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Experimental 

Preparation of hybrid superconcentrated (HSC) electrolyte: The HSC electrolyte 

was prepared by molality (mol-salt in kg solvent). In a typical synthesis, LiFSI (5.984 

g) was dissolved into distilled water (1.00 g) to form a 32 m LiFSI-H2O “water-in-

salt” electrolyte, then LiFSI (4.114 g) was dissolved into organic solvent EC/DMC 

(volume ratio of 1:1, 2.00 g) to form an 11 m LiFSI-EC/DMC electrolyte, and the 

HSC electrolyte was obtained by mixing 32 m LiFSI in water and 11 m LiFSI in 

EC/DMC (vol. 1:1) at a mass ratio of 1:2, and it is equivalent to an apparent LiFSI 

concentration 14.6 m.

Electrolyte Characterizations: The ionic conductivities of the electrolytes were 

measured by using an electrical conductivity meter DDS-307 (INESA Scientific 

Instrument Co., Ltd.). Viscosity was measured by a rotational rheometer Haake 

MARS Ⅲ (Thermo Fisher Scientific, Germany). Electrochemical stability potential 

windows of electrolytes were determined by linear sweep voltammetry measurements 

using an electrochemical workstation (CHI660D) at a scan rate of 10 mV s-1 within -

3.2 to 3.2 V vs. saturated calomel electrode (SCE). Raman spectra were measured 

using a Lab Ram HR Evolution Series High Resolution Raman Spectrometer 
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(HORIBA Jobin Yvon SAS, France). The thermal properties of the electrolytes were 

investigated by differential scanning calorimetry (Netzsch DSC METTLER TOLEDO 

DSC1) with a temperature range from 80 to -50 °C.

Preparation of the Electrodes: All the electrodes were made from 80 wt.% of 

commercial activated carbon (AC, YP-50, Kuraray Chemical, Japan), 10 wt.% of the 

binder (polytetrafluoroethylene, PTFE) and 10 wt.% of conductive material (Ketjen 

black). The electrode slices (7 mm diameter) were dried at 110 °C at a vacuum oven 

for 12 h, then were pressed onto the current collector (Ti mesh). Each electrode 

loading of AC is about 4 mg cm-2. 

Electrochemical Measurements: The symmetric AC//AC system was assembled in 

coin cell type CR2032 with two YP-50 electrodes and glass fibers were used as the 

separators. Cyclic voltammetry (CV) and Electrochemical Impedance Spectroscopy 

(EIS) tests were performed on an electrochemical workstation (CHI660D). 

Galvanostatic charge/discharge (GCD) tests were carried out by using a battery test 

system (NEWARE). The voltage recording of the cathode and anode during the 

charge/discharge process of the symmetric AC//AC system was carried out by a 

Solartron 1470E multi-channel potentiostats electrochemical workstation using a 

three-electrode system.

Electrodes Measurements: Scanning electron microscopy (SEM) image of the 

electrode surface after cycling was performed on a ZEISS SUPRA-55 scanning 

electron microscope. The surface element valence of the electrode surface after 

cycling was investigated by X-ray photoelectron spectra (XPS, Thermo Scientific, 

Escalab 250Xi).
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Fig. S1 Conductivity of the LiFSI and LiTFSI electrolytes with different 

concentrations at room temperature. The ionic conductivity can reach 100.3 mS cm-1 

for 5 m LiFSI while the value is only 43.9 mS cm-1 for 5 m LiTFSI, and the 

conductivity of 32 m LiFSI is 19.9 mS cm-1.

Fig. S2 Cycling performance and coulombic efficiency of the AC//AC 

supercapacitors using (a) 32 m LiFSI/H2O + 11 m LiFSI/DMC and (b) 32 m 

LiFSI/H2O + 11 m LiFSI/(DMC+EC) electrolytes with an operating voltage of 2.5 V 
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at 1 A g-1, and the supercapacitors using LiFSI/(H2O+EC+DMC) electrolyte exhibit 

higher efficiency and better cycle stability than using LiFSI/(H2O+DMC). (c) 

Efficiency performance at different mass ratios for 32 m LiFSI/H2O:11 m 

LiFSI/(DMC+EC), and the highest charge and discharge efficiency was obtained for 

the 1:2 ratio, indicating the fewest side reactions during cycling. (d) Immiscibility 

between water and organic solvents (EC+DMC) and the homogeneous of the HSC 

electrolyte after adding LiTFSI.

Fig. S3 Thermal properties of the three electrolytes within a temperature range from 

80 to -50 °C at a cooling rate of 5 °C min-1. The thermograms display the exothermic 

peaks around -22 °C and -25 °C for 1 m LiFSI and 32 m LiFSI, respectively, whereas 

completely flat in the case of HSC, which means that the HSC electrolyte is still in a 

liquid state even at -50 °C, while the 1 m LiFSI and 32m LiFSI solutions are frozen, 

indicating a wide operating temperature for HSC electrolyte.
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Fig. S4 CV curves of the AC//AC supercapacitors using the 1 m LiFSI electrolyte at 

different voltage range at a scan rate of 10 mV s-1.

Fig. S5 Galvanostatic charge-discharge characteristics recorded for a symmetric 

AC//AC supercapacitor in HSC at different operating voltage from 1.8 to 2.5 V at a 

current density of 200 mA g−1.
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Fig. S6 Galvanostatic charge-discharge curves at various current densities from 0.2 to 

20 A g-1 of the supercapacitors using HSC electrolyte.

Fig. S7 Galvanostatic charge-discharge curves from 10th cycle to 20th cycle and from 

9990th cycle to 10000th cycle of the AC//AC symmetric supercapacitor using HSC 

electrolyte which shows the discharge time retention of 82.1% (a), while the AC//AC 

symmetric supercapacitor using 32 m LiFSI electrolyte shows the discharge time 

retention of 24.93% (b), at a current density of 1 A g-1 at an operation voltage of 2.5 

V.
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Fig. S8 Cycling performance and coulombic efficiency of the AC//AC symmetric 

supercapacitor using 1 m LiFSI electrolyte at an operation voltage of 2.0 V at a 

current density of 1 A g-1.

Fig. S9 (a) Cycling performance and coulombic efficiency of the LiMn2O4/Li4Ti5O12 

aqueous lithium-ion battery using HSC electrolyte at an operation voltage range from 

1.5 V to 3.0 V at a current density of 0.15 A g-1. (b) First cycle galvanostatic charge-

discharge profiles of the LiMn2O4/Li4Ti5O12 aqueous lithium-ion battery using HSC 

electrolyte at a current density of 0.15 A g-1.
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Fig. S10 XPS spectra for the electrode surface after cycling. (a) C 1s, (b) F 1s, (c) O 
1s, (d) Li 1s.

Fig. S11 SEM image for the electrode surface after cycling. 

Table S1. The ionic conductivities and viscosities for the three electrolytes.

1 m LiFSI 32 m LiFSI HSC
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Conductivity (mS cm-1) 47.43 19.92 3.78

Viscosity (mm2 s-1) 22 66 373

Table S2. Comparison of the operating voltage and energy density versus recently 

published high-performance symmetric supercapacitors using aqueous concentrated 

electrolytes.
Carbon type Operating 

voltage (V)

Electrolyte Energy density

(Wh kg-1)

Ref.

AC 2.0 75 wt% KAc 16.8 1

YP-50F 2.2 LiTFSI(H2O)2.6(CH3CN)3.7 Not mention 2

YP-50F 2.3 17 m NaClO4 23.7 3

YP-50F 2.3 21 m LiTFSI 17.2 3

YP-50F 2.4 LiTFSI/H2O/(CAN)3.5 Not mention 4

3D high-density graphene 2.1 17 m NaClO4 22.3 Wh L-1 5

YP-50F 2.5 HSC 27.1 This work
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Table S3. Comparison of the average voltage versus recently published high-voltage 

lithium-ion batteries using aqueous concentrated electrolytes.
Cathode Anode Electrolyte Average voltage (V) Ref.

LiMn2O4 Mo6S8 21 m LiTFSI 2.3 6

LiMn2O4 TiO2 21 m LiTFSI/7 m LiOTf 2.1 7

LiCoO2 Li4Ti5O12 Li(TFSI)0.7(BETI)0.3·2H2O 2.35 8

LiNi0.5Mn1.5O4 Li4Ti5O12 DMC/H2O/LiTFSI (14 m) 3.2 9

LiMn2O4 Li4Ti5O12 HSC 2.5 This work
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