Electronic Supplementary Information

Bi(III)-Catalyzed Aminooxygenation of Propargyl Amidines to Synthesize 2-Fluoroalkyl Imidazole-5-Carbaldehydes and Their Decarbonylations

Table of content

I. General Information							
II. Preliminary Mechanistic Studies on BiCl ₃ -Catalyzed AminooxygenationS2							
	Scheme S1. Investigation on reaction intermediates						
	Scheme S2. Investigation on reaction pathway						
	Scheme S3. Investigation on reaction initial step						
Scheme S4 Proposed mechanism of Bi(III)-catalyzed aminooxygenation							
Scheme S5 Possible mechanism of the formation of 2z							
III	III. Scheme S6. Possible Mechanism of KOt-Bu-Mediated Decarbonylation						
IV	Table	S1.	Optimized	for	the	Base-Mediated	
De	Decarbonylation						
V. General Procedure for the Synthesis of Imidazole-5-Carbaldehyde							
VI. Characterization for the 2-Fluoroalkyl Imidazole-5-Carbaldehyde							
VII. General Procedure for Synthesis of 5-Hydroxymethyl Imidazole							
VIII. General Procedure for the Synthesis of 2-Fluoroalkyl Imidazole							
IX. Characterization for the 2-Fluoroalkyl Imidazole							
X. A Concise Route to Synthesize 3m on Gram Scale							
XI	XI. NMR Spectra for the 2-Fluoroalkyl Imidazole Derivatives						

I. General Information

Melting points were measured on a Melt-Temp apparatus and were uncorrected. ¹H NMR spectra were recorded in CDCl₃ on a Bruker AM-400 spectrometer (400 MHz) with TMS as internal standard. ¹⁹F NMR spectra were taken on a Bruker AM-400 (282 MHz) spectrometer using CFCl₃ as external standard. ¹³C NMR spectra were taken a Bruker AM-400 (101 MHz) spectrometer. IR spectra were obtained with a Nicolet AV-360 spectrophotometer. Mass spectra were recorded in Zhejiang University and elemental analyses were recorded in Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences. Solvents were purchased form commercial sources and purified before used by standard procedures. Unless otherwise specified, all reactions were carried out in a Schlenk tube and magnetic stirring under an ambient circumstance. TLC analysis was performed on silica gel plates, column chromatography over silica gel (mesh 300-400) and petroleum ether-ethyl acetate combination was used as the eluent.

II. Preliminary Mechanistic Studies on BiCl₃-Catalyzed Aminooxygenation Scheme S1. Investigation on reaction intermediates

Upon exposure of 5-methyl imidazole and 5-hydroxymethyl imidazole, possible intermediates in this transformation, no **2a** was formed even with 1.0 equiv of BiCl₃.

The formation of U under basic conditions¹ was not detected, which indicated that the construction of C-Bi(III) bond directly in this reaction was impossible.

Reference

[1] (a) H. H. Peng, N. G. Akhmedov, Y. F. Liang, N. Jiao and X. D. Shi, *J. Am. Chem. Soc.* 2015, 137, 8912; (b) S. Li, Z. K. Li, Y. F. Yuan, D. J. Peng, Y. J. Li, L. S. Zhang, and Y. M. Wu, *Org. Lett.* 2012, 14, 1130; (c) A. N. Dunlop, R. J. Kominar and S. J. W. Price, *Can. J. Chem.* 1970, 48, 1269.

Scheme S2. Investigation on reaction pathway

(A) Effect of radical scavengers on aminooxygenation

NPh	BiCl ₃	Ph F₃C <mark>∕N O</mark>		
F₃C N H	radical scavenger acetone, O ₂	N N	н	
1a	35 0	2a		
BiCl ₃	radical scavenger	phenol	2a	
-	TEMPO (3.0 equiv)	-	_a	
0.05 equiv	- (-)	-	44%	
1.0 equiv	TEMPO (3.0 equiv)	-	76%	
0.3 equiv	TEMPO (1.0 equiv)	-	28%	
0.05 equiv	TEMPO (0.15 equiv)	-	9%	
0.05 equiv	TEMPO (0.15 equiv)	0.15 equiv	/ ^b	
0.05 equiv	BHT (0.15 equiv)	-	23%	
0.05 equiv	BHT (0.15 equiv)	0.15 equiv	51%	

^a no reaction. ^b no desired product

(B) EPR for BiCl₃-catalyzed aminooxygenation

Without phenol, the addition of TEMPO dramatically decreased the efficiency of aminooxygenation; however, no TEMPO-R adduct was detected by GC-MS and LC-MS analysis. When phenol and TEMPO were added simultaneously, the reaction became messy. Similar results were detected In the presence of BHT. Based on these results, it was considered that radicals were involved in the reaction, which was supported by EPR analysis.

Scheme S3. Investigation on reaction initial step

(A) Effect of radical initiator on aminooxygenation

N ^{Ph}	radical initiator	$F_{3}C \xrightarrow{N} O$		
F ₃ C ^N H	phenol (1.5 equiv) acetone, O ₂			
1a	35 °C			
radical initiator (0.10 equiv)	BiCl ₃	time	2a	
_a	0.05 equiv	6 h	92%	
DTBP	-	16 h	_b	
DTBP	0.05 equiv	9 h	80%	
BPO	-	16 h	-	
BPO	0.05 equiv	7 h	73%	
AIBN	-	16 h	-	
AIBN	0.05 equiv	7 h	71%	

^a no addtion. ^b no reaction.

(B) Investigation on aminooxygenation of alkene

The addition of radical initiators into the model reaction did not facilitate this transformation, Without BiCl₃, no reaction occurred with 10 mol% of radical initiators, such as DTBP, BPO, and AIBN. Addition of these radical initiators to the model reaction resulted in longer time and decreased yields. In addition, no reaction occurred when allyl amidine **1a**' was used under the standard reaction conditions. Those results suggested that the reaction might be initiated by an alternative pathway rather than a radical pathway.

Scheme S4. Proposed mechanism of Bi(III)-catalyzed aminooxygenation

Although a detailed reaction pathway still remains to be clarified, a proposed mechanism is shown in Scheme S4. Coordination of the triple bonds of substrate 1 and dioxygen¹ with Bi(III) generates a Bi-peroxy intermediate **A** by a three-component intermolecular nucleophilic substitution. Then, **A** isomerizes to a more stable species **B** via H-1,3-shift. The Bi-O₂ bond in **B** dissociates into a \cdot Bi(II) species and a peroxyl radical **M**. Desired product **2** forms from **M** by means of removal of a hydroxyl radical² that would convert to H₂O in the presence of phenol³. PhOBi(III) species, generated from the combination of the \cdot Bi(II) species and the PhO \cdot radical, keeps the reaction going on.

Reference

(a) Y. J. Pang, X. H. Chen, C. Z. Xu, Y. J. Lei and K. M.Wei, *ChemCatChem* 2014, **6**, 876; (b)
B. G. M. Rocha, M. L. Kuznetsov, Y. N. Kozlov, A. J. L. Pombeiro and G. B. Shul' pin, *Catal. Sci. Technol.* 2015, **5**, 2174; (c) M. L. Kuznetsov, B. G. M. Rocha, A. J. L. Pombeiro and B. G. Shul' pin, *ACS Catal.* 2015, **5**, 3823.

2 (a) H. H. Peng, N. G. Akhmedov, Y. F. Liang, N. Jiao and X. D. Shi, *J. Am. Chem. Soc.* 2015, 137, 8912; (b) S. Li, Z. K. Li, Y. F. Yuan, D. J. Peng, Y. J. Li, L. S. Zhang, and Y. M. Wu, *Org. Lett.* 2012, 14, 1130; (c) S. Li, Z. K. Li, Y. F. Yuan, D. J. Peng, Y. J. Li, L. S. Zhang, and Y. M. Wu, *Chem. Eur. J.* 2013, 19, 1496.

3 M. J. Lundqvist and L. A. Eriksson, *J. Phys. Chem. B* 2000, **104**, 848; (b) N. Agnihotri and P. C. Mishra, *J. Phys. Chem. A* 2011, **115**, 14221; (c) C. Cren-Olivé, P. Hapiot,; J. Pinson and C. Rolando, *J. Am. Chem. Soc.* 2002, **124**, 14027; (d) D. Zhang, Y. X. Liu, L. Chu, Y. Wei, D. Wang, S. B. Cai, F. Zhou and B. P Ji, *J. Phys. Chem. A* 2013, **117**, 1784; (e) D. D. Li, R. M. Han, R. Liang, C. H. Chen, W. Z. Lai, J. P. Zhang and L. H. Skibsted, *J. Phys. Chem. B* 2012, **116**, 7154.

Scheme S5. Possible mechanism of the formation of 2z

A possible mechanism of the formation of 2z was proposed, as described in scheme S5, both C-C triple bonds and the amide group are activated by coordination with the Bi-catalyst. Then, the C-C triple bonds accept the attack of oxygen atom on amide to afford intermediate A^1 which undergoes protodemetallation to give an intermediate **B**. The final product 2z forms form **B** via an H-1,3-shift.

Reference

1 (a) M. Y. Chang, Y. C. Cheng and Y. J. Lu, Org. Lett. 2015, **17**, 1264; (b) K. Komeyama, M. Miyagi and K. Takaki, Heteroat. Chem. 2008, **19**, 644; (c) K. Komeyama, K. Takahashi and K. Takaki, Org. Lett. 2008, **10**, 5119.

III. Scheme S6. Possible Mechanism of KO*t*-Bu-Mediated Decarbonylation Scheme S6. Possible mechanism of KO*t*-Bu-mediated decarbonylation

Based on the previous work, a possible mechanism of KO*t*-Bu-mediated decarbonylation was proposed and described in Scheme S6, DMF is deprotonated by KO*t*-Bu to afford the carbonyl anion which undergoes a single-electron transfer step (**SET**) to generate the carbamoyl radical **O**. Then, the carbamoyl radical **O**¹ abstracts a hydrogen atom to give an imidazolyl-5-acyl radical **P**. Imidazolyl radical Q, formed from **P** by releasing a molecule of CO, converts to the desired product **5** by capturing a hydrogen atom on DMF.

Reference

(a) C. B. de Koning, J. P. Michael and A. L. Rousseau, J. Chem. Soc. Perkin Trans. 1. 2000, 787;
(b) R. Pathak, K. Vandayar, W. A. L. van Otterlo, J. P. Michael, M. A. Fernandes and C. B. de Koning, Org. Biomol. Chem. 2004, 2, 3504; (c) Y. Y. Chen, X. J. Zhang, H. M. Yuan, W. T. Wei and M. Yan, Chem. Commun. 2013, 49, 10974; (d) W. T. Wei, X. J. Dong, S. Z. Nie, Y. Y. Chen, X. J. Zhang and M. Yan, Org. Lett. 2013, 15, 6018; (e) W. J. Wang, X. Zhao, L. Tong, J. H. Chen, X. J. Zhang and M. Yan, J. Org. Chem. 2014, 79, 8557; (f) W. T. Wei, Y. Liu, L. M. Ye, R, H. Lei, X. J. Zhang and M. Yan, Org. Biomol. Chem., 2015, 13, 817; (g) Y. Y. Chen, N. N. Zhang, L. M. Ye, J. H. Chen, X. Sun, X. J. Zhang and M. Yan, RSC adv. 2015, 59, 48046.

IV. Table S1. Optimized for the Base-Mediated Decarbonylation

Table S1. Optimized for the base-mediated decarbonylation^a

	F ₃ C	base	F ₃ C N	>	
) N~	Ar H		Н	
	20	a	5a		
Entry	Base	Amt	Solvent	Т	Yield ^b
1	KOt-Bu	1.2 equiv	DMF	80 °C	32% ^c
2	KOt-Bu	2.0 equiv	DMF	80 °C	65%
3	KOt-Bu	3.0 equiv	DMF	80 °C	76%
4	K ₂ CO ₃	3.0 equiv	DMF	80 °C	_d
5	Cs_2CO_3	3.0 equiv	DMF	80 °C	-
6	K ₃ PO ₄	3.0 equiv	DMF	80 °C	-
7	КОН	3.0 equiv	DMF	80 °C	43%
8	Et ₃ N	3.0 equiv	DMF	80 °C	-
9	KOt-Bu	3.0 equiv	DMF	60 °C	79%
10	KOt-Bu	3.0 equiv	DMF	45 °C	84%
11	KOt-Bu	3.0 equiv	DMF	35 °C	61%
12	KOt-Bu	3.0 equiv	toluene	45 °C	56%
13	KOt-Bu	3.0 equiv	dioxane	45 °C	77%
14	KOt-Bu	3.0 equiv	CH ₃ CN	45 °C	-
15	KOt-Bu	3.0 equiv	DMSO	45 °C	22%
16	KOt-Bu	3.0 equiv	t-BuOH	45 °C	e
17	KOt-Bu	3.0 equiv	DMF	45 °C	71% ^f

^{*a*} Reaction conditions: **2a** (1.0 mmol), solvent (5.0 mL), Ar. ^{*b*} Isolated yield. ^{*c*} With 43% starting material recovered. ^{*d*} "-" no reaction. ^{*e*} "/" no desired product. ^{*f*} react in air。

V. General Procedure for the Synthesis of Imidazole-5-Carbaldehyde

Under oxygen atmosphere, to a Schlenk tube with a stirring bar was added BiCl_3

(1.6 mg, 1.0 mol %), 2-fluoroalkyl propargyl amidine (0.5 mmol), phenol (71 mg, 1.5 equiv) and acetone (6.0 mL). The system was then heated to 35 °C and monitored by TLC. The solvent was removed under vacuum when the reaction came to the end. The crude product was purified by column chromatography on silica gel with petroleum ether-ethyl acetate (7:1) as the eluent to give the desired product.

VI. Characterization for the 2-Fluoroalkyl Imidazole-5-Carbaldehyde 1-Phenyl-2-(trifluoromethyl)-1H-imidazole-5-carbaldehyde (2a)

White solid, m. p.: 60 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.63 (s, 1H), 7.93 (s, 1H), 7.56 (m, 3H), 7.37 (m, 2H). ¹⁹F NMR (282 MHz, CDCl₃): δ -60.14 (s, 3F). ¹³C NMR (101 MHz, CDCl₃): δ 178.7, 140.7 (q, J = 38.6 MHz), 137.7, 134.7, 133.6, 130.6, 129.5, 127.2,

117.7 (q, J = 270.5 MHz). MS (EI), m/e (%): 240 (M⁺, 26), 78 (100). IR (film): v 1683, 1530, 1500, 1456, 1358, 1198, 1150, 819 cm⁻¹. Anal. Calcd. for C₁₁H₇F₃N₂O: C, 55.01; H, 2.94; N, 11.66; Found: C, 54.77; H, 11.84; N, 2.83.

1-(*p*-tolyl)-2-(trifluoromethyl)-1H-imidazole-5-carbaldehyde (2b)

White solid: m. p.: 74-76 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.62 (s, 1H), 7.92 (s, 1H), 7.34 (d, J = 8.0 MHz, 2H), 7.24 (d, J = 8.0 MHz, F₃C N (2H), 2.47 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -60.56 (s). ¹³C NMR (101 MHz, CDCl₃) δ 179.0, 141.0, 140.7 (q, J = 26.3 MHz), 137.5, 134.8, 130.9, 130.2, 126.9, 180.1 (q, J = 270.0 MHz). HRMS (EI), Calcd. for C₁₂H₉F₃N₂O: 254.0667; Found: 254.0668. IR (film) v 2845, 1684, 1542, 1477, 1344,

1172, 1113, 985, 866 cm⁻¹.

1-(4-Methoxyphenyl)-2-(trifluoromethyl)-1H-imidazole-5-carbaldehyde (2c)

White solid, m. p.: 116-117 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.63 (s, 1H), 7.91 (s, 1H), 7.28 (d, J = 12.0 MHz, 2H), 7.02 (d, J = 12.0 MHz, 2H), 3.89 (s, 3H). ¹⁹F NMR (282 Hz, CDCl₃): δ -60.99 (s). ¹³C NMR (101 MHz, CDCl₃): δ 179.0, 161.0, 140.9 (q, J = 39.1 MHz), 137.4, 134.9, 128.3, 125.9, 118.2 (q, J = 266.1 MHz), 114.6, 55.6.

HRMS (EI), Calcd. for C₁₂H₉N₂O₂F₃: 270.0616; Found: 270.0613. IR (film): v 1720, 1599, 1558, 1502, 1448, 1373, 1304, 1190, 1132, 968, 788, 695 cm⁻¹.

4-(5-Formyl-2-(trifluoromethyl)-1H-imidazol-1-yl)benzonitrile (2d)

 $F_{3}C \xrightarrow{\text{CN}}_{\text{N}} H$ White solid, m. p.: 106-108 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.70 (s, 1H), 7.78 (d, J = 8.0 MHz, 2H), 7.41 (d, J = 8.0 MHz, 2H). ¹⁹F (282 MHz, CDCl₃) δ -60.20 (s). ¹³C NMR (101 MHz, CDCl₃) δ 178.35, 140.01 (q, J = 39.4 MHz), 139.80, 137.81, 133.72, 133.34,

128.16, 118.83 (q, J = 273.7 MHz), 117.34, 114.79. HRMS (EI), Calcd. for $C_{12}H_6F_3N_3O$: 265.0463; Found: 265.0464. IR (film): v 2234, 1692, 1644, 1508, 1452, 1283, 1188, 1142, 855 cm⁻¹.

1-(4-Nitrophenyl)-2-(trifluoromethyl)-1H-imidazole-5-carbaldehyde (2e)

^{NO2} White solid, m. p.: 151-154 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.72 (s, 1H), 8.33 (d, J = 8.0 MHz, 2H), 7.90 (s, 1H), 7.47 (d, J = 8.0 F₃C NHz, O MHz, 2H). ¹⁹F NMR (282 MHz, CDCl₃) δ -60.17 (s). ¹³C NMR (101 MHz, CDCl₃) δ 178.38, 148.76, 141.03 (q, J = 39.4 MHz), 139.94, 139.33, 132.4, 128.40, 124.78, 117.93 (q, J = 292.9 MHz). HRMS (EI), Calcd. for C₁₁H₆F₃N₃O₃: 285.0361; Found 285.0362. IR (film): v 1697, 1643, 1635, 1587, 1530 (d), 1495 (d), 1452, 1348, 1292, 1188, 1148 (d), 861 (d) cm⁻¹.

ethyl 4-(5-formyl-2-(trifluoromethyl)-1H-imidazol-1-yl)benzoate (2f)

White solid, m. p.: 93-95 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.71 (s, 1H), 8.23 (d, *J* = 8.4 MHz, 2H), 7.95 (s, 1H), 7.43 (d, *J* = 8.4 MHz, 2H), 4.44 (q, *J* = 7.2 MHz, 2H), 1.43 (t, *J* = 7.2 MHz, 3H). ¹⁹F NMR (282 MHz, CDCl₃): δ -59.97 (s). ¹³C NMR (101 MHz,

CDCl3): δ 178.4, 165.1, 140.9 (q, *J* = 39.3 MHz), 138.8, 137.5, 134.5, 132.7, 130.7, 127.2, 117.5, 269.7 (q, *J* = 269.7 MHz), 61.6, 14.3. MS (EI), m/e (%): 312 (M⁺, 33), 105 (100), 267 (81). IR (film): v1717, 1693, 1532, 1452, 1354, 1278, 1186, 1137 cm-

1. Anal. Calcd. for C₁₄H₁₁F₃N₂O₃:C, 53.85; H, 3.55; N, 8.97; Found: C, 54.04; H, 3.65; N, 8.88.

1-(4-Chlorophenyl)-2-(trifluoromethyl)-1H-imidazole-5-carbaldehyde (2g)

White solid, m. p.: 84 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.70 (s, 1H), 7.93 (s, 1H), 7.53 (d, J = 8.7 MHz, 2H), 7.31 (d, J = 8.7 MHz, F₃C NH, CDCl₃): δ 178.5, 141.0 (q, J = 38.7 MHz), 138.7, 136.8, 134.5, H CDCl₃): δ 178.5, 141.0 (q, J = 38.7 MHz), 138.7, 136.8, 134.5, 132.3, 129.8, 128.4, 117.5 (q, J = 270.5 MHz). MS (EI), m/e (%): 274 (M⁺, 27), 112 (100). IR (film): v 1693, 1532, 1497, 1353, 1185, 1137, 841 cm⁻¹. Anal. Calcd. for C₁₁H₆F₃N₂ClO: C, 48.11; H, 2.20; N. 10.20; Found: C, 48.00; H, 2.26; N, 10.08.

1-*m*-Tolyl-2-(trifluoromethyl)-1H-imidazole-5-carbaldehyde (2h)

White solid, m. p.: 29-33 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.53 (s, 1H), 7.85 (s, 1H), 7.34 (m, 2H), 7.10 (s, 2H), 2.02 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃): δ -60.20 (s). ¹³C NMR (101 MHz, CDCl₃): δ 178.9, 140.6 (q, *J* = 39.0 MHz), 139.9, 137.2,

134.8, 133.4, 131.4, 129.3, 127.6, 124.2, 117.5 (q, J = 269.7 MHz), 21.2. MS (EI), m/e (%): 254 (M⁺, 35), 92 (100). IR (film): v 1693, 1530, 1497, 1363, 1211, 1175, 1140, 817 cm⁻¹. Anal. Calcd. for C₁₂H₉F₃N₂O: C, 56.70; H, 3.57; N, 11.02; Found: C, 56.57; H, 5.54; N, 11.20.

1-(3-chlorophenyl)-2-(trifluoromethyl)-1H-imidazole-5-carbaldehyde (2i)

White solid, m. p.: 51-54 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.63 (s, 1H), 7.85 (s, 1H), 7.51 (m, 1H), 7.41 (m, 1H), 7.30 (s, 1H), 7.19 (m, 1H). ¹⁹F NMR (282 MHz, CDCl₃) δ -60.36 (s). ¹³C NMR (101 MHz, CDCl₃) δ 178.5, 140.8 (q, *J* = 39.4 MHz), 138.6, 135.2,

134.7, 134.5, 130.9, 130.4, 127.4, 125.5, 117.8 (q, J = 272.7 MHz). HRMS (EI), Calcd. for C₁₁H₆F₃ClN₂O: 274.0121; Found: 274.0122. IR (film) v 1712, 1659, 1595, 1514, 1350, 1252, 1196, 1142, 1042, 1028, 896, 721 cm⁻¹.

2-(trifluoromethyl)-1-(3-(trifluoromethyl)phenyl)-1H-imidazole-5-carbaldehyde (2j)

White solid, m. p.: 74-77 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.66 (s, 1H), 7.87 (s, 1H), 7.77 (m, 1H), 7.62 (m, 1H), 7.54 (m, 1H), 7.48 (m, 1H). ¹⁹F NMR (282 MHz, CDCl₃) δ -60.34 (s), -62.86 (s). ¹³C NMR (101 MHz, CDCl₃) δ 178.39, 141.10 (q, *J* =

39.4 MHz), 139.21, 134.48, 132.15 (q, J = 33.3 MHz), 130.51, 130.19, 127.42 (q, J = 3.0 MHz), 124.25 (q, J = 4.0 MHz), 123.07 (q, J = 273.7 MHz), 122.10, 117.81 (q, J = 268.7 MHz). HRMS (EI), Calcd. for C₁₂H₆F₆N₂O: 308.0384; Found: 308.0385. IR (film): v 1695, 1535, 1499, 1460, 1333, 1271, 1184, 1130 (d), 1041, 820, 698 cm⁻¹. Anal. Calcd. for C₁₂H₆F₆N₂O: C,46.77; H, 1.96; N, 9.09; Found: C, 46.89; H, 2.01; N, 9.18.

1-(2-Methoxyphenyl)-2-(trifluoromethyl)-1H-imidazole-5-carbaldehyde (2k)

White solid: m. p.: 104-106 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.52 (s, 1H), 7.84 (s, 1H), 7.46 (m, 1H), 7.23 (d, *J* = 8.0 MHz, 1H), 7.01 (m, 2H). ¹⁹F NMR (282 MHz, CDCl₃) δ -61.83 (s). ¹³C NMR (101

MHz, CDCl₃) δ 178.99, 154.70, 140.64 (q, *J* = 39.4 MHz), 137.45, 134.45, 132.07, 128.34, 122.45, 120.667, 118.03 (q, *J* = 272.7 MHz), 111.92, 55.84. HRMS (EI), Calcd. for C₁₂H₉F₃N₂O₂: 270.0616; Found: 270.0617. IR (film): v 1693, 1533, 1508, 1467, 1282, 1188, 1140, 1049, 1024, 968, 816, 754 (d) cm⁻¹.

1-(2-iodophenyl)-2-(trifluoromethyl)-1H-imidazole-5-carbaldehyde (2l)

White solid: m. p.: 44-46 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.62, 7.87, 7.67 (d, *J* = 8.0 MHz, 1H), 7.38 (m, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -61.54 (s). ¹³C NMR (101 MHz, CDCl₃) δ 178.4, 140.4 (q,

J = 39.4 MHz), 138.7, 134.0, 133.6, 133.6, 132.0, 128.8, 128.4, 122.0, 117.9 (q, J = 290.9 MHz). HRMS (EI), Calcd. for C₁₁H₆BrF₃N₂O: 317.9616/319.9595; Found: 317.9617/319.9596. IR (film): v 1692, 1534, 1496, 1474, 1354, 1187, 1143, 815 cm⁻¹.

1-([1,1'-biphenyl]-2-yl)-2-(trifluoromethyl)-1H-imidazole-5-carbaldehyde (2m)

MHz), 140.0, 137.9, 137.0, 134.5, 131.7, 131.3, 130.9, 128.5, 128.4, 128.2, 128.0, 127.6, 117.5 (q, J = 270.5 MHz). MS (EI), m/e (%): 316 (M⁺, 64), 247 (100), 154 (71), 287 (42). IR (film): v 1692, 1531, 1490, 1444, 1352, 1185, 1143, 817 cm⁻¹. Anal. Calcd. for C₁₇H₁₁F₃N₂O: C,64.56; H, 3.51; N, 8.86; Found: C, 64.47; H, 3.58; N, 8.80.

2-(Chlorodifluoromethyl)-1-(4-methoxyphenyl)-1H-imidazole-5-carbaldehyde (2n)

OCH₃ White solid, m. p.: 138-140 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.51, 7.82, 7.21 (d, J = 8.0 MHz, 2H), 6.94 (d, J = 8.0 MHz, 2H), CIF₂(3.81 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -48.02 (s). ¹³C NMR (101 MHz, CDCl₃) δ 179.09, 160.84, 144.27 (t, J = 31.8 MHz), 137.17, 134.97, 128.66, 126.09, 119.87 (t, J = 289.9 MHz), 114.52, 55.60. HRMS

(EI), Calcd. for C₁₂H₉ClF₂N₂O₂: 286.0321; Found: 286.0320. IR (film): v 1690, 1608, 1514, 1452, 1350, 1302, 1253, 1172, 1150, 1110, 1032 (d), 989, 903, 839, 768 cm⁻¹.

2-(chlorodifluoromethyl)-1-(4-(trifluoromethyl)phenyl)-1H-imidazole-5-

carbaldehyde (20)

White solid, m. p. 122-124 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.64 (s, 1H), 7.87 (s, 1H), 7.74 (d, J = 8.0 MHz, 2H), 7.43 (d, J = 8.0 CIF₂C MHz, 2H). ^{19}F NMR (282 MHz, CDCl_3) δ -47.90 (s, 2F), -62.81 (s, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 177.4, 143.5 (t, J = 32.8 MHz), 138.1, 136.3, 133.4, 131.6 (q, J = 33.3 MHz), 127.1, 125.6, 122.33 (q, J = 273.7 MHz), 118.7 (t, J = 289.9 MHz). HRMS (EI), Calcd. for C₁₂H₆ClF₅N₂O:

324.0089; Found: 324.0091.IR (film) v 1692, 1529, 1447, 1323, 1217, 1132, 1107, 993, 900, 852 cm⁻¹. Anal. Calcd. for C₁₂H₆ClF₅N₂O: C,44.40; H, 1.86; N, 8.83; Found: C, 44.53; H, 1.90; N, 8.74.

2-(chlorodifluoromethyl)-1-(2-ethylphenyl)-1H-imidazole-5-carbaldehyde (2p)

 H_3CH_2C CIF_2C N O N H

White solid, m. p.: 77-78 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.49 (s, 1H), 7.88 (s, 1H), 7.47 (m, 1H), 7.39 (m, 1H), 7.28 (m, 1H), 7.19 (m, 1H), 2.19 (m, 2H), 1.06 (t, *J* = 8.0 MHz, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ 48.87 (d, *J* = 16.9 MHz). ¹³C NMR (400

MHz, CDCl₃) δ 178.9, 144.0 (t, J = 32.3 MHz), 141.1, 137.7, 134.5, 132.5, 130.9, 127.6, 126.7, 119.9 (t, J = 299.0 MHz), 23.2, 13.5. HRMS (EI), Calcd. for C₁₃H₁₁ClF₂N₂O: 284.0528; Found: 284.0524. IR (film) v 1691, 1530, 1492, 1454, 1348, 1171, 109, 993, 903 cm⁻¹.

1-(2-bromophenyl)-2-(chlorodifluoromethyl)-1H-imidazole-5-carbaldehyde (2q)

Light yellow solid. m. p.: 63-64 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.61 (s, 1H), 7.86 (s, 1H), 7.67 (m, 1H), 7.40 (m, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -49.18 (q). ¹³C NMR (101 MHz, CDCl₃) δ 178.5, 143.8 (t, *J* = 32.3 MHz), 138.5, 133.9, 133.8,

133.5, 131.9, 129.2, 128.3, 122.3, 119.7 (t, J = 289.9 MHz). HRMS (EI), Calcd. for $C_{11}H_6ClBrF_2N_2O$:298.9632 (M-Cl); Found: 298.9628 (M-Cl).IR (film) v 1962, 1531, 1485, 1348, 1170, 1111, 991, 895, 756 cm⁻¹.

2-(Bromodifluoromethyl)-1-p-tolyl-1H-imidazole-5-carbaldehyde (2r)

 $BrF_{2}C \xrightarrow{N} O (s, 3H). {}^{19}F NMR (282 MHz, CDCl_{3}): \delta 9.57 (s, 1H), 7.90 (s, 1H), 7.35 (d, J = 8.4 MHz, 2H), 7.27 (d, J = 8.4 MHz, 2H), 2.47 (s, 3H). {}^{19}F NMR (282 MHz, CDCl_{3}): \delta -44.97 (s). {}^{13}C NMR (101 MHz, CDCl_{3}): \delta 188.0, 144.9 (t, J = 29.1 MHz), 140.8, 137.3, 134.7, 131.2, 130.0, 127.2, 111.2 (t, J = 300.4 MHz), 21.3. HRMS (EI), Calcd. for$

C₁₂H₉N₂OF₂Br: 313.9866; Found: 313.9861. IR (film): v 2850, 1690, 1531, 1484,

1348, 1172, 1111, 984, 861 cm⁻¹.

4-(2-(bromodifluoromethyl)-5-formyl-1H-imidazol-1-yl)benzonitrile (2s)

White solid, m. p.: 106-107 °C. ¹H NMR (300 MHz, CDCl₃): δ 9.76 (s, 1H), 7.97 (s, 1H), 7.87 (d, J = 8.4 MHz, 2H), 7.52 (d, J = 1.5 MHz, 2H), 19F NMR (282 MHz, CDCl₃): δ -44.49 (s, 2F). ¹³C NMR (101 MHz, CDCl₃): δ 178.4, 145.3 (t, J = 29.5 MHz), 139.7, 138.3, 134.2, 133.2, 128.6, 117.4, 114.7, 110.2 (t, J = 300.8 MHz). MS (EI), m/e (%): 325 (M⁺, 1.6), 246 (100). IR (film): v 2851, 2232, 1681, 1528, 1507, 1442, 1342, 1170, 1105, 991, 866, 570 cm⁻¹. Anal. Calcd. for C₁₂H₆BrF₂N₃O: C, 44.20; H, 1.85; N, 12.89; Found: C, 44.11; H, 1.81; N, 13.11.

2-(difluoromethyl)-1-(naphthalen-1-yl)-1H-imidazole-5-carbaldehyde (2t)

HF₂(

White solid, m. p.: 185-188 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.43 (s, 1H), 7.98 (m, 2H), 7.90 (m, 1H), 7.49 (m, 4H), 7.03 (m, 1H), 6.41 (t, J = 12.0 MHz, 1H). ¹⁹F NMR (282 MHz, CDCl₃) δ -114.81 (qd, $J_I = 39.5$ MHz, $J_2 = 67.7$ MHz). ¹³C NMR (101

MHz, CDCl₃) δ 177.6, 144.4 (q, J = 27.3 MHz), 137.3, 133.8, 132.9, 130.0, 129.0, 127.5, 127.3, 126.3, 124.8, 124.0, 120.1, 107.1 (t, J = 239.4 MHz). HRMS (EI), Calcd. for C₁₅H₁₀F₂N₂O: 272.0761; Found: 272.0759. IR (film) v 1682, 1531, 1468, 1454, 1402, 1369, 1169, 1117, 1047, 820, 772 cm⁻¹.

2-(Difluoromethyl)-1-(4-methoxyphenyl)-1H-imidazole-5-carbaldehyde (2u)

White Solid, m. p.: 139-142 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.57, 7.83, 7.22 (d, *J* =12.0 MHz, 2H), 6.94 (d, *J* = 12.0 MHz, 2H), 6.51 (t, *J* = 52.0 MHz, 1H), 3.81 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -113.86 (d, *J* = 52.64 MHz). ¹³C NMR (101 MHz,

CDCl₃) δ 179.02, 160.72, 144.93 (t, J = 21.0 MHz), 138.53, 134.33, 128.36, 126.02, 114.62, 108.41 (t, J = 238.0 MHz), 55.60. HRMS (EI), Calcd. for C₁₂H₁₀F₂N₂O₂: 252.0710; Found: 252.0709. IR (film): v 1693, 1531, 1497, 1458, 1354, 1211, 1175,

1138, 818, 766 cm⁻¹.

1-(4-methoxyphenyl)-2-(perfluoroethyl)-1H-imidazole-5-carbaldehyde (2v)

CH₃ White solid, m. p.: 74-75 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.52 (s, 1H), 7.87 (s, 1H), 7.20 (d, J = 12.0 MHz, 2H), 6.94 (d, F_3CF_2C N J = 8.0 MHz, 2H), 3.81 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -82.30 (t, J = 5.6 MHz, 3F), -108.29 (s, 2F). ¹³C NMR (400 MHz, CDCl₃) δ 179.0, 160.9, 139.6 (t, J = 54.5 MHz), 137.5, 135.2, 128.4, 126.1, 118.1 (qt, $J_I = 287.9$ MHz, $J_2 = 70.7$ MHz), 114.5, 109.1 (tq, $J_I = 255.5$ MHz, $J_2 =$ 39.4 MHz), 55.6. HRMS (EI), Calcd. for C₁₃H₉F₅N₂O₂: 320.0584; Found: 320.0586. IR (film) v 1691, 1610, 1514, 1448, 1325, 1301, 1255, 1224, 1175, 1039, 923, 839, 768 cm⁻¹. Anal. Calcd. for C₁₃H₉F₅N₂O₂: C,48.76; H, 2.83; N, 8.75; Found: C, 48.89; H, 2.89; N, 8.87.

1-(4-methoxyphenyl)-2-(perfluoropropyl)-1H-imidazole-5-carbaldehyde (2w)

White solid, m. p.: 117-180 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.49 (s, 1H), 7.89 (s, 1H), 7.19 (d, *J* = 8.0 MHz, 2H), 6.93 (d, *J* = 8.0 MHz, 2H), 3.81. ¹⁹F NMR (282 MHz, CDCl₃) δ -80.05 (t, *J* = 16.9 MHz, 3F), 106.75 (q, *J* = 8.5 MHz, 2F), 124.93 (m, 2F). ¹³C NMR (101 MHz, CDCl₃) δ

179.0, 160.9, 139.5 (t, J = 27.3 MHz), 137.7, 135.4, 128.5, 126.1, 117.6 (qt, $J_I = 288.9$ MHz, $J_2 = 34.3$ MHz), 114.4, 110.0 (tt, $J_I = 328.3$ MHz, $J_2 = 32.3$ MHz), 108.3 (tm, $J_I = 272.7$ MHz), 55.6. HRMS (EI), Calcd. for C₁₄H₉F₇N₂O₂: 370.0552; Found: 370.0553.IR (film) v 1692, 1514, 1450, 1342, 1255, 1230, 1209, 1117, 870 cm⁻¹. Anal. Calcd. for C₁₄H₉F₇N₂O₂: C,45.42; H, 2.45; N, 7.57; Found: C, 45.61; H, 2.51; N, 7.68.

1-(4-methoxyphenyl)-6-phenyl-2-(trifluoromethyl)-1,4-dihydropyrimidine (2x)

 $(282 \text{ Hz}, \text{CDCl}_3)$: $\delta - 65.72$ (s). ¹³C NMR (101 MHz, CDCl₃): δ 158.9, 147.2 (q, J = 32.8 MHz), 142.9, 135.2, 131.8, 131.4, 128.5, 128.1, 127.9, 117.7 (g, J = 277.1 MHz), 113.9, 103.6, 55.2, 46.0. MS (ESI): 333.3 (M + H⁺). HRMS (ESI), Calcd. for C₁₈H₁₆F₃N₂O: 333. 12092; Found: 333.12185. IR (neat): v 2941, 2839, 1638, 1509, 1337, 1248, 1196, 1165, 1142, 1037, 700 cm⁻¹.

Ethyl 5-formyl-1-phenyl-1H-imidazole-2-carboxylate (2y)

White solid, m. p.: 102-104 °C. ¹H NMR (300 MHz, CDCl₃) δ 9.58 (s, 1H), 7.98 (s, 1H), 7.54 (m, 3H), 7.32 (m, 2H), 4.29 (q, J = 7.2 MHz, 2H), 1.26 (t, J = 7.2 MHz, 3H). ¹³C NMR (101 MHz, EtOOC CDCl₃): δ 179.3, 157.7, 141.1, 138.1, 135.5, 135.0, 129.9, 129.3,

127.0, 62.2, 13.9. MS (EI), m/e (%): 244 (M⁺, 40), 77 (100), 144 (97), 117 (75). IR (film) v 2988, 1723, 1688, 1470, 1348, 1217, 810 cm⁻¹. Anal. Calcd. for C₁₃H₁₂N₂O₃: C, 63.93; H, 4.95; N, 11.47; Found: C, 63.88; H, 5.19; N, 11.32.

5-methyl-2-phenyl-1H-imidazole (2z)

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.92 (m, 2H), 7.36 (m, 3H), 6.76 (s, 1H), 2.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.8, 149.0, 130.1, 128.8, 127.5, 127.1, 126.0, 123.8 11.1. HRMS (EI), Calcd. for C₁₀H₉NO: 159.0684; Found:159.0683. IR (neat) v 1574, 1511, 1455, 1367, 1234, 1183, 1204, 973, 764 cm⁻¹.

VII. General Procedure for the Synthesis of 5-Hydroxymethyl Imidazole

In an ice-water bath, NaBH₄ (380 mg, 5.0 equiv) was added in batches to a solution of N-phenyl 2-trlfluoromethyl imidazole-5-carbaldehyde (2.0 mmol) in CH₃OH. The reaction was quenched by addition of water when the reaction came to the end, extracted with EtOAc. The combined organic layers were washed with brine, dried with anhydrous Na₂SO₄, filtered finally. The filter was concentrated under vacuum, and the crude product was purified by column chromatography on silica gel with petroleum ether-ethyl acetate (2:1) as eluent to give the desired product.

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (m, 3H), 7.30 (m, 2H), 7.11 (s, 1H), 4.35 (s, 2H); ¹⁹F NMR (282 MHz, CDCl₃) δ -60.26 (s); ¹³C NMR (101 MHz, CDCl₃) δ 137.1 (q, *J* = 39.4 MHz), 136.4, 134.0, 130.2, 129.4, 127.6, 127.5, 118.5 (q, *J* = 271.7 MHz),

53.8; HRMS (EI) Calcd for $C_{11}H_9F_3N_2O$: 242.0667, found: 242.0668; IR (neat) v 3455 (broad), 1585, 1513, 1430, 1308, 1255, 1176, 1222, 965, 776 cm⁻¹.

VIII. General Procedure for the Synthesis of 2-Fluoroalkyl Imidazole

Under argen atmosphere, to a Schlenk tube with a stirring bar was added KO*t*-Bu (3.0 equiv) and a solution of 2-fluoroalkyl imidazole-5-carbaldehyde (1.0 mmol) in DMF (5.0 mL). The system was then heated to 45 °C and monitored by TLC. The reaction was quenched by saturated NH₄Cl when the reaction came to the end, extracted with EtOAC. The combined organic layers were washed with brine, dried with anhydrous Na₂SO₄, filtered finally. The filtrate was concentrated under vacuum, and the crude product was purified by column chromatography on silica gel with petroleum ether-ethyl acetate (8:1) as eluent to give the desired product.

IX. Characterization for the 2-Fluoroalkyl Imidazole

1-phenyl-2-(trifluoromethyl)-1H-imidazole (5a)

White semisolid. ¹H NMR (600 MHz, CDCl₃) δ 7.52 (m, 3H), 7.38 (m, 2H), 7.25 (s, 1H), 7.18 (s, 1H); ¹⁹F NMR (565 MHz, CDCl₃) δ - 59.58 (s); ¹³C NMR (151 MHz, CDCl₃) δ 136.25, 135.95 (q), 129.70,

129.43, 128.67, 126.09, 125.13, 118.68 (q, J = 268.5 MHz); HRMS(EI) Calcd for C₁₀H₇F₃N₂: 212.0561, Found: 212.0562; IR (neat): v 2960, 2929, 1598, 1524, 1499, 1444, 1307, 1241, 1192, 1133, 980, 768, 694 cm⁻¹.

1-(4-methoxyphenyl)-2-(trifluoromethyl)-1H-imidazole (5b)

OCH₃ White solid, m. p.: 46-47 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.26 S¹⁹

(m, 4H), 7.22, (s, 1H), 7.14 (s, 1H); ¹⁹F NMR (565 MHz, CDCl₃) δ -59.66 (s); ¹³C NMR (151 MHz, CDCl₃) δ 139.86, 136.16 (q, J = 39.26 MHz), 133.74, 129.95, 128.61, 125.85, 125.24, 118.75 (q, J = 268.78 MHz), 21.18; HRMS(EI) Calcd for C₁₁H₉F₃N₂: 226.0718, Found: 226.0719; IR (film): v 2921, 1517, 1476, 1446, 1308, 1238, 1194, 1127, 827, 781, 536 cm⁻¹.

1-(4-chlorophenyl)-2-(trifluoromethyl)-1H-imidazole (5c)

Light yellow semisolid. ¹H NMR (600 MHz, CDCl₃) δ 7.49 (d, J =12.0 MHz, 2H), 7.32 (d, J = 12.0 MHz, 2H), 7.25 (s, 1H), 7.15 (s, 1H); ¹⁹F NMR (565 MHz, CDCl₃) δ -59.56 (s); ¹³C NMR (151 MHz, CDCl₃) δ 136.14 (q, J = 39.26 MHz), 135.87, 134.69, 129.71, 129.01, 127.43, 125.01, 118.58 (q, J = 276.33 MHz); HRMS(EI) Calcd for C₁₀H₆ClF₃N₂: 246.0172, Found: 246.0170; IR (neat): v 3142, 3111, 1650, 1501, 1444, 1308, 1237, 1193, 1127, 1018, 980, 917, 841, 781, 537 cm⁻¹.

4-hydroxybenzonitrile (5e)

^{CN} White solid. ¹H NMR (600 MHz, CDCl₃) δ 7.06 (d, J = 12.0 MHz, 2H), 6.94 (d, J = 12.0 MHz, 2H), 6.51 (broad, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 160.2, 134.4, 119.3, 116.5, 103.1.

1-(m-tolyl)-2-(trifluoromethyl)-1H-imidazole (5f)

Colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.38 (m, 1H), 7.31 (m, 1H), 7.22 (s, 1H), 7.16 (m, 3H); ¹⁹F NMR (565 MHz, CDCl₃) δ -59.61 (s); ¹³C NMR (151 MHz, CDCl₃)

δ 139.67, 136.22, 136.06 (q, J = 39.26 MHz), 130.40, 129.15, 128.62, 126.62, 125.16, 123.11, 118.75 (q, J = 270.29 MHz), 21.23; HRMS(EI) Calcd for C₁₁H₉F₃N₂: 226.0718, Found: 226.0720; IR (neat): v 2928, 1612, 1525, 1496, 1453, 1312,

1242, 1191, 1132, 1020, 918, 790, 696 cm⁻¹.

1-(3-chlorophenyl)-2-(trifluoromethyl)-1H-imidazole (5g)

F₃C
$$R$$
 Light yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.48 (m, 2H),
7.40 (m, 1H), 7.29 (m, 1H), 7.24 (s, 1H), 7.17 (s, 1H); ¹⁹F NMR
(565 MHz, CDCl₃) δ -59.54 (s); ¹³C NMR (151 MHz, CDCl₃) δ
137.21, 136.07 (q, J = 39.26 MHz), 135.15, 130.46, 130.04,

129.07, 126.47, 124.95, 124.45, 118.59 (q, J = 270.29 MHz); HRMS(EI) Calcd for C₁₀H₆ClF₃N₂: 246.0172, Found: 246.0171; IR (neat): v 3141, 1696, 1529, 1488, 1449, 1312, 1246, 1185, 1131, 998, 785, 688 cm⁻¹.

1-(2-methoxyphenyl)-2-(trifluoromethyl)-1H-imidazole (5h)

White semisolid. ¹H NMR (600 MHz, CDCl₃) δ 7.47 (m, 1H), 7.29 (m, 1H), 7.22 (m, 1H), 7.05 (m, 3H), 3.78 (s, 3H); ¹⁹F NMR (565 MHz, CDCl₃) δ -61.43 (s); ¹³C NMR (151 MHz, CDCl₃) δ 154.63, 136.62(q, J = 39.26 MHz), 131.25, 129.13, 128.49,

128.21, 125.35, 120.46, 118.70 (q, J = 270.29 MHz), 111.89, 55.73; HRMS(EI) Calcd for C₁₁H₉F₃N₂O: 242.0667, Found: 242.0666; IR (neat): v 2938, 1602, 1509, 1471, 1440, 1286, 1244, 1188, 1132, 1025, 757 cm⁻¹.

1-([1,1'-biphenyl]-2-yl)-2-(trifluoromethyl)-1H-imidazole (5i)

White solid, m. p.: 89-92 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.58 (m, 1H), 7.50 (m, 2H), 7.41 (m, 1H), 7.27 (m, 3H), 7.08 (m, 2H), 7.02 (s, 1H), 6.82 (s, 1H); ¹⁹F NMR (565 MHz, CDCl₃) δ -59.69 (s);

¹³C NMR (151 MHz, CDCl₃) δ 139.29, 137.25, 136.29 (q, J = 39.26 MHz), 133.83, 131.17, 130.14, 128.53, 128.40, 128.21, 128.09, 127.98, 127.78, 125.73, 118.68 (q, J = 270.29 MHz); HRMS(EI) Calcd for C₁₆H₁₁F₃N₂: 288.0874, Found: 288.0871; IR (film): v 3064, 2927, 1522, 1486, 1446, 1306, 1237, 1191, 1133, 979, 768, 700 cm⁻¹.

2-(chlorodifluoromethyl)-1-(4-methoxyphenyl)-1H-imidazole (5j)

White solid, m. p.: 71-73 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.29 (d, J = 12.0 MHz, 2H), 7.19 (s, 1H), 7.10 (s, 1H), 6.98 (d, J = S_{21}^{21} 12.0 MHz, 2H), 3.87 (s, 3H); ¹⁹F NMR (565 MHz, CDCl₃) δ -45.88 (s); ¹³C NMR (151 MHz, CDCl₃) δ 160.31, 139, 88 (t, J = 32.47 MHz), 129.08, 128.13, 127.84, 125.77, 120.63 (t, J = 286.90 MHz), 114.30, 55.60; HRMS(EI) Calcd for C₁₁H₉ClF₂N₂O: 258.0371, Found: 258.0373; IR (film): v 1610, 1517, 1467, 1297, 1255, 1218, 1122, 992, 899, 837 cm⁻¹.

2-(difluoromethyl)-1-(naphthalen-1-yl)-1H-imidazole (5k)

White solid, m. p.: 107-109 °C. ¹H NMR (600 MHz, CDCl₃) δ 8.00 (m, 2H), 7.63 (m, 4H), 7.34 (s, 1H), 7.29 (m, 1H), 7.22 (s, 1H), 6.60 (t, *J* = 78.0 MHz); ¹⁹F NMR (565 MHz, CDCl₃) δ -111.95 (dd); ¹³C NMR (151 MHz, CDCl₃) δ 141.14 (t, *J* = 27.18

MHz), 138.58, 133.96, 132.47, 130.27, 128.80, 128.27, 127.87, 127.08, 125.37, 125.21, 124.95, 121.97, 108.89 (t, J = 237.07 MHz); HRMS(EI) Calcd for C₁₄H₁₀F₂N₂: 244.0812, Found: 244.0810; IR (film): v 1692, 1597, 1483, 1440, 1299, 1185, 1072, 1037, 811, 775 cm⁻¹.

1-(4-methoxyphenyl)-2-(perfluoroethyl)-1H-imidazole (5l)

White solid, m. p.: 73-75 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.27 (m, 3H), 7.14 (s, 1H), 6.97 (d, J = 12.0 MHz, 2H), 3.87 (s. 3H); ¹⁹F NMR (565 MHz, CDCl₃) δ -82.36 (s, 3F), -106.55 (s, 2F); ¹³C NMR (151 MHz, CDCl₃) δ 160.31, 135.02 (t, J = 28.69

MHz), 129.09, 128.13 (q), 127.65, 126.22, 118.42 (qt, $J_1 = 286.90$ MHz, $J_2 = 35.49$ MHz), 114.25, 109.33 (tq, $J_1 = 252.93$ MHz, $J_2 = 39.26$ MHz), 55.6; HRMS(EI) Calcd for C₁₂H₉F₅N₂O: 292.0635, Found: 292.0635; IR (film): v 1511, 1442, 1257, 1234, 1194, 1098, 1040, 952, 911, 837, 767 cm⁻¹.

X. A Concise Route to Synthesize 3m on Gram Scale

To a 250 mL of dry reactor was added BiCl₃ (24 mg, 0.076 mmol, 0.01 equiv), and the reactor was degassed and refilled with O_2 for three times. Then a solution of **1g** (2g, 7.69 mmol, 1,0 equiv) in acetone (80 mL) and a solution of phenol (1.45g, 11.5 mmol, 2.0 equiv) in acetone (40 mL) were added sequentially to the reactor. The system was then heated to 40 °C and monitored by TLC. The solvent was removed under vacuum when the reaction came to the end. The crude product was purified by column chromatography on silica gel with petroleum ether-ethyl acetate (7:1) as the eluent to give 1.72 g (82%) of **2g**.

A 100 mL of dry reactor with a stirring bar was degassed and refilled with argon for three times. Then KOt-Bu (2.12g, 18.9 mmol, 3.0 equiv) and a solution of **2g** (1.72 g, 6.31 mmol, 1.0 equiv) in DMF (40 mL) were added sequentially to the reactor. The system was then heated to 45 °C and monitored by TLC. The reaction was quenched by saturated NH₄Cl when the reaction came to the end, extracted with EtOAC. The combined organic layers were washed with brine, dried with anhydrous Na₂SO₄, filtered finally. The filtrate was concentrated under vacuum, and the crude product was purified by column chromatography on silica gel with petroleum ether-ethyl acetate (8:1) to give 0.91 g (58%) of **3c**.

(3)

To a dry Schlenk tube with a stirring bar was added NiCl₂·6H₂O (44 mg, 0.19 mmol, 0.05 equiv), dppf (123 mg, 0.22 mmol, 0.06 equiv), Zn (48 mg, 0.74 mmol, 0.2 equiv), DMAP (452 mg, 3.7 mmol, 1.0 equiv), Zn(CN)₂ (348 mg, 2.96 mmol, 0.8 equiv), and the Schlenk tube was degassed and refilled with argon for three times. Then a solution of **3c** (0.91 g, 3.7 mmol, 1,0 equiv) in CH₃CN (25 mL) was added. The Schlenk tube was immersed into an oil bath preheated at 80 °C and monitored by TLC. The solvent was removed under vacuum when the reaction came to the end. The crude product was purified by column chromatography on silica gel with petroleum ether-ethyl acetate (4:1) as the eluent to give 0.54 g (62%) of **3m** as a light yellow solid.

XI. NMR Spectra for the 2-Fluoroalkyl Imidazole Derivatives

S45

-21.18

