.440	55.137.580	-0.3472310
F	-0.8508420	53.172.700	-36.398.630
F	0.7925970	37.826.800	0.4390240
С	11.709.930	39.092.610	-23.933.510
С	-13.510.620	48.226.500	19.256.920
С	-32.156.070	63.915.880	-25.151.780
Ν	22.472.030	48.420.970	-27.001.190
С	30.892.200	51.760.560	-15.624.930
С	39.882.390	40.179.470	-11.792.830
С	43.252.970	30.468.130	-21.137.570
С	51.294.980	19.685.900	-17.635.840
С	56.280.220	18.778.630	-0.4719130
С	53.179.730	28.493.780	0.4741670
С	44.906.520	39.069.990	0.1127820
С	53.270.890	0.8560270	-27.572.000
С	58.027.510	27.039.280	19.021.950
С	0.3323490	-18.749.580	-36.107.620
С	15.202.860	-11.645.400	-36.544.450
С	27.772.340	-17.102.990	-38.561.140
С	27.779.960	-30.789.150	-40.736.250
С	16.507.450	-38.840.140	-40.866.820
С	0.4492410	-32.396.220	-38.382.480
F	14.350.570	0.1742400	-34.959.220
F	39.614.530	-36.845.260	-42.860.030
С	17.750.920	-53.783.810	-43.258.630
С	40.324.420	-0.8754700	-38.821.210
Ν	41.466.270	-0.0103310	-27.139.780
С	-57.607.740	-25.141.740	23.128.270
С	-65.559.610	-18.278.530	14.087.250
С	-65.900.450	-20.820.230	0.0481180
С	-57.547.410	-31.005.240	-0.3839760
С	-49.386.520	-38.633.640	0.4350230
С	-49.748.440	-35.212.750	17.777.600
F	-41.788.130	-42.012.980	26.235.060
F	-73.219.930	-0.8341250	18.816.700
F	-57.289.120	-33.618.120	-17.039.950
С	-40.596.070	-49.692.810	-0.1135600
С	-56.204.970	-20.783.290	37.417.310
Ν	-14.923.650	34.617.440	24.284.130
С	-28.966.890	14.075.610	45.984.620

С	-16.879.010	20.775.870	44.541.850
С	-0.5109020	14.437.330	48.396.610
С	-0.5333900	0.1641290	53.809.420
С	-17.545.800	-0.4880950	55.132.180
С	-29.405.760	0.1207700	51.231.890
С	-42.329.430	-0.6466400	51.602.460
С	0.7405860	-0.5040510	58.271.280
С	-16.480.590	34.682.500	38.806.240
С	50.534.680	-0.1252540	41.273.290
С	40.231.660	-10.521.130	41.185.270
С	39.803.790	-18.897.920	30.159.640
С	48.924.620	-18.685.710	19.739.470
С	59.073.900	-0.9325800	20.977.070
С	60.276.820	-0.0292520	31.452.550
F	51.077.560	0.7339970	51.562.420
С	71.068.930	10.242.490	31.652.010
F	68.434.410	-0.9104310	11.380.880
С	47.689.690	-27.503.190	0.7481150
F	29.785.510	-27.854.870	29.618.490
С	29.856.280	-11.240.960	52.004.900
Ν	-45.350.760	-11.073.750	38.097.050
С	0.4587750	-29.697.180	0.1051610
С	17.835.250	-30.177.640	-0.3381990
С	22.200.250	-41.440.180	-10.137.020
С	13.487.430	-51.943.340	-12.961.770
С	0.0313960	-51.100.990	-0.8797380
С	-0.4269200	-40.025.730	-0.1658860
С	-18.562.460	-39.672.010	0.3287160
С	18.315.260	-63.991.220	-20.806.030
С	26.915.870	-18.179.230	-0.1558370
Ν	-27.659.210	-45.674.120	-0.6339980
Ν	25.198.090	-61.357.940	-33.346.860
F	-0.6702710	-39.779.190	-38.227.600
F	-33.102.880	60.141.130	0.2658290
Ν	69.934.770	18.781.450	19.939.740
Ν	17.842.950	-0.3930580	48.183.100
Ν	40.881.720	-21.285.970	-0.3744480
Н	-58.864.000	30.446.400	-21.648.190
Н	-17.728.240	28.660.660	-33.114.860
Н	-33.702.470	-0.0790550	-0.6688700
Н	-66.948.030	14.877.890	-0.4138080
Н	-55.823.210	0.2879010	0.2486270
Н	-31.802.900	45.353.680	-42.701.410

Н	-49.062.370	42.001.490	-42.955.830
Н	-0.7088330	0.9806850	-0.7443050
Н	-0.3469650	12.598.490	-24.437.040
Н	-58.087.700	-0.6813120	-21.303.150
Н	-50.899.340	60.737.730	-32.063.270
Н	-0.2835680	-11.135.530	-13.655.570
Н	-17.899.340	-18.876.810	-34.770.010
Н	-11.155.740	-0.3446310	-39.714.790
Н	-81.698.770	-0.7153670	-0.4037610
Н	-78.120.230	-18.583.690	-16.936.630
Н	0.7983230	34.929.470	-33.310.230
Н	15.908.360	30.835.830	-18.175.870
Н	-0.4207210	52.206.920	23.412.780
Н	-21.608.530	54.822.290	22.616.140
Н	-35.808.770	72.399.880	-19.356.260
Н	-27.577.910	67.813.110	-34.326.920
Н	18.787.360	56.751.550	-31.393.620
Н	25.146.430	54.817.730	-0.6756770
Н	37.079.010	60.300.230	-18.491.230
Н	39.321.100	31.309.480	-31.210.400
Н	62.615.160	10.483.840	-0.1837650
Н	42.211.880	46.529.130	0.8550750
Н	54.790.580	12.775.040	-37.620.320
Н	62.115.480	0.2633140	-25.096.620
Н	50.094.880	22.147.270	24.759.710
Н	59.321.890	36.967.220	23.510.920
Н	22.601.920	-55.242.640	-52.930.760
Н	0.7755790	-58.070.030	-43.981.420
Н	48.942.890	-15.427.480	-39.004.950
Н	40.552.710	-0.2952140	-48.181.590
Н	33.306.950	0.5868380	-26.553.350
Н	-38.894.420	-56.999.660	0.6780780
Н	-46.004.670	-54.742.940	-0.9134100
Н	-65.390.720	-15.935.180	40.743.950
Н	-54.502.370	-29.519.050	43.843.780
Н	-22.921.830	30.097.150	19.957.930
Н	-38.213.250	18.860.450	42.910.180
Н	0.4405400	19.484.950	47.168.020
Н	-17.822.600	-14.924.770	59.239.290
Н	-41.492.130	-14.780.920	58.756.370
Н	-50.554.520	-0.0085270	54.951.470
Н	11.127.110	-0.0202590	67.366.200
Н	0.5249100	-15.497.400	60.932.920

Н	-0.7872710	40.007.640	42.928.850
Н	-25.463.050	40.215.160	41.949.540
Н	70.505.490	15.647.270	41.166.370
Н	80.822.700	0.5360200	31.205.070
Н	57.660.280	-30.474.230	0.4252540
Н	42.250.520	-36.569.350	10.182.980
Н	27.763.530	-21.797.970	54.230.570
Н	33.811.390	-0.6707290	61.101.800
Н	-36.964.850	-15.107.740	34.036.710
Н	0.1122760	-21.017.780	0.6615300
Н	32.471.580	-41.695.120	-13.613.780
Н	-0.6693410	-59.008.760	-11.189.010
Н	-19.243.510	-45.601.400	12.464.210
Н	-21.250.990	-29.357.880	0.6001640
Н	25.130.080	-69.864.820	-14.601.290
Н	0.9734510	-70.405.710	-22.978.340
Н	24.961.030	-13.646.570	0.8279900
Н	24.172.590	-10.624.130	-0.8985760
Н	-28.623.640	-39.766.100	-14.522.990
Н	34.357.280	-57.342.950	-31.847.840
Н	78.358.760	24.155.750	18.477.420
Н	14.357.670	-0.7499620	39.336.800
Н	45.740.140	-13.211.950	-0.7472950