Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2020

Supporting Information

[3+1+1] Type Cyclization of ClCF₂COONa for the Assembly of

Imidazoles and Tetrazoles via In-Situ Generated Isocyanides

Ya Wang, a Yao Zhou, b and Qiuling Song a a

^a Institute of Next Generation Matter Transformation, College of Material Sciences & Engineering at Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian, 361021, China.

^b College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, Hubei, P. R China.

^{*}Email: qsong@hqu.edu.cn

Table of Contents

1. General information	.3
2. Screening of the reaction conditions	.4
3. General procedure for the synthesis of 4 and 6	.5
4. Control experiments	.6
5. Crystal data of 4e , 4u and 6a	.7
6. Characterization data for products	10
7. NMR spectroscopic data2	22

1. General information

All chemicals were purchased from Adamas Reagent, Ltd, Energy chemical company, J&K Scientific Ltd, Alfa Aesa chemical company and so forth. CH₃CN was dried by CaH prior to use. Unless otherwise stated, all experiments were conducted in a seal tube under N₂ atmosphere. Reactions were monitored by TLC or GC-MS analysis. Flash column chromatography was performed over silica gel (200-300 mesh).

 1 H-NMR and 13 C-NMR spectra were recorded in CDCl₃ on a Bruker Avance 500 spectrometer (500 MHz 1 H, 125 MHz 13 C) at room temperature. Chemical shifts were reported in ppm on the scale relative to CDCl₃ (δ = 7.26 for 1 H-NMR, δ = 77.00 for 13 C-NMR) or DMSO-d₆ (δ = 2.50 for 1 H-NMR, δ = 39.60 for 13 C-NMR) as an internal reference. High resolution mass spectra were recorded using Q-TOF time-of-flight mass spectrometer. Coupling constants (J) were reported in Hertz (Hz).

2. Screening of the Reaction Conditions

Entry ^a	[Cu]	Ligand	Base	Slovent	T °C	Yield ^b
1	CuCl ₂	1,10-Phen	Cs ₂ CO ₃	CH ₃ CN	100	31
2	CuCl ₂	1,10-Phen	K_2CO_3	CH ₃ CN	100	25
3	CuCl ₂	1,10-Phen	Na_2CO_3	CH ₃ CN	100	20
4	CuCl ₂	1,10-Phen	K_3PO_4	CH ₃ CN	100	50
5	CuCl ₂	1,10-Phen	$NaHCO_3$	CH ₃ CN	100	52
6	$CuBr_2$	1,10-Phen	NaHCO ₃	CH ₃ CN	100	38
7	$Cu(OAc)_2$	1,10-Phen	$NaHCO_3$	CH ₃ CN	100	50
8	Cu ₂ O	1,10-Phen	NaHCO ₃	CH ₃ CN	100	37
9	$CuCl_2$	1,10-Phen	$NaHCO_3$	1,4-dioxane	100	N.R.
10	$CuCl_2$	1,10-Phen	$NaHCO_3$	EA	100	trace
11	$CuCl_2$	1,10-Phen	NaHCO ₃	THF	100	N.R.
12	$CuCl_2$	1,10-Phen	$NaHCO_3$	DCE	100	trace
13	$CuCl_2$	1,10-Phen	$NaHCO_3$	CH_3CN	80	48
14	$CuCl_2$	1,10-Phen	$NaHCO_3$	CH_3CN	90	52
16	$CuCl_2$	1,10-Phen	$NaHCO_3$	$\mathrm{CH_{3}CN}$	110	50
17	$CuCl_2$	1,10-Phen	-	CH ₃ CN	100	N.R.
18	-	-	NaHCO ₃	CH ₃ CN	100	52
19^c	-	-	NaHCO ₃	CH ₃ CN	100	78
20^d	-	-	NaHCO ₃	CH ₃ CN	100	78
21^e	-	-	NaHCO ₃	CH ₃ CN	100	64

^aAll reactions were carried out with **1** (0.2 mmol), **2** (0.4 mmol) **3** (0.6 mmol), base (0.8 mmol) Cu salt (15 mol%) and ligand (20 mol%) in slovent (2 mL) under N_2 atmosphere at 100 °C for 18 h. ^bIsolated yield ^c**2** (0.6 mmol). ^d**2** (0.6 mmol), base (0.6 mmol). ^e**2** (0.4 mmol), base (0.4 mmol).

3. General procedure for the synthesis of 4 and 6

CH₃CN (2 mL) was added to a mixture of CuCl₂ (4.1 mg, 15 mol%), 1,10-Phen (20 mol%), anilines $\bf 1$ (0.2 mmol, 1 equiv), ClCF₂COONa $\bf 2$ (0.6 mmol, 3 equiv) and isocyanoacetates $\bf 3$ (0.3 mmol, 1.5 equiv) in the presence of Cs₂CO₃ (0.6 mmol, 3 equiv). Then the sealed tube was stirred at 100 °C under N₂ for 16 h. Upon completion of the reaction, the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 1:1, v/v) to give the desired product $\bf 4$.

CH₃CN (2 mL) was added to a mixture of anilines **1** (0.2 mmol, 1 equiv), CICF₂COONa **2** (0.6 mmol, 3 equiv) and TMSN₃ **3** (0.6 mmol, 3 equiv) in the presence of NaHCO₃ (0.6 mmol, 3 equiv). Then the sealed tube was stirred at 100 °C under N₂ for 16 h. Upon completion of the reaction, the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatograph (silica gel, petroleum ether:EtOAc = 3:1, v/v) to give the desired product **6**.

4. Control experiments

(I) 1q + CICF₂COONa + TMSN₃ benzimidazole standard conditions
$$N$$
 + $N = N$ $N =$

5. Crystal data of 4e, 4u and 6a

Crystallographic data for compound **4e** (CCDC-1917599) has been deposited with the Cambridge Crystallographic Data Centre, Copies of the data can be obtained, free of charge, on application to CCDC (Email:deposit@ccdc.cam.ac.uk).

Bond precision: C-C = 0.0029 A Wavelength=0.71073

Cell: a=16.722(4) b=7.3514(16) c=20.934(4)

alpha=90 beta=102.85(2) gamma=90

Temperature: 293 K

	Calculated	Reported
Volume	2509.0(10)	2509.1(10)
Space group	I 2/a	I 1 2/a 1
Hall group	-I 2ya	-I 2ya
Moiety formula	C13 H14 N2 O2	C13 H14 N2 O2
Sum formula	C13 H14 N2 O2	C13 H14 N2 O2
Mr	230.26	230.26
Dx,g cm-3	1.219	1.219
Z	8	8
Mu (mm-1)	0.084	0.084
F000	976.0	976.0
F000'	976.43	
h,k,lmax	19,8,24	19,8,24
Nref	2208	2199
Tmin,Tmax		0.496,1.000
Tmin'		

Correction method= # Reported T Limits: Tmin=0.496 Tmax=1.000

AbsCorr = MULTI-SCAN

Data completeness= 0.996 Theta(max)= 24.999

R(reflections)= 0.0487(1614) wR2(reflections)= 0.1543(2199)

S = 1.004 Npar= 156

Crystallographic data for compound **4u** (CCDC-1917630) has been deposited with the Cambridge Crystallographic Data Centre, Copies of the data can be obtained, free of charge, on application to CCDC (Email:deposit@ccdc.cam.ac.uk).

Bond precision: C-C = 0.0049 A Wavelength=0.71073

Cell: a=8.1279(14) b=8.6652(15) c=18.746(2)

alpha=90 beta=96.939(14) gamma=90

Temperature: 293 K

	Calculated	Reported
Volume	1310.6(4)	1310.6(4)
Space group	P 21/n	P 1 21/n 1
Hall group	-P 2yn	-P 2yn
Moiety formula	C14 H16 N2 O2	C14 H16 N2 O2
Sum formula	C14 H16 N2 O2	C14 H16 N2 O2
Mr	244.29	244.29
Dx,g cm-3	1.238	1.238
Z	4	4
Mu (mm-1)	0.084	0.084
F000	520.0	520.0
F000'	520.22	
h,k,lmax	9,10,22	9,10,22
Nref	2313	2276
Tmin,Tmax		0.649,1.000

Tmin'

Correction method= # Reported T Limits: Tmin=0.649 Tmax=1.000

AbsCorr = MULTI-SCAN

Data completeness= 0.984 Theta(max)= 24.996

R(reflections) = 0.0743(1333) wR2(reflections) = 0.2180(2276)

S = 1.112 Npar= 166

Crystallographic data for compound **6a** (CCDC-1937993) has been deposited with the Cambridge Crystallographic Data Centre, Copies of the data can be obtained, free of charge, on application to CCDC (Email:deposit@ccdc.cam.ac.uk).

Bond precision: C-C = 0.0021 A Wavelength=0.71073

Cell: a=9.7747(9) b=5.6834(5) c=14.3307(13)

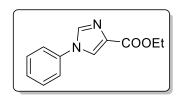
alpha=90 beta=96.261(9) gamma=90

Temperature: 293 K

	Calculated	Reported
Volume	791.37(12)	791.37(12)
Space group	P 21/n	P 1 21/n 1
Hall group	-P 2yn	-P 2yn
Moiety formula	C8 H8 N4	C8 H8 N4
Sum formula	C8 H8 N4	C8 H8 N4
Mr	160.18	160.18
Dx,g cm-3	1.344	1.344
Z	4	4
Mu (mm-1)	0.089	0.089
F000	336.0	336.0
F000'	336.09	
h,k,lmax	13,7,19	12,7,19
Nref	2133	1834
Tmin,Tmax	0.989,0.991	0.733,1.000
Tmin'	0.989	

Correction method= # Reported T Limits: Tmin=0.733 Tmax=1.000

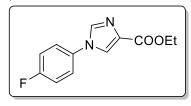
AbsCorr = MULTI-SCAN


Data completeness= 0.860 Theta(max)= 29.142

R(reflections)= 0.0483(1174) wR2(reflections)= 0.1511(1834)

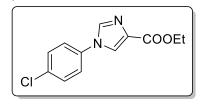
S = 1.037 Npar= 111

6. Characterization data for products


ethyl 1-phenyl-1*H*-imidazole-4-carboxylate (4a) (CAS Number: 197079-08-6)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 1:1, v/v) to give the product as a pale yellow solid (35.0 mg, 81%). ¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, J = 1.4 Hz,

1H), 7.84 (d, J = 1.3 Hz, 1H), 7.49 (d, J = 8.0 Hz, 2H), 7.41 (m, 3H), 4.38 (d, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 162.7, 136.5, 136.3, 135.1, 130.1, 128.4, 124.0, 121.7, 60.7, 14.4.


ethyl 1-(4-fluorophenyl)-1*H*-imidazole-4-carboxylate (4b) (CAS Number: 114067-93-5)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 1:1, v/v) to give the product as a yellow solid (33.7 mg, 72%). 1 H NMR (500 MHz, CDCl₃) δ 7.87 (d, J =

1.1 Hz, 1H), 7.77 (d, J = 1.2 Hz, 1H), 7.38 (dd, J = 8.9, 4.5 Hz, 2H), 7.18 (t, J = 8.5 Hz, 2H), 4.36 (m, 2H), 1.37 (td, J = 7.1, 0.8 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 162.6, 162.2 (d, J = 247.6 Hz), 136.5, 135.1, 132.7 (d, J = 3.1 Hz), 124.3, 123.8 (d, J = 8.6 Hz), 117.1 (d, J = 23.1 Hz), 60.8, 14.4.

ethyl 1-(4-chlorophenyl)-1*H*-imidazole-4-carboxylate (4c) (CAS number: 1260654-52-1)

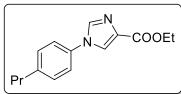
The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 1:1, v/v) to give the product as a yellow solid (31.0 mg, 62%). 1 H NMR (500 MHz, CDCl₃) δ 7.90 (d, J =

1.3 Hz, 1H), 7.82 (d, J = 1.2 Hz, 1H), 7.47 (d, J = 8.8 Hz, 2H), 7.35 (d, J = 8.8 Hz, 2H), 4.37 (q, J = 7.1 Hz, 2H), 1.38 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 162.6, 136.2, 135.3, 135.0, 134.3, 130.3, 123.9, 123.0, 60.9, 14.4.

$ethyl\ 1\hbox{-}(4\hbox{-}bromophenyl)\hbox{-}1H\hbox{-}imidazole\hbox{-}4\hbox{-}carboxylate\ (4d)$

(CAS Number: 1260758-76-6)

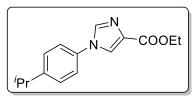
The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 1:1, v/v) to give the product as a yellow solid (32.3 mg, 55%). 1 H NMR (500 MHz, CDCl₃) δ 7.91 (d, J =


1.4 Hz, 1H), 7.83 (d, J = 1.3 Hz, 1H), 7.64 (d, J = 8.8 Hz, 2H), 7.30 (d, J = 8.7 Hz, 2H), 4.39 (q, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 162.6, 136.1, 135.5, 135.4, 133.3, 123.8, 123.2, 122.1, 60.9, 14.4.

ethyl 1-(p-tolyl)-1H-imidazole-4-carboxylate (4e) (CAS Number: 943144-41-0)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 1:1, v/v) to give the product as a pale yellow solid (43.7 mg, 95%). ¹H NMR (500 MHz, CDCl₃) δ 7.89 (d, J = 1.3

Hz, 1H), 7.79 (d, J = 1.2 Hz, 1H), 7.27 (s, 2H), 4.37 (q, 2H), 2.39 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 162.8, 138.5, 136.3, 134.9, 134.1, 130.6, 124.1, 121.6, 60.7, 21.0, 14.4.


ethyl 1-(4-propylphenyl)-1*H*-imidazole-4-carboxylate (4f)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 1:1, v/v) to give the product as a yellow solid (33.5 mg, 65%). 1 H NMR (500 MHz, CDCl₃) δ 7.95 – 7.85

(m, 1H), 7.81 (d, J = 1.3 Hz, 1H), 7.29 (s, 3H), 4.38 (q, J = 7.1 Hz, 2H), 2.62 (d, J = 7.8 Hz, 1H), 1.64 (dt, J = 14.9, 7.5 Hz, 2H), 1.38 (m, 2H), 0.94 (t, J = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 162.8, 143.3, 136.4, 134.9, 134.2, 130.0, 124.1, 121.6, 60.7, 37.4, 24.4, 14.4, 13.7. HRMS (ESI, m/z) calcd for $C_{15}H_{18}N_2O_2[M+H]^+$: 259.1441; found: 259.1437.

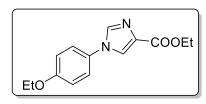
ethyl 1-(4-isopropylphenyl)-1*H*-imidazole-4-carboxylate (4g)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 1:1, v/v) to give the product as a yellow solid (31.0 mg, 60%). 1 H NMR (500 MHz, CDCl₃) δ 7.92 – 7.89

(m, 1H), 7.81 (d, J = 1.2 Hz, 1H), 7.32 (t, J = 7.9 Hz, 4H), 4.38 (q, J = 7.1 Hz, 3H), 2.95 (dd, J = 13.8, 6.9 Hz, 1H), 1.39 (t, J = 7.1 Hz, 5H), 1.27 (s, 3H), 1.26 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 162.8, 149.5, 136.4, 134.9, 134.3, 128.0, 124.1, 121.7, 60.7, 33.8, 23.9, 14.4. HRMS (ESI, m/z) calcd for $C_{15}H_{18}N_2$ O_2 [M+H]⁺: 259.1441; found: 259.1439.

ethyl 1-(4-(tert-butyl)phenyl)-1*H*-imidazole-4-carboxylate (4h)

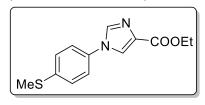
The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 1:1, v/v) to give the product as a yellow solid (43.5 mg, 80%). 1 H NMR (500 MHz, CDCl₃) δ 7.92 (d, J =


1.3 Hz, 1H), 7.81 (d, J = 1.3 Hz, 1H), 7.50 (d, J = 8.7 Hz, 2H), 7.32 (d, J = 8.7 Hz, 2H), 4.38 (q, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H), 1.34 (s, 7H). ¹³C NMR (125 MHz, CDCl₃) δ 162.8, 151.8, 136.4, 134.9, 134.0, 127.0, 124.1 121.4, 60.7, 34.8, 31.3, 14.4. HRMS (ESI, m/z) calcd for $C_{16}H_{20}N_2O_2$ [M+H]⁺: 273.1598; found: 273.1599.

ethyl 1-([1,1'-biphenyl]-4-yl)-1*H*-imidazole-4-carboxylate (4i)

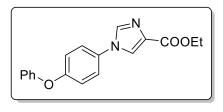
The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 1:1, v/v) to give the product as a yellow solid (45.6 mg, 78%). ¹H NMR (500 MHz, CDCl₃) δ 7.99 (d, J = 1.1 Hz, 1H), 7.89 (d, J = 1.1

Hz, 1H), 7.71 (d, J = 8.4 Hz, 2H), 7.59 (m, 2H), 7.47 (m, 4H), 7.39 (t, J = 7.3 Hz, 1H), 4.41 (q, J = 7.1 Hz, 2H), 1.41 (t, J = 7.2 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 162.8, 141.5, 139.4, 136.3, 135.5, 135.2, 129.0, 128.7, 128.0, 127.1, 123.9, 122.0, 60.8, 14.5. HRMS (ESI, m/z) calcd for $C_{18}H_{16}N_2O_2$ [M+H]⁺: 293.1285; found: 293.1289.


ethyl 1-(4-ethoxyphenyl)-1*H*-imidazole-4-carboxylate (4j) (CAS Number: 1923135-51-6)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 1:1, v/v) to give the product as a yellow solid (39.0 mg, 75%). 1 H NMR (500 MHz, CDCl₃) δ 7.86 (d, J

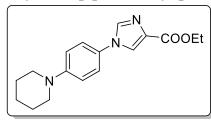
= 1.2 Hz, 1H), 7.75 (d, J = 1.0 Hz, 1H), 7.30 (d, J = 8.9 Hz, 2H), 6.98 (d, J = 8.9 Hz, 2H), 4.38 (q, J = 7.1 Hz, 2H), 4.06 (q, J = 7.0 Hz, 2H), 1.41 (dt, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 162.8, 158.9, 136.6, 134.7, 129.5, 124.5, 123.3, 115.6, 63.9, 60.6, 14.7, 14.41.


ethyl 1-(4-(methylthio)phenyl)-1*H*-imidazole-4-carboxylate (4k) (CAS: 1923054-90-3)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 1:1, v/v) to give the product as a yellow solid (36.7 mg, 70%). 1 H NMR (500 MHz, CDCl₃) δ 7.91 (d, J

= 1.3 Hz, 1H), 7.81 (d, J = 1.1 Hz, 1H), 7.34 (m, 4H), 4.40 (q, J = 7.1 Hz, 2H), 2.52 (s, 3H), 1.40 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 162.7, 139.7, 136.3, 135.1, 133.5, 127.5, 124.0, 122.2, 60.8, 15.7, 14.4.

ethyl 1-(4-phenoxyphenyl)-1*H*-imidazole-4-carboxylate (4l) (CAS Number: 124457-50-7)



The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 1:1, v/v) to give the product as a yellow solid (49.3 mg, 80%). 1 H NMR (500 MHz, CDCl₃) δ 7.89 (d, J = 1.4 Hz, 1H), 7.79 (d, J = 1.3

Hz, 1H), 7.36 (m, 4H), 7.16 (t, J = 7.4 Hz, 1H), 7.09 (m, 2H), 7.04 (m, 2H), 4.39 (q, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 162.8,

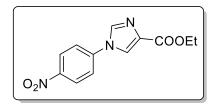
157.7, 156.2, 136.5, 135.0, 131.5, 130.1, 124.3, 124.3, 123.5, 119.6, 199.5, 60.8, 14.4.

ethyl 1-(4-(piperidin-1-yl)phenyl)-1*H*-imidazole-4-carboxylate (4m)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 1:1, v/v) to give the product as a yellow solid (40.1 mg, 67%). 1 H NMR (500 MHz, CDCl₃) δ 7.86 (d, J = 1.3 Hz, 1H), 7.75 (d, J =

1.3 Hz, 1H), 7.24 (d, J = 9.0 Hz, 2H), 6.97 (d, J = 9.0 Hz, 2H), 4.39 (q, J = 7.1 Hz, 2H), 3.21 (m, 4H), 1.71 (dt, J = 11.2, 5.7 Hz, 5H), 1.62 (m, 2H), 1.40 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 162.9, 151.9, 136.5, 134.4, 127.5, 124.4, 122.8, 116.6, 60.6, 50.1, 25.5, 24.2, 14.4. HRMS (ESI, m/z) calcd for $C_{17}H_{21}N_3O_2$ [M+H]⁺: 300.1707; found: 300.1706.

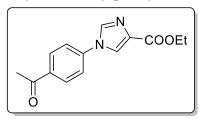
ethyl 1-(4-cyanophenyl)-1*H*-imidazole-4-carboxylate (4n) (CAS Number: 910126-73-7)


NC N COOEt

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 1:2, v/v) to give the product as a yellow solid (28.9 mg, 60%). 1 H NMR (500 MHz, CDCl₃) δ 8.03 (s,

1H), 7.97 (s, 1H), 7.85 (d, J = 8.5 Hz, 2H), 7.61 (d, J = 8.5 Hz, 2H), 4.40 (q, J = 7.1 Hz, 3H), 1.40 (t, J = 7.1 Hz, 5H). ¹³C NMR (125 MHz, CDCl₃) δ 162.3, 139.6, 136.0 (d, J = 13.6 Hz), 134.3, 123.2, 121.8, 117.5, 112.2, 61.0, 14.4.

ethyl 1-(4-nitrophenyl)-1*H*-imidazole-4-carboxylate (40)


(CAS Number: 197079-06-4)

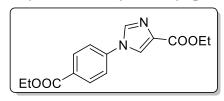
The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 1:2, v/v) to give the product as a yellow solid (31.8 mg, 61%). 1 H NMR (500 MHz, CDCl₃) δ 8.01 (s, 1H), 7.92 (s, 1H), 7.70 (d, J = 7.4

Hz, 2H), 7.65 (d, J = 7.6 Hz, 1H), 4.42 (q, J = 7.2 Hz, 2H), 1.42 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 162.3, 147.0, 141.0, 136.2, 136.0, 125.9, 123.2, 121.7, 61.1, 14.4.

ethyl 1-(4-acetylphenyl)-1*H*-imidazole-4-carboxylate (4p)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 1:2, v/v) to give the product as a yellow solid (26.8 mg, 52%). ¹H NMR (500 MHz, CDCl₃) δ 8.10 (d, J = 8.6 Hz, 2H), 8.01 (d, J = 1.4 Hz, 1H), 7.94 (d, J =

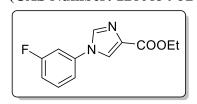
1.4 Hz, 1H), 7.53 (d, J = 8.6 Hz, 2H), 4.39 (q, J = 7.1 Hz, 2H), 2.64 (s, 3H), 1.40 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 196.4, 162.5, 139.8, 136.6, 136.0,


135.7, 130.5, 123.4, 121.2, 61.0, 26.7, 14.4. HRMS (ESI, m/z) calcd for $C_{14}H_{14}N_2O_3$ [M+H]⁺: 259.1077; found: 259.1079.

ethyl 1-(4-(cyanomethyl)phenyl)-1*H*-imidazole-4-carboxylate (4q)

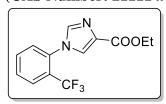
The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 1:2, v/v) to give the product as a yellow solid (24.5 mg, 48%). ¹H NMR (500 MHz,

CDCl₃) δ 7.94 (d, J = 1.3 Hz, 1H), 7.86 (d, J = 1.2 Hz, 1H), 7.49 (d, J = 8.5 Hz, 2H), 7.44 (m, 2H), 4.38 (q, J = 7.1 Hz, 2H), 3.83 (s, 2H), 1.39 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 162.6, 136.3, 136.2, 135.4, 130.4, 129.8, 123.8, 122.3, 117.2, 60.9, 23.3, 14.4. HRMS (ESI, m/z) calcd for $C_{14}H_{13}N_3O_2[M+H]^+$: 256.1081; found: 256.1085.


ethyl 1-(4-(ethoxycarbonyl)phenyl)-1*H*-imidazole-4-carboxylate (4r)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 1:2, v/v) to give the product as a yellow solid (31.7 mg, 55%). ¹H

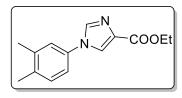
NMR (500 MHz, CDCl₃) δ 8.18 (d, J = 8.7 Hz, 1H), 8.00 (d, J = 1.4 Hz, 1H), 7.93 (d, J = 1.4 Hz, 1H), 7.49 (d, J = 8.7 Hz, 1H), 4.39 (qd, J = 7.1, 3.4 Hz, 1H), 1.40 (td, J = 7.1, 5.5 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 165.3, 162.5, 139.7, 136.0, 135.6, 131.7, 130.3, 123.5, 121.0, 61.5, 60.9, 14.4, 14.3. HRMS (ESI, m/z) calcd for $C_{15}H_{16}N_2O_4[M+H]^+$: 289.1183; found: 289.1181.


ethyl 1-(3-fluorophenyl)-1*H*-imidazole-4-carboxylate (4s) (CAS Number: 1260654-52-1)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 1:1, v/v) to give the product as a yellow solid (23.4 mg, 50%). 1 H NMR (500 MHz, CDCl₃) δ 7.94 (d, J = 1.2

Hz, 1H), 7.86 (d, J = 1.1 Hz, 1H), 7.49 (td, J = 8.1, 6.1 Hz, 1H), 7.22 (dd, J = 8.0, 1.5 Hz, 1H), 7.14 (m, 2H), 4.39 (q, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 163.2 (d, J = 248.3 Hz), 162.5, 137.7 (d, J = 9.6 Hz), 136.1, 135.4, 131.6 (d, J = 9.1 Hz), 123.7, 117.2 (d, J = 3.2 Hz), 115.4 (d, J = 20.8 Hz), 109.4 (d, J = 25.0 Hz), 60.9, 14.4.

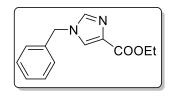
ethyl 1-(2-(trifluoromethyl)phenyl)-1*H*-imidazole-4-carboxylate (4t) (CAS Number: 2111149-39-2)



The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 1:1, v/v) to give the product as a yellow solid (29.5 mg, 52%). ¹H NMR (500 MHz, CDCl₃) δ 8.01 (s, 1H), 7.92 (s, 1H),

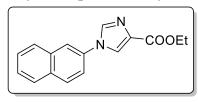
7.70 (d, J = 7.4 Hz, 2H), 7.65 (d, J = 7.6 Hz, 1H), 4.42 (q, J = 7.2 Hz, 2H), 1.42 (t, J = 7.4 Hz, 2H), 1

= 7.1 Hz, 3H). 13 C NMR (125 MHz, CDCl₃) δ 162.5, 136.9, 136.2, 135.7, 132.8 (q, J = 33.2 Hz), 131.0, 125.2 (q, J = 7.4, 3.7 Hz), 124.9, 124.3, 123.7, 122.1, 118.6 (q, J = 3.8 Hz), 60.9, 14.4.


ethyl 1-(3,4-dimethylphenyl)-1*H*-imidazole-4-carboxylate (4u) (CAS Number: 1983822-50-9)

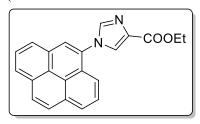
The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 1:1, v/v) to give the product as a yellow solid (39.5 mg, 81%). ¹H NMR (500 MHz, CDCl₃) δ 7.89 (d, J = 1.3 Hz,

1H), 7.79 (d, J = 1.1 Hz, 1H), 7.21 (d, J = 8.0 Hz, 1H), 7.15 (s, 1H), 7.10 (dd, J = 8.0, 2.0 Hz, 1H), 4.37 (q, J = 7.1 Hz, 2H), 2.29 (d, J = 9.4 Hz, 6H), 1.38 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 162.8, 138.7, 137.2, 136.3, 134.7, 134.3, 130.9, 124.1, 122.8, 118.9, 60.7, 19.9, 19.4, 14.4.


ethyl 1-benzyl-1*H*-imidazole-4-carboxylate (4v) (CAS Number: 76075-03-1)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 1:1, v/v) to give the product as a yellow liquid (18.9 mg, 41%). ¹H NMR (500 MHz, CDCl₃) δ 7.57 (d, J = 1.1 Hz, 1H),

7.55 (s, 1H), 7.36 (d, J = 6.8 Hz, 2H), 7.17 (d, J = 7.5 Hz, 2H), 5.12 (s, 2H), 4.33 (q, J = 7.1 Hz, 2H), 1.35 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 162.8, 138.1, 135.0, 134.4, 129.2, 128.7, 127.5, 125.3, 60.6, 51.4, 14.4.


ethyl 1-(naphthalen-2-yl)-1*H*-imidazole-4-carboxylate (4w)

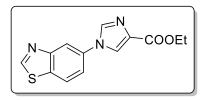
The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 1:1, v/v) to give the product as a yellow liquid (35.6 mg, 67%). ¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, J

= 1.1 Hz, 1H), 7.97 (d, J = 8.6 Hz, 2H), 7.88 (t, J = 8.4 Hz, 2H), 7.84 (d, J = 1.9 Hz, 1H), 7.57 (m, 2H), 7.51 (dd, J = 8.7, 2.2 Hz, 1H), 4.41 (q, J = 7.1 Hz, 2H), 1.41 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 162.8, 136.5, 135.2, 133.8, 133.4, 132.6, 130.5, 128.0, 127.9, 127.7, 127.0, 124.2, 119.9, 119.7, 60.8, 14.5. HRMS (ESI, m/z) calcd for C₁₆H₁₄N₂O₂ [M+H]⁺: 267.1128; found: 267.1129.

ethyl 1-(pyren-4-yl)-1*H*-imidazole-4-carboxylate (4x) (CAS Number: 2107665-94-9)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 2:1, v/v) to give the product as a yellow liquid (44.2 mg, 65%).1H NMR (500 MHz, CDCl₃) δ 8.26 (d, J = 7.6 Hz, 1H), 8.23 - 8.19 (m, 2H), 8.15 (d, J = 8.9 Hz,

1H), 8.12 - 8.02 (m, 4H), 7.92 - 7.86 (m, 2H), 7.72 (d, J = 9.2 Hz, 1H), 4.47 (q, J = 7.1 Hz, 2H), 1.45 (t, J = 7.1 Hz, 3H). 13C NMR (126 MHz, CDCl₃) δ 163.0, 139.5,


134.7, 131.9, 131.1, 130.6, 129.9, 129.6, 128.9, 127.7, 126.9, 126.9, 126.6, 126.5, 126.1, 124.8, 124.1, 123.6, 120.4, 60.9, 14.5. HRMS (ESI, m/z) calcd for $C_{22}H_{16}N_2O_2\left[M+H\right]^+$: 341.1285; found: 341.1288.

ethyl 1-(2-methyl-1*H*-indol-5-yl)-1*H*-imidazole-4-carboxylate (4y) (CAS Number: 2107665-94-9)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 1:3, v/v) to give the product as a yellow solid (32.8 mg, 61%). 1 H NMR (500 MHz, DMSO) δ 11.21 (s, 1H), 8.30 (d, J = 1.4 Hz, 1H),

8.23 (d, J = 1.4 Hz, 1H), 7.68 (d, J = 2.1 Hz, 1H), 7.39 (d, J = 8.5 Hz, 1H), 7.27 (dd, J = 8.6, 2.2 Hz, 1H), 6.21 (m, 1H), 4.26 (q, J = 7.1 Hz, 2H), 2.41 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, DMSO) δ 162.8, 138.5, 137.8, 135.7, 133.7, 129.4, 128.9, 125.4, 114.5, 112.2, 111.8 100.2, 60.1, 14.8, 13.9.

ethyl 1-(benzo[d]thiazol-6-yl)-1H-imidazole-4-carboxylate (4z)

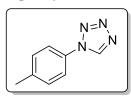
The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 1:2, v/v) to give the product as a yellow solid (21.8 mg, 40%). H NMR (500 MHz, CDCl₃) δ 9.14 (s,

1H), 8.19 (d, J = 2.1 Hz, 1H), 8.10 (d, J = 8.6 Hz, 1H), 8.04 (d, J = 1.4 Hz, 1H), 7.94 (d, J = 1.3 Hz, 1H), 7.52 (dd, J = 8.5, 2.1 Hz, 1H), 4.41 (q, J = 7.1 Hz, 2H), 1.41 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 162.7, 156.9, 154.0, 136.6, 135.4, 135.1, 133.7, 124.3 123.5, 119.6, 116.7, 60.9, 14.4. HRMS (ESI, m/z) calcd for $C_{13}H_{11}N_3O_2S[M+H]^+$: 274.0645; found: 274.0639.

ethyl 1-(9-ethyl-9*H*-carbazol-3-yl)-1*H*-imidazole-4-carboxylate (4aa)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 1:1, v/v) to give the product as a yellow liquid (53.9 mg, 81%). 1 H NMR (500 MHz, CDCl₃) δ 8.09 (d, J = 7.8 Hz, 1H), 8.07 (d, J = 1.9 Hz, 1H), 8.01 (d, J = 1.0

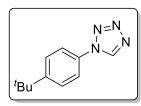
Hz, 1H), 7.89 (d, J = 1.0 Hz, 1H), 7.53 (t, J = 7.7 Hz, 1H), 7.46 (m, 3H), 7.28 (t, J = 7.5 Hz, 1H), 4.41 (dq, J = 10.8, 7.2 Hz, 4H), 1.44 (dt, J = 14.2, 7.2 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 163.0, 140.8, 139.3, 137.2, 134.6, 128.5, 126.9, 125.2, 123.5, 122.2, 120.8, 120.1, 119.6, 114.4, 109.4, 109.0, 60.7, 37.9, 14.5, 13.8. HRMS (ESI, m/z) calcd for $C_{20}H_{19}N_3O_2[M+H]^+$: 334.1550; found: 334.1552.


methyl 1-(3,4-dimethylphenyl)-1*H*-imidazole-4-carboxylate (4ab)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 1:1, v/v) to give the product as a yellow solid (32.2 mg, 70%). ¹H NMR (500 MHz,

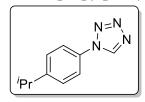
CDCl₃) δ 7.90 (d, J = 1.3 Hz, 1H), 7.79 (d, J = 1.3 Hz, 1H), 7.22 (d, J = 8.0 Hz, 1H), 7.15 (d, J = 1.8 Hz, 1H), 7.10 (dd, J = 8.0, 2.2 Hz, 1H), 3.89 (d, J = 7.5 Hz, 3H), 2.30 (s, 2H), 2.28 (s, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 163.2, 138.8, 137.2, 136.4, 134.4, 134.2, 131.0,

124.2, 122.8, 118.9, 51.8, 19.9, 19.4. HRMS (ESI, m/z) calcd for $C_{13}H_{14}N_2O_2$ $[M+H]^+$: 231.1128; found: 231.1126.


1-(p-tolyl)-1*H*-tetrazole (6a) (CAS Number: 25109-04-0)

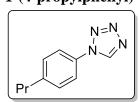
The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 3:1, v/v) to give the product as a yellow solid (27.0 mg, 78%), 1 H NMR (500 MHz, CDCl₃) δ 8.96 (s, 1H), 7.57 (d, J = 8.4 Hz, 2H), 7.37 (d, J =

8.5 Hz, 2H), 2.45 (s, 3H). 13 C NMR (125 MHz, CDCl₃) δ 140.5, 140.5, 130.7, 121.1, 21.2.


1-(4-(tert-butyl)phenyl)-1*H*-tetrazole (6b) (CAS Number: 1631073-38-5)

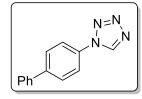
The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 4:1, v/v) to give the product as a yellow solid (26.3 mg, 65%). ¹H NMR (500 MHz, CDCl₃) δ 9.00 (d, J = 1.2 Hz, 1H), 7.60 (ddd, J = 19.5, 7.7, 4.4 Hz, 4H), 1.36 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) δ

 $153.6,\,140.6,\,131.3,\,127.1,\,120.9,\,35.0,\,31.2.$


1-(4-isopropylphenyl)-1*H*-tetrazole (6c) (CAS Number: 932034-62-3)

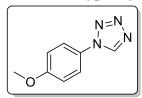
The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 4:1, v/v) to give the product as a yellow liquid (26.7 mg, 71%). ¹H NMR (500 MHz, CDCl₃) δ 8.99 (d, J = 1.8 Hz, 1H), 7.61 (d, J = 8.5 Hz,

2H), 7.42 (d, J = 8.5 Hz, 2H), 3.00 (dt, J = 13.8, 6.9 Hz, 1H), 1.29 (s, 3H), 1.28 (s, 3H). 13 C NMR (125 MHz, CDCl₃) δ 151.3, 140.6, 131.6, 128.2, 121.3, 33.9, 23.8.


1-(4-propylphenyl)-1*H*-tetrazole (6d)

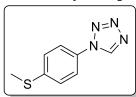
The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 4:1, v/v) to give the product as a yellow solid (24.4 mg, 65%). ¹H NMR (500 MHz, CDCl₃) δ 8.98 (s, 1H), 7.59 (m, 2H), 7.37 (d, J = 8.5

Hz, 2H), 2.67 (m, 2H), 1.68 (m, 2H), 0.95 (t, J = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 145.2, 140.5, 131.6, 130.1, 121.2, 37.6, 24.4, 13.7. HRMS (ESI, m/z) calcd for $C_{10}H_{12}N_4\left[M+H\right]^+$: 189.1135; found: 189.1139.


1-([1,1'-biphenyl]-4-yl)-1*H*-tetrazole (6e) (CAS Number: 63472-38-8)

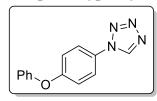
The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 4:1, v/v) to give the

product as a white solid (29.3 mg, 66%). ¹H NMR (500 MHz, CDCl₃) δ 9.06 (s, 1H), 7.79 (s, 4H), 7.62 (dq, J = 2.6, 1.7 Hz, 2H), 7.49 (m, 2H), 7.42 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 143.2, 140.5, 139.1, 132.8, 129.1 128.8, 1284, 127.2, 121.5.


1-(4-methoxyphenyl)-1*H*-tetrazole (6f) (CAS Number: 21788-28-3)

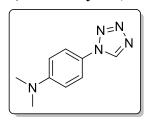
The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 2:1, v/v) to give the product as a white solid (28.5 mg, 81%). 1 H NMR (500 MHz, CDCl₃) δ 8.93 (s, 1H), 7.59 (d, J = 9.0 Hz, 2H), 7.05 (d, J =

9.0 Hz, 2H), 3.87 (s, 3H). 13 C NMR (125 MHz, CDCl₃) δ 160.7, 140.7, 123.0, 115.2, 55.8.


1-(4-(methylthio)phenyl)-1*H*-tetrazole (6g) (CAS Number: 64022-99-7)

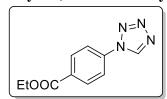
The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 2:1, v/v) to give the product as a white solid (26.9 mg, 70%). ¹H NMR (500 MHz, CDCl₃) δ 9.00 (s, 1H), 7.61 (d, J = 8.8 Hz, 2H), 7.38 (d, J =

8.7 Hz, 2H), 2.53 (s, 3H). 13 C NMR (125 MHz, CDCl₃) δ 142.0, 140.4, 130.5, 127.1, 121.6, 15.4.


1-(4-phenoxyphenyl)-1*H*-tetrazole (6h) (CAS Number: 330996-10-6)

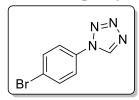
The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 2:1, v/v) to give the product as a yellow solid (36.2 mg, 76%). ¹H NMR (500 MHz, CDCl₃) δ 8.96 (s, 1H), 7.63 (d, J =

9.0 Hz, 2H), 7.40 (dd, J = 8.5, 7.5 Hz, 2H), 7.21 (m, 1H), 7.15 (d, J = 9.0 Hz, 2H), 7.07 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 159.1, 155.8, 140.6, 130.2, 128.5, 124.6, 123.1, 119.8, 119.3.


N,N-dimethyl-4-(1H-tetrazol-1-yl)aniline (6i) (CAS Number: 102236-05-5)

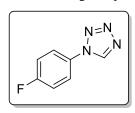
The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 2:1, v/v) to give the product as a white solid (24.6 mg, 65%). 1 H NMR (500 MHz, CDCl₃) δ 8.84 (s, 1H), 7.48 (d, J = 9.1 Hz, 2H), 6.77 (d, J = 9.1 Hz, 2H), 3.04 (s, 6H). 13 C NMR (125 MHz, CDCl₃) δ

151.2, 140.5, 122.6, 112.3, 40.4.


ethyl 4-(1*H*-tetrazol-1-yl)benzoate (6j) (CAS Number: 1514839-59-8)

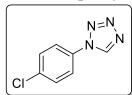
The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 2:1, v/v) to give the product as a yellow solid (15.7 mg, 36%). ¹H NMR (500 MHz, CDCl₃) δ 9.09 (s, 1H), 8.27 (d, J =

8.4 Hz, 2H), 7.83 (d, J = 8.4 Hz, 2H), 4.43 (q, J = 7.1 Hz, 2H), 1.43 (t, J = 7.1 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 165.0, 140.4, 136.8, 132.0, 131.7, 120.7, 61.8, 14.3.


1-(4-bromophenyl)-1*H*-tetrazole (6k) (CAS Number: 57058-01-2)

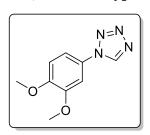
The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 4:1, v/v) to give the product as a yellow solid (21.1 mg, 47%). 1 H NMR (500 MHz, CDCl₃) δ 9.01 (s, 1H), 7.73 (m, 2H), 7.62 (m, 2H). 13 C

NMR (125 MHz, CDCl₃) δ 140.4, 133.5, 124.0, 122.6.


1-(4-fluorophenyl)-1*H*-tetrazole (6l) (CAS Number: 14210-81-2)

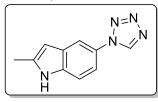
The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 4:1, v/v) to give the product as a yellow solid (23.9 mg, 73%). ¹H NMR (500 MHz, CDCl₃) δ 9.01 (s, 1H), 7.71 (dd, J = 7.9, 3.8 Hz, 2H), 7.29 (t, J = 8.2 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 163.1 (d, J =

249.9 Hz), 140.7, 123.0, 123.5 (d, J = 8.8 Hz), 117.3 (d, J = 23.4 Hz).


1-(4-chlorophenyl)-1*H*-tetrazole (6m) (CAS Number: 25108-32-1)

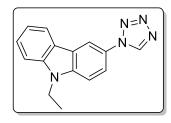
The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 4:1, v/v) to give the product as a yellow solid (22.4 mg, 62%) 1 H NMR (500 MHz, CDCl₃) δ 9.00 (s, 1H), 7.68 (d, J = 8.9 Hz, 2H), 7.57 (d, J =

8.9 Hz, 2H). 13 C NMR (125 MHz, CDCl₃) δ 141.1, 140.8, 140.0, 127.1, 125.7, 123.4, 122.2, 120.9, 119.9, 119.1, 113.9, 109.4, 109.2, 37.9, 13.8.


1-(3,4-dimethoxyphenyl)-1*H*-tetrazole (6n) (CAS Number: 899368-12-8)

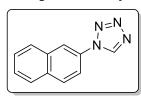
The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 1:1, v/v) to give the product as a yellow solid (25.1 mg, 61%). 1 H NMR (500 MHz, CDCl₃) δ 8.95 (s, 1H), 7.24 (d, J = 2.5 Hz, 1H), 7.17 (dd, J = 8.6, 2.5 Hz, 1H), 6.98 (d, J = 8.6 Hz, 1H), 3.95 (d, J = 5.4 Hz, 6H). 13 C NMR (125 MHz, CDCl₃) δ 150.3, 150.1,

140.7, 127.0, 113.4, 111.3, 105.4, 56.4, 56.3.


2-methyl-5-(1*H*-tetrazol-1-yl)-1*H*-indole (60)

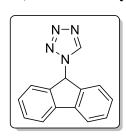
The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 4:1, v/v) to give the product as a yellow solid (23.9 mg, 60%). ¹H NMR (500 MHz, DMSO) δ 11.36 (s, 1H), 9.97 (s, 1H),

7.88 (d, J = 1.9 Hz, 1H), 7.51 – 7.39 (m, 2H), 6.29 (s, 1H), 2.42 (s, 3H). 13 C NMR (125 MHz, DMSO) δ 142.7, 139.1, 136.6, 129.1, 126.5, 114.2, 112.5, 111.9, 100.5, 13.9. HRMS (ESI, m/z) calcd for $C_{10}H_9N_5[M+H]^+$: 200.0931; found: 200.0925.


1-(naphthalen-2-yl)-1*H*-tetrazole (6p) (CAS Number: 369636-71-5)

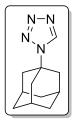
The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 3:1, v/v) to give the product as a yellow solid (31.6 mg, 60%). ¹H NMR (500 MHz, CDCl₃) δ 9.14 (s, 1H), 8.17 (s, 1H), 8.05 (d, J = 8.8 Hz, 1H), 7.94 (s, 2H), 7.80 (d, J = 8.8 Hz,

1H), 7.62 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 140.7, 133.3, 133.1, 131.1, 130.6, 128.4, 128.1, 128.0, 127.8, 119.7, 118.8.

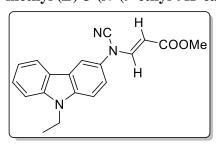

1-(naphthalen-2-yl)-1*H*-tetrazole (6q)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 1:1, v/v) to give the product as a yellow solid (22.0 mg, 56%). ¹H NMR (500 MHz, CDCl₃) δ 9.13 (s, 1H), 8.18 (d, J = 2.1 Hz, 1H), 8.1 (d,

J = 8.8 Hz, 1H), 8.0 - 7.9 (m, 2H), 7.8 (dd, J = 8.8, 2.2 Hz, 1H), 7.7 - 7.6 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 140.7, 133.4, 133.1, 130.7, 128.4, 128.1, 128.0, 127.8, 119.7, 118.8. HRMS (ESI, m/z) calcd for $C_{11}H_8N_4$ [M+H]⁺: 197.0822; found: 197.0826.

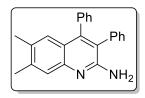

1-(9H-fluoren-9-yl)-1H-tetrazole (6r)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 1:1, v/v) to give the product as a white solid (30.4 mg, 65%). 1 H NMR (500 MHz, CDCl₃) δ 8.20 (s, 1H), 7.8 (d, J = 7.6 Hz, 2H), 7.5 (t, J = 7.6 Hz, 2H), 7.5 (dd, J = 7.5, 0.5 Hz, 2H), 7.4 (td, J = 7.5, 0.9 Hz, 2H), 6.8(s, 1H). 13 C NMR (125 MHz, CDCl₃) δ 140.7, 140.6, 139.4, 130.5, 128.7,


125.4, 120.9, 62.7. HRMS (ESI, m/z) calcd for $C_{14}H_{10}N_4\left[M+H\right]^+$: 235.0978; found: 235.0981.

1-((3s,5s,7s)-adamantan-1-yl)-1*H*-tetrazole (6s) (CAS Number: 50987-38-7)

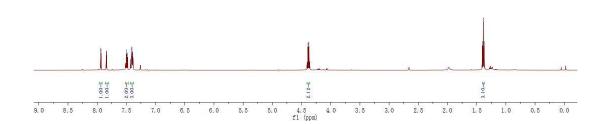
The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 1:1, v/v) to give the product as a white solid (25.3 mg, 62%). 1 H NMR (500 MHz, CDCl₃) δ 8.6 (s, 1H), 2.3 (d, J = 2.6 Hz, 6H), 1.9 – 1.8 (m, 7H). 13 C NMR (125 MHz, CDCl₃) δ 139.3, 59.8, 42.8, 35.6, 35.5, 29.3.


methyl (E)-3-(N-(9-ethyl-9H-carbazol-3-yl)cyanamido)acrylate (7)

The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 1:1, v/v) to give the product as a white solid (26.8 mg, 42%). 1 H NMR (500 MHz, CDCl₃) δ 8.1 (d, J = 7.8 Hz, 1H), 8.0 (d, J = 2.2 Hz, 1H), 7.6 (d, J = 13.6 Hz, 1H), 7.5 (td, J = 7.7,

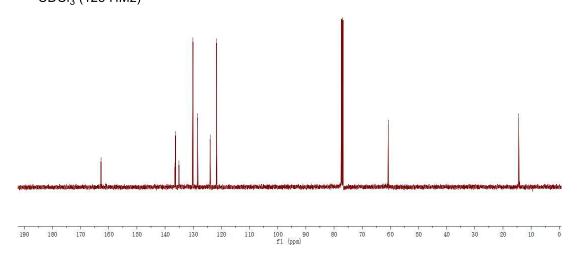
7.2, 1.1 Hz, 1H), 7.5 (d, J = 8.4 Hz, 2H), 7.4 (dd, J = 8.7, 2.3 Hz, 1H), 7.3 (m, 1H), 5.8 (d, J = 13.6 Hz, 1H), 4.4 (q, J = 7.2 Hz, 2H), 3.8 (s, 3H), 1.4 (t, J = 7.3 Hz, 3H). 13 C NMR (125 MHz, CDCl₃) δ 166.8, 143.7, 140.8, 139.0, 129.4, 127.0, 123.8, 122.1, 120.8, 119.8, 119.7, 114.5, 110.1, 109.6, 109.0, 103.2, 51.8, 37.9, 13.8. HRMS (ESI, m/z) calcd for $C_{19}H_{17}N_3O_2[M+H]^+$: 319.1312; found: 319.1314.

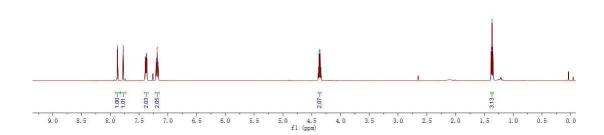
6,7-dimethyl-3,4-diphenylquinolin-2-amine (8) (CAS Number: 1638213-25-8)


The reaction was performed following the general procedure. The residue was purified by flash column chromatograph (silica gel, petroleum ether:AcOEt = 3:1, v/v) to give the product as a white solid (32.4 mg, 50%). 1 H NMR (500 MHz, CDCl₃) δ 7.5 (s, 1H), 7.3 – 7.2 (m, 6H), 7.2 – 7.1 (m, 5H), 4.7

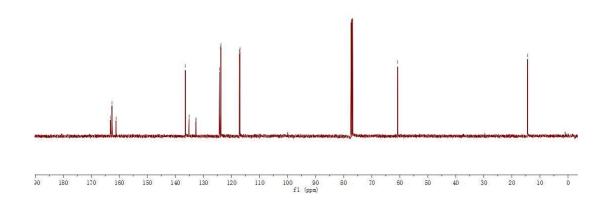
(s, 2H), 2.4 (s, 3H), 2.2 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 155.0, 147.2, 145.9, 139.5, 137.1, 136.4, 132.0, 130.5, 130.0, 128.6, 127.4, 127.1, 126.1, 125.7, 122.5, 122.1, 20.3, 19.8.

7. NMR spectroscopic data

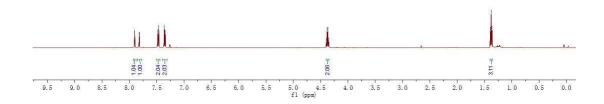

ethyl 1-phenyl-1H-imidazole-4-carboxylate (4a)

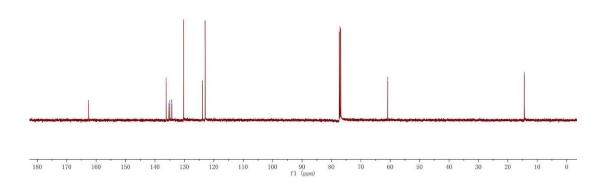


CDCl₃ (125 HMz)

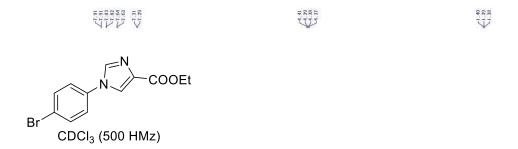


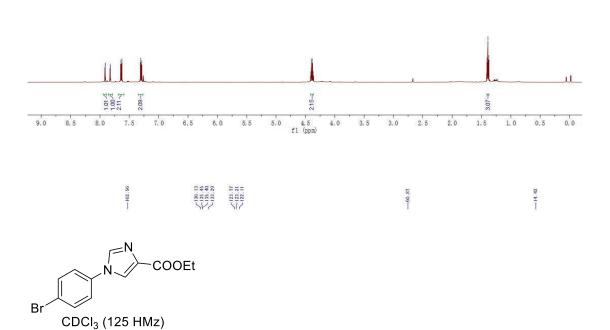
ethyl 1-(4-fluorophenyl)-1H-imidazole-4-carboxylate (4b)

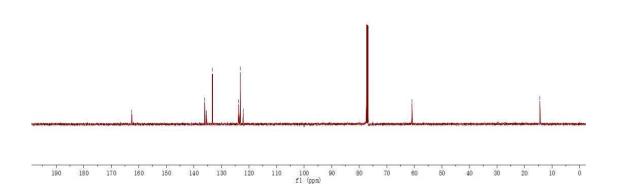




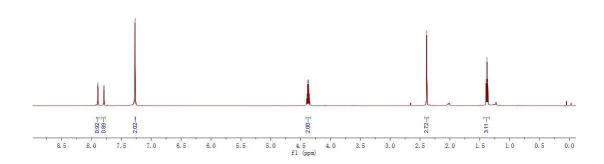
ethyl 1-(4-chlorophenyl)-1*H*-imidazole-4-carboxylate (4c)

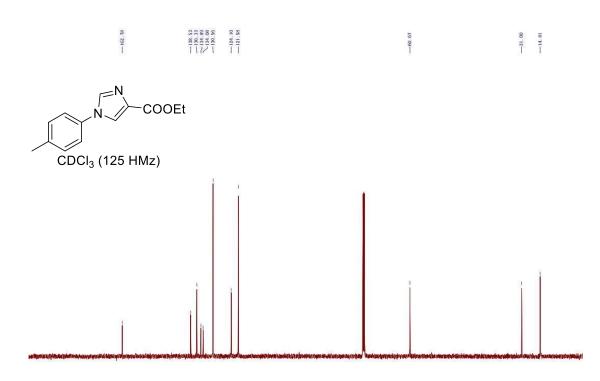




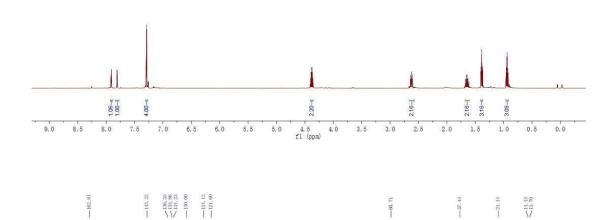


ethyl 1-(4-bromophenyl)-1*H*-imidazole-4-carboxylate (4d)



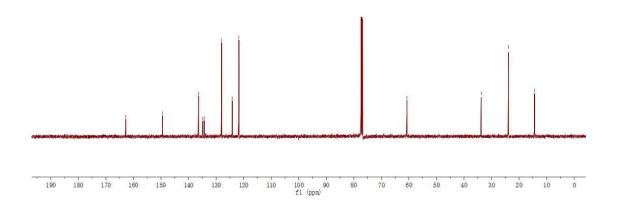


ethyl 1-(p-tolyl)-1H-imidazole-4-carboxylate (4e)

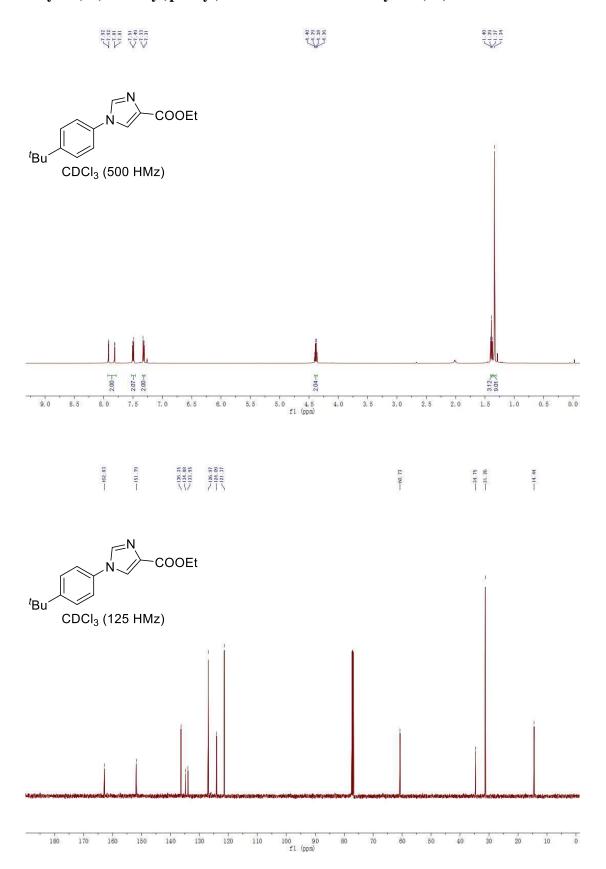


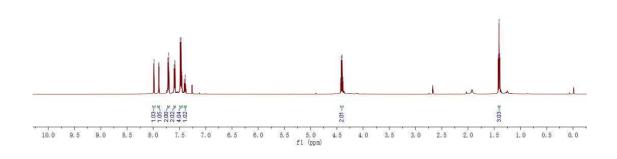


ethyl 1-(4-propylphenyl)-1*H*-imidazole-4-carboxylate (4f)

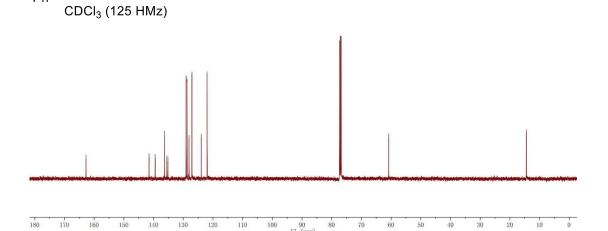


ethyl 1-(4-isopropylphenyl)-1*H*-imidazole-4-carboxylate (4g)

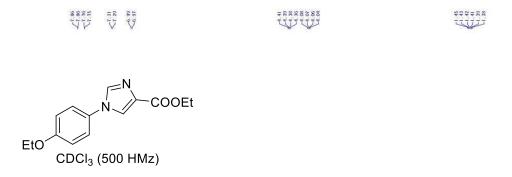


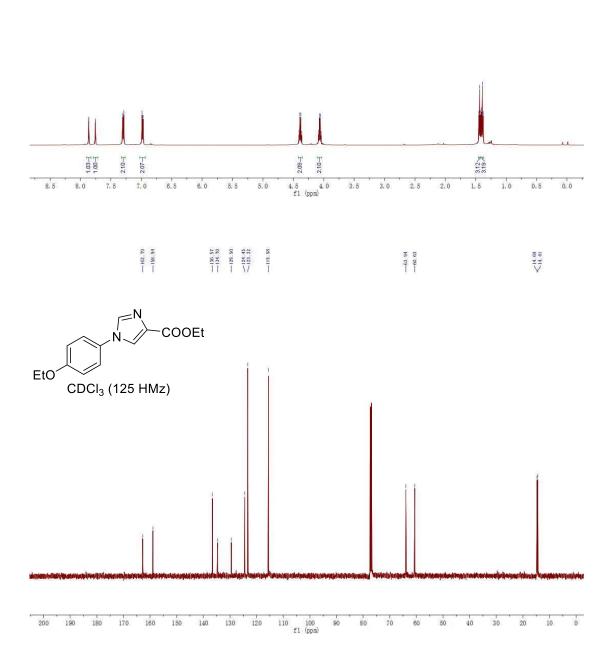


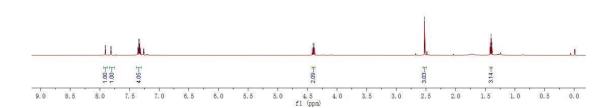

ethyl 1-(4-(tert-butyl)phenyl)-1H-imidazole-4-carboxylate (4h)

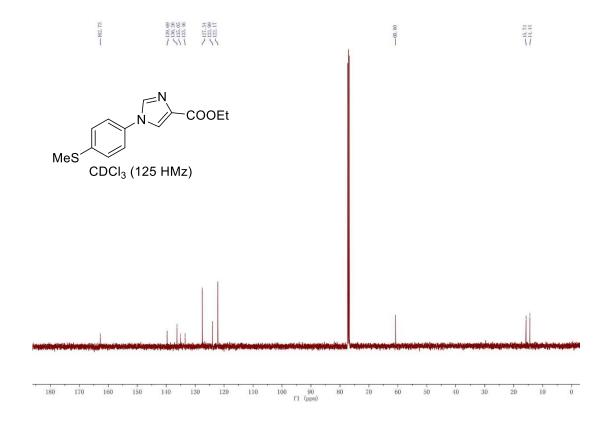


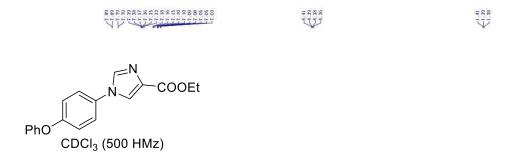
ethyl 1-([1,1'-biphenyl]-4-yl)-1H-imidazole-4-carboxylate (4i)

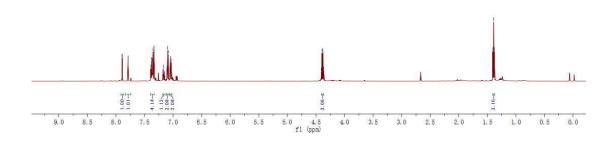


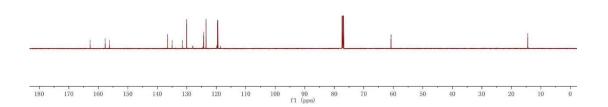



ethyl 1-(4-ethoxyphenyl)-1*H*-imidazole-4-carboxylate (4j)



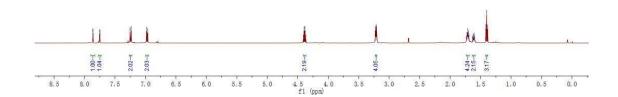

ethyl 1-(4-(methylthio)phenyl)-1H-imidazole-4-carboxylate (4k)



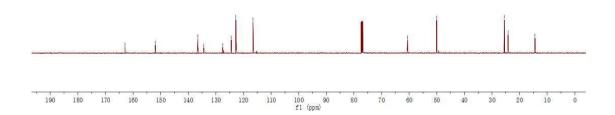


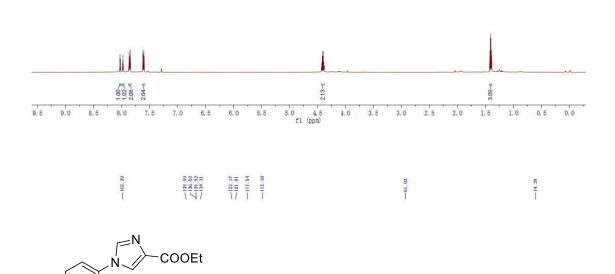
ethyl 1-(4-phenoxyphenyl)-1*H*-imidazole-4-carboxylate (4l)



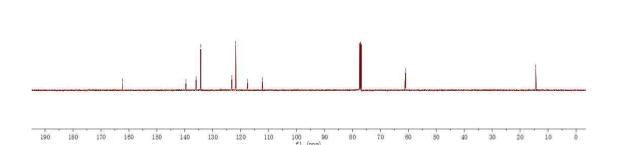




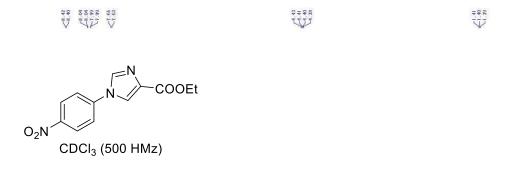

ethyl 1-(4-(piperidin-1-yl)phenyl)-1H-imidazole-4-carboxylate (4m)

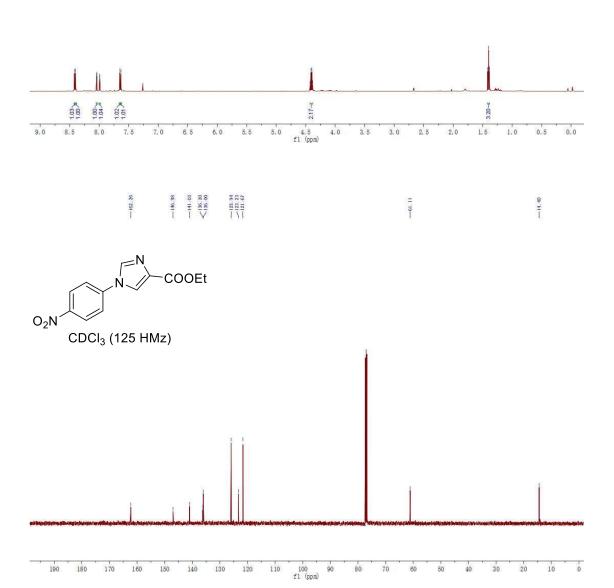


CDCl₃ (500 HMz)



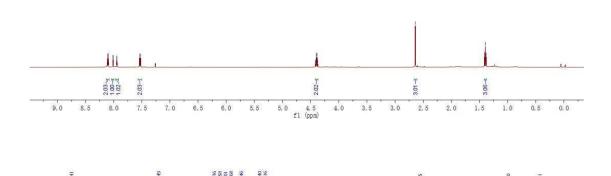
ethyl 1-(4-cyanophenyl)-1*H*-imidazole-4-carboxylate (4n)

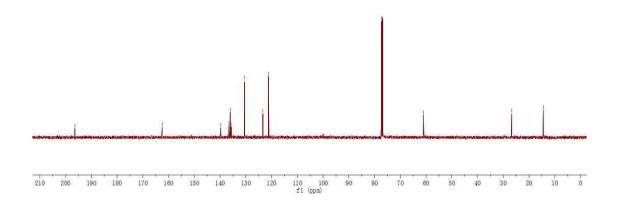




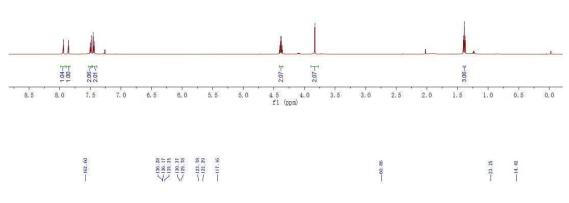
CDCl₃ (125 HMz)

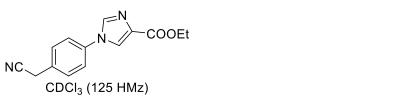


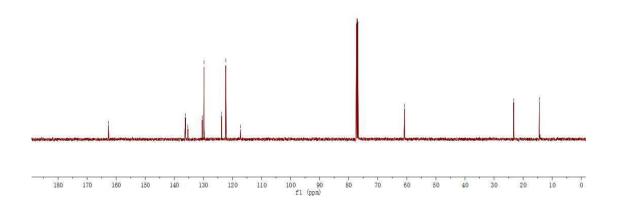

ethyl 1-(4-nitrophenyl)-1*H*-imidazole-4-carboxylate (40)



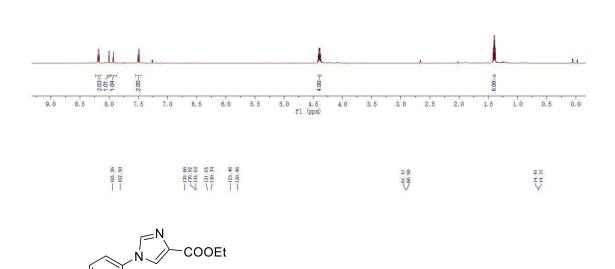
ethyl 1-(4-acetylphenyl)-1*H*-imidazole-4-carboxylate (4p)

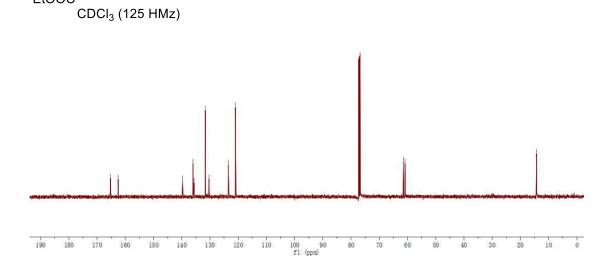




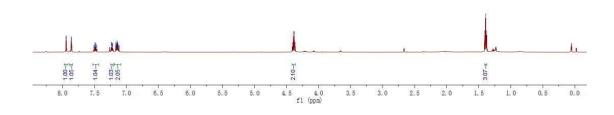


ethyl 1-(4-(cyanomethyl)phenyl)-1*H*-imidazole-4-carboxylate (4q)

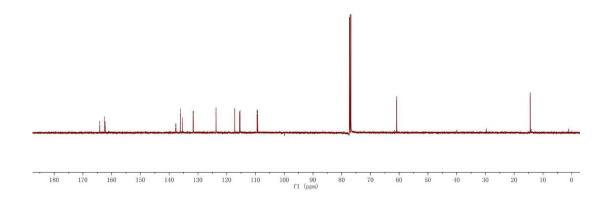


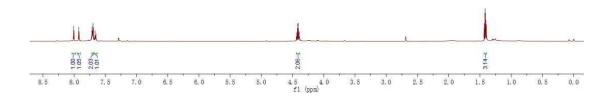


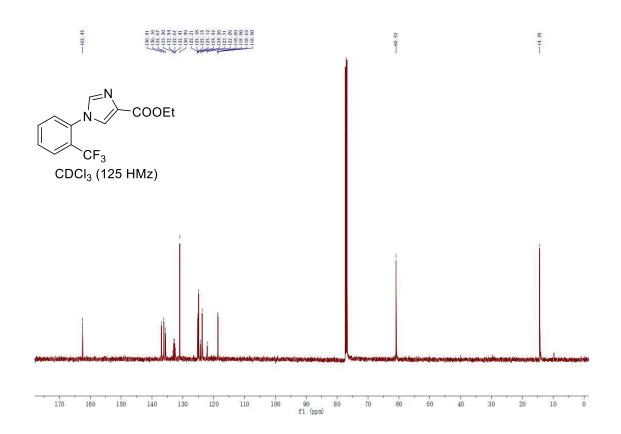
ethyl 1-(4-(ethoxycarbonyl)phenyl)-1*H*-imidazole-4-carboxylate (4r)



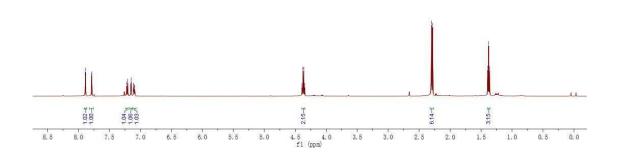
EtOOC

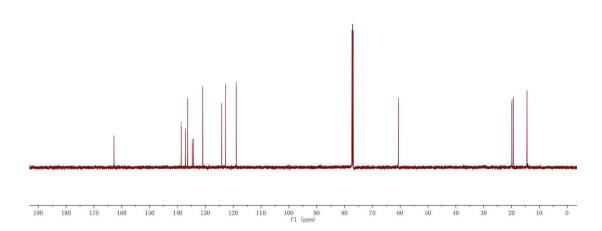

ethyl 1-(3-fluorophenyl)-1*H*-imidazole-4-carboxylate (4s)



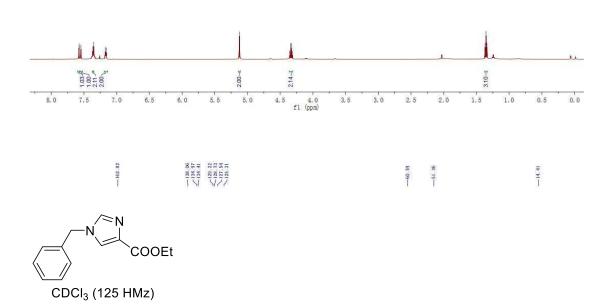

CDCl₃ (125 HMz)

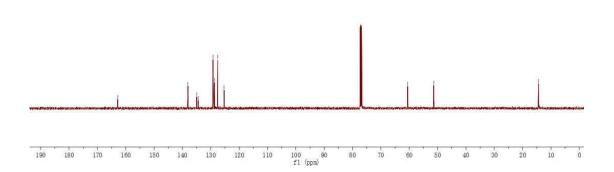
ethyl 1-(2-(trifluoromethyl)phenyl)-1H-imidazole-4-carboxylate (4t)



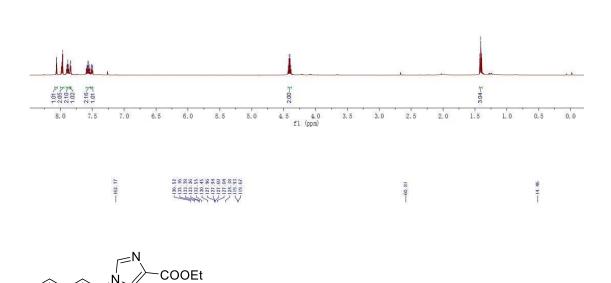


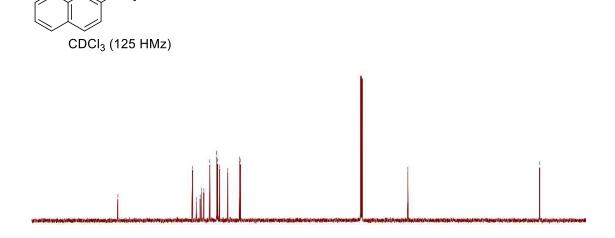
ethyl 1-(3,4-dimethylphenyl)-1*H*-imidazole-4-carboxylate (4u)

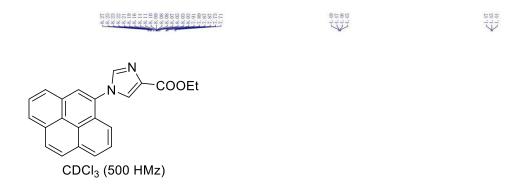


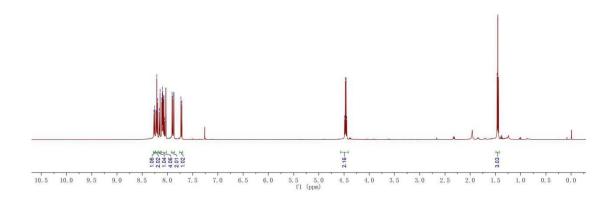


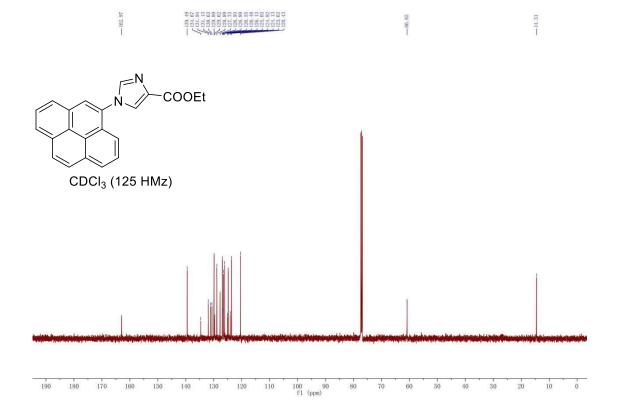
ethyl 1-benzyl-1H-imidazole-4-carboxylate (4v)

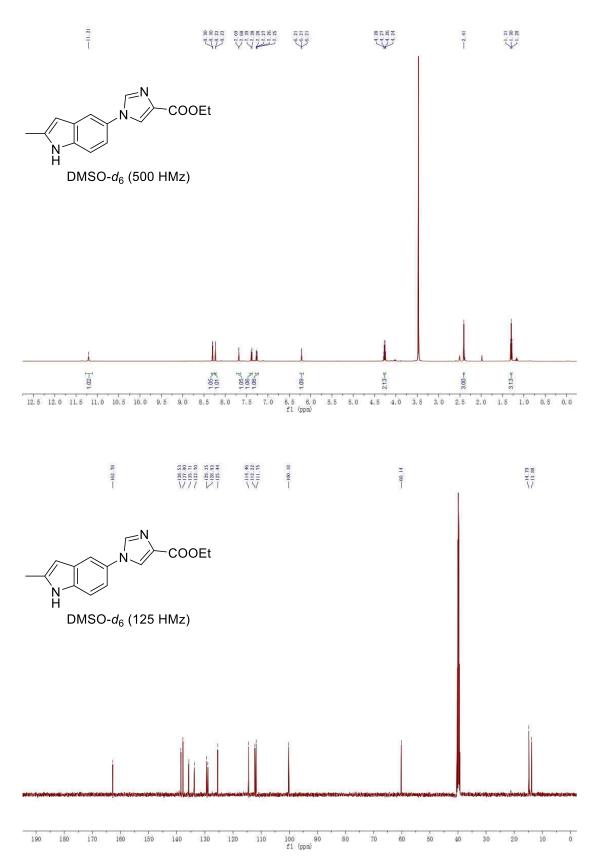


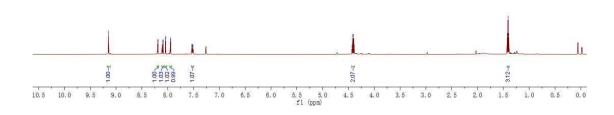



ethyl 1-(naphthalen-2-yl)-1*H*-imidazole-4-carboxylate (4w)

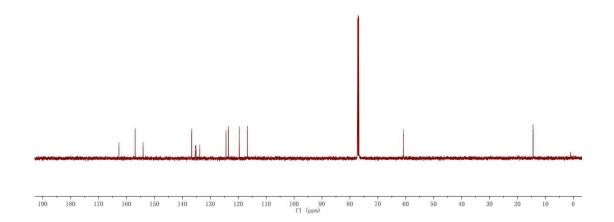




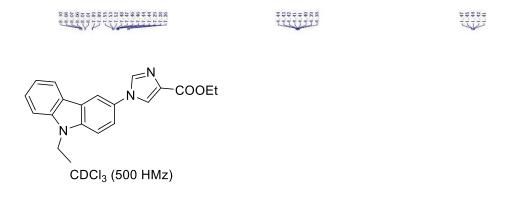

ethyl 1-(pyren-4-yl)-1*H*-imidazole-4-carboxylate (4x)

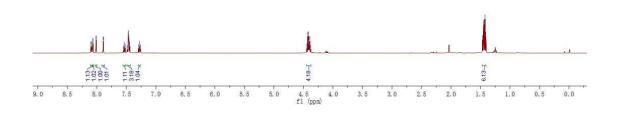


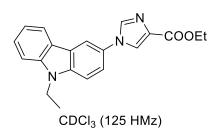
ethyl 1-(2-methyl-1H-indol-5-yl)-1H-imidazole-4-carboxylate (4y)

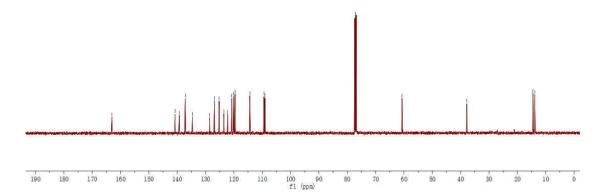


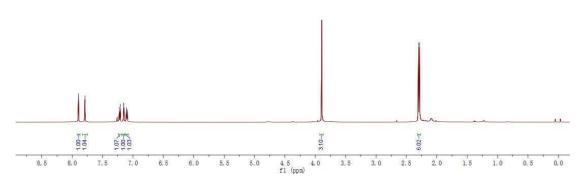
ethyl 1-(benzo[d]thiazol-5-yl)-1H-imidazole-4-carboxylate (4z)

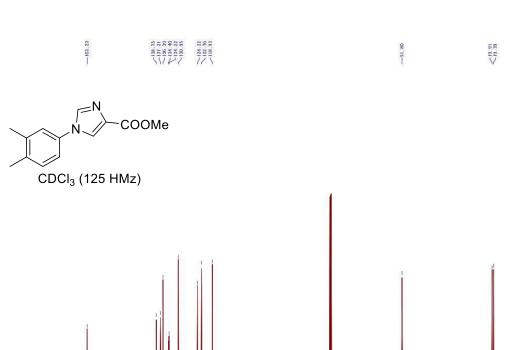




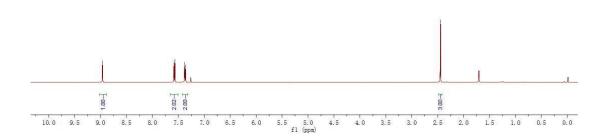


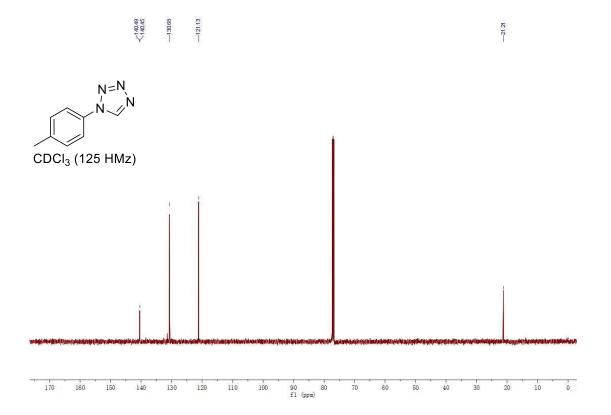

ethyl 1-(9-ethyl-9H-carbazol-3-yl)-1H-imidazole-4-carboxylate (4aa)



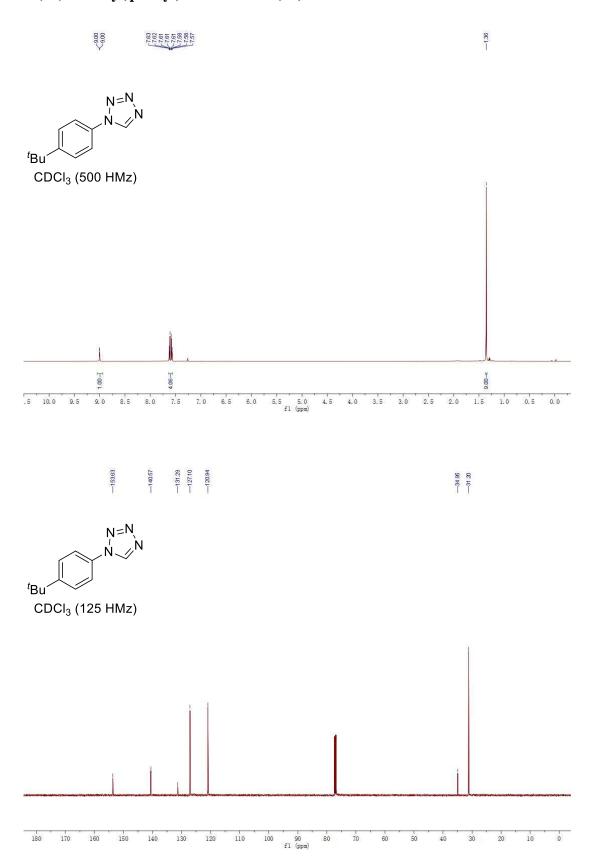


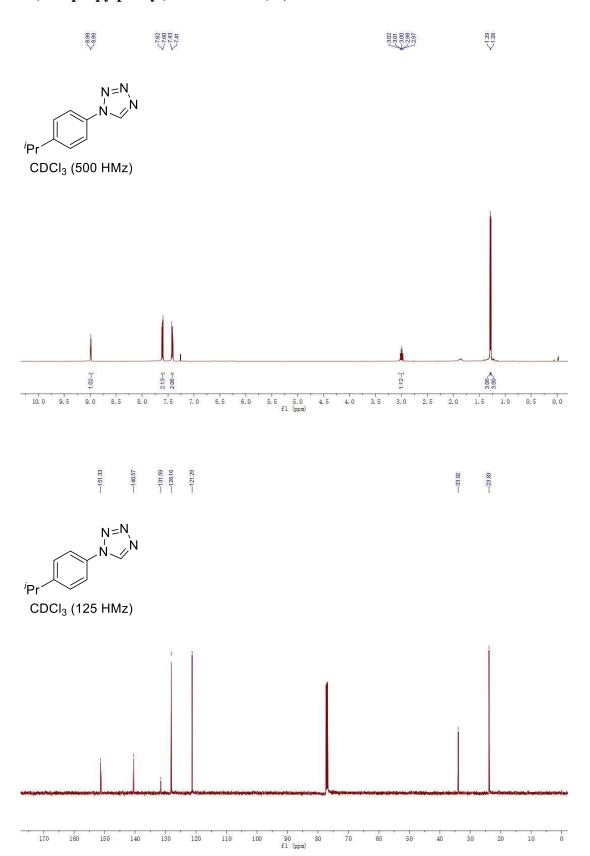
methyl 1-(3,4-dimethylphenyl)-1*H*-imidazole-4-carboxylate (4ab)

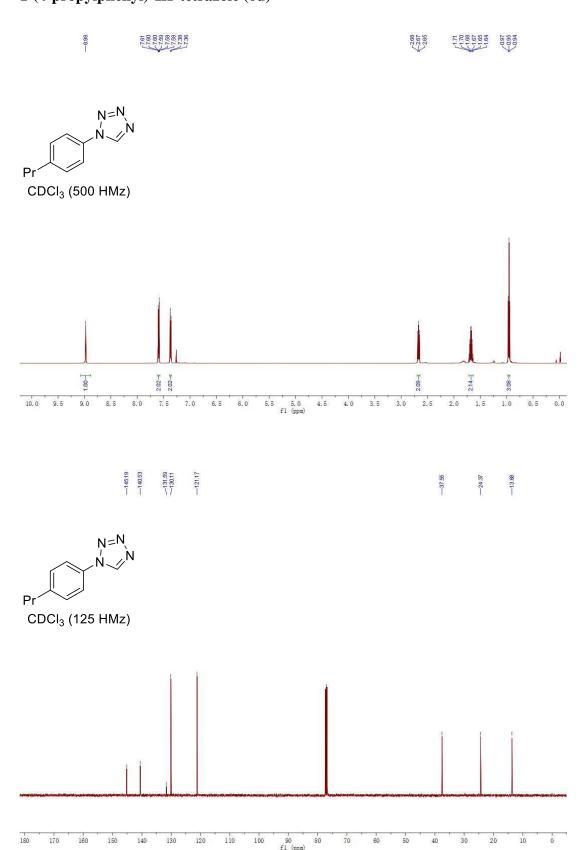


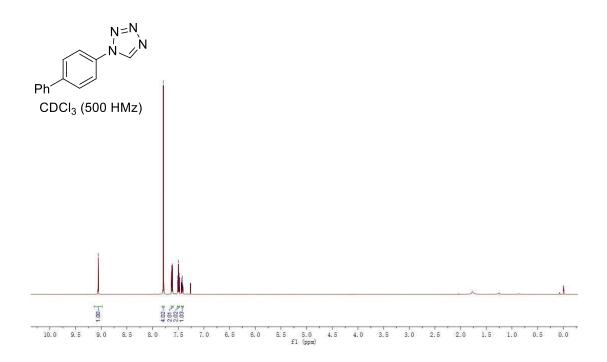


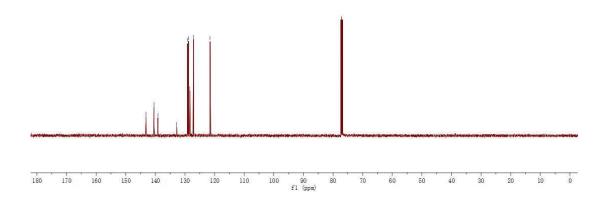
100 90 fl (ppm)


1-(p-tolyl)-1H-tetrazole (6a)

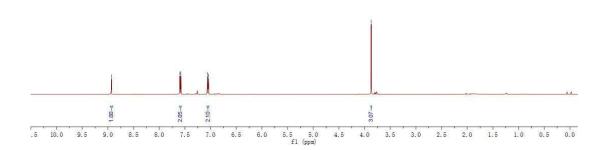


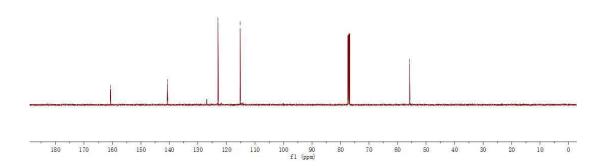

1-(4-(tert-butyl)phenyl)-1H-tetrazole (6b)


1-(4-isopropylphenyl)-1*H*-tetrazole (6c)

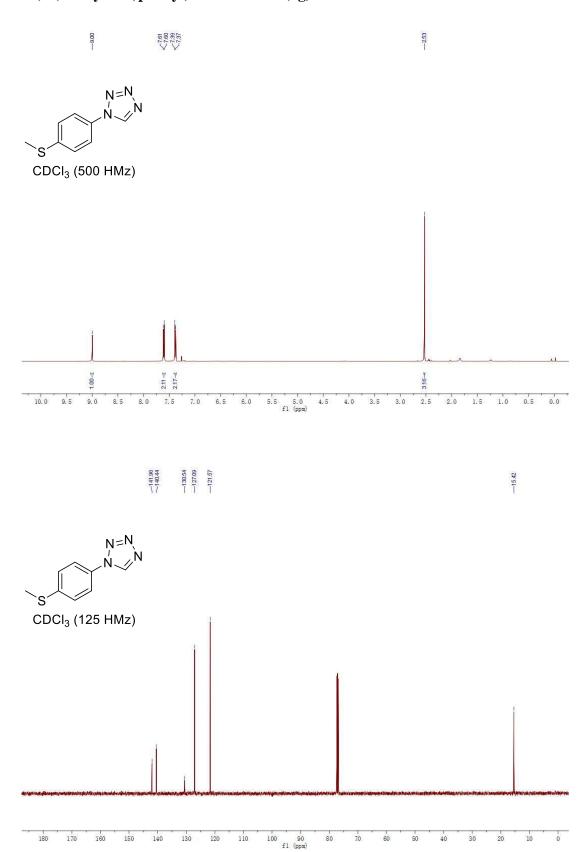


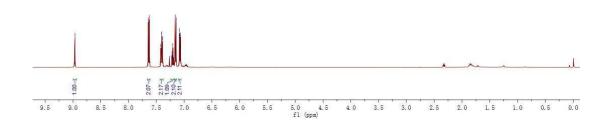
1-(4-propylphenyl)-1*H*-tetrazole (6d)

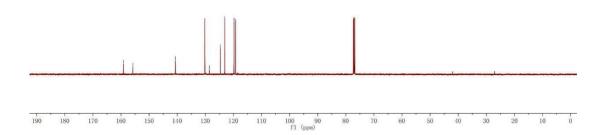

1-([1,1'-biphenyl]-4-yl)-1*H*-tetrazole (6e)



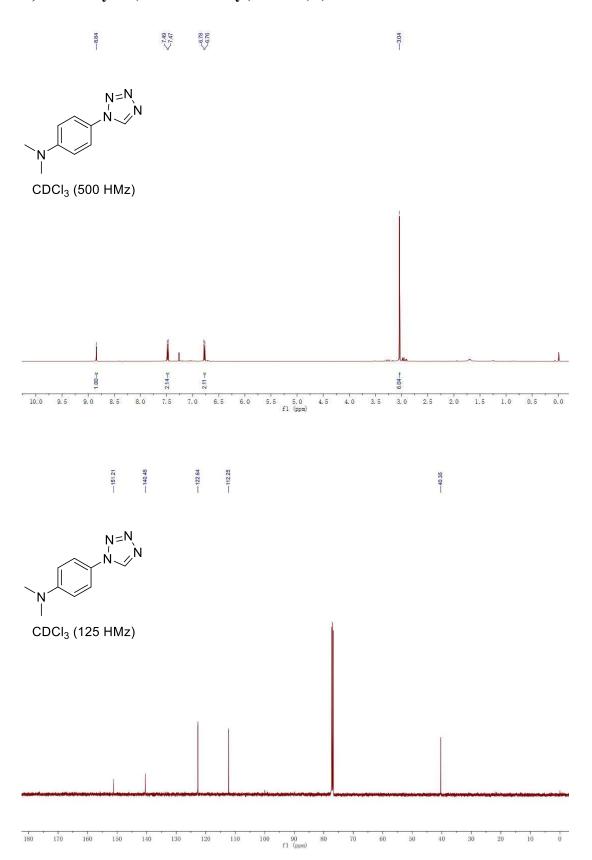
1-(4-methoxyphenyl)-1*H*-tetrazole (6f)



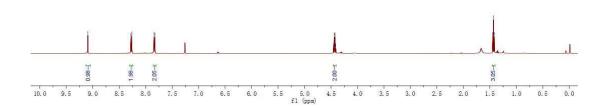

—14085 —14085 —115.19

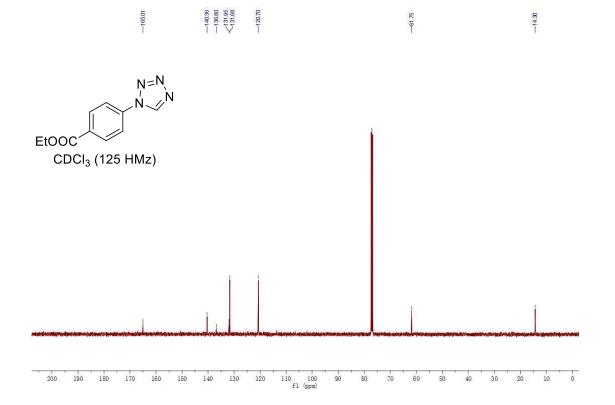


1-(4-(methylthio)phenyl)-1*H*-tetrazole (6g)

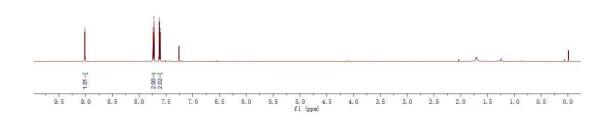


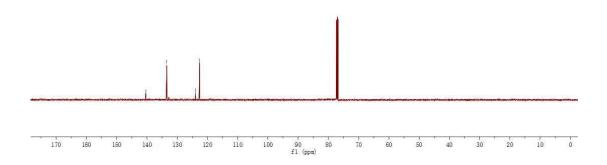
1-(4-phenoxyphenyl)-1*H*-tetrazole (6h)



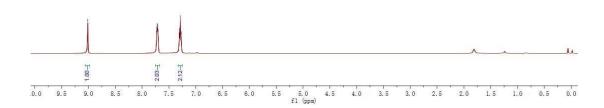

N,N-dimethyl-4-(1*H*-tetrazol-1-yl)aniline (6i)

ethyl 4-(1*H*-tetrazol-1-yl)benzoate (6j)

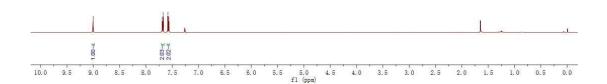


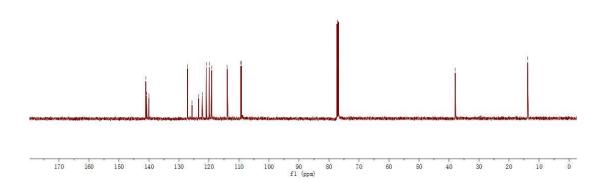


1-(4-bromophenyl)-1*H*-tetrazole (6k)

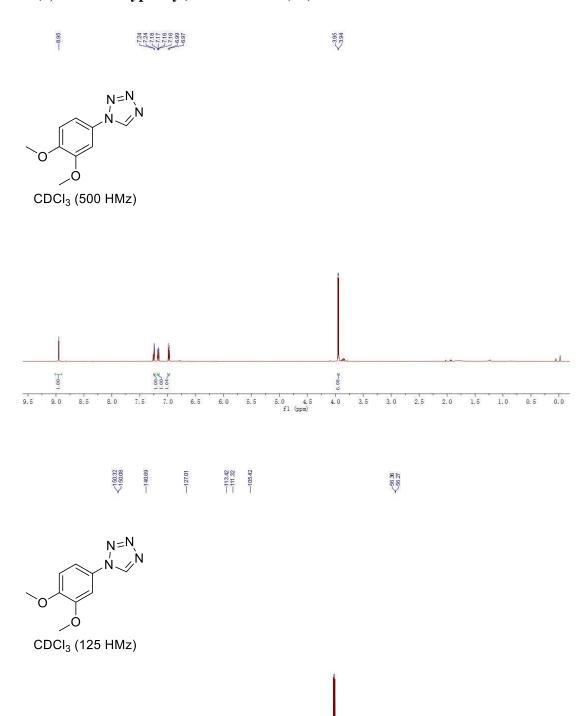


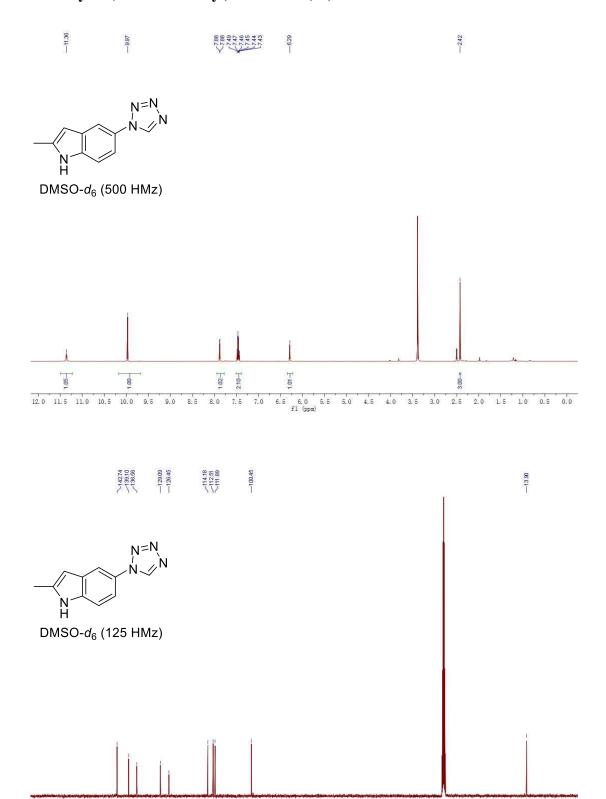
1-(4-fluorophenyl)-1H-tetrazole (6l)



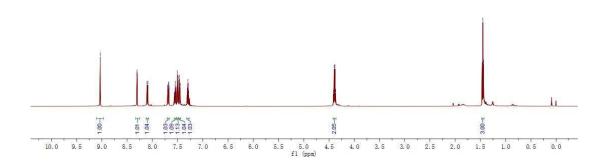

-16408 -15209 -12398 -12348 -1774 -1773 -1773

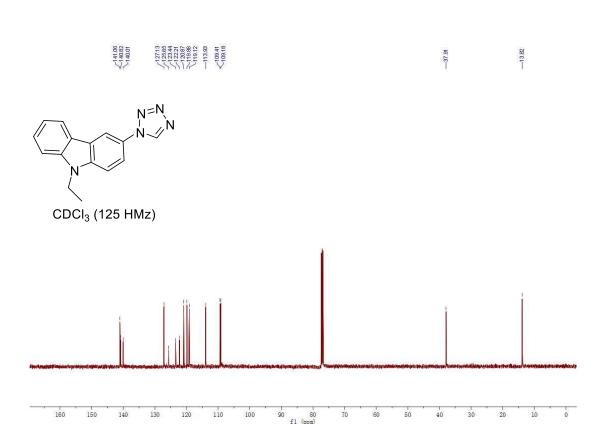
190 180 170 160 180 140 130 120 110 100 90 80 70 60 60 40 30 20 10 0


-(4-chlorophenyl)-1H-tetrazole (6m)

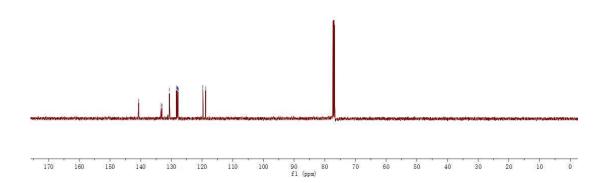


1-(3,4-dimethoxyphenyl)-1*H*-tetrazole (6n)



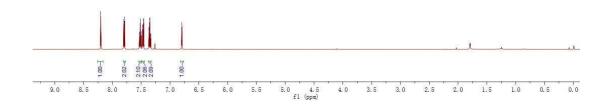

2-methyl-5-(1*H*-tetrazol-1-yl)-1*H*-indole (60)

9-ethyl-3-(1H-tetrazol-1-yl)-9H-carbazole (6p)

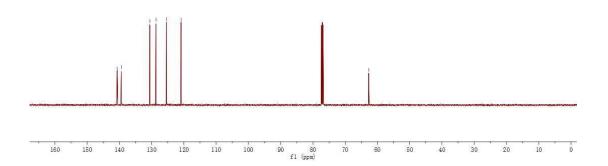


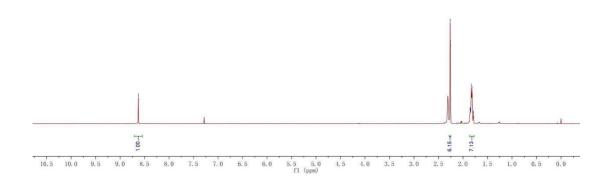
1-(naphthalen-2-yl)-1H-tetrazole (6q)

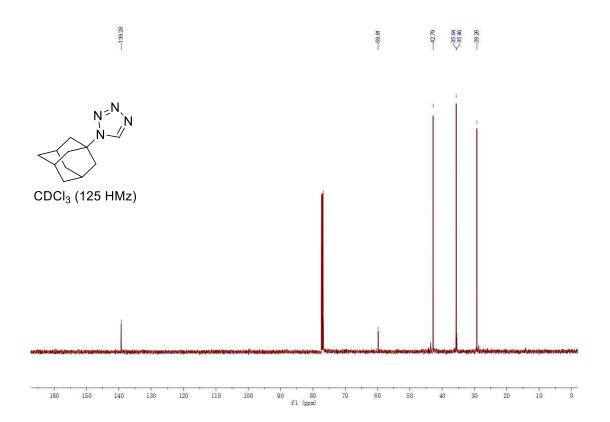
11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

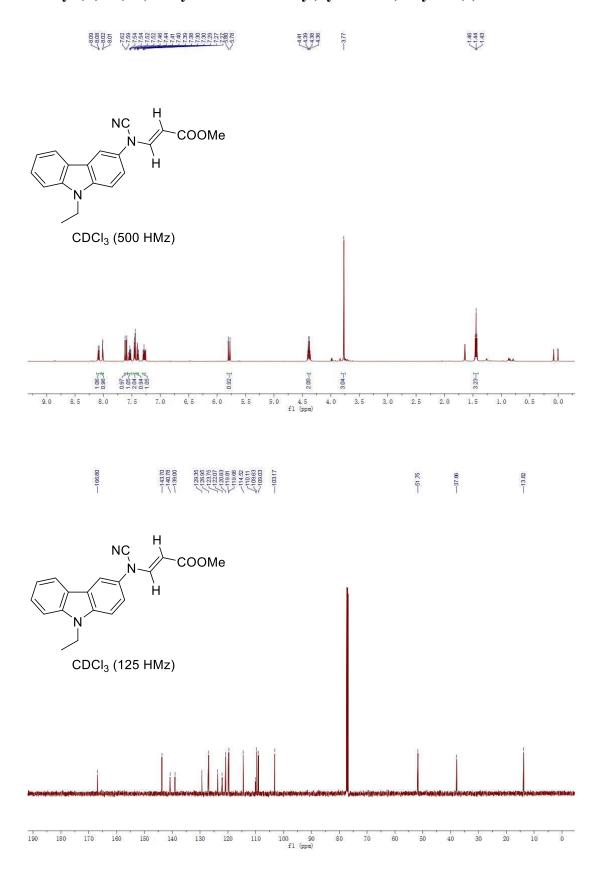

133.36 133.06 130.06 128.35 127.98 1127.98

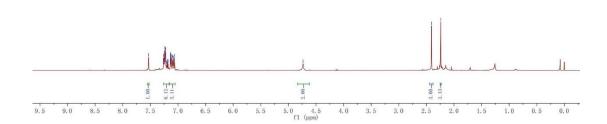
1-(9H-fluoren-9-yl)-1H-tetrazole (6r)


CDCl₃ (500 HMz)

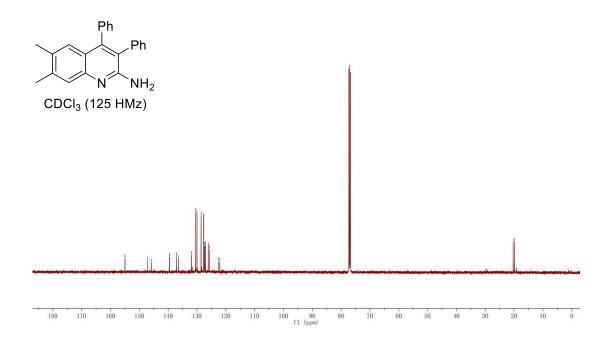

-62.69


CDCl₃ (125 HMz)


1-((3s,5s,7s)-adamantan-1-yl)-1*H*-tetrazole (6s)



methyl (E)-3-(N-(9-ethyl-9H-carbazol-3-yl)cyanamido)acrylate (7)



6,7-dimethyl-3,4-diphenylquinolin-2-amine (8)

