Supporting Information

Supramolecular Organogel Formation through Three-dimensional α-Cyclodextrin Nanostructures: Solvent Chirality-selective Organogel Formation

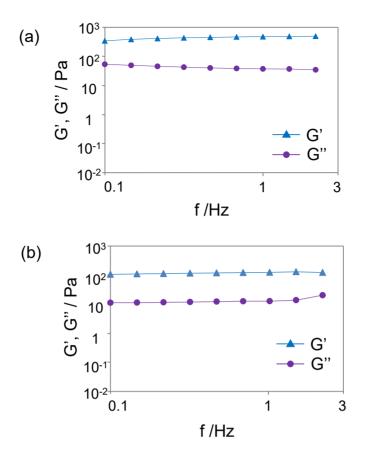
Toshiyuki Kida*, Ayumi Teragaki, Justine M. Kalaw and Hajime Shigemitsu

Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-08, Japan

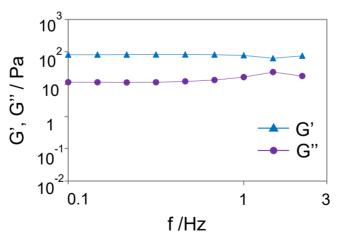
Contents

- 1. Experimental procedures
- 2. Preparation procedure of organogels
- 3. Rheological properties of organogels formed by mixing a HFIP solution of α -CD and 1- or 2-butanol
- 4. Schematic illustration of diffraction planes of α-CD assemblies
- 5. Photographs of mixtures of an α-CD/HFIP solution and 2-butanol with different *R/S* ratios
- 6. SEM images of structures obtained by drying gels and suspensions composed of mixtures of an α-CD/HFIP solution and 2-butanol with different *R/S* ratios
- 7. XRD patterns of structures obtained by drying gels and suspensions which are composed of mixtures of an α-CD/HFIP solution and 2-butanol with different *R/S* ratios
- 8. ¹H NMR analysis of solids obtained by drying a (S)-2-butanol gel and a non-gelated (R)-2-butanol suspension
- 9. ¹H NMR analysis of solid obtained by drying a 1-butanol gel

1. Experimental procedures


SEM measurements were performed with a JSM-6701F instrument (JEOL Ltd., Japan). X-ray diffraction patterns of powder samples were obtained at room temperature on a Rigaku RINT InPlane/ultraX18SAXS-IP diffractometer using monochromatic Cu-K α radiation generated at 40 kV, 200 mA. The scan rate was $2\theta = 1^{\circ} \text{ min}^{-1}$ between $2\theta = 5^{\circ}$ and 40° .

2. Preparation procedure of organogel


 α -CD (12 mg), which was dried at 80 °C for 12 h *in vacuo* before use, was dissolved in HFIP (0.50 mL) to prepare an α -CD/HFIP solution (24 mg/mL). This solution was added dropwise to a poor solvent (2.5 mL) stirred at 500 rpm using a syringe, and the mixture was stirred for 3 h and allowed to stand for 3 days. The organogel formation was confirmed by rheology measurements.

3. Rheological properties of organogels formed by mixing a HFIP solution of α -CD and 1- or 2-butanol

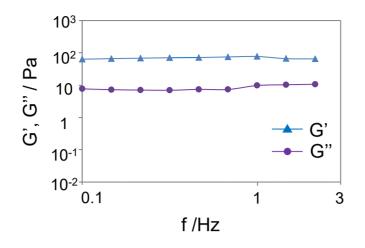

The oscillatory shear measurements were carried out using a stress-controlled rheometer (HAAKE Rheostress RS 1) with a parallel plate-type geometry (plate diameter 20 mm, plate height 1 mm). The storage modulus G' and the loss modulus G'' were measured at a stress of 1 Pa as a function of the angular frequency from 0.1 to 3 rad s⁻¹ at 20 °C.

Figure S1. Plots of the storage modulus (G') and the loss modulus (G'') of organogels, which were formed by stirring a mixture of an α -CD/HFIP solution and a poor solvent for 3 h and then allowing to stand for 72 h, against angular frequency (stress: 1 Pa). Poor solvent: (a) 1-butanol and (b) 2-butanol.

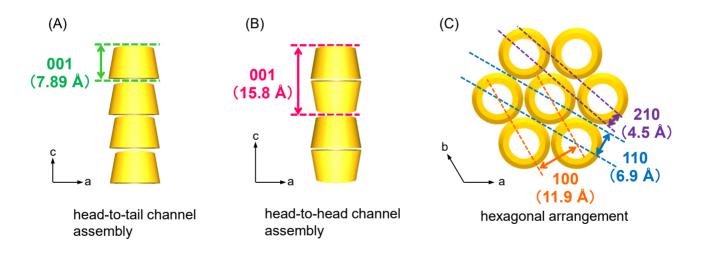
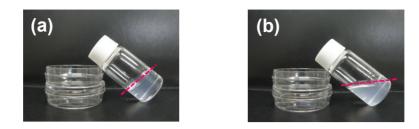
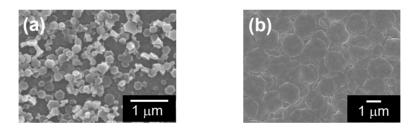


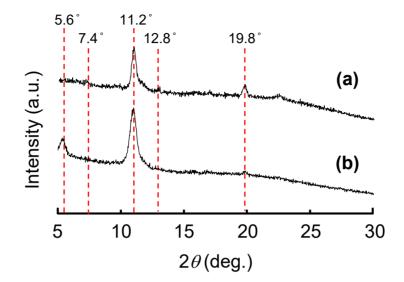
Figure S2. Plots of the storage modulus (G') and the loss modulus (G'') of the organogel, which was formed by stirring a mixture of an α -CD/HFIP solution and (*S*)-2-butanol for 3 h and then allowing to stand for 72 h, against angular frequency (stress: 1 Pa).


Figure S3. Plots of the storage modulus (G') and the loss modulus (G'') of the organogel, which was formed by stirring a mixture of an α -CD/HFIP solution and 2-butanol with a 3:1 *R/S* ratio for 3 h and then allowing to stand for 72 h, against angular frequency (stress: 1 Pa).

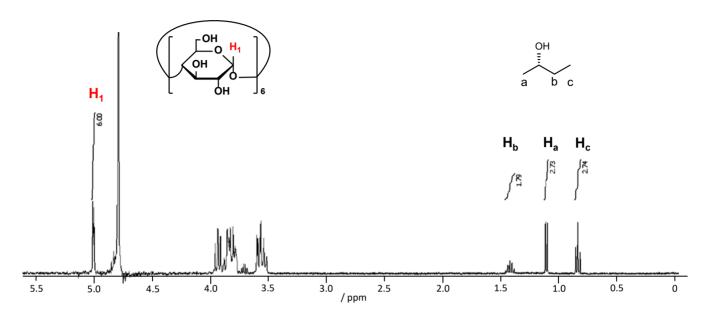
4. Schematic illustration of diffraction planes of α-CD assemblies


Figure S4. Schematic illustration of diffraction planes of (A) head-to-tail and (B) head-to-head α -CD channel assemblies and (C) hexagonal arrangement of α -CD molecules.

5. Photographs of mixtures of an α -CD/HFIP solution and 2-butanol with different *R/S* ratios


Figure S5. Photographs of mixtures of an α -CD/HFIP solution (0.5 mL) [25 mM] and 2-butanol with different *R/S* ratios (2.5 mL) after stirring for 3 h and then allowing them to stand for 54 h. *R/S* ratio: (a) 3:1 and (b) 9:1.

6. SEM images of structures obtained by drying gels and suspensions composed of mixtures of an α-CD/HFIP solution and 2-butanol with different *R/S* ratios


Figure S6. SEM images of structures obtained by drying gels and suspensions composed of mixtures of an α -CD/HFIP solution (0.5 mL) [25 mM] and 2-butanol with different *R/S* ratios (2.5 mL). *R/S* ratio: (a) 3:1 and (b) 9:1.

7. XRD patterns of structures obtained by drying gels and suspensions which are composed of mixtures of an α-CD/HFIP solution and 2-butanol with different *R/S* ratios

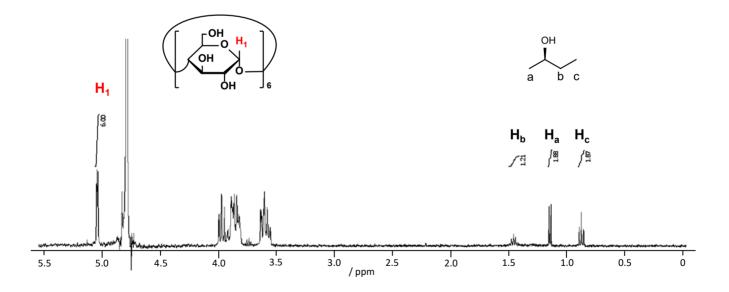


Figure S7. XRD patterns of structures obtained by drying gels and suspensions which are composed of mixtures of an α -CD/HFIP solution (0.5 mL) [25 mM] and 2-butanol with different *R/S* ratios (2.5 mL). *R/S* ratio: (a) 3:1 and (b) 9:1.

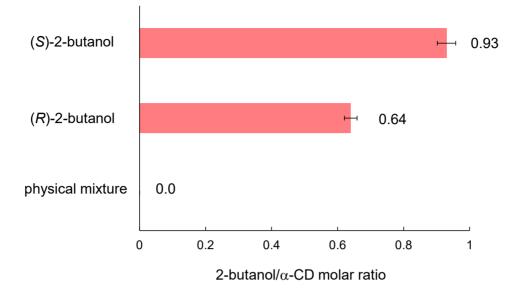

8. ¹H NMR analysis of solids obtained after drying a (S)-2-butanol gel and a non-gelated (R)-2-butanol suspension

Figure S8. ¹H NMR spectrum (D₂O) of solid obtained after drying a (*S*)-2-butanol gel for 24 h at 70 °C *in vacuo*.

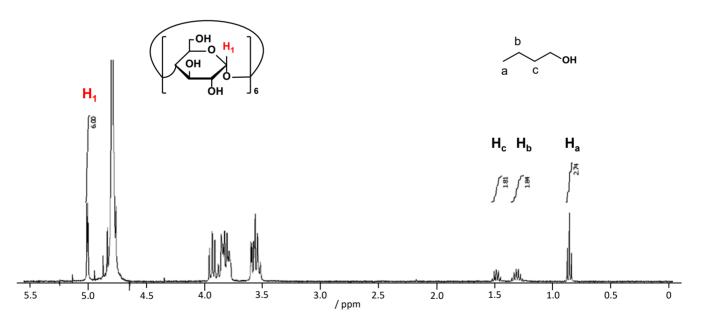


Figure S9. ¹H NMR spectrum (D₂O) of solid obtained after drying a non-gelated (*R*)-2-butanol suspension for 24 h at 70 °C *in vacuo*.

Figure S10. Molar ratio of chiral 2-butanol and α -CD (estimated by ¹H NMR) contained in solids obtained after drying a (*S*)-2-butanol gel, a non-gelated (*R*)-2-butanol suspension and a physical mixture of α -CD and (*S*)-2-butanol for 24 h at 70 °C *in vacuo*.

9. ¹H NMR analysis of solid obtained by drying a 1-butanol gel

Figure S11. ¹H NMR spectrum (D_2O) of solid obtained after drying a 1-butanol gel for 24 h at 70 °C *in vacuo*.