Electronic Supplementary Information

Regio- and Diastereoselective Pd-catalyzed Synthesis of C2-Aryl Glycosides

Table of Contents:

Gen	eral in	formation:	4
1	. Gei	neral procedures A for 2.3 pseudo-glycals:	5
	1.1	((2R, 3S)-3-Acetoxy-3,6-dihydro-2H-pyran-2-yl) methyl acetate 1a:	5
	1.2	(2R, 3S) -2-(((tert-Butyldimethylsilyl) oxy) methyl)-3,6-dihydro-2Hpyran-3-ol 1d and 1h:.	5
	1.3 pyran	(2R, 3S) -3-((4-methoxybenzyl) oxy)-2-(((4-methoxybenzyl) oxy) methyl)-3,6-dihydro-2H- 1e:	6
	1.4	((2R, 3S, 6S) -3-acetoxy-6-methoxy-3,6-dihydro-2H-pyran-2-yl) - methyl acetate 1b:	7
	1.5	((2R,3S,6S)-3-acetoxy-6-phenyl-3,6-dihydro-2H-pyran-2-yl) methyl acetate 1f:	7
	1.7 (5	S,6R) -5-(benzyloxy) -6-((benzyloxy)methyl) -5,6-dihydro-2H-pyran-3-carbaldehyde 1g	7
	1.6	(2R,3S) -2-(hydroxymethyl)-3,6-dihydro-2H-pyran-3-ol 1f:	8
	1.8	1-iodo-3-(4-methoxybenzyl) benzene:	8
2	Gei	neral procedure for C-2 arylation of pseudo-glucal:	8
2	.1 Opti	mization reactions of arylation:	9
	Table	S1 Impact of Base	9
	Table	S2 Solvent effect	9
	Table	S3 Impact of % mol Pd and Ligand:	0
	3. Cha 3.1 m	aracterization of compounds: ethyl 4-((3R, 6R) -5-acetoxy-6-(acetoxymethyl)-3,6-dihydro-2H-pyran-3-yl) benzoate 3a:. 1	.0
	3.2 ((2	2R, 5R) -3-acetoxy-5-(4-acetylphenyl) -5,6-dihydro-2H-pyran-2-yl) methyl acetate 3b: 1	1
	3.3 ((2	2R, 5R) -3-acetoxy-5-(4-formylphenyl) -5,6-dihydro-2H-pyran-2-yl) methyl acetate 3c: 1	.1
	3.4 ((2	2R, 5R) -3-acetoxy-5-(4-cyanophenyl) -5,6-dihydro-2H-pyran-2-yl)methyl acetate 3d: 1	.1
	3.5 ((2	2R, 5R) -3-acetoxy-5-(4-(trifluoromethyl) phenyl)-5,6-dihydro-2H-pyran-2-yl)methyl	
	aceta	te 3e: 1	2
	3.6((2	R, 5R) -3-acetoxy-5-(4-nitrophenyl) -5,6-dihydro-2H-pyran-2-yl) methyl acetate 3f: 1?	2
	3.7((2	R, 5R) -3-acetoxy-5-(4-fluorophenyl) -5,6-dihydro-2H-pyran-2-yl) methyl acetate 3g: 1?	.3
	3.8((2	R, 5R) -3-acetoxy-5-(4-chlorophenyl) -5,6-dihydro-2H-pyran-2-yl) methyl acetate 3h: 1?	.3
	3.8 ((2	2R, 5R) -3-acetoxy-5-(4-bromophenyl) -5,6-dihydro-2H-pyran-2-yl) methyl acetate 3i: 1	3
	3.10 ((2R, 5R) -3-acetoxy-5-(4-iodophenyl) -5,6-dihydro-2H-pyran-2-yl) methyl acetate 3j: 1	.4
	3.11 ((2R, 5R) -3-acetoxy-5-(2,4-difluorophenyl) -5,6-dihydro-2H-pyran-2-yl) methyl acetate 3k: 	.4
	3.12 r	methyl 2-((3R, 6R) -5-acetoxy-6-(acetoxymethyl) -3,6-dihydro-2H-pyran-3-yl) benzoate 3l:1	.4
	3.13 r	methyl 3-((3R, 6R) -5-acetoxy-6-(acetoxymethyl) -3,6-dihydro-2H-pyran-3-yl) benzoate 3m 	: .5
	3.14 ((2R, 5R) -3-acetoxy-5-(3,5-dinitrophenyl) -5,6-dihydro-2H-pyran-2-yl) methyl acetate 3n: 1	.5

5,	. Crystal structure determination of Compound 3n 49
4.	DFT Computations:
	3.32 tert-butyl(((2R,5S) -3-((tert-butyldimethylsilyl) oxy) -5-(4-nitrophenyl) -5,6-dihydro-2H- pyran-2-yl) methoxy) dimethylsilane 4i:
	3.31 methyl 4-((2R,3S,4R) -3-(benzyloxy) -2-((benzyloxy)methyl) -5-formyl-3,4-dihydro-2H-pyran-4-yl) benzoate 4h:22
	3.30 (2R,5R) -2-(hydroxymethyl) -5-(4-nitrophenyl) dihydro-2H-pyran-3(4H) -one 4g: 22
	3.29 (3R, 6R) -5-((4-methoxybenzyl) oxy) -6-(((4-methoxybenzyl) oxy) methyl)-3-(4-nitrophenyl)- 3,6-dihydro-2H-pyran 4f:
	3.28 tert-butyl (((2R, 5R) -3-((tert-butyldimethylsilyl) oxy)-5-(4-nitrophenyl)-5,6-dihydro-2H- pyran-2-yl) methoxy) dimethylsilane 4e:
	3.27 methyl 4-((3R, 6R) -5-((tert-butyldimethylsilyl) oxy) -6-(((tert-butyldimethylsilyl) oxy) methyl) -3,6-dihydro-2H-pyran-3-yl) benzoate 4d:
	((2R,5R,6S) -3-acetoxy-5-(4-nitrophenyl) -6-phenyl-5,6-dihydro-2H-pyran-2-yl) methyl acetate 4c'
	((2R,4S)-3-acetoxy-4-(4-nitrophenyl) -6-phenyl-3,4-dihydro-2H-pyran-2-yl) methyl acetate 4c 20
	3.26 Compounds 4c and 4c': 20
	methyl 4-((2R,4S) -3-acetoxy-2-(acetoxymethyl) -6-phenyl-3,4-dihydro-2H-pyran-4-yl) benzoate 4b':
	Methyl 4-((2S,3R,6R) -5-acetoxy-6-(acetoxymethyl) -2-phenyl-3,6-dihydro-2H-pyran-3-yl) benzoate 4b
	3.25 Compounds 4b an 4b': 19
	3.24 methyl 4-((2S, 3R, 6R) -5-acetoxy-6-(acetoxymethyl) -2-methoxy-3,6-dihydro-2H-pyran-3-yl) benzoate 4a:
	3.23 ((2R,5R) -3-acetoxy-5-(3-(4-methoxybenzyl) phenyl) -5,6-dihydro-2H-pyran-2-yl) methyl acetate 3w:
	3.22 methyl(S)-3-(4-((3R, 6R) -5-acetoxy-6-(acetoxymethyl)-3,6-dihydro-2H-pyran-3-yl) phenyl)- 2-((tert-butoxycarbonyl) amino) propanoate 3v:
	3.21 ((2R, 5R) -3-acetoxy-5-(4-methoxyphenyl) -5,6-dihydro-2H-pyran-2-yl) methyl acetate 3u:18
	3.20 methyl 3-((3R, 6R) -5-acetoxy-6-(acetoxymethyl) -3,6-dihydro-2H-pyran-3-yl) -4- methoxybenzoate 3t:
	3.19 ((2R, 5R) -3-acetoxy-5-(2-methoxyphenyl) -5,6-dihydro-2H-pyran-2-yl) methyl acetate 3s: 17
	3.18 ((2R, 5R) -3-acetoxy-5-(3, 4,5-trimethoxyphenyl) -5,6-dihydro-2H-pyran-2-yl) methyl acetate 3r:
	3.17 ((2R, 5R) -3-acetoxy-5-(p-tolyl) -5,6-dihydro-2H-pyran-2-yl) methyl acetate 3q:
	3.16 ((2R, 5R) -3-acetoxy-5-phenyl-5,6-dihydro-2H-pyran-2-yl) methyl acetate 3p:
	3.15 (2R, 5R) -5-(3-acetoxy-4-methoxyphenyl) -2-(acetoxymethyl)-5,6-dihydro-2H-pyran-3-yl

General information:

All reactions were carried out under an argon atmosphere in flame-dried glassware, unless otherwise noted. When needed, non-aqueous reagents were transferred under argon via syringe or cannula and dried prior to use. Toluene, THF, Et₂O and CH₂Cl₂ were obtained by passing deoxygenated solvents through activated alumina columns (MBraun SPS-800 Series solvent purification system). Other solvents and reagents were used as obtained from supplier, unless otherwise noted. Analytical TLC was performed using Merck silica gel F254 (230-400 mesh) plates and analyzed by UV light or by staining upon heating with vanillin solution (15 g of vanillin, 250 mL of EtOH, 2.5 mL conc. H₂SO₄). For silica gel chromatography, the flash chromatography technique was used, with Merck silica gel 60 (230-400 mesh) or RediSep Rf Gold Silica Cartridges and p.a. grade solvents unless otherwise noted.

The ¹H NMR and ¹³C NMR spectra were recorded in either CDCl3 on Bruker Avance 300, 400 and 200 spectrometers. The chemical shifts of ¹H are reported in ppm relative to the solvent residual peak in CDCl3 (δ 7.26), for ¹H NMR. For the ¹³C NMR spectra, the solvent signals of CDCl3 (δ 77.16) were used as the internal standards.IR spectra were recorded on a Tensor 27 FT-IR spectrometer. Optical rotations were obtained with a Perkin-Elmer 343 polarimeter. High resolution mass spectrometric data were measured using MicroMass LCT Premier Spectrometer.

General procedures:

1. General procedures A for 2.3 pseudo-glycals:

1.1 ((2R, 3S)-3-Acetoxy-3,6-dihydro-2H-pyran-2-yl) methyl acetate ¹ 1a:

Tri-O-acetyl-D-glucal (1.0 g, 3.673 mmol) and triethylsilane (512.5 mg, 4.41 mmol) were dissolved in CH₂Cl₂ (5 mL) at room temperature under Ar. The solution was cooled to 0 °C. BF₃·OEt₂ (521.32 mg, 3.67 mmol) was added dropwise to the solution above at 0 °C under Ar atmosphere. The reaction mixture was stirred 0 °C for 15 min. The reaction mixture was quenched with 10% aqueous NaHCO₃ solution (0.5 mL) and diluted with ether (5.5 mL). The whole was washed with H₂O (2 x 5 mL), brine (5 mL), and then dried over MgSO₄. Combined organic layers were evaporated. yield **1a** (784.6 mg, 3.66 mmol, 100%, colorless oil). ¹H NMR (300 MHz, CDCl₃) δ 5.93 (dd, *J* = 10.3, 1.4 Hz, 1H), 5.75 (dd, *J* = 10.4, 2.0 Hz, 1H), 5.36 – 5.14 (m, 1H), 4.18 (ddd, *J* = 12.1, 5.8, 4.0 Hz, 4H), 3.71 (ddd, *J* = 5.3, 4.4, 2.3 Hz, 1H), 2.20 – 1.96 (m, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 170.49 (d, *J* = 41.5 Hz), 133.64 (s), 129.43 (s), 128.59 (t, *J* = 14.6 Hz), 124.22 (s), 73.82 (s), 65.15 (d, *J* = 16.5 Hz), 63.23 (s), 20.85 (d, *J* = 15.8 Hz).

1.2 (2R, 3S) -2-(((tert-Butyldimethylsilyl) oxy) methyl)-3,6-dihydro-2Hpyran-3-ol 1d and 1h:

¹ S. Jung, A. Inoue, S. Nakamura, T. Kishi, A. Uwamizu, M. Sayama, M. Ikubo, Y. O. K. Kano, K. Makide, J. Aok, T. Ohwada. J. Med. Chem. 2016, **59**, 3750.

TBS protection^{1:}

Compound **1a** or **galactal (OAc)** (450 mg, 2.102 mmol) was dissolved in MeOH (9 mL) and K_2CO_3 (75 mg, 0.542 mmol) was added to the solution above. The reaction mixture was stirred at room temperature under argon atmosphere for 30 min. After 30 min, solvent was evaporated, and the residue was dissolved in chloroform. This solution was filtered on Celite and the filtrate was evaporated. Yellow oil was obtained, the yield is quantitative. Compounds obtained in the first step were dissolved in DMF (11 mL) and imidiazole (430 mg) was added to the solution. This was cooled to 0 °C and tert-butyldimethylsilyl chloride (1.26 g) was added. This reaction mixture was stirred at 0 °C under argon atmosphere for 10 min and stirred at room temperature for 15 h. Water was then added (20 mL) to the reaction mixture and the whole was extracted with CH_2Cl_2 (3 x 15 mL). Combined organic layers were washed with brine, dried over MgSO₄ and evaporated. The residue was purified by column chromatography to yield **1d** (30 %) of a colorless oil or **1h** (45%).

1d: ¹H NMR (300 MHz, CDCl₃) δ 5.78 (d, *J* = 11.0 Hz, 1H), 5.71 (d, *J* = 10.6 Hz, 1H), 4.27 – 4.07 (m, 3H), 3.91 (dd, *J* = 11.2, 1.7 Hz, 1H), 3.74 (dd, *J* = 11.3, 5.7 Hz, 1H), 3.37 – 3.24 (m, 1H), 0.92 (d, *J* = 1.0 Hz, 18H), 0.19 – 0.01 (m, 12H).

1h: ¹H NMR (300 MHz, Chloroform-*d*) δ 5.90 (d, *J* = 2.4 Hz, 2H), 4.27 (d, *J* = 16.3 Hz, 1H), 4.16 – 4.05 (m, 2H), 3.84 (dd, *J* = 10.7, 5.7 Hz, 1H), 3.76 (dd, *J* = 10.7, 6.4 Hz, 1H), 3.50 (td, *J* = 6.1, 2.2 Hz, 1H), 0.92 (s, 18H), 0.10 (d, *J* = 2.6 Hz, 12H).

1.3 (2R, 3S) -3-((4-methoxybenzyl) oxy)-2-(((4-methoxybenzyl) oxy) methyl)-3,6dihydro-2H-pyran 1e:

PMB protection²:

To a stirred solution of **1a** (450 mg) in anhydrous dimethylformamide (DMF), NaH (202 mg, 4 equiv) was added slowly at 0 °C. After stirring the mixture for 15 min, *p*-methoxybenzyl chloride (1.2 mL, 4 equiv) was added. The mixture was stirred for 16 h at room temperature and partitioned between dichloromethane (DCM) and water. The aqueous layer was extracted with DCM and the combined organic layers were dried over anhydrous MgSO₄. The filtrate was condensed under reduced pressure and subjected to flash column chromatography to obtain **1e** as a white solid (545 mg, yield 70%). ¹H NMR (300 MHz, CDCl₃) δ 7.30 (d, *J* = 8.4 Hz, 2H), 7.18 (d, *J* = 8.4 Hz, 2H), 6.88 (t, *J* = 8.7 Hz, 4H), 5.96 – 5.90 (m, 1H), 5.86 (d, *J* = 11.9 Hz, 1H), 4.60 – 4.47 (m, 3H), 4.39 (d, *J* = 11.1 Hz, 1H), 4.21 (s, 2H), 4.04 (d, *J* = 8.1 Hz, 1H), 3.82 (s, 6H), 3.69 (t, *J* = 6.4 Hz, 1H), 3.61 (d, *J* = 7.8 Hz, 2H).

² S. Lee, D. Lim, E. Lee, N. Lee, H-G. Lee, J. Cechetto, M. Liuzzi, L.H. Freitas-Junior, J. S. Song, M. A. Bae, S. Oh, L. Ayong, S. B. Park. *J. Med. Chem.* 2014, **57**, 17, 7425.

1.4 ((2R, 3S, 6S) -3-acetoxy-6-methoxy-3,6-dihydro-2H-pyran-2-yl) - methyl acetate³ 1b:

To a solution of tri-O-acetyl-D-glucal (5 g, 0.18 mol), methanol (1.5 mL) in THF (75 mL) was added iodine (0.90 g, 3.00 mmol). After being stirred on room temperature for 1.5 h under N₂ atmosphere, the mixture was diluted with ether. The resulting dark red coloured mixture was washed with 50 mL of a 10% aq. Na₂S₂O₃ soln under stirring until the solution becomes colorless. The aqueous phase was extracted with ether. The combined organic layers were dried over MgSO₄ and the solvent was evaporated in vacuo and residue was purified by column chromatography to give the product **1b** as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 5.77 – 5.71 (m, 1H), 5.18 (d, *J* = 9.6 Hz, 1H), 4.79 (d, *J* = 12.0 Hz, 1H), 4.10 (qd, *J* = 12.1, 4.0 Hz, 3H), 3.98 – 3.90 (m, 1H), 3.42 – 3.22 (m, 3H), 2.09 – 1.85 (m, 6H).

1.5 ((2R,3S,6S)-3-acetoxy-6-phenyl-3,6-dihydro-2H-pyran-2-yl) methyl acetate⁴ 1f:

To a mixture of tri-O-acetyl-D-glucal (0.2 mmol) and arylboronic acid (0.4 mmol) in 1 mL of acetonitrile was added Pd(OAc)₂ (0.02 mmol). The resulting suspension was stirred at room temperature for 24 h. Then the mixture was diluted with 10 mL of CH₂Cl₂ and filtered through a pad of silica gel. The filtrate was concentrated and subjected to silica gel column chromatography using 80% hexanes/20% ethyl acetate as eluant (yield 75%). **1c**: ¹H NMR (300 MHz, CDCl₃) δ 7.37 (dt, *J* = 9.1, 7.2 Hz, 5H), 6.19 (dd, *J* = 10.4, 2.0 Hz, 1H), 5.99 (d, *J* = 10.3 Hz, 1H), 5.31 (d, *J* = 6.6 Hz, 2H), 4.28 (dd, *J* = 12.0, 6.0 Hz, 1H), 4.11 (dd, *J* = 12.0, 3.1 Hz, 1H), 3.93 – 3.79 (m, 1H), 2.07 (d, *J* = 6.6 Hz, 6H).

1.7 (5S,6R) -5-(benzyloxy) -6-((benzyloxy)methyl) -5,6-dihydro-2H-pyran-3carbaldehyde 1g⁵

³ P. Singha, G. Panda. *RSC Adv.* 2014, **4**, 31892.

⁴ J. Ramnauth, O. Poulin, S. Rakhit, S. P. Maddaford. Org. Lett. 2001, **313**, 2013-2015.

⁵ a) N. G. Ramesh, K.K. Balasubramanian. *Tetrahedon. Lett.* 1991, **32**, 31, 3875 (S1); b) H.H. Kinfe, F.M. Mebrahtu, M.M. Manana, K. Madumo, M. S. Sokamisa. *Beilstein J. Org. Chem.* 2015, **11**, 583 (S4).

AcO^{\sim} MeOH, 30min HO^{\sim} 1f Coompound 1a (450 mg, 2.102 mmol) was dissolved in MeOH (9 mL) and K₂CO₃ (75 mg, 0.542 mmol) was added to the solution above. The reaction mixture was stirred at room temperature under Ar atmosphere for 30 min. After 30 min, solvent was evaporated and the residue was dissolved in

chloroform. This solution was filtered on Celite and the filtrate was evaporated to give **1f** as a yellow oil (quantitative yield). ¹H NMR (200 MHz, CDCl₃) δ 5.82 (s, 2H), 4.18 (s, 3H), 3.84 (dd, *J* = 7.5, 4.6 Hz, 2H), 3.41 – 3.25 (m, 1H), 2.73 (s, 2H).

1.8 1-iodo-3-(4-methoxybenzyl) benzene6:

2 General procedure for C-2 arylation of pseudo-glucal:

⁶ a) J. Georgsson, C. Sköld, B. Plouffe, G. Lindeberg, M. Botros, M. Larhed, F. Nyberg, N. Gallo-Payet, A Gogoll, A. Karlén, A. Hallberg. *J. Med. Chem.* 2005, **48**, 6620; b) S.Y. Kang, M.J. Kim, J. S. Lee, J. Lee. *Bioorg. Med. Chem. Lett.* 2011, **21**, 3759.

A reaction tube was charged with 2.3 glucal (0.4 mmol), Pd (OAc)₂ (10 mol %), AsPh₃ (10% mol), AgTFA (1.5 equiv), aryl iodide (1 equiv) and dioxane (0.2 M, relative to 2.3 glucal). The reaction vessel was purged with argon and sealed, then placed in an oil bath (preheated at 120 °C) for 1 h. The reaction mixture was then allowed to cool to rt and EtOAc (10 mL) was added. The resulting solution was filtered through a pad of Celite, eluting with further EtOAc (2 × 10 mL). The solvent was removed under reduced pressure, and the crude material was purified by flash column chromatography with the specified conditions.

2.1 Optimization reactions of arylation:

Table S1 Impact of Base

	Base	Time	Conversion	Yield %
1	Ag ₂ CO ₃	36h	63 %	37%
2	Et₃N	18h	degradation	n.d
3	DIEPA	18h	degradation	n.d
4	Cs ₂ CO ₃	18h	No reaction	-
5	AgOAc	18h	78%	52%
6	AgTFA	1h	100 %	59%
7	AgSbF ₆	3h	-	n.d
8	NaOAc	18h	No reaction	n.d
9	AgOTf	3h	degradation	n.d

Table S2 Solvent effect

AcO AcO	+ CO ₂ 1.5 eq	 Vie	Pd(OAc) ₂ 20% mc <u>PPh₃ 30% mol</u> AgTFA 2.5 eq solvent 0.2 M 120°C 1h	AcO AcO	0	
	Solvent	T° C	Time	Conversion	Yield %	
1	Dioxane	120	1h	100 %	59%	
1Bis	Dioxane	120	30min	100 %	40%	
	+ 1eq TFA					
2	HFIP	120	1h	100 %	22%	
3	AcOH	120	1h	100 %	60%	
4	Ethylene glycol	120	1h	100 %	15%	
5	DMF	120	1h	100%	33%	

6	CPME	120	1h	100 %	27%
7	PhMe	120	1h	100 %	32%

Table S3 Impact of % mol Pd and Ligand:

AcO	0 +	Pd(O/ Liga	Ac) ₂ X % n nd X % me	nol ol AcO	×°	~	AcO	0	~
AcO ^w ```		Ag ^T diox CO ₂ Me 1	ΓFA 2.5 eq kane 0.2 Ν 20°C 1h	I AcO´	2a		AcO ² CO ₂ Me	2b	
	Pd(OAc) ₂	Ligand	Time	Conversion	Yield %	6			
	X mol%	X mol%			2a/2b				
1	20 mol%	PPh₃ 30 mol%	1h	100 %	59%	-			
2	10 mol%	PPh₃ 15 mol%	8h	100 %	24%	-			
3	5 mol%	PPh₃ 7.5 mol%	24h	100%	23%	-			
3	20 mol%	DpePhos 25mol%	1h	100%	21%	-			
4	20 mol%	tBuXPhos 25mol%	1h	100%	40%	-			
4	20 mol%	AsPh₃ 30 mol%	0.5h	100 %	74%	12%			
5	10 mol%	AsPh₃ 15 mol%	0.5h	82 %	77%	-			
6	5 mol%	AsPh₃ 7.5 mol%	1.5h	100 %	70%	-			
8	10 mol%	AsPh₃ 10 mol%	1 h	100%	80%	-			
9	10 mol%	AsPh₃ 10 mol%	1 h	100%	76% ª	-			

^a1.5 equiv of AgTFA

3. Characterization of compounds:

3.1 methyl 4-((3R, 6R) -5-acetoxy-6-(acetoxymethyl)-3,6-dihydro-2H-pyran-3-yl) benzoate 3a:

Prepared according to the general procedure for C2-arylation of pseudo-glucal **1a**: (86 mg, 0.4 mmol), $Pd(OAc)_2$ (9 mg, 0.04 mmol), AsPh₃ (12 mg, 0.04 mmol), methyl 4-iodobenzoate (105 mg, 0.4 mmol) and AgTFA (132 mg, 0.6 mmol) were employed and the reaction mixture heated for 1 h. The crude material was purified by flash column chromatography (0% grading to 30%

AcOEt/Cyclohexane) and arylated compound was obtained (111.3 mg, 80%) as a yellow oil. *Rf (30% EtOAc/Cyclohexane)* = 0.25; $[\alpha]^{19}_{D}$ = -8 ° (c 0,5 CHCl₃). IR (neat, cm⁻¹): 2956, 2928, 1768, 1744, 1718, 1279, 1228, 1182, 1114. ¹H NMR (400 MHz, CDCl₃) δ 8.00 – 7.95 (d, 2H), 7.45 – 7.38 (d, 2H), 5.79 (dd, *J* = 4.9, 1.7 Hz, 1H), 4.51 (dd, *J* = 4.9, 2.4 Hz, 1H), 4.35 (dd, *J* = 12.1, 5.2 Hz, 1H), 4.26 (dd, *J* = 12.1, 2.6 Hz, 1H), 4.07 – 3.98 (m, 1H), 3.92 – 3.83 (m, 5H), 3.66 – 3.60 (m, 1H), 2.15 (d, *J* = 23.5 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 186.29 (s), 170.76 (s), 168.78 (s), 166.88 (d, *J* = 22.4 Hz), 146.73 (s), 145.87 (s),

130.55 – 129.45 (m), 128.90 (d, *J* = 38.2 Hz), 128.34 (s), 116.95 (s), 72.14 (s), 68.85 (s), 63.11 (s), 52.16 (s), 41.19 (s), 20.97 (d, *J* = 3.1 Hz). HRMS (ESI+): *m/z* calcd for [C₁₈H₂₀O₇Na]⁺ 371.1101, found 371.1107.

3.2 ((2R, 5R) -3-acetoxy-5-(4-acetylphenyl) -5,6-dihydro-2H-pyran-2-yl) methyl acetate 3b:

Prepared according to the general procedure for C2-arylation of pseudo-glucal **1a**: (86 mg, 0.4 mmol), $Pd(OAc)_2$ (9 mg, 0.04 mmol), AsPh₃ (12 mg, 0.04 mmol), 1-(4-iodophenyl)ethanone (99 mg, 0.4 mmol) and AgTFA (132 mg, 0.6 mmol) were employed and the reaction mixture heated for 1 h. The crude material was purified by flash column chromatography (0% grading to 30%)

AcOEt/Cyclohexane), and arylated compound was obtained (74.4 mg, 56%) as a yellow oil. *Rf (30% EtOAc/Cyclohexane) = 0.10;* $[\alpha]^{18}_{D} = -18$ ° (c 0,5 CHCl₃); IR (neat, cm⁻¹): 2923, 2854, 1767, 1738, 1680, 1607, 1367, 1269,1228,1207, 1148. ¹H NMR (300 MHz, CDCl₃) δ 7.92 (d, *J* = 8.2 Hz, 2H), 7.46 (d, *J* = 8.2 Hz, 2H), 5.80 (d, *J* = 3.6 Hz, 1H), 4.53 (dd, *J* = 4.8, 2.3 Hz, 1H), 4.37 (dd, *J* = 12.0, 5.2 Hz, 1H), 4.27 (dd, *J* = 12.0, 2.6 Hz, 1H), 4.05 (dd, *J* = 11.4, 4.3 Hz, 1H), 3.87 (dd, *J* = 11.4, 3.1 Hz, 1H), 3.65 (s, 1H), 2.59 (s, 3H), 2.19 (s, 3H), 2.13 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 197.62 (s), 170.59 (s), 168.63 (s), 146.83 (s), 145.80 (s), 137.24 – 136.08 (m), 128.47 (d, *J* = 12.1 Hz), 116.72 (s), 72.04 (s), 68.70 (s), 63.01 (s), 41.04 (s), 26.53 (s), 20.82 (s). HRMS (ESI+): *m/z* calcd for [M.NH₄]⁺ [C₁₈H₂₄O₆N]⁺ 350.1598, found 350.1599.

3.3 ((2R, 5R) -3-acetoxy-5-(4-formylphenyl) -5,6-dihydro-2H-pyran-2-yl) methyl acetate 3c:

Prepared according to the general procedure for C2-arylation of pseudo-glucal **1a**: (86 mg, 0.4 mmol), $Pd(OAc)_2$ (9 mg, 0.04 mmol), AsPh₃ (12 mg, 0.04 mmol), 4-iodobenzaldehyde (93 mg, 0.4 mmol) and AgTFA (132 mg, 0.6 mmol) were employed and the reaction mixture heated for 1 h. The crude material was purified by flash column chromatography (0% grading to 30% AcOEt/Cyclohexane) and arylated compound was obtained (59.9 mg, 47%) as a yellow

oil. *Rf (30% EtOAc/Cyclohexane)* = 0.10; $[\alpha]^{19}_{D}$ = -34 ° (c 0,5 CHCl₃); IR (neat, cm⁻¹): 2956, 2928, 2856, 1768, 1739, 1700, 1606, 1425, 1368, 1229,1207, 1148. ¹H NMR (300 MHz, CDCl₃) δ 10.00 (s, 1H), 7.85 (d, *J* = 8.0 Hz, 2H), 7.54 (d, *J* = 8.1 Hz, 2H), 5.81 (d, *J* = 4.2 Hz, 1H), 4.57 – 4.48 (m, 1H), 4.38 (dd, *J* = 12.1, 5.1 Hz, 1H), 4.28 (dd, *J* = 12.1, 2.6 Hz, 1H), 4.06 (dd, *J* = 11.4, 4.2 Hz, 1H), 3.90 (dd, *J* = 11.4, 2.8 Hz, 1H), 3.67 (s, 1H), 2.20 (s, 3H), 2.13 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 206.75 (s), 191.77 (s), 170.55 (s), 168.60 (s), 148.46 (s), 145.92 (s), 135.36 (s), 129.90 (s), 128.88 (s), 116.51 (s), 72.08 (s), 68.68 (s), 62.95 (s), 41.20 (s), 30.81 (s), 20.79 (s). HRMS (ESI+): *m/z* calcd for [M.NH₄]⁺ [C₁₇H₂₂O₆N]⁺ 336.1442, found 336.1441.

3.4 ((2R, 5R) -3-acetoxy-5-(4-cyanophenyl) -5,6-dihydro-2H-pyran-2-yl)methyl acetate 3d:

Prepared according to the general procedure for C2-arylation of pseudo-glucal **1a**: (86 mg, 0.4 mmol), $Pd(OAc)_2$ (9 mg, 0.04 mmol), AsPh₃ (12 mg, 0.04 mmol), 4-iodobenzonitrile (92 mg, 0.4 mmol) and AgTFA (132 mg, 0.6 mmol) were employed and the reaction mixture heated for 1 h. The crude material was purified by flash column chromatography (0% grading to 30% AcOEt/Cyclohexane),

and arylated compound was obtained (63 mg, 50%) as a yellow oil. Rf (30% EtOAc/Cyclohexane) = 0.28;

 $[\alpha]^{20}_{D} = -10$ ° (c 0,5 CHCl₃); IR (neat, cm⁻¹): 2956, 2928, 1768, 1739, 1368, 1230, 1207, 1126. ¹H NMR (300 MHz, CDCl₃) δ 7.63 (d, *J* = 8.1 Hz, 2H), 7.50 (d, *J* = 8.1 Hz, 2H), 5.79 (d, *J* = 4.5 Hz, 1H), 4.53 (d, *J* = 2.5 Hz, 1H), 4.37 (dd, *J* = 12.1, 5.1 Hz, 1H), 4.29 (d, *J* = 2.5 Hz, 1H), 4.04 (d, *J* = 4.1 Hz, 1H), 3.90 (d, *J* = 2.5 Hz, 1H), 3.64 (s, 1H), 2.20 (s, 3H), 2.12 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.50 (s), 168.57 (s), 146.95 (s), 146.17 (s), 132.26 (s), 129.04 (s), 118.73 (s), 116.17 (s), 110.99 (s), 72.16 (s), 68.69 (s), 62.94 (s), 41.11 (s), 20.81 (s). HRMS (ESI+): *m/z* calcd for [M.NH₄]⁺ [C₁₇H₂₁O₅N₂]⁺ 333.1445, found 333.1445.

3.5 ((2R, 5R) -3-acetoxy-5-(4-(trifluoromethyl) phenyl)-5,6-dihydro-2H-pyran-2-yl)methyl acetate 3e:

Prepared according to the general procedure for C2-arylation of pseudo-glucal **1a**: (86 mg, 0.4 mmol), $Pd(OAc)_2$ (9 mg, 0.04 mmol), AsPh₃ (12 mg, 0.04 mmol), 1-iodo-4-(trifluoromethyl)benzene (109 mg, 0.4 mmol) and AgTFA (132 mg, 0.6 mmol) were employed and the reaction mixture heated for 1 h.

The crude material was purified by flash column chromatography (0% grading to 30% AcOEt/Cyclohexane), and arylated compound was obtained (77.7 mg, 54%) as a yellow oil. *Rf (30% EtOAc/Cyclohexane) =0.39;* $[\alpha]^{18}_{D} = -32$ ° (c 0,5 CHCl₃); IR (neat, cm⁻¹): 2926, 2854, 1767, 1739, 1368, 1324, 1229, 1207, 1123, 1066. ¹H NMR (300 MHz, CDCl₃) δ 7.59 (d, *J* = 8.2 Hz, 2H), 7.50 (d,

 $J = 8.2 \text{ Hz}, 2\text{H}, 5.81 \text{ (d}, J = 4.8 \text{ Hz}, 1\text{H}, 4.54 \text{ (dd}, J = 4.8, 2.3 \text{ Hz}, 1\text{H}), 4.39 \text{ (dd}, J = 12.0, 5.1 \text{ Hz}, 1\text{H}), 4.28 \text{ (dd}, J = 12.0, 2.6 \text{ Hz}, 1\text{H}), 4.06 \text{ (dd}, J = 11.4, 4.2 \text{ Hz}, 1\text{H}), 3.89 \text{ (dd}, J = 11.4, 2.9 \text{ Hz}, 1\text{H}), 3.66 \text{ (s}, 1\text{H}), 2.20 \text{ (s}, 3\text{H}), 2.14 \text{ (s}, 3\text{H}). {}^{13}\text{C} \text{ NMR} (75 \text{ MHz}, \text{CDCI}_3) \delta 170.57 \text{ (s}), 168.62 \text{ (s}), 145.69 \text{ (d}, J = 32.3 \text{ Hz}), 128.54 \text{ (s}), 125.58 \text{ (t}, J = 22.4 \text{ Hz}), 116.66 \text{ (s)}, 72.09 \text{ (s)}, 68.78 \text{ (s)}, 63.00 \text{ (s)}, 40.90 \text{ (s)}, 20.69 - 17.78 \text{ (m)}. {}^{19}\text{F} \text{ NMR} \text{ (188 MHz, Chloroform-d)} \delta -62.48. \text{ HRMS} \text{ (ESI+): } m/z \text{ calcd for } [C_{17}\text{H}_{17}\text{F}_3\text{O}_5\text{Na}]^+ 381.0920, \text{ found} 381.0921.$

3.6((2R, 5R) -3-acetoxy-5-(4-nitrophenyl) -5,6-dihydro-2H-pyran-2-yl) methyl acetate 3f:

Prepared according to the general procedure for C2-arylation of pseudo-glucal **1a**: (86 mg, 0.4 mmol), $Pd(OAc)_2$ (9 mg, 0.04 mmol), AsPh₃ (12 mg, 0.04 mmol), 1-iodo-4-nitrobenzene (100 mg, 0.4 mmol) and AgTFA (132 mg, 0.6 mmol) were employed and the reaction mixture heated for 1 h. The crude material was purified by flash column chromatography (0% grading to 30%

AcOEt/Cyclohexane) and arylated compound was obtained (92 mg, 69%) as a yellow oil. *Rf (30% EtOAc/Cyclohexane)* = 0.27; $[\alpha]^{18}_{D}$ = -22° (c 0,5 CHCl₃); IR (neat, cm⁻¹): 2924, 2854, 1768, 1738, 1688, 1517, 1346, 1228,1206,1186, 1149. ¹H NMR (200 MHz, CDCl₃) δ 8.18 (d, *J* = 8.6 Hz, 2H), 7.56 (d, *J* = 8.6 Hz, 2H), 5.80 (d, *J* = 4.5 Hz, 1H), 4.54 (d, *J* = 2.5 Hz, 1H), 4.38 (dd, *J* = 11.9, 4.9 Hz, 1H), 4.26 (dd, *J* = 12.0, 2.6 Hz, 1H), 4.08 (dd, *J* = 11.5, 4.2 Hz, 1H), 3.96 – 3.85 (m, 1H), 3.69 (s, 1H), 2.20 (s, 3H), 2.14 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.50 (s), 168.54 – 165.99 (m), 149.05 (s), 146.26 (s), 129.12 (s), 123.66 (s), 116.09 (s), 72.23 (s), 68.72 (s), 62.91 (s), 40.93 (s), 20.83 (s). HRMS (ESI+): *m/z* calcd for [M.NH₄]⁺ [C₁₆H₂₁O₇N₂]⁺ 353.1343, found 353.1345.

3.7((2R, 5R) -3-acetoxy-5-(4-fluorophenyl) -5,6-dihydro-2H-pyran-2-yl) methyl acetate 3g:

Prepared according to the general procedure for C2-arylation of pseudo-glucal **1a**: (86 mg, 0.4 mmol), $Pd(OAc)_2$ (9 mg, 0.04 mmol), AsPh₃ (12 mg, 0.04 mmol), 1-fluoro-4-iodobenzene (89 mg, 56 µL, 0.4 mmol) and AgTFA (132 mg, 0.6 mmol) were employed and the reaction mixture heated for 1 h. The crude material was purified by

flash column chromatography (0% grading to 30% AcOEt/Cyclohexane) and arylated compound was obtained (72.6 mg, 59%) as a yellow oil. *Rf (30% EtOAc/Cyclohexane) = 0.35*; $[\alpha]^{18}_{D}$ = -34 (c 0,5 CHCl₃); IR (neat, cm⁻¹): 2924, 2855, 1768, 1732, 1505, 1369, 1217, 1201, 1189, 1148, 1100, 1015. ¹H NMR (300 MHz, Chloroform-*d*) δ 7.33 (dd, *J* = 8.2, 5.5 Hz, 2H), 7.02 (t, *J* = 8.6 Hz, 2H), 5.79 (d, *J* = 4.5 Hz, 1H), 4.52 (d, *J* = 2.6 Hz, 1H), 4.37 (dd, *J* = 12.0, 5.3 Hz, 1H), 4.30 (d, *J* = 2.5 Hz, 1H), 3.83 (dd, *J* = 11.4, 3.3 Hz, 1H), 2.20 (s, 3H), 2.13 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.64, 168.70, 163.58, 160.34, 145.41, 136.97, 129.57, 117.48, 115.41, 115.12, 71.95, 68.98, 63.08, 40.35, 20.82. ¹⁹F NMR (188 MHz, Chloroform-*d*) δ -115.35 - -116.82 (m). HRMS (ESI+): *m/z* calcd for [M.Na]⁺ [C₁₆H₁₇O₅NaF]⁺ 331.0952, found 331.0949.

3.8((2R, 5R) -3-acetoxy-5-(4-chlorophenyl) -5,6-dihydro-2H-pyran-2-yl) methyl acetate 3h:

Prepared according to the general procedure for C2-arylation of pseudo-glucal **1a**: (86 mg, 0.4 mmol), Pd(OAc)₂ (9 mg, 0.04 mmol), AsPh₃ (12 mg, 0.04 mmol), 1-chloro-4-iodobenzene (96 mg, 0.4 mmol) and AgTFA (132 mg, 0.6 mmol) were employed and the reaction mixture heated for 1 h. The crude material was purified by flash column chromatography (0% grading to 30%)

AcOEt/Cyclohexane) and arylated compound was obtained (77.8 mg, 60%) as a yellow oil. *Rf (30% EtOAc/cyclohexane) =0.36;* $[\alpha]^{18}_{D}$ = -6 ° (c 0,5 CHCl₃). IR (neat, cm⁻¹): 2956, 2928, 1767, 1738, 1492, 1368, 1228, 1205, 1186, 1148, 1125. ¹H NMR (300 MHz, CDCl3) δ 7.33 – 7.22 (m, 1H), 5.82 – 5.71 (s, 4H), 4.50 (dd, J = 4.8, 2.3 Hz, 1H), 4.35 (dd, J = 12.0, 5.2 Hz, 1H), 4.25 (dd, J = 12.0, 2.7 Hz, 1H), 4.00 (dd, J = 11.4, 4.2 Hz, 1H), 3.82 (dd, J = 11.4, 3.2 Hz, 1H), 3.61 – 3.49 (m, 1H), 2.18 (s, 3H), 2.11 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 170.60 (s), 168.66 (s), 145.58 (s), 139.82 (s), 132.86 (s), 129.51 (s), 128.59 (s), 117.14 (s), 71.97 (s), 68.87 (s), 63.04 (s), 40.47 (s), 20.82 (s). HRMS (ESI+): *m/z* calcd for [M.NH₄]⁺ [C₁₆H₂₁O₅NCl]⁺ 342.1103, found 342.1103.

3.8 ((2R, 5R) -3-acetoxy-5-(4-bromophenyl) -5,6-dihydro-2H-pyran-2-yl) methyl acetate 3i:

Prepared according to the general procedure for C2-arylation of pseudo-glucal **1a**: (86 mg, 0.4 mmol), Pd(OAc)₂ (9 mg, 0.04 mmol), AsPh₃ (12 mg, 0.04 mmol), 1-bromo-4-iodobenzene (113 mg, 0.4 mmol) and AgTFA (132 mg, 0.6 mmol) were employed and the reaction mixture heated for 1 h. The crude material was purified

by flash column chromatography (0% grading to 30% AcOEt/cyclohexane) and reversed arylated compound was obtained (81.2 mg, 55%) as a yellow oil. *Rf (30% EtOAc/cyclohexane) = 0.38;* $[\alpha]^{19}_{D}$ = -26 ° (c 0,5 CHCl₃); IR (neat, cm⁻¹): 2956, 2928, 1767, 171738, 1688, 1367, 1228, 1205, 1148, 1125. ¹H NMR (300 MHz, CDCl₃) δ 7.36 (d, *J* = 8.2 Hz, 2H), 7.15 (d, *J* = 8.3 Hz, 2H), 5.69 (d, *J* = 4.1 Hz, 1H), 4.46 – 4.38 (m, 1H), 4.28 (dd, *J* = 12.0, 5.2 Hz, 1H), 4.18 (dd, *J* = 12.0, 2.5 Hz, 1H), 3.93 (dd, *J* = 11.3, 4.2 Hz, 1H), 3.75 (dd, *J* = 11.4, 3.2 Hz, 1H), 3.47 (s, 1H), 2.11 (s, 3H), 2.04 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.60 (s), 168.65 (s), 145.61 (s), 140.35 (s), 131.55 (s), 129.90 (s), 120.95 (s), 117.05 (s), 71.91 (d, *J* =

10.0 Hz), 68.81 (s), 63.04 (s), 40.81 (d, J = 40.4 Hz), 20.83 (s). HRMS (ESI+): m/z calcd for [M.NH₄]⁺ [C₁₆H₂₁O₅NBr]⁺ 386.0598, found 386.0599.

3.10 ((2R, 5R) -3-acetoxy-5-(4-iodophenyl) -5,6-dihydro-2H-pyran-2-yl) methyl acetate 3j:

Prepared according to the general procedure for C2-arylation of pseudo-glucal **1a**: (86 mg, 0.4 mmol), $Pd(OAc)_2$ (9 mg, 0.04 mmol), AsPh₃ (12 mg, 0.04 mmol), 1,4-diiodobenzene (132 mg, 0.4 mmol) and AgTFA (132 mg, 0.6 mmol) were employed and the reaction mixture heated for 1 h. The crude material was purified by flash

column chromatography (0% grading to 30% AcOEt/cyclohexane), and arylated compound was obtained (53 mg, 32%) as a yellow oil. *Rf (30% EtOAc/cyclohexane) = 0.38;* $[\alpha]^{18}_{D} = -18$ ° (c 0,5 CHCl₃); IR (neat, cm⁻¹): 2961, 2925, 2854, 1767, 1740, 1688, 1368, 1229,1207, 1187, 1149. ¹H NMR (300 MHz, Chloroform-d) δ 7.66 (d, J = 7.9 Hz, 2H), 7.12 (d, J = 7.9 Hz, 2H), 5.78 (d, J = 3.6 Hz, 1H), 4.52 (m, 1H), 4.40 – 4.32 (dd, 1H), 4.27 (dd, J = 12.4 Hz, 1H), 4.02 (dd, J = 11.0, 4.5 Hz, 1H), 3.88 – 3.79 (dd, 1H), 3.55 (m, 1H), 2.20 (s, 3H), 2.14 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.62, 168.66, 145.63, 141.03, 137.56, 130.21, 128.51, 128.13, 127.02, 117.00, 92.43, 71.98, 68.81, 63.05, 40.65, 29.68, 20.85. HRMS (ESI+): *m/z* calcd for [M.NH₄]⁺ [C₁₆H₂₁O₅NI]⁺ 434.0459, found 434.0467.

3.11 ((2R, 5R) -3-acetoxy-5-(2,4-difluorophenyl) -5,6-dihydro-2H-pyran-2-yl) methyl acetate 3k:

Prepared according to the general procedure for C2-arylation of pseudo-glucal **1a**: (86 mg, 0.4 mmol), $Pd(OAc)_2$ (9 mg, 0.04 mmol), AsPh₃ (12 mg, 0.04 mmol), 2,4-difluoro-1-iodobenzene (96 mg, 0.4 mmol) and AgTFA (132 mg, 0.6 mmol) were employed and the reaction mixture heated for 1 h. The crude material was purified by flash column

chromatography (0% grading to 30% AcOEt/cyclohexane) and arylated compound was obtained (76.7 mg, 60%) as a yellow oil. *Rf (30% EtOAc/cyclohexane)* = 0.32; $[\alpha]^{19}{}_{D}$ = -10 ° (c 0,5 CHCl₃); IR (neat, cm⁻¹): 2956, 2928, 1767, 1739, 1503, 1228, 1202, 1150. ¹H NMR (300 MHz, chloroform-d) δ 7.49 (q, J = 8.4 Hz, 1H), 6.90 – 6.75 (m, 2H), 5.75 (d, J = 4.9 Hz, 1H), 4.52 (m, J = 4.5, 2.2 Hz, 1H), 4.38 – 4.31 (dd, 1H), 4.27 (dd, J = 11.9, 2.6 Hz, 1H), 4.03 (dd, J = 12.0, 4.7 Hz, 1H), 3.90 (dd, J = 9.9 Hz, 1H), 2.20 (s, 3H), 2.12 (s, 3H). ¹³C NMR (75 MHz, chloroform-d) δ 170.57, 168.59, 146.23, 130.96 (dd, *J* = 9.3, 5.7 Hz), 128.31 (d, *J* = 28.3 Hz), 116.13, 111.01 (dd, *J* = 20.8, 3.5 Hz), 103.57 (t, *J* = 25.8 Hz), 72.15, 68.03, 63.05, 41.09, 33.13, 20.80. ¹⁹F NMR (188 MHz, chloroform-d) δ -112.17 (m, *J* = 8.1, 7.6 Hz), -114.30 – -116.41 (m). HRMS (ESI+): *m/z* calcd for [M.NH₄]⁺ [C₁₆H₂₀O₅NF₂]⁺ 344.1304, found 344.1314.

3.12 methyl 2-((3R, 6R) -5-acetoxy-6-(acetoxymethyl) -3,6-dihydro-2H-pyran-3-yl) benzoate 31:

Prepared according to the general procedure for C2-arylation of pseudo-glucal **1a**: (86 mg, 0.4 mmol), $Pd(OAc)_2$ (9 mg, 0.04 mmol), AsPh₃ (12 mg, 0.04 mmol), methyl 2-iodobenzoate (104 mg, 0.4 mmol) and AgTFA (132 mg, 0.6 mmol) were employed and the reaction mixture heated for 1 h. The crude material was purified by flash column chromatography (0% grading to 30% AcOEt/cyclohexane) and arylated

compound was obtained (68.1 mg, 49%) as a yellow oil. *Rf (30% EtOAc/cyclohexane) = 0.28;* $[\alpha]^{20}_{D}$ = -24 ° (c 0,5 CHCl₃); IR (neat, cm⁻¹): 2956, 2928, 1743, 1717, 1231, 1206, 1131, 1108. ¹H NMR (300 MHz,

chloroform-*d*) δ 7.93 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.71 (d, *J* = 7.8 Hz, 1H), 7.50 (td, *J* = 7.5, 1.5 Hz, 1H), 7.31 (d, *J* = 14.3 Hz, 1H), 5.76 (d, *J* = 3.9 Hz, 1H), 4.54 (m, *J* = 4.7, 2.4 Hz, 2H), 4.35 (d, *J* = 4.7 Hz, 1H), 4.32 (d, *J* = 2.4 Hz, 1H), 4.14 (dd, *J* = 11.6, 4.1 Hz, 0H), 4.02 – 3.94 (m, 1H), 3.91 (s, *J* = 0.7 Hz, 3H), 2.19 (s, 3H), 2.12 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.67, 168.74, 167.82, 145.82, 142.80, 132.00, 130.70, 130.05, 129.08, 126.76, 117.64, 77.43, 77.01, 76.59, 72.12, 69.26, 63.23, 52.08, 37.32, 20.83. HRMS (ESI+): *m/z* calcd for [M.NH₄]⁺ [C₁₈H₂₄O₇N]⁺ 366.1547, found 366.1551.

3.13 methyl 3-((3R, 6R) -5-acetoxy-6-(acetoxymethyl) -3,6-dihydro-2H-pyran-3-yl) benzoate 3m:

Prepared according to the general procedure for C2-arylation of pseudo-glucal **1a**: (86 mg, 0.4 mmol), $Pd(OAc)_2$ (9 mg, 0.04 mmol), AsPh₃ (12 mg, 0.04 mmol), methyl 3-iodobenzoate (104 mg, 0.4 mmol) and AgTFA (132 mg, 0.6 mmol) were employed and the reaction mixture heated for 1 h. The crude material was

purified by flash column chromatography (0% grading to 30% AcOEt/cyclohexane) and arylated compound (75.1mg, 54%) as a yellow oil. *Rf (30% EtOAc/cyclohexane) = 0.27;* $[\alpha]^{19}_{D}$ = -34 ° (c 0,5 CHCl₃); IR (neat, cm⁻¹): 2956, 2928, 1720, 1369, 1285, 1231, 1199, 1109. ¹H NMR (300 MHz, chloroform-*d*) δ 8.01 – 7.91 (m, 2H), 7.60 (d, *J* = 7.7 Hz, 1H), 7.43 (t, *J* = 7.7 Hz, 1H), 5.82 (d, *J* = 4.1 Hz, 1H), 4.54 (m, *J* = 2.6 Hz, 1H), 4.37 (dd, *J* = 5.4 Hz, 1H), 4.29 (dd, *J* = 12.0, 2.4 Hz, 1H), 4.06 (dd, *J* = 11.4, 4.4 Hz, 1H), 3.92 (s, 3H), 3.91 (dd, 1H), 3.74 – 3.62 (m, 1H), 2.20 (s, 3H), 2.14 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.77, 168.69, 166.93, 145.77, 141.75, 132.75, 130.47, 129.20, 128.59, 128.32, 117.00, 72.03, 68.87, 63.11, 52.09, 40.90, 20.82. HRMS (ESI+): *m/z* calcd for [M.NH₄]⁺ [C₁₈H₂₄O₇N]⁺ 366.1547, found 366.1545

3.14 ((2R, 5R) -3-acetoxy-5-(3,5-dinitrophenyl) -5,6-dihydro-2H-pyran-2-yl) methyl acetate 3n:

Prepared according to the general procedure for C2-arylation of pseudo-glucal **1a**: (86 mg, 0.4 mmol), $Pd(OAc)_2$ (9 mg, 0.04 mmol), AsPh₃ (12 mg, 0.04 mmol), 1-iodo-3,5-dinitrobenzene (118 mg, 0.4 mmol)

and AgTFA (132 mg, 0.6 mmol) were employed and the reaction mixture heated for 1 h. The crude material was purified by flash column chromatography (0% grading to 30% AcOEt/cyclohexane) and arylated compound was obtained (53 mg, 32%) as a yellow oil. *Rf (30% EtOAc/cyclohexane) =0.18;* $[\alpha]^{20}_{D}$ = -28 ° (c 0,5 CHCl₃) IR (neat, cm⁻¹): 2956, 2928, 2856, 1767, 1737, 1537, 1367, 1227, 1194, 1154,

1105. ¹H NMR (300 MHz, chloroform-*d*) δ 8.89 (t, *J* = 2.1 Hz, 1H), 8.55 (d, *J* = 2.0 Hz, 2H), 5.76 (d, *J* = 5.2 Hz, 1H), 4.57 – 4.47 (m, 1H), 4.43 (dd, *J* = 12.2, 4.2 Hz, 1H), 4.16 (dd, *J* = 12.2, 2.0 Hz, 1H), 4.08 (dd, *J* = 11.7, 3.9 Hz, 1H), 3.90 (dd, *J* = 11.7 Hz, 1H), 3.72 (m, *J* = 4.5 Hz, 1H), 2.14 (s, 3H), 2.09 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.95, 168.44, 148.64, 147.59, 146.71, 128.56, 117.65, 114.58, 72.88, 69.18, 62.57, 40.84, 20.80. HRMS (ESI+): *m/z* calcd for [M.NH₄]⁺ [C₁₆H₂₀O₉N₃]⁺ 398.1194, found 398.1190.

3.15 (2R, 5R) -5-(3-acetoxy-4-methoxyphenyl) -2-(acetoxymethyl)-5,6-dihydro-2H-pyran-3-yl acetate 30:

Prepared according to the general procedure for C2-arylation of pseudo-glucal **1a**: (86 mg, 0.4 mmol), $Pd(OAc)_2$ (9 mg, 0.04 mmol), AsPh₃ (12 mg, 0.04 mmol), 5-iodo-2-methoxyphenyl acetate (117 mg, 0.4 mmol) and AgTFA (132 mg, 0.6 mmol) were employed and the reaction mixture heated for 1 h. The crude material was purified

by flash column chromatography (0% grading to 30% AcOEt/cyclohexane), and reversed phase HPLC affording arylated compound (60.5 mg, 40%) as a yellow oil. *Rf (30% EtOAc/cyclohexane) = 0.18;* $[\alpha]^{19}_{D}$ = -6 ° (c 0,5 CHCl₃). IR (neat, cm⁻¹): 2956, 2928, 2856, 1766, 1738, 1512, 1368, 1269, 1198, 1159, 1124. ¹H NMR (300 MHz, chloroform-*d*) δ 7.16 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.06 (d, *J* = 2.0 Hz, 1H), 6.93 (d, *J* = 8.4 Hz, 1H), 5.78 (d, *J* = 4.6 Hz, 1H), 4.51 (dd, *J* = 4.8, 2.3 Hz, 1H), 4.36 (dd, *J* = 12.0, 5.2 Hz, 1H), 4.27 (dd, *J* = 12.0, 2.6 Hz, 1H), 4.00 (dd, *J* = 11.4, 4.3 Hz, 1H), 3.89 – 3.72 (m, 4H), 3.59 – 3.50 (m, 1H), 2.30 (s, 3H), 2.19 (s, 3H), 2.13 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.70, 168.72, 150.15, 145.33, 139.76, 133.98, 126.34, 122.55, 117.56, 112.40, 71.86, 68.91, 63.10, 55.99, 40.18, 20.80. HRMS (ESI+): *m/z* calcd for [M.NH₄]⁺ [C₁₉H₂₆O₈N]⁺ 396.1653, found 396.1656

3.16 ((2R, 5R) -3-acetoxy-5-phenyl-5,6-dihydro-2H-pyran-2-yl) methyl acetate 3p:

Prepared according to the general procedure for C2-arylation of pseudoglucal **1a**: (86 mg, 0.4 mmol), Pd(OAc)₂ (9 mg, 0.04 mmol), AsPh₃ (12 mg, 0.04 mmol), iodo-benzene (82 mg, 0.4 mmol) and AgTFA (132 mg, 0.6 mmol) were employed and the reaction mixture heated for 1 h. The crude material was purified by flash column chromatography (0% grading to 30% AcOEt/cyclohexane) and arylated compound was

obtained (62.9 mg, 50%) as a yellow oil. *Rf (30% EtOAc/cyclohexane)* = 0.52; $[\alpha]^{18}_{D} = -26^{\circ}$ (c 0,5 CHCl₃); IR (neat, cm⁻¹): 2927, 2858, 1766, 1739, 1688, 1326, 1229,1207,1189, 1148, 1105. ¹H NMR (300 MHz, CDCl₃) δ 7.35 (d, *J* = 3.9 Hz, 5H), 5.83 (d, *J* = 4.5 Hz, 1H), 4.53 (s, 1H), 4.38 (dd, *J* = 12.0, 5.5 Hz, 1H), 4.30 (dd, *J* = 12.0, 2.5 Hz, 1H), 4.04 (dd, *J* = 11.4, 4.5 Hz, 1H), 3.87 (dd, *J* = 11.4, 3.8 Hz, 1H), 3.64 (d, *J* = 3.0 Hz, 1H), 2.21 (s, 3H), 2.14 (s, 3H) ¹³C NMR (75 MHz, CDCl₃) δ 170.71 (s), 168.74 (s), 145.27 (s), 141.16 (s), 128.50 (s), 128.12 (s), 127.01 (s), 117.69 (s), 109.97 (s), 71.85 (s), 68.81 (s), 63.15 (s), 41.08 (s), 20.84 (s). HRMS (ESI+): *m/z* calcd for [C₁₆H₁₈O₅Na]⁺ 313.1046, found 313.1052.

3.17 ((2R, 5R) -3-acetoxy-5-(p-tolyl) -5,6-dihydro-2H-pyran-2-yl) methyl acetate 3q:

Prepared according to the general procedure for C2-arylation of pseudo-glucal **1a**: (86 mg, 0.4 mmol), $Pd(OAc)_2$ (9 mg, 0.04 mmol), AsPh₃ (12 mg, 0.04 mmol),4-iodotoluene (88 mg, 0.4 mmol) and AgTFA (132 mg, 0.6 mmol) were employed and the reaction mixture heated for 1 h. The crude material was purified by flash column

chromatography (0% grading to 30% AcOEt/cyclohexane) and arylated compound was obtained (57.1 mg, 47%) as a yellow oil. *Rf (30% EtOAc/cyclohexane)* = 0.38; $[\alpha]^{20}_{D}$ = -12 ° (c 0,5 CHCl₃); IR (neat, cm⁻¹): 2956, 2928, 2856, 1768, 1740, 1368, 1229, 1206, 1188, 1042. ¹H NMR (300 MHz, chloroform-*d*) δ 7.24 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 7.8 Hz, 2H), 5.81 (d, *J* = 4.6 Hz, 1H), 4.52 (m, *J* = 5.0, 2.2 Hz, 1H), 4.37 (dd, *J* = 12.0, 5.5 Hz, 1H), 4.29 (dd, *J* = 12.0, 2.7 Hz, 1H), 4.02 (dd, *J* = 11.3, 4.5 Hz, 1H), 3.83 (dd, *J* = 11.3, 3.9 Hz, 1H), 3.60 (m, *J* = 7.2, 3.6 Hz, 1H), 2.35 (s, 3H), 2.20 (s, 3H), 2.14 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.77, 168.79, 145.11, 138.09, 136.62, 129.19, 127.99, 117.92, 71.80, 68.88, 63.20, 40.69, 20.99, 20.85. HRMS (ESI+): *m/z* calcd for [M.NH₄]⁺ [C₁₇H₂₄O₅N]⁺ 322.1649, found 322.1658.

3.18 ((2R, 5R) -3-acetoxy-5-(3, 4,5-trimethoxyphenyl) -5,6-dihydro-2H-pyran-2-yl) methyl acetate 3r:

Prepared according to the general procedure for C2-arylation of pseudo-glucal **1a**: (86 mg, 0.4 mmol), $Pd(OAc)_2$ (9 mg, 0.04 mmol), AsPh₃ (12 mg, 0.04 mmol), 5-iodo-1,2,3-trimethoxybenzene (118 mg, 0.4 mmol) and AgTFA (132 mg, 0.6 mmol) were employed and the reaction mixture heated for 1 h. The crude material was purified by flash column chromatography (0% grading to 30% AcOEt/cyclohexane) and arylated compound was obtained (53.2 mg, 35%) as a yellow oil.

Rf (30% *EtOAc/cyclohexane*) = 0.2; $[\alpha]^{20}_{D}$ = -58 ° (c 0,5 CHCl₃); IR (neat, cm⁻¹): 2956, 2928, 1739, 1722, 1591,1509,1463, 1369, 1229, 1203, 1127. ¹H NMR (300 MHz, CDCl₃) δ 6.57 (s, 2H), 5.88 – 5.68 (d, 1H), 4.51 (dd, *J* = 6.0, 2.3 Hz, 1H), 4.35 (dd, *J* = 11.9, 6.5 Hz, 1H), 4.27 (dd, *J* = 11.9, 2.9 Hz, 1H), 4.01 (dd, *J* = 11.4, 4.6 Hz, 1H), 3.88 (s, 6H), 3.84 (s, 3H), 3.63 – 3.51 (m, 1H), 2.20 (s, 3H), 2.10 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.88 (s), 168.93 (s), 153.47 (s), 145.42 (s), 137.41 (s), 136.98 (s), 118.00 (s), 105.09 (d, *J* = 71.4 Hz), 72.07 (s), 68.91 (s), 63.62 (s), 60.95 (s), 56.40 (s), 41.36 (s), 20.99 (s). HRMS (ESI+): *m/z* calcd for [M.NH₄]⁺ [C₁₉H₂₈O₈N]⁺ 398.1809, found 398.1819.

3.19 ((2R, 5R) -3-acetoxy-5-(2-methoxyphenyl) -5,6-dihydro-2H-pyran-2-yl) methyl acetate 3s:

Prepared according to the general procedure for C2-arylation of pseudoglucal **1a**: (86 mg, 0.4 mmol), $Pd(OAc)_2$ (9 mg, 0.04 mmol), $AsPh_3$ (12 mg, 0.04 mmol), 1-iodo-2-methoxybenzene (94 mg, 0.4 mmol) and AgTFA (132 mg, 0.6 mmol) were employed and the reaction mixture heated for 1 h. The crude material was purified by flash column chromatography

(0% grading to 30% AcOEt/cyclohexane) and arylated compound was obtained (63.9mg, 50%) as a yellow oil. *Rf (30% EtOAc/cyclohexane) = 0.24;* $[\alpha]^{19}_{D} = -10^{\circ}$ (c 0,5 CHCl₃); IR (neat, cm⁻¹): 2956, 2928, 2856, 1738, 1492, 1464, 1253, 1267, 1241, 1206, 1030. ¹H NMR (300 MHz, chloroform-*d*) δ 7.41 (d, *J* = 7.5 Hz, 1H), 7.24 (t, *J* = 7.7 Hz, 1H), 6.94 (t, *J* = 7.5 Hz, 1H), 6.88 (d, *J* = 8.1 Hz, 1H), 5.78 (d, *J* = 3.4 Hz, 1H), 4.52 (m, 1H), 4.30 (d, *J* = 4.6 Hz, 1H), 4.23 (d, *J* = 3.0 Hz, 1H), 4.09 – 3.98 (dd, 2H), 3.90 (dd, *J* = 8.4 Hz, 1H), 3.84 (s, 3H), 2.20 (s, 3H), 2.12 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.73, 168.77, 156.72, 145.52, 129.30, 128.50, 127.99, 120.41, 117.49, 110.13, 73.86, 72.01, 67.76, 63.24, 55.27, 34.08, 20.84. HRMS (ESI+): *m/z* calcd for [M.NH₄]⁺ [C₁₇H₂₄O₆N]⁺ 338.1598, found 338.1604.

3.20 methyl 3-((3R, 6R) -5-acetoxy-6-(acetoxymethyl) -3,6-dihydro-2H-pyran-3-yl) -4methoxybenzoate 3t:

Prepared according to the general procedure for C2-arylation of pseudo-glucal 1a: (86 mg, 0.4 mmol),

Pd(OAc)₂ (9 mg, 0.04 mmol), AsPh₃ (12 mg, 0.04 mmol), methyl 3-iodo-4-methoxybenzoate (117 mg, 0.4 mmol) and AgTFA (132 mg, 0.6 mmol) were employed and the reaction mixture heated for 1 h. The crude material was purified by flash column chromatography (0% grading to 30% AcOEt/cyclohexane) and

arylated compound was obtained (55.9 mg, 37%) as a yellow oil. *Rf (30% EtOAc/cyclohexane) = 0.24;* $[\alpha]^{19}{}_{D}$ = -10 ° (c 0,5 CHCl₃); IR (neat, cm⁻¹): 2956, 2928, 2856, 1743, 1712, 1253, 1197, 1152, 1124. ¹H NMR (300 MHz, chloroform-*d*) δ 8.04 – 7.90 (m, 2H), 6.91 (d, *J* = 8.5 Hz, 1H), 5.78 (d, *J* = 4.2 Hz, 1H), 4.53 (m, *J* = 2.5 Hz, 1H) 4.35 (dd, *J* = 5.1 Hz, 1H), 4.30 (dd, *J* = 2.5 Hz, 1H), 4.01 (dd, *J* = 8.2, 4.5 Hz, 2H), 3.90 (s, 4H), 3.87 (s, 4H), 2.21 (s, 3H), 2.12 (s, 3H),. ¹³C NMR (75 MHz, CDCl₃) δ 171.09, 168.84, 166.86, 160.49, 146.14, 130.59, 130.46, 129.58, 122.50, 116.59, 109.68, 77.44, 77.02, 76.60, 72.34, 67.74,

63.12, 55.63, 51.82, 34.18, 20.72. HRMS (ESI+): *m/z* calcd for [M.NH₄]⁺ [C₁₉H₂₆O₈N]⁺ 396.1653, found 396.1651

3.21 ((2R, 5R) -3-acetoxy-5-(4-methoxyphenyl) -5,6-dihydro-2H-pyran-2-yl) methyl acetate 3u:

Prepared according to the general procedure for C2-arylation of pseudo-glucal **1a**: (86 mg, 0.4 mmol), $Pd(OAc)_2$ (9 mg, 0.04 mmol), AsPh₃ (12 mg, 0.04 mmol), 1-iodo-4-methoxybenzene (94 mg, 0.4 mmol) and AgTFA (132 mg, 0.6 mmol) were employed and the reaction mixture heated for 1 h. The crude material was purified by flash column chromatography (0% grading to 30%)

AcOEt/cyclohexane) and arylated compound was obtained (76.7 mg, 60%) as a yellow oil. *Rf (30% EtOAc/cyclohexane)* = 0.21; $[\alpha]^{20}_{D}$ = 4 ° (c 0,5 CHCl₃). IR (neat, cm⁻¹): 2956, 2928, 1767, 1738, 1512, 1368, 1228, 1207, 1178, 1102. ¹H NMR (300 MHz, chloroform-*d*) δ 7.27 (d, *J* = 8.6 Hz, 1H), 6.88 (d, *J* = 8.4 Hz, 1H), 5.79 (d, *J* = 3.5 Hz, 1H), 4.55 – 4.49 (m, 1H), 4.37 (dd, *J* = 12.1, 5.5 Hz, 1H), 4.28 (dd, *J* = 12.1, 2.7 Hz, 1H), 4.01 (dd, *J* = 11.4, 4.5 Hz, 1H), 3.86 – 3.78 (m, 1H), 3.63 – 3.53 (m, 1H), 2.20 (s, 2H), 2.14 (s, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 173.39, 170.72, 168.77, 158.70, 145.06, 133.26, 129.10, 118.02, 113.96, 110.01, 71.83, 69.00, 63.20, 55.29, 40.29, 20.86. HRMS (ESI+): *m/z* calcd for [M.NH₄]⁺ [C₁₇H₂₄O₆N]⁺ 338.1598, found 338.1600.

3.22 methyl(S)-3-(4-((3R, 6R) -5-acetoxy-6-(acetoxymethyl)-3,6-dihydro-2H-pyran-3-yl) phenyl)-2-((tert-butoxycarbonyl) amino) propanoate 3v:

Prepared according to the general procedure for C2-arylation of pseudo-glucal **1a**: (83 mg, 0.385 mmol), $Pd(OAc)_2$ (8.6 mg, 0.03 mmol), AsPh₃ (12 mg, 0.03 mmol), methyl (S)-2-((tertbutoxycarbonyl)amino)-3-(4-iodophenyl)propanoate (156 mg, 0.385 mmol) and AgTFA (128 mg, 0.45 mmol) were employed and the reaction mixture heated for 1 h. The crude material was purified by flash column chromatography (0%

grading to 30% AcOEt/cyclohexane) and reversed arylated compound was obtained (85 mg, 45%) as a colorless oil. *Rf (30% EtOAc/cyclohexane) =0.33;* $[\alpha]^{19}_{D}$ = 20 ° (c 0,5 CHCl₃); IR (neat, cm⁻¹): 2956, 2928, 2856, 1742, 1712, 1513, 1391, 1208, 1166, 1103. ¹H NMR (300 MHz, chloroform-*d*) δ 7.23 (s, 1H), 7.19 – 7.11 (d, 2H), 6.98 (d, *J* = 7.8 Hz, 2H), 5.67 (d, *J* = 4.7, 1.7 Hz, 1H), 4.86 (d, *J* = 7.9 Hz, 1H), 4.50 – 4.37 (m, 2H), 4.25 (dd, *J* = 12.0, 5.5 Hz, 1H), 4.17 (dd, *J* = 12.0, 2.8 Hz, 1H), 3.94 – 3.88 (dd, 1H), 3.73 (dd, *J* = 11.4, 3.8 Hz, 1H), 3.62 (s, 3H), 3.48 (m, *J* = 4.0 Hz, 1H), 3.08 – 2.75 (m, 3H), 2.09 (d, *J* = 0.9 Hz, 3H), 2.03 (d, *J* = 1.0 Hz, 3H), 1.32 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 172.24, 170.67, 168.73, 145.28, 139.95, 134.76, 133.70, 129.48, 128.33, 117.60, 71.87, 68.81, 63.15, 54.36, 52.16, 40.74, 37.88, 28.28, 20.85. HRMS (ESI+): *m/z* calcd for [C₂₅H₃₃NO₉Na]⁺ 514.2048, found 514.2045.

3.23 ((2R,5R) -3-acetoxy-5-(3-(4-methoxybenzyl) phenyl) -5,6-dihydro-2H-pyran-2-yl) methyl acetate 3w:

Prepared according to the general procedure for C2arylation of pseudo-glucal **1a**: (86 mg, 0.4 mmol), Pd(OAc)₂ (9 mg, 0.04 mmol), AsPh₃ (13 mg, 0.04 mmol), 1-iodo-3-(4-methoxybenzyl)benzene (130 mg, 0.4 mmol) and AgTFA (134 mg, 0.6 mmol) were employed and the reaction mixture heated for 1 h. The crude material was purified by flash column chromatography (0% grading to 25 % AcOEt/cyclohexane), and reversed phase HPLC affording arylated compound (71 mg, 43 %) as a yellow oil. *Rf (30 % EtOAc/cyclohexane) = 0.46.* IR (neat, cm⁻¹):1766, 1511, 1246, 1228,1201, 1036. ¹H NMR (300 MHz, chloroform-d) δ 7.30 – 7.20 (m, 2H), 7.10 (dd, J = 13.2, 7.9 Hz, 4H), 6.86 (d, J = 8.5 Hz, 2H), 5.81 (d, J = 4.4 Hz, 1H), 4.53 (dd, J = 5.0, 2.4 Hz, 2H), 4.39 – 4.32 (m, 1H), 4.29 (dd, J = 12.0, 2.9 Hz, 1H), 4.02 (dd, J = 11.4, 4.6 Hz, 1H), 3.94 (s, 2H), 3.85 (dd, J = 11.6, 3.8 Hz, 1H), 3.81 (s, 3H), 3.64 – 3.57 (m, 1H), 2.21 (s, 3H), 2.12 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.73, 168.75, 158.01, 145.21, 141.82, 141.27, 133.05, 129.82, 128.60, 127.56, 125.79, 117.75, 113.91, 77.45, 77.03, 76.61, 71.83, 68.79, 63.29, 55.24, 41.03, 20.86. HRMS (ESI+): *m/z* calcd for [M.NH₄]⁺ [C₂₄H₃₀NO₆]⁺ 428.2068, found 428.2071.

3.24 methyl 4-((2S, 3R, 6R) -5-acetoxy-6-(acetoxymethyl) -2-methoxy-3,6-dihydro-2H-pyran-3-yl) benzoate 4a:

Prepared according to the general procedure for C2-arylation of pseudo-glucal **1b**: (74 mg, 0.3 mmol), Pd(OAc)2 (7 mg, 0.03 mmol), AsPh3 (9 mg, 0.03 mmol), methyl 4-iodobenzoate (79 mg, 0.3 mmol) and AgTFA (100 mg, 0.45 mmol) were employed and the reaction mixture heated for 1 h. The crude material was purified by flash column chromatography (0% grading to 30% AcOEt/cyclohexane) and arylated compound was obtained (38.4

mg, 34%) as a yellow oil. *Rf (30% EtOAc/cyclohexane)* =0.24; $[α]^{19}_D$ = 28 ° (c 0,5 CHCl₃); IR (neat, cm⁻¹): 2956, 2928, 2856, 1771, 1744, 1720, 1346, 1279, 1229, 1186, 1102. ¹H NMR (300 MHz, chloroform-d) δ 8.01 (d, J = 8.0 Hz, 2H), 7.50 (d, J = 8.1 Hz, 2H), 5.69 (d, J = 5.2 Hz, 1H), 4.73 (s, 1H), 4.61 (m, 1H), 4.50 (dd, J = 12.1, 4.0 Hz, 1H), 4.30 (dd, J = 12.0, 2.4 Hz, 1H), 3.93 (s, 3H), 3.49 (s, 3H), 2.19 (s, 3H), 2.16 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.60, 168.38, 166.85, 144.97, 144.37, 129.80, 129.21, 128.66, 113.61, 101.31, 77.42, 77.00, 76.57, 66.09, 62.61, 55.78, 52.06, 46.12, 20.88. HRMS (ESI+): *m/z* calcd for [M.NH₄]⁺ [C₁₉H₂₆O₈N]⁺ 396.1653, found 396.1664.

3.25 Compounds 4b an 4b':

Prepared according to the general procedure for C2-arylation of pseudo-glucal **1c**: (116 mg, 0.4 mmol), Pd(OAc)2 (17 mg, 0.04 mmol), AsPh3 (23 mg, 0.04 mmol), methyl 4-iodobenzoate (106 mg, 0.4 mmol) and AgTFA (132 mg, 0.6 mmol) were employed and the reaction mixture heated for 1 h. The crude material was purified by flash column chromatography (0% grading to 30% AcOEt/cyclohexane) to furnished a mixture of two regioisomers **4b** and **4b'** (84.6 mg, 48%) in 3:1 ratio (measured by NMR). Both isomers were separated by reversed phase HPLC:

Methyl 4-((2S,3R,6R) -5-acetoxy-6-(acetoxymethyl) -2-phenyl-3,6-dihydro-2H-pyran-3-yl) benzoate 4b as a yellow oil. *Rf* (30% *EtOAc/cyclohexane*) = 0.23. $[\alpha]^{19}_{D}$ = 74 ° (c 0,86 CHCl₃) IR (neat,

cm⁻¹): 2956, 2928, 1746, 1722, 1281, 1237, 1116, 1166. ¹H NMR (300 MHz, chloroform-*d*) δ 8.02 (d, *J* = 8.1 Hz, 2H), 7.68 – 7.60 (m, 2H), 7.43 – 7.31 (m, 5H), 5.39 (d, *J* = 2.3 Hz, 1H), 5.29 (t, *J* = 9.5 Hz, 1H), 4.49 (dd, *J* = 12.1, 5.2 Hz, 1H), 4.40 – 4.29 (m, 2H), 3.93 (s, 3H), 3.86 (d, *J* = 8.6 Hz, 1H), 2.10 (s, 3H), 1.98 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.81, 169.07, 166.80, 151.99, 146.42,

130.00, 128.78, 128.31, 128.02, 124.90, 98.47, 77.41, 76.99, 76.56, 75.78, 70.46, 62.31, 52.04, 45.84, 20.78, 20.58. HRMS (ESI+): *m/z* calcd for [M.Na]⁺ [C₂₄H₂₄NaO₇]⁺ 447.1414, found 447.1420

methyl 4-((2R,4S) -3-acetoxy-2-(acetoxymethyl) -6-phenyl-3,4-dihydro-2H-pyran-4-yl) benzoate 4b':

as a yellow oil. *Rf (30% EtOAc/cyclohexane) = 0.23*; $[\alpha]^{19}_{D}$ = -9 ° (c 0,66 CHCl₃); IR (neat, cm⁻¹): 2956, 2928, 1746, 1722, 1281, 1237, 1116, 1166. ¹H NMR (300 MHz, chloroform-*d*) δ 7.90 (d, *J* = 8.0 Hz, 2H), 7.31 – 7.23 (m, 3H), 7.17 – 7.11 (m, 2H), 7.08 (d, *J* = 8.2 Hz, 2H), 5.85 (s, 1H), 4.68 (d, *J* = 8.0 Hz, 1H), 4.61 (d, *J* =

10.1 Hz, 2H), 4.24 (d, J = 9.8 Hz, 1H), 3.91 (m, 4H), 2.23 (s, 3H), 2.11 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.65, 168.66, 166.83, 144.98, 138.54, 129.66, 128.61, 128.19, 127.47, 118.27, 78.47, 77.42, 77.00, 76.57, 71.15, 63.30, 52.03, 47.76, 20.95, 20.90. HRMS (ESI+): m/z calcd for [M. Na]⁺ [C₂₄H₂₄NaO₇]⁺ 447.1414, found 447.1420

3.26 Compounds 4c and 4c':

Prepared according to the general procedure for C2-arylation of pseudo-glucal **1c**: (92 mg, 0.316 mmol), $Pd(OAc)_2$ (7.2 mg, 0.032 mmol), $AsPh_3$ (10 mg, 0.03 mmol), 1-iodo-4-nitrobenzene (79 mg, 0.316 mmol) and AgTFA (106 mg, 0.375 mmol) were employed and the reaction mixture heated for 1 h. The crude material was purified by flash column chromatography (0% grading to 30% AcOEt/cyclohexane), furnished a mixture of two regioisomers **4c** and **4c'** (67.7 mg, 50%) in 3:1 ratio (measured by NMR). Both isomers were separated by reversed phase HPLC:

 $\begin{array}{ll} \textbf{((2R,4S)-3-acetoxy-4-(4-nitrophenyl)} & -6-phenyl-3,4-dihydro-2H-pyran-2-yl) & methyl \\ \textbf{acetate 4c} as a yellow oil. Rf (30\% EtOAc/cyclohexane) = 0.32; [\alpha]^{19}_{D} = -30.15 \ ^{\circ} (c \ 0,63 \ CHCl_3) \ IR (neat, 10.15) \ ^{\circ} (c \ 0,63 \ CHCl_3) \ IR (neat, 10.15) \ ^{\circ} (c \ 0,63 \ CHCl_3) \ ^{\circ} (c \ 0$

cm⁻¹): 2956, 2928, 1743, 1741, 1519, 1347, 1236, 1036. ¹H NMR (300 MHz, chloroform-*d*) δ 8.21 (d, *J* = 8.5 Hz, 2H), 7.63 (dd, *J* = 6.4, 2.9 Hz, 2H), 7.49 (d, *J* = 8.6 Hz, 2H), 7.39 (dd, *J* = 5.0, 1.6 Hz, 3H), 5.35 (d, *J* = 2.4 Hz, 1H), 5.30 (s, 1H), 4.51 (dd, *J* = 12.3, 4.7 Hz, 1H), 4.42 – 4.30 (m, 2H), 3.92 (dd, *J* = 9.0, 2.2 Hz, 1H), 2.10 (s, 3H), 2.00 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.76, 169.06, 152.55, 148.84, 133.68,

129.03, 128.90, 128.38, 124.94, 123.94, 97.67, 77.42, 77.00, 76.57, 75.75, 70.18, 62.09, 45.88, 20.76. HRMS (ESI+): *m/z* calcd for [M.NH₄]⁺ [C₂₂H₂₅N₂O₇]⁺ 429.1656, found 429.1657

((2R,5R,6S) -3-acetoxy-5-(4-nitrophenyl) -6-phenyl-5,6-dihydro-2H-pyran-2-yl) methyl

acetate 4c'as a yellow oil. *Rf* (30% *EtOAc/cyclohexane*) =0.32; $[\alpha]^{19}_{D} = 109.8$ ° (c 1,02 CHCl₃). IR (neat, cm⁻¹): 2956, 2928, 1743, 1741, 1519, 1347, 1236, 1036. ¹H NMR (300 MHz, chloroform-*d*) δ 8.09 (d, *J* = 8.4 Hz, 2H), 7.30 (dd, *J* = 5.7, 1.8 Hz, 4H), 7.25 - 7.12 (m, 5H), 5.85 (s, 1H), 4.67 (t, *J* = 7.1 Hz, 1H), 4.63 - 4.55 (m, 2H),

4.23 (dd, J = 11.6, 1.6 Hz, 1H), 3.98 (d, J = 7.8 Hz, 1H), 2.24 (s, 2H), 2.11 (s, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 170.56, 168.59, 147.56, 145.47, 138.04, 129.45, 128.52, 128.36, 127.46, 123.58, 117.47, 78.42, 77.43, 77.00, 76.58, 71.16, 63.10, 47.56, 20.95. HRMS (ESI+): m/z calcd for [M.NH₄]⁺ [C₂₂H₂₅N₂O₇]⁺ 429.1656, found 429.1657.

3.27 methyl 4-((3R, 6R) -5-((tert-butyldimethylsilyl) oxy) -6-(((tert-butyldimethylsilyl)

oxy) methyl) -3,6-dihydro-2H-pyran-3-yl) benzoate 4d: Prepared according to the general procedure for C2-arylation of pseudo-glucal **1d**: (105 mg, 0.294 mmol), Pd(OAc)₂ (7 mg, 0.029 mmol), AsPh₃ (9 mg, 0.029 mmol), methyl 4iodobenzoate (77 mg, 0.294 mmol) and AgTFA (98 mg, 0.441 mmol) were employed and the reaction mixture heated for 1 h. The crude material was purified by flash column chromatography (0% grading to 10% AcOEt/cyclohexane) and arylated compound was obtained (87.3 mg, 65%) as a yellow oil. *Rf (30% EtOAc/cyclohexane) = 0.68;* $[\alpha]^{19}_{D} = 6^{\circ}$ (c 0,5 CHCl₃); IR (neat, cm⁻¹): 2956, 2930, 2857, 1721, 1281, 1264, 1101; ¹H NMR (300 MHz, chloroform-*d*) δ 7.98 (d, *J* = 8.0 Hz, 2H), 7.42 (d, *J* = 8.1 Hz, 2H), 5.07 (d, *J* = 3.8 Hz, 1H), 4.05 (m, 1H), 3.98 (d, *J* = 3.4 Hz, 2H), 3.92 (s, 3H), 3.89 (d, 1H), 3.83 (dd, *J* = 11.3 Hz, 1H), 3.61 – 3.53 (m, 1H), 0.96 (d, *J* = 7.7 Hz, 18H), 0.22 (s, 6H), 0.11 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 167.09, 149.90, 148.56, 129.60, 128.49, 128.32, 104.80, 76.58, 68.76, 63.82, 52.03, 51.94, 41.67, 26.91, 26.05, 25.97, 25.86, 25.69, 18.58, 18.44, 18.05, -4.37, -4.52, -5.22. HRMS (ESI+): *m/z* calcd for [M.NH₄]⁺ [C₂₆H₄₈NO₅Si₂]⁺ 510.3066, found 510.3072.

3.28 tert-butyl (((2R, 5R) -3-((tert-butyldimethylsilyl) oxy)-5-(4-nitrophenyl)-5,6dihydro-2H-pyran-2-yl) methoxy) dimethylsilane 4e:

Prepared according to the general procedure for C2-arylation of pseudo-glucal **1d**: (90 mg, 0.25 mmol), $Pd(OAc)_2$ (6 mg, 0.03 mmol), AsPh₃ (8 mg, 0.03 mmol), 1-iodo-4-nitrobenzene (63 mg, 0.25 mmol) and AgTFA (83 mg, 0.375 mmol) were employed and the reaction mixture heated for 1 h. The crude material was purified by flash column chromatography (0% grading to 10%

AcOEt/cyclohexane) and arylated compound was obtained (87.3 mg, 73%) as a yellow oil. *Rf (30% EtOAc/cyclohexane) = 0.8;* $[\alpha]^{20}_{D} = 12^{\circ}$ (c 0,5 CHCl₃); IR (neat, cm⁻¹): 2956, 2928, 2856, 1721, 1281, 1264, 1101. ¹H NMR (300 MHz, chloroform-*d*) δ 8.14 (d, *J* = 8.4 Hz, 2H), 7.54 (d, *J* = 8.5 Hz, 2H), 5.04 (d, *J* = 4.7 Hz, 1H), 4.04 (m, 1H), 3.97 (d, *J* = 3.3 Hz, 2H), 3.89 (dd, *J* = 4.3 Hz, 1H), 3.86 (dd, *J* = 3.7 Hz, 1H), 0.94 (d, *J* = 6.6 Hz, 18H), 0.20 (s, 6H), 0.10 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 151.25, 150.54, 129.24, 123.44, 103.98, 68.88, 63.65, 41.57, 26.04, 25.67, 18.61, 18.07, -4.34, -5.22. HRMS (ESI⁺): *m/z* calcd for [M.NH₄]⁺ [C₂₄H₄₅N₂O₅Si₂]⁺ 497.2862, found 497.2865.

3.29 (3R, 6R) -5-((4-methoxybenzyl) oxy) -6-(((4-methoxybenzyl) oxy) methyl)-3-(4-nitrophenyl)-3,6-dihydro-2H-pyran 4f:

Prepared according to the general procedure for C2-arylation of pseudo-glucal **1e**: (93 mg, 0.25 mmol), $Pd(OAc)_2$ (6 mg, 0.03 mmol), AsPh₃ (8 mg, 0.03 mmol), 1-iodo-4-nitrobenzene (63 mg, 0.25 mmol) and AgTFA (83 mg, 0.375 mmol) were employed and the reaction mixture heated for 1 h. The crude material was

purified by flash column chromatography (0% grading to 30% AcOEt/cyclohexane) and arylated compound was obtained (55.2 mg, 45%) as a yellow oil. Rf (30% EtOAc/cyclohexane) = 0.48; $[\alpha]^{19}_{D} = 4$ ° (c 0,5 CHCl₃); IR (neat, cm⁻¹): 2956, 2928, 2856, 1613, 1513, 1345, 1247, 1173, 1136, 1111. ¹H NMR (300 MHz, chloroform-*d*) δ 7.99 (d, *J* = 8.5 Hz, 2H), 7.51 (d, *J* = 8.6 Hz, 2H), 7.44 – 7.18 (m, 4H), 6.88 (dd, *J* = 8.5, 3.4 Hz, 4H), 4.98 (d, *J* = 5.2 Hz, 1H), 4.76 (s, 2H), 4.56 (d, *J* = 11.3 Hz, 1H), 4.50 (s, 1H), 4.35 (s, 1H), 4.05 – 3.66 (m, 10H), 3.62 – 3.46 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 159.43, 153.76, 151.38, 146.76, 133.71, 130.38, 129.42, 129.34, 128.88, 128.67, 123.38, 113.93, 96.53, 74.50, 73.32, 69.98, 69.19, 68.87, 55.29, 40.83. HRMS (ESI+): *m/z* calcd for [M.NH₄]⁺ [C₂₈H₃₃N₂O₇]⁺ 509.2282, found 509.2295.

3.30 (2R,5R) -2-(hydroxymethyl) -5-(4-nitrophenyl) dihydro-2H-pyran-3(4H) -one 4g:

Prepared according to the general procedure for C2-arylation of pseudo-glucal **1f**: (116 mg, 0.89 mmol), $Pd(OAc)_2$ (20 mg, 0.089 mmol), AsPh₃ (28 mg, 0.089 mmol), 1-iodo-4-nitrobenzene (222 mg, 0.89 mmol) and AgTFA (295 mg, 1.33 mmol) were employed and the reaction mixture heated for 1 h. The crude material was purified by

flash column chromatography (0% grading to 60% AcOEt/cyclohexane), and reversed phase HPLC affording arylated compound **4g** (65 mg, 30 %) as a yellow oil. *Rf (80% EtOAc/cyclohexane) = 0.45*.IR (neat, cm⁻¹): 3452, 2956, 2928, 1720, 1519,1347, 1110. ¹H NMR (300 MHz, chloroform-*d*) δ 8.20 (d, *J* = 8.7 Hz, 2H), 7.45 (d, *J* = 8.6 Hz, 2H), 4.20 (d, *J* = 4.2 Hz, 1H), 4.09 (t, *J* = 4.5 Hz, 1H), 3.98 (t, *J* = 8.3 Hz, 2H), 3.62 (p, *J* = 6.0 Hz, 1H), 3.02 – 2.76 (m, 1H), 2.17 (s, 1H). ¹³C NMR (75 MHz, CDCl₃) δ 207.61, 149.50, 128.30, 124.04, 82.86, 77.44, 77.02, 76.60, 69.99, 61.80, 43.38, 41.51. HRMS (ESI+): *m/z* calcd for [M. Na]⁺ [C₁₂H₁₃NO₅Na]⁺ 274.0686, found 274.0701

3.31 methyl 4-((2R,3S,4R) -3-(benzyloxy) -2-((benzyloxy)methyl) -5-formyl-3,4-dihydro-2H-pyran-4-yl) benzoate 4h:

Prepared according to the general procedure for C2-arylation of pseudoglucal **1g**: (33 mg, 0.01 mmol), Pd(OAc)₂ (2.5 mg, 0.001 mmol), AsPh₃ (3 mg, 0.001 mmol), methyl 4-iodobenzoate (26 mg, 0.01 mmol) and AgTFA (33 mg, 0.147 mmol) were employed and the reaction mixture heated for 1 h. The crude material was purified by flash column chromatography (0% grading to 25 % AcOEt/cyclohexane), and reversed phase HPLC affording arylated compound **4h** (25.1 mg, 60 %) as a yellow oil. R*f* (30% EtOAc/cyclohexane) = 0.26; $[\alpha]^{17}_{D} = 90^{\circ}$ (c 0.3 CHCl₃). IR (neat, cm⁻¹): 1721,

1631, 1281, 1182, 1115 ; ¹H NMR (400 MHz, chloroform-*d*) δ 9.30 (s, 1H), 7.96 (d, J = 8.4 Hz, 2H), 7.52 (s, 1H), 7.39 – 7.18 (m, 10H), 7.06 – 6.98 (m, 2H), 4.47 (d, J = 2.6 Hz, 2H), 4.31 (d, J = 10.8 Hz, 1H), 4.21 – 4.15 (m, 1H), 4.04 (d, J = 10.8 Hz, 1H), 3.95 – 3.85 (m, 5H), 3.74 (dd, J = 10.9, 4.4 Hz, 1H), 3.61 (dd, J = 10.9, 3.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 188.85, 167.01, 164.83, 145.86, 137.38, 137.15, 129.99, 128.96, 128.61, 128.09, 120.14, 80.08, 77.46, 77.14, 76.77, 74.22, 73.76, 67.91, 52.14, 43.78, 27.04. HRMS (ESI⁺): m/z calcd for [M. H]⁺ [C₂₉H₂₉O₆]⁺473.1959, found 473,1966.

3.32 tert-butyl(((2R,5S) -3-((tert-butyldimethylsilyl) oxy) -5-(4-nitrophenyl) -5,6-dihydro-2H-pyran-2-yl) methoxy) dimethylsilane 4i:

Prepared according to the general procedure for C2-arylation of pseudo-galactal **1h**: (150 mg, 0.426 mmol), $Pd(OAc)_2$ (10 mg, 0.042 mmol), AsPh₃ (13 mg, 0.042 mmol), 1-iodo-4-nitrobenzene (107 mg, 0.426 mmol) and AgTFA (142 mg, 0.639 mmol) were employed and the reaction mixture heated for 1 h. The crude

material was purified by flash column chromatography (0% grading to 10% AcOEt/cyclohexane), and reversed phase HPLC affording arylated compound **4i** (84.6 mg, 20 %) as a yellow oil. Rf (20% EtOAc/cyclohexane) = 0.73. IR (neat, cm⁻¹): 2956, 2928, 2856, 1665, 1597, 1521, 1472, 1346, 1252, 1212, 1181, 1143, 1109. ¹H NMR (300 MHz, chloroform-*d*) δ 8.18 (d, *J* = 8.7 Hz, 2H), 7.41 (d, *J* = 8.7 Hz, 2H), 5.06 – 5.00 (m, 1H), 4.18 (dd, *J* = 10.9, 4.7 Hz, 1H), 4.12 – 4.06 (m, 1H), 3.97 (dd, *J* = 11.1, 2.4 Hz, 1H), 3.87 (dd, *J* = 11.2, 5.7 Hz, 1H), 3.75 – 3.63 (m, 1H), 3.44 (dd, *J* = 10.9, 6.7 Hz, 1H), 0.94 (d, *J* = 6.6 Hz, 18H), 0.22 (d, *J* = 3.7 Hz, 6H), 0.10 (d, *J* = 1.7 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 150.43, 150.33, 146.90, 128.70, 123.73, 104.41, 77.41, 76.99, 76.75, 76.57, 68.82, 63.76, 41.45, 30.18, 26.89, 25.98,

25.60, 18.46, 18.01, -4.36, -4.46, -5.16, -5.25. HRMS (ESI+): *m*/*z* calcd for [M.NH₄]⁺ [C₂₄H₄₅N₂O₅Si₂]⁺ 497.2862, found 497.2882.

4. DFT Computations:

Computational details: Geometries (minima and transition states) were optimized at the B3LYP level of theory at 393.15 K and 1 atm using the Gaussian 16 software package.⁷ The double– ζ basis set (LANL2DZ ECP) was used for Pd and As.⁸ All other atoms were described by the 6-31G(d) basis set.⁹ Frequency calculations were conducted at this level. Single point energy calculations were performed at the M06 level of theory.¹⁰ This method includes dispersion effects. The SDD basis set was used for Pd and As and the 6-311++G(d,p) was used for the other elements.¹¹ Solvent correction for 1,4-dioxane was obtained with the SMD¹² continuum solvation model as implemented in Gaussian. The values discussed are Gibbs free energies at 393.15 K (ΔG_{393} , kcal/mol).

[Pd] = [Pd(TFA)(AsPh₃)]

⁷ Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

⁸ a) T. H. Dunning Jr, P. J. Hay, *Modern Theoretical Chemistry*, ed. H. F. Schaefer III, Plenum, New York, 1997, vol. 3; b) P. J. Hay and W. R. Wadt, *J. Chem. Phys.*, 1985, **82**, 270 ; c) W. R. Wadt, P. J. Hay, *J. Chem. Phys.*, 1985, **82**, 284 ; d) P. J. Hay, W. R. Wadt, *J. Chem. Phys.*, 1985, **82**, 299.

⁹ a) A. D. MacLean and G. S. Chandler, *J. Chem. Phys.*, 1980, **72**, 5639 ; b) R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, *J. Chem. Phys.*, 1980, **72**, 650.

¹⁰ Y. Zhao, D. G. Truhlar, J. Chem. Phys., 2006, **125**, 194101.

¹¹ a) F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297 ; b) F. Weigend, *Phys. Chem. Chem. Phys.*, 2006, **8**, 1057.

Figure S1. Geometries of selected computed structures (selected distances in Å).

Figure S2. Free energy profile (ΔG_{393} , kcal/mol) of the *syn*-insertion pathways with [Pd] = Pd(AsPh₃)⁺

Figure S3. Free energy profile (ΔG_{393} , kcal/mol) of the *syn*-insertion pathways with [Pd] = Pd(TFA)(AsPh₃)

$[Pd] = [Pd(AsPh_3)]^+$										
TS _{C2-cis}	C2-cis	Int-C3-cis	TS _{C3-cis}	C3-cis	Int-C2-trans					
15.3	-10.4	-1.8	24.0	-9.9	-2.6					
TS _{C2-trans}	C2-trans	Int-C3-	TS _{C3-trans}	C3-						
		trans		trans						
24.3	5.2	-1.5	22.6	-2.4						
	[Pd] = [Pd(T	FA)(AsPl	n₃)]						
TS _{C2-cis}	C2-cis	Int-C3-cis	TS _{C3-cis}	C3-cis	Int-C2-trans					
15.0	-6.5	3.0	16.2	-1.8	0.3					
TS _{C2-trans}	C2-trans	Int-C3-	TS _{C3-trans}	C3-						
		trans		trans						
18.1	-3.5	4.7	17.4	-3.5						

Table S4. Free energies (ΔG_{393} , kcal/mol) of the computed intermediates and transition states referenced to **Int-C2**-*cis*

Table S5. Coordinates (x,y,z) and energies (Hartree) and imaginary frequencies (cm⁻¹) of the computed minima and transition states.

	[Pd] = [Pd(AsPh ₃)] ⁺								
Q ^{ra}		t Clasic		G					
INT-C2- <i>CIS</i> F(RM06) = -1825-35649540					٦	Sc2-cis			
L(11100) - 1023.33043340					Frequence	cy -355.1137	24		
	0.420005	0.070050	0.0075	D.I	E(RIVIU6) =	-1825.332703	34		
Pa	-0.130805	0.279858	-0.66875	Pa	-0.307201	-0.004311	-0.620876		
C	-2.703989	1.911289	-1.404898	C	-2.332118	1.47959	-1.428648		
C	-2.464408	0.585136	-1.443969	C	-2.2/3395	0.069301	-1.32476		
C	-3.119566	-0.320005	-0.41/99	C	-3.034341	-0.622734	-0.208092		
С	-4.474919	0.290489	-0.025091	С	-4.379072	0.095071	0.003639		
0	-4.144453	1.56067	0.535954	0	-3.991164	1.421787	0.376284		
Н	-5.110077	0.395961	-0.914	н	-4.96516	0.10033	-0.923974		
Н	-2.523238	-0.391959	0.498806	Н	-2.500419	-0.550518	0.747336		
0	-3.261783	-1.660884	-0.938879	0	-3.182197	-2.026484	-0.510063		
н	-2.000829	0.137398	-2.323552	Н	-2.160396	-0.496319	-2.25212		
С	-3.61658	2.507833	-0.379109	С	-3.444572	2.191494	-0.675943		
н	-2.300936	2.575009	-2.165566	н	-2.099928	1.906388	-2.399524		
н	-4.430661	3.027382	-0.91544	н	-4.218391	2.396352	-1.438241		
н	-3.095954	3.264405	0.220238	Н	-3.132676	3.144074	-0.245963		
С	-2.123255	-2.353343	-1.077829	С	-2.05166	-2.750338	-0.588921		
0	-1.009788	-1.874661	-0.869397	0	-0.921047	-2.271663	-0.506025		

С	-2.356391	-3.772938	-1.505262	С	-2.325026	-4.21442	-0.772961
н	-2.955986	-3.794077	-2.420984	Н	-3.082245	-4.3639	-1.548016
н	-2.927205	-4.300457	-0.733429	Н	-2.72735	-4.627463	0.1594
н	-1.399911	-4.270777	-1.664343	Н	-1.40202	-4.73359	-1.031477
С	0.527624	2.155399	-0.60073	С	-0.467067	2.088065	-0.587473
As	2.087209	-0.387196	0.157157	As	2.14082	-0.27155	0.126
С	0.417991	2.897765	0.578626	С	-0.69542	2.639787	0.687711
С	0.950949	2.759926	-1.788337	С	0.210177	2.842793	-1.562908
С	0.698274	4.271119	0.554236	С	-0.22333	3.918162	0.986337
н	0.124369	2.426164	1.512238	н	-1.257709	2.085084	1.433621
С	1.223808	4.132918	-1.801074	С	0.683043	4.118193	-1.253719
н	1.069885	2.180985	-2.700299	н	0.362564	2.439415	-2.560481
С	1.097751	4.888357	-0.632723	С	0.464247	4.657214	0.017449
н	0.608564	4.850601	1.469347	н	-0.401087	4.340599	1.971454
н	1.54324	4.605344	-2.726194	н	1.211723	4.693845	-2.007868
н	1.317885	5.95189	-0.64588	н	0.819235	5.656891	0.249836
С	3.698403	0.427419	-0.606811	С	3.33232	1.290381	0.204397
С	2.239178	-0.114767	2.088919	С	2.395895	-1.133627	1.875625
С	2.317935	-2.314291	-0.121489	С	3.048273	-1.484892	-1.129529
С	3.97545	1.780396	-0.359454	С	3.14442	2.24517	1.214113
С	4.572955	-0.334448	-1.392106	С	4.343296	1.478033	-0.746205
С	5.127715	2.359462	-0.891432	С	3.967667	3.370074	1.275951
н	3.304256	2.38225	0.24478	н	2.363872	2.113063	1.958368
С	5.720025	0.256534	-1.927218	С	5.160093	2.610043	-0.684316
н	4.373097	-1.383786	-1.582593	н	4.504232	0.742554	-1.528484
С	5.998767	1.600722	-1.677434	С	4.975583	3.554852	0.32613
н	5.342004	3.405542	-0.692765	н	3.824204	4.099796	2.068074
н	6.396362	-0.338766	-2.533741	н	5.945838	2.746262	-1.422074
н	6.89312	2.056663	-2.09213	н	5.617011	4.430093	0.376811
С	3.483046	0.112419	2.692407	С	3.512979	-0.869492	2.679136
С	1.082537	-0.185852	2.877364	С	1.434684	-2.058776	2.307271
С	3.563675	0.265697	4.078608	С	3.663378	-1.525375	3.903696
н	4.384194	0.175601	2.090327	н	4.262527	-0.152318	2.359093
С	1.169735	-0.03361	4.261802	С	1.591728	-2.713746	3.529815
н	0.114868	-0.358878	2.411884	н	0.570271	-2.277592	1.685624
С	2.410499	0.193344	4.8624	С	2.704691	-2.446017	4.330163
н	4.529134	0.442804	4.543568	н	4.531274	-1.31545	4.522436
н	0.270998	-0.088496	4.869326	н	0.845043	-3.431479	3.858278
н	2.477664	0.31571	5.939468	н	2.824136	-2.953421	5.283114
С	2.028858	-2.861	-1.379685	С	2.672889	-1.454438	-2.48001
С	2.785618	-3.139042	0.908739	С	4.052271	-2.366959	-0.710249
С	2.224496	-4.223639	-1.60892	С	3.302274	-2.290562	-3.404512
н	1.650798	-2.229935	-2.179457	н	1.889444	-0.776923	-2.813439
С	2.9693	-4.504226	0.675625	С	4.675837	-3.20543	-1.636604
н	3.009862	-2.725687	1.887104	н	4.34618	-2.406452	0.334333
С	2.692509	-5.04615	-0.580584	С	4.303613	-3.167448	-2.98224
н	2.011532	-4.642047	-2.588695	н	3.008566	-2.259633	-4.450046
Н	3.33305	-5.14115	1.476714	н	5.452857	-3.888619	-1.305544

Н	2.841318	-6.107152	-0.759198	Н	4.791101	-3.821389	-3.69959
С	-5.211931	-0.515397	1.036944	С	-5.209375	-0.499632	1.133479
Н	-4.665458	-0.473063	1.982566	Н	-4.699236	-0.35207	2.088778
Н	-5.312435	-1.550281	0.700433	Н	-5.359926	-1.565662	0.944376
0	-6.503191	0.032387	1.322538	0	-6.473159	0.156145	1.274982
С	-7.499344	-0.309602	0.455257	С	-7.445523	-0.232034	0.399193
0	-7.308436	-0.986662	-0.530714	0	-7.245075	-1.028392	-0.491217
С	-8.820482	0.257556	0.905822	С	-8.75188	0.450349	0.709827
Н	-8.731547	1.332385	1.091184	Н	-8.607441	1.530937	0.803118
Н	-9.122193	-0.211415	1.848793	Н	-9.137024	0.089212	1.669856
Н	-9.576817	0.066235	0.144216	Н	-9.473234	0.230295	-0.077537

C2-cis

E(RM06) = -1825.35723366

	E(RM06) =	-1825.379316	26	E(RM06) = -1825.35723366			
Pd	-0.229415	0.29048	-0.625202	С	1.127948	-2.428264	-0.500905
С	-2.554111	1.843716	-1.508863	С	-2.039819	-2.240074	-1.069299
С	-2.224251	0.384333	-1.193868	С	-2.968936	-1.478533	-0.146294
С	-2.987767	-0.195969	-0.015881	С	-3.205855	-0.026154	-0.631052
С	-4.484979	0.194554	-0.064681	0	-2.116684	0.398306	-1.486832
0	-4.540522	1.61293	-0.087622	н	-4.129391	-0.002761	-1.219091
Н	-4.936527	-0.229083	-0.972596	н	-2.584843	-1.487373	0.87948
Н	-2.584285	0.148693	0.944226	0	-4.220985	-2.19116	-0.146732
0	-2.94119	-1.653347	-0.018607	С	-1.678831	-1.778805	-2.304615
н	-2.306004	-0.266683	-2.071791	н	-1.797981	-3.25776	-0.775831
С	-4.044348	2.15946	-1.30124	Pd	-0.100712	-0.879766	-0.782283
н	-2.324288	2.030873	-2.565438	С	-2.085695	-0.37844	-2.701123
н	-4.618157	1.761657	-2.151604	н	-1.172468	-2.421909	-3.019271
н	-4.21525	3.23846	-1.247768	н	-3.067662	-0.348433	-3.195493
С	-1.796571	-2.316248	-0.111239	н	-1.352279	0.094751	-3.358364
0	-0.68336	-1.798874	-0.25797	C	-4.872285	-2.292071	1.061852
С	-1.975056	-3.802604	-0.000854	0	-4.423789	-1.83173	2.085392
н	-2.8138	-4.1273	-0.622992	С	-6.183057	-3.010901	0.899518
н	-2.218292	-4.059663	1.036721	н	-6.0635	-3.90698	0.284523
н	-1.055753	-4.309665	-0.294025	н	-6.893076	-2.349651	0.389523
С	-1.550171	2.62766	-0.676254	н	-6.577274	-3.269472	1.882666
As	2.284314	-0.207121	0.046798	As	1.646294	0.648658	0.143204
С	-1.859477	3.296353	0.51683	C	2.075075	-2.756518	-1.469409
С	-0.195167	2.583354	-1.115803	С	0.908667	-3.249733	0.607456
С	-0.857114	3.9579	1.223659	С	2.804022	-3.944916	-1.33048
Н	-2.881284	3.303945	0.88116	Н	2.262777	-2.10806	-2.31919

С	0.807573	3.259901	-0.379137	С	1.650703	-4.431473	0.735634
Н	0.021965	2.279988	-2.142793	н	0.170419	-2.994819	1.363151
С	0.476616	3.938863	0.783554	С	2.595139	-4.779196	-0.231518
н	-1.114527	4.49994	2.129525	н	3.539967	-4.207625	-2.085456
Н	1.829734	3.256474	-0.741859	н	1.481316	-5.075831	1.594137
н	1.241534	4.466377	1.344669	н	3.166973	-5.696523	-0.12806
С	3.74365	1.087919	-0.248734	С	1.548477	0.770513	2.098079
С	2.5768	-0.766293	1.909648	С	3.515968	0.264616	-0.295737
С	2.855257	-1.758547	-1.026743	С	1.394594	2.48746	-0.495941
С	3.979975	2.09802	0.69658	С	1.644939	-0.398979	2.867626
С	4.502983	1.055379	-1.425111	С	1.36636	2.008748	2.726756
С	4.96768	3.058163	0.46731	С	1.570377	-0.323281	4.259235
н	3.408421	2.129624	1.620554	н	1.783934	-1.364052	2.389231
С	5.486422	2.021903	-1.652884	С	1.285413	2.074131	4.119828
н	4.34285	0.271956	-2.160062	н	1.290039	2.91875	2.14041
С	5.720574	3.023162	-0.709161	С	1.387815	0.912004	4.88591
н	5.153476	3.828455	1.210814	н	1.651986	-1.229418	4.852634
н	6.074704	1.984318	-2.565397	н	1.144404	3.036161	4.603891
н	6.489307	3.769804	-0.885892	н	1.324993	0.967401	5.968714
С	3.855835	-0.792755	2.484788	С	4.450255	-0.059156	0.693318
C	1.470613	-1.163459	2.672912	C	3.909465	0.321736	-1.64084
C	4.021542	-1.216547	3.805186	C	5.774623	-0.326227	0.335164
н	4.721804	-0.475167	1.911648	н	4.157954	-0.097836	1.737843
С	1.640074	-1.58685	3.992627	С	5.23378	0.05874	-1.990522
н	0.47572	-1.146911	2.235969	н	3.193059	0.584664	-2.415674
С	2.91555	-1.61375	4.559685	С	6.166776	-0.268405	-1.002572
н	5.015357	-1.234148	4.243499	н	6.498507	-0.574079	1.106025
н	0.777139	-1.891482	4.578328	н	5.537022	0.111509	-3.032247
н	3.047409	-1.940292	5.587187	н	7.197533	-0.473749	-1.276303
С	2.393736	-1.849731	-2.347945	С	0.119246	2.940091	-0.860936
С	3.695704	-2.757258	-0.520193	С	2.490177	3.36196	-0.551237
С	2.780603	-2.919125	-3.158532	С	-0.055562	4.262555	-1.275178
н	1.730001	-1.086545	-2.749676	н	-0.739175	2.276786	-0.834608
С	4.074622	-3.829671	-1.330722	С	2.305764	4.681578	-0.967164
н	4.052191	-2.707711	0.504005	н	3.482888	3.020045	-0.275535
С	3.621293	-3.910784	-2.649146	С	1.034452	5.132745	-1.32936
н	2.422795	-2.978937	-4.182649	н	-1.04621	4.608404	-1.555609
Н	4.726133	-4.601466	-0.930596	н	3.156855	5.355137	-1.008172
н	3.920265	-4.74537	-3.276804	н	0.895265	6.159846	-1.654026
С	-5.25372	-0.293175	1.160241	С	-3.311739	0.954359	0.528976
н	-4.93686	0.269374	2.042207	н	-4.043755	0.57712	1.24662
н	-5.076099	-1.36099	1.304402	н	-2.343394	1.062618	1.025958
0	-6.658098	-0.045823	1.03837	0	-3.668006	2.272869	0.096509
С	-7.361299	-0.960569	0.31051	С	-4.996196	2.466639	-0.162183
0	-6.836415	-1.897905	-0.249586	0	-5.809741	1.571908	-0.106075
С	-8.832689	-0.637489	0.320744	С	-5.276817	3.90648	-0.504067
н	-8.997735	0.398671	0.009626	н	-4.615959	4.245833	-1.307832
Н	-9.227144	-0.738362	1.337734	Н	-5.082404	4.53867	0.369216

Н	-9.359706	-1.320649	-0.345741	Н	-6.319266	4.011212	-0.80554			
	Frequen	cy -348.5915			E(RM06) =	-1825.372945	25			
	E(RM06) =	-1825.314963	40		4.475027	2 45 6 0 6 0	0 74467			
	-0.540507	-2.086008			-1.4/583/	-2.456069	-0.74467			
	-2.195122	-1.038453	-1.510459		-2.103556	-1.104023	-1.180325			
	-3.010949	-0.556702	-0.555004		-3.059449	-0.485065	-0.149987			
	-3.376729	1 710004	-0.007301		-3.202057	1.023039	-0.303113			
н	-4 356926	0.802233	-1.379896	Ч	-1.982023	1 101031	-0.331073			
н	-7.4/6126	-0 518446	0 503352	н	-2 69707/	-0.625/89	-1.334878			
	-2.440120	-0.518440	-0.186177		-2.037074	-0.023489	-0 307815			
C	-4.113234	-0.002241	-0.180177	C	-4.518840	-0.10/222	-0.507815			
ч	-2 568738	-0.052541	-1 922865	с н	-2 60033/	-0.134555	-2.095033			
Pd	0 133578	-0 137913	-1 287298	Pd	0 380029	-1 129816	-0 246875			
C C	-2 028423	1 369253	-2 33/83/	C C	-1 177787	1 293362	-1 447176			
н	-1 399774	-0.450519	-3 435615	н	-0 466546	-0 45253	-2 501733			
н	-2.780342	1.574194	-3.120622	н	-1.674579	1.586054	-2.39445			
н	-1.1763	2.032749	-2.540382	н	-0.256425	1.875146	-1.373832			
C	-4.391372	-1.901877	1.081961	C	-4.943891	-1.636275	0.810357			
0	-3.692241	-1.640687	2.034263	0	-4.427176	-1.627878	1.906891			
C	-5.662763	-2.699422	1.088181	C	-6.324225	-2.124506	0.474206			
н	-5.681916	-3.41231	0.259082	н	-6.300709	-2.784189	-0.398209			
н	-6.497643	-2.00293	0.950333	н	-6.940126	-1.255433	0.21671			
н	-5.766208	-3.216692	2.042394	н	-6.749471	-2.6431	1.33382			
As	2.259596	0.387574	0.096401	As	2.266367	0.430877	0.047149			
С	-0.120415	-2.975286	-1.901022	С	-0.777003	-3.223408	-1.71417			
С	-0.61193	-2.495416	0.443635	С	-1.598466	-2.99113	0.561481			
С	0.278444	-4.265261	-1.550994	С	-0.239097	-4.469993	-1.39759			
н	-0.114879	-2.673644	-2.944362	н	-0.697998	-2.851255	-2.732455			
С	-0.228298	-3.797288	0.773083	С	-1.04794	-4.239571	0.870106			
н	-0.962182	-1.830855	1.225341	н	-2.170027	-2.472437	1.322827			
С	0.221795	-4.677051	-0.215756	С	-0.373534	-4.979781	-0.102506			
Н	0.614668	-4.951268	-2.322862	н	0.273468	-5.044812	-2.162915			
Н	-0.286509	-4.11933	1.80857	н	-1.168994	-4.637754	1.872941			
Н	0.513418	-5.688419	0.051203	н	0.038271	-5.954019	0.143596			
С	2.313085	-0.146847	1.987814	С	3.242258	-0.361488	1.552593			

С	3.974768	-0.237471	-0.619835	С	3.563496	0.468675	-1.419698
С	2.421409	2.348195	0.139935	С	1.948493	2.298002	0.530937
С	2.435155	-1.508058	2.303965	С	3.711833	-1.678459	1.42219
С	2.190838	0.797442	3.013837	С	3.417127	0.328237	2.758371
С	2.444914	-1.916058	3.638597	С	4.361778	-2.294856	2.492113
Н	2.534552	-2.250451	1.516459	Н	3.592514	-2.217786	0.484826
С	2.19397	0.381423	4.347838	С	4.067736	-0.296338	3.825031
Н	2.100939	1.854057	2.78065	Н	3.056496	1.346507	2.867228
С	2.321744	-0.972436	4.661646	С	4.538164	-1.604607	3.694132
Н	2.551734	-2.970163	3.879323	Н	4.731776	-3.310526	2.385839
Н	2.1031	1.118861	5.140254	Н	4.20897	0.242845	4.757233
Н	2.327839	-1.292129	5.699643	Н	5.043243	-2.085547	4.526616
С	5.095487	-0.416822	0.202531	С	4.94064	0.501044	-1.160419
С	4.075753	-0.484975	-1.995332	С	3.10191	0.490439	-2.742573
С	6.307095	-0.834133	-0.353118	С	5.84595	0.560316	-2.222485
Н	5.025859	-0.240143	1.271788	Н	5.309137	0.472855	-0.139325
С	5.28947	-0.898483	-2.546814	С	4.011011	0.552022	-3.79946
Н	3.208074	-0.356403	-2.638994	н	2.036048	0.457034	-2.953175
С	6.405383	-1.073417	-1.725465	С	5.383033	0.586742	-3.539509
Н	7.17317	-0.972334	0.287815	н	6.912457	0.583891	-2.018371
Н	5.361962	-1.087686	-3.614029	н	3.64899	0.568816	-4.823361
Н	7.348988	-1.398954	-2.15366	н	6.090146	0.630782	-4.362607
С	1.2427	3.108594	0.188626	С	0.777349	2.635101	1.223504
С	3.663005	2.99541	0.108192	С	2.893122	3.286817	0.221222
С	1.307462	4.503361	0.215864	С	0.559661	3.957805	1.614294
Н	0.270366	2.618344	0.215043	Н	0.026484	1.880275	1.437495
С	3.72224	4.39048	0.130199	С	2.666425	4.606473	0.614566
Н	4.581413	2.41811	0.061197	н	3.797709	3.034873	-0.323905
С	2.54767	5.144408	0.185147	С	1.503167	4.941621	1.312055
Н	0.39164	5.086161	0.257898	н	-0.350826	4.21824	2.145705
Н	4.68763	4.887757	0.103993	н	3.398452	5.37199	0.374273
Н	2.598866	6.229211	0.201545	н	1.329742	5.970444	1.613841
С	-4.164354	1.52466	0.653372	С	-4.095753	1.673854	0.747553
н	-4.473055	0.770477	1.377254	н	-4.747825	0.950041	1.234674
н	-3.404907	2.170263	1.099282	н	-3.415599	2.106007	1.484075
0	-5.272065	2.382882	0.351433	0	-4.88213	2.769697	0.258063
С	-6.488176	1.771411	0.28652	С	-6.125748	2.449582	-0.196157
0	-6.631435	0.574781	0.419751	0	-6.545959	1.313135	-0.231961
С	-7.58599	2.774745	0.048362	с	-6.879567	3.684647	-0.617411
н	-7.326671	3.441256	-0.779419	н	-6.266009	4.304269	-1.278059
н	-7.712268	3.397339	0.941239	н	-7.118696	4.287082	0.266107
н	-8.518971	2.251386	-0.162411	н	-7.803503	3.394445	-1.118349

Int-C2-trans E(RM06) = -1825.36360525					TS _{C2-trans} Frequency -369.5115			
C.	-1.151965	2.37239	-0.139355	С	-0.326599	2,861214	-0.206082	
C	1 871227	3 142894	-0.916031	C	1 665538	3 071605	-0 634952	
Pd	0 189469	0 991551	-0 659847	Pd	0.258226	0.952766	-0 866074	
C	-2 064274	2 815571	-0.055847	ru C	-1 078204	3 537068	-0.800074	
	-2.004274	2.015571	1 116/182		-0.628458	3.040079	1 15/268	
	1 079444	2.970012	1.110482		1 005000	3.040079	1.134208	
	2.576444	2.143293	-1.024909		1.003223	2.037882	-1.019734	
	2.853392	3.209888	0.210753		2.525937	3.012000	0.032988	
П	1.134082	3.931013	-1.041759	П	1.453941	4.068417	-1.003448	
	2.980669	1.029579	-1.651092		2.97639	1.014338	-1.462/6/	
Н	1.409307	2.163259	-2.753834	Н	1.619588	2.296294	-2.651876	
C	3.650764	1.093662	-0.260068	C	3.5/2431	1.010094	-0.041241	
н	3./1969/	1.005452	-2.456292	Н	3.760858	1.163/58	-2.21246	
0	2.173187	-0.187186	-1.734047	0	2.322913	-0.26241	-1.733255	
0	3.984774	2.440287	0.037604	0	3.755395	2.359339	0.373134	
H	2.933615	0.707617	0.480643	Н	2.865962	0.501826	0.631132	
С	4.932819	0.270807	-0.192004	C	4.925304	0.30649	0.02533	
С	2.676918	-1.233343	-2.498902	С	2.994318	-1.168704	-2.542003	
As	-1.455899	-0.655322	0.160435	As	-1.558476	-0.642994	0.069309	
Н	2.360776	3.069091	1.184343	Н	2.004666	2.507482	1.456796	
Н	3.227627	4.298781	0.254134	Н	2.775336	4.024447	0.958924	
0	3.763017	-1.167423	-3.013903	0	4.092626	-0.930404	-2.974895	
С	1.722586	-2.391138	-2.5605	С	2.181293	-2.4127	-2.75731	
Н	0.706374	-2.055307	-2.784224	Н	1.215566	-2.165314	-3.210189	
Н	1.699415	-2.897644	-1.589987	Н	1.980932	-2.896715	-1.795902	
Н	2.066604	-3.088331	-3.325237	Н	2.73284	-3.089606	-3.410083	
С	-2.425526	-0.334625	1.831153	С	-2.391564	-0.278948	1.815732	
С	-2.833709	-1.018575	-1.179052	С	-3.093501	-0.9281	-1.119994	
С	-0.511973	-2.34987	0.437343	С	-0.76428	-2.429372	0.299386	
С	-2.879522	3.917036	-0.801686	С	-2.141487	4.354129	-0.811009	
н	-2.155665	2.322387	-2.061707	н	-0.821266	3.441368	-2.240771	
С	-1.884587	4.078743	1.395529	С	-1.682789	3.876916	1.522208	
н	-0.384406	2.606005	1.875165	н	-0.063596	2.525637	1.924434	
С	-2.787698	4.549116	0.439459	С	-2.439086	4.530635	0.545008	
н	-3.587122	4.27102	-1.546503	н	-2.722915	4.868386	-1.57059	
н	-1.815469	4.560156	2.367276	н	-1.915038	4.011038	2.574361	

Н	-3.422903	5.400856	0.664029	Н	-3.25249	5.187304	0.839186
С	-3.458958	0.61311	1.86486	С	-3.371598	0.718965	1.91562
С	-2.085606	-1.045233	2.989102	С	-1.99018	-0.973906	2.963183
С	-4.078765	-1.547358	-0.81252	С	-4.314371	-1.431309	-0.648796
С	-2.547147	-0.780076	-2.530204	С	-2.944583	-0.639634	-2.483341
С	0.75384	-2.330079	1.039918	С	0.562331	-2.509324	0.748216
С	-1.086864	-3.568829	0.052737	С	-1.476469	-3.606157	0.032981
С	-4.153783	0.836218	3.053821	С	-3.951578	1.008208	3.152041
Н	-3.726757	1.1734	0.974301	н	-3.696206	1.262803	1.032572
С	-2.781831	-0.809098	4.176818	С	-2.568233	-0.674371	4.199555
Н	-1.291777	-1.785202	2.970375	н	-1.239792	-1.756035	2.89738
С	-3.815345	0.128139	4.20994	С	-3.54944	0.31369	4.295715
Н	-4.958728	1.565074	3.075768	н	-4.72166	1.771736	3.220199
Н	-2.518409	-1.364482	5.072237	н	-2.257239	-1.22246	5.08444
Н	-4.358049	0.306039	5.133788	н	-4.003153	0.538755	5.256624
С	-5.025532	-1.83917	-1.797346	С	-5.369601	-1.648014	-1.537758
Н	-4.316211	-1.72531	0.231944	Н	-4.44851	-1.646517	0.407178
С	-3.496529	-1.074782	-3.509857	С	-4.000785	-0.859676	-3.369346
Н	-1.586205	-0.358787	-2.81807	н	-2.00387	-0.240051	-2.856801
С	-4.735897	-1.604561	-3.143057	С	-5.213874	-1.364303	-2.896361
Н	-5.98985	-2.248194	-1.510319	н	-6.313327	-2.037909	-1.167127
Н	-3.270854	-0.887065	-4.555634	Н	-3.877833	-0.63371	-4.424772
Н	-5.476073	-1.830741	-3.904907	н	-6.037273	-1.532847	-3.584324
С	1.439051	-3.526118	1.266826	С	1.169471	-3.752922	0.941876
Н	1.225498	-1.394896	1.327806	н	1.139671	-1.610232	0.947115
С	-0.396375	-4.761029	0.2808	С	-0.865216	-4.847724	0.221383
Н	-2.063059	-3.594256	-0.421742	н	-2.500838	-3.560187	-0.323933
С	0.862608	-4.740986	0.887439	С	0.453671	-4.92289	0.677013
Н	2.422141	-3.487251	1.724128	Н	2.197244	-3.787615	1.289798
Н	-0.843719	-5.705119	-0.016647	Н	-1.421717	-5.756946	0.012027
Н	1.395136	-5.671867	1.060131	Н	0.922692	-5.891945	0.822232
Н	4.767971	-0.728682	-0.597722	Н	4.91859	-0.600176	-0.580666
Н	5.721376	0.772383	-0.756615	Н	5.704933	0.982112	-0.332386
0	5.436801	0.175008	1.15018	0	5.293638	-0.016715	1.376045
С	4.850219	-0.739285	1.955706	С	4.721636	-1.126934	1.901016
0	3.892048	-1.407687	1.615076	0	3.877913	-1.777547	1.313781
С	5.548004	-0.81637	3.288853	С	5.280839	-1.434346	3.265567
н	6.53406	-1.276283	3.158125	н	6.30481	-1.810931	3.161252
Н	4.957294	-1.419558	3.979061	н	4.667526	-2.193619	3.751969
н	5.708806	0.185512	3.697177	н	5.328071	-0.528978	3.8772

C2-trans							
		1025.550505			Int-	C3-trans	
					E(RM06) =	-1825.356357	'12
С	0.716464	3.227209	-0.364005	С	-1.284371	-2.296574	-0.807461
С	2.160242	2.985627	-0.860415	С	1.90656	-2.573213	-1.020892
Pd	0.268741	0.925738	-0.928642	Pd	0.189485	-0.95036	-0.808179
С	-0.345057	3.202965	-1.324925	С	-1.442141	-3.112735	0.311692
С	0.382047	3.53843	0.976363	С	-2.055361	-2.457997	-1.956668
С	2.000873	1.71003	-1.692781	С	3.045595	-1.964827	-0.232605
С	3.203915	2.8135	0.268365	С	1.635929	-2.1377	-2.289231
Н	2.477919	3.820997	-1.497661	Н	1.428028	-3.459066	-0.615738
С	2.957342	0.539473	-1.53768	С	3.371222	-0.580197	-0.818622
Н	1.746484	1.894412	-2.740296	Н	3.92077	-2.623271	-0.2848
С	3.823432	0.622607	-0.270276	0	2.684458	-1.774116	1.149304
Н	3.589927	0.424406	-2.423675	0	3.636779	-0.734765	-2.2009
0	2.064621	-0.626979	-1.456472	н	2.495314	0.083724	-0.665617
0	4.26494	1.966822	-0.134938	С	4.574886	0.080627	-0.158615
н	3.210113	0.338881	0.596485	С	2.5049	-1.104813	-2.969223
С	5.04714	-0.287024	-0.329913	С	2.706299	-2.896337	1.94087
С	2.409232	-1.753496	-2.200358	н	0.901627	-2.654625	-2.902968
As	-1.761935	-0.40246	0.115475	н	1.913996	-0.210602	-3.236081
н	2.742122	2.39202	1.17308	As	-1.313242	0.798165	0.140097
н	3.652275	3.775213	0.528036	н	2.89165	-1.521853	-3.906264
0	3.406199	-1.769965	-2.873492	0	2.922452	-3.997656	1.49459
С	1.417417	-2.864542	-2.012233	С	2.453948	-2.544716	3.383317
н	0.417019	-2.548923	-2.326077	н	3.364882	-2.110224	3.811891
н	1.360089	-3.1348	-0.953038	н	2.203158	-3.450187	3.937247
н	1.733824	-3.724276	-2.603332	н	1.658354	-1.800206	3.475987
C	-2.982005	0.403114	1.435042	C	-0.654828	2.485138	-0.61483
C	-2.979985	-1.150838	-1.234756	C	-3.24541	0.813111	-0.174514
C	-1.051655	-1.975291	1.069251	C	-1.066658	0.952378	2.077474
c	-1.669342	3,513195	-0.943712	c	-2.395569	-4,139485	0.26169
H	-0.114483	3,150802	-2.3855	H	-0.846104	-2,969077	1.207664
С	-0.923965	3.850406	1.327352	С	-3.000662	-3.492207	-1.98789
н	1,154572	3.583839	1.735146	н	-1.942413	-1.802243	-2.814513
C	-1.956092	3.835236	0.37214	C	-3,17075	-4.329279	-0.883923
н	-7 448266	3,521629	-1.700135	н	-2 523268	-4.786928	1,174899
H	-1.148951	4.119037	2.35509	н	-3.603819	-3.632009	-2.880742

Н	-2.969606	4.081856	0.66933	Н	-3.906007	-5.127704	-0.915712
С	-4.105636	1.127834	1.013098	С	-0.474163	2.568067	-2.004225
С	-2.695108	0.307819	2.802802	С	-0.376669	3.594204	0.192939
С	-4.24076	-1.672791	-0.911365	С	-3.862466	1.957544	-0.697031
С	-2.546336	-1.181594	-2.56754	С	-4.015616	-0.314931	0.145788
С	0.291621	-1.952034	1.469743	С	0.240122	1.058256	2.580237
С	-1.831374	-3.106899	1.344847	С	-2.160787	0.942819	2.95057
С	-4.937728	1.741622	1.952622	С	-0.02889	3.757648	-2.581773
Н	-4.348852	1.199713	-0.043557	Н	-0.693733	1.712095	-2.638859
С	-3.525632	0.929726	3.738111	С	0.069869	4.782294	-0.391247
Н	-1.836033	-0.262712	3.144551	Н	-0.505656	3.538149	1.268874
С	-4.647529	1.64585	3.315619	С	0.2437	4.865485	-1.774482
Н	-5.817019	2.286007	1.618977	Н	0.101888	3.820451	-3.658252
Н	-3.301176	0.843153	4.797551	Н	0.27581	5.643891	0.237375
Н	-5.297517	2.120254	4.045184	Н	0.587468	5.79251	-2.224212
С	-5.045826	-2.228441	-1.908053	С	-5.244472	1.971084	-0.896973
Н	-4.605863	-1.634873	0.110808	Н	-3.2759	2.835946	-0.945848
С	-3.351847	-1.739728	-3.562478	С	-5.397143	-0.288963	-0.050804
Н	-1.578506	-0.760469	-2.834879	Н	-3.549746	-1.21036	0.544401
С	-4.602015	-2.265766	-3.231852	С	-6.011935	0.850955	-0.57387
Н	-6.021276	-2.630405	-1.649308	Н	-5.718744	2.860128	-1.302288
Н	-3.006589	-1.758033	-4.592345	Н	-5.990605	-1.16307	0.200852
Н	-5.231528	-2.697907	-4.004205	Н	-7.086758	0.865473	-0.729302
С	0.856128	-3.044451	2.134971	С	0.439268	1.162109	3.958325
Н	0.914344	-1.086712	1.256084	Н	1.099525	1.087702	1.915675
С	-1.269846	-4.195495	2.014008	С	-1.948192	1.037725	4.328305
Н	-2.869968	-3.151085	1.032088	Н	-3.17318	0.867763	2.566447
С	0.071206	-4.166273	2.407651	С	-0.651448	1.147109	4.832463
Н	1.904737	-3.010867	2.414746	Н	1.449013	1.263408	4.345885
Н	-1.879707	-5.069854	2.223239	Н	-2.798654	1.032329	5.003868
Н	0.50357	-5.019957	2.921819	Н	-0.490305	1.226376	5.903704
Н	4.781424	-1.26331	-0.73816	Н	5.491488	-0.419768	-0.478241
Н	5.817841	0.17365	-0.951171	Н	4.46926	0.027103	0.926713
0	5.652209	-0.452872	0.962595	0	4.73185	1.448148	-0.566442
С	5.043042	-1.325136	1.801418	С	3.915465	2.353711	0.024963
0	4.000734	-1.889404	1.527428	0	3.035047	2.047316	0.805293
С	5.831724	-1.496403	3.073485	С	4.264098	3.758747	-0.392463
н	6.750685	-2.053802	2.859515	н	5.073519	4.130547	0.247079
Н	5.237947	-2.048068	3.803016	Н	3.392752	4.402326	-0.262513
н	6.128087	-0.524054	3.477246	Н	4.616395	3.786767	-1.426084

Frequency -343.4402E(RM06) = -1825.31847441C1.242495-1.905397-0.405398C1.981412-1.936005-0.143277C2.695133-1.060646-1.685334C2.924006-1.419586-1.262786Pd0.209458-0.358076-1.374724Pd0.171381-0.813363-1.241028C1.411621-1.6979090.972275C1.976635-1.495031.202491C0.961366-3.185076-0.913399C1.087011-2.991167-0.501973C3.714374-0.239558-0.911012C3.911717-0.294483-0.894954C1.909171-0.354305-2.640578C1.936272-0.919767-2.317466H3.020643-2.062627-1.932286H3.508587-2.262009-1.643317C3.2168461.202217-0.732014C3.1785491.052725-0.765342H4.600854-0.2182-1.560411H4.639702-0.5693190.310394O3.0535061.747153-2.038832O2.738851.414948-2.07837H2.2544551.2018-0.189375H2.3046970.959052-0.108157C4.204862.0816270.025239C4.0616982.177147-0.239812C2.0407911.4893530.303932C5.679833-1.4624090.195871H1.547245-0.907246-3.510592H </th <th colspan="5"></th> <th colspan="5">C3-trans</th>						C3-trans				
C 1.242495 -1.905397 -0.405398 C 1.981412 -1.936005 -0.143277 C 2.695133 -1.060646 -1.685334 C 2.924006 -1.419586 -1.262786 Pd 0.209458 -0.358076 -1.374724 Pd 0.171381 -0.81363 -1.241028 C 1.411621 -1.697909 0.972275 C 1.976635 -1.49503 1.202491 C 0.961366 -3.185076 -0.913399 C 1.087011 -2.991167 -0.501973 C 1.909171 -0.354305 -2.640578 C 1.936272 -0.919767 -2.317466 H 3.020643 -2.062627 -1.932286 H 3.508587 -2.262009 -1.643317 C 3.216846 1.202217 -0.732014 C 3.178549 1.052725 -0.765342 H 4.600854 -0.218375 H 2.304697 0.959052 -0.108157 C 4.20486 2.081627 0.025239 C		Frequen	cy -343.4402	41		E(RM06) =	-1825.359793	51		
C 1.242495 -1.905397 -0.405398 C 1.981412 -1.936005 -0.142277 C 2.695133 -1.060646 -1.685334 C 2.924006 -1.419586 -1.262786 Pd 0.209458 -0.358076 -0.313724 Pd 0.171381 -0.813363 -1.241028 C 1.411621 -1.697909 0.972275 C 1.976635 -1.49503 1.202491 C 0.961366 -3.185076 -0.913399 C 1.087011 -2.991167 -0.501973 C 3.714374 -0.239658 -0.911012 C 3.911717 -0.914483 -0.889944 C 1.909171 -0.354055 -2.66207 -1.932286 H 3.508587 -2.262009 -1.643317 C 3.216846 1.202217 -0.732014 C 3.178549 1.052725 -0.765342 H 4.600854 -0.2182 -1.560411 H 4.629155 -0.209205 -1.171447 O 4.09881 -0.78		E(RIVIU6) =	-1825.318474	41						
C 2.695133 -1.060646 -1.683334 C 2.924006 -1.240286 Pd 0.209458 -0.358076 -1.374724 Pd 0.171311 -0.813363 -1.241028 C 1.411621 -1.697909 0.972275 C 1.976635 -1.49503 -1.202491 C 0.961366 -3.185076 -0.913399 C 1.087011 -2.991167 -0.501973 C 3.714374 -0.239658 -0.911012 C 3.911717 -0.294483 -0.894954 C 1.909171 -0.354305 -2.640578 C 1.936272 -0.91767 -2.317466 H 3.020643 -0.20627 -1.932286 H 3.508587 -2.262009 -1.643317 C 3.216846 1.202217 -0.732014 C 3.178549 1.052725 -0.765342 G 3.0265306 1.747153 -2.0308320 2.73785 1.414948 -2.07837 H 2.254455 1.2018 -0.987252 -0.108157 <th< td=""><td>C</td><td>1.242495</td><td>-1.905397</td><td>-0.405398</td><td>C</td><td>1.981412</td><td>-1.936005</td><td>-0.1432//</td></th<>	C	1.242495	-1.905397	-0.405398	C	1.981412	-1.936005	-0.1432//		
Pd 0.20948 -0.358076 -1.374724 Pd 0.171381 -0.813363 -1.241028 C 1.411621 -1.697090 0.972275 C 1.976635 -1.49503 1.220291 C 0.961366 -3.185076 -0.913399 C 1.087011 -2.991167 -0.501973 C 3.714374 -0.239658 -0.911012 C 3.911717 -0.294483 -0.894954 C 1.909171 -0.354305 -2.640578 C 1.936272 -0.919767 -2.317466 H 3.020643 -0.202217 -0.732014 C 3.178549 1.052725 -0.765342 H 4.600854 -0.2182 -1.560411 H 4.629155 -0.209205 -1.717447 O 3.053506 1.747153 -2.038832 O 2.73885 1.414948 -2.07837 H 2.254455 1.2018 -0.198375 H 2.304697 0.959052 -0.108157 C 4.04086 2.081627 0.025239	С	2.695133	-1.060646	-1.685334	C	2.924006	-1.419586	-1.262786		
C 1.411621 -1.697909 0.972275 C 1.976635 -1.49503 1.202491 C 0.961366 -3.185076 -0.913399 C 1.087011 -2.991167 -0.501973 C 3.714374 -0.239658 -0.911012 C 3.911717 -0.294483 -0.894954 C 1.909171 -0.354305 -2.640578 C 1.936272 -0.919767 -2.317466 H 3.020643 -2.062627 -1.932286 H 3.508587 -2.262009 -1.643317 C 3.216846 1.202217 -0.732014 C 3.178549 1.052725 -0.765342 H 4.600854 -0.2182 -1.560411 H 4.629155 -0.209205 -1.717447 O 4.09831 -0.787001 0.351305 O 4.639702 -0.569319 0.310394 G 3.03506 1.747153 -2.038820 2.73885 1.414948 -2.07837 C 4.20486 2.081627 0.025239 C 4.061698 2.177147 -0.239812 C 2.040791	Pd	0.209458	-0.358076	-1.374724	Pd	0.171381	-0.813363	-1.241028		
C 0.961366 -3.185076 -0.913399 C 1.087011 -2.991167 -0.501973 C 3.714374 -0.239658 -0.911012 C 3.911717 -0.294483 -0.894954 C 1.909171 -0.354305 -2.640578 C 1.936272 -0.919767 -2.317466 H 3.020643 -2.062627 -1.932286 H 3.508587 -2.262009 -1.643317 C 3.216846 1.20217 -0.732014 C 3.178549 1.052725 -0.765342 H 4.600854 -0.2182 -1.560411 H 4.629155 -0.209205 -1.171447 O 4.09831 -0.787001 0.351305 O 4.639702 -0.569319 0.310394 O 3.053506 1.747153 -2.038822 O 2.73885 1.414948 -2.07837 H 2.25455 1.2018 -0.198375 H 2.304697 0.959052 -0.018157 C 2.040791 1.144908 -2.812456	С	1.411621	-1.697909	0.972275	C	1.976635	-1.49503	1.202491		
C 3.714374 -0.239658 -0.911012 C 3.911717 -0.294483 -0.894954 C 1.909171 -0.354305 -2.640578 C 1.936272 -0.919767 -2.317466 H 3.020643 -2.062627 -1.932286 H 3.508587 -2.262009 -1.643317 C 3.216846 1.202217 -0.732014 C 3.178549 1.052725 -0.765342 H 4.600854 -0.2182 -1.560411 H 4.629155 -0.209205 -1.717447 O 4.09831 -0.787001 0.351305 O 4.639702 -0.569319 0.310394 O 3.053506 1.747153 -2.038832 O 2.73885 1.414948 -2.07837 H 2.254455 1.2018 -0.198375 H 2.304697 0.959052 -0.108157 C 4.20486 2.081627 0.025239 C 4.061698 2.177147 -0.239812 C 4.912631 1.189533 0.303932 C 5.679833 -1.462409 0.195871 H 1.547245 </td <td>С</td> <td>0.961366</td> <td>-3.185076</td> <td>-0.913399</td> <td>С</td> <td>1.087011</td> <td>-2.991167</td> <td>-0.501973</td>	С	0.961366	-3.185076	-0.913399	С	1.087011	-2.991167	-0.501973		
C 1.903171 -0.354305 -2.640578 C 1.936272 -0.919767 -2.317466 H 3.020643 -2.062627 -1.932286 H 3.508587 -2.262009 -1.643317 C 3.216846 1.202217 -0.732014 C 3.178549 1.052725 -0.765342 H 4.600854 -0.2182 -1.560411 H 4.629155 -0.209205 -1.717447 O 4.09831 -0.787001 0.351305 O 4.639702 -0.569319 0.310394 O 3.053506 1.747153 -2.038832 O 2.73885 1.414948 -2.07837 H 2.254455 1.2018 -0.198375 H 2.304697 0.959052 -0.108157 C 4.912631 -1.893533 0.303932 C 5.679833 -1.462409 0.195871 H 1.547245 -0.907246 -3.510592 H 1.711348 -1.60207 -3.140143 H 1.547245 -0.907246 -3.510592	С	3.714374	-0.239658	-0.911012	С	3.911717	-0.294483	-0.894954		
H 3.020643 -2.062627 -1.932286 H 3.508587 -2.262009 -1.643317 C 3.216846 1.202217 -0.732014 C 3.178549 1.052725 -0.765342 H 4.600854 -0.2182 -1.560411 H 4.629155 -0.209205 -1.717447 O 4.09831 -0.787001 0.351305 O 4.639702 -0.569319 0.310394 O 3.053506 1.747153 -2.038832 O 2.73885 1.414948 -2.07837 H 2.254455 1.2018 -0.198375 H 2.304697 0.959052 -0.108157 C 4.20486 2.081627 0.025239 C 4.061698 2.177147 -0.239812 C 2.040791 1.144908 -2.812456 C 1.823772 0.531296 -2.653342 C 4.912631 -1.893533 0.303932 C 5.679833 -1.462409 0.195871 H 1.547245 -0.907246 -3.510592 H 1.711348 -1.60207 -3.140143 H 1.059176 <td>С</td> <td>1.909171</td> <td>-0.354305</td> <td>-2.640578</td> <td>C</td> <td>1.936272</td> <td>-0.919767</td> <td>-2.317466</td>	С	1.909171	-0.354305	-2.640578	C	1.936272	-0.919767	-2.317466		
C 3.216846 1.202217 -0.732014 C 3.178549 1.052725 -0.765342 H 4.600854 -0.2182 -1.560411 H 4.629155 -0.209205 -1.717447 O 4.09831 -0.787001 0.351305 O 4.639702 -0.569319 0.310394 O 3.053506 1.747153 -2.038832 O 2.73885 1.414948 -2.07837 H 2.254455 1.2018 -0.198375 H 2.304697 0.959052 -0.108157 C 4.20486 2.081627 0.025239 C 4.061698 2.177147 -0.239812 C 2.040791 1.144908 -2.812456 C 1.823772 0.531296 -2.653342 C 4.912631 -1.893533 0.303932 C 5.679833 -1.462409 0.195871 H 1.547245 -0.907246 -3.510592 H 1.711348 -1.60207 -3.140143 H 1.059926 1.642498 -2.60728 H 0.747725 0.86047 -2.347447 As -1.959176	Н	3.020643	-2.062627	-1.932286	н	3.508587	-2.262009	-1.643317		
H4.600854-0.2182-1.560411H4.629155-0.209205-1.717447O4.09831-0.7870010.351305O4.639702-0.5693190.310394O3.0535061.747153-2.038832O2.738851.414948-2.07837H2.2544551.2018-0.198375H2.3046970.959052-0.108157C4.204862.0816270.025239C4.0616982.177147-0.239812C2.0407911.14908-2.812456C1.8237720.531296-2.653342C4.912631-1.8935330.303932C5.679833-1.4624090.195871H1.547245-0.907246-3.510592H1.711348-1.60207-3.140143H1.0599261.642498-2.60728H0.7477250.86047-2.347447As-1.9591760.030018-0.038011As-2.030334-0.071907-0.092472H2.265111.370834-3.862139H1.8180180.703246-3.735455O5.218491-2.422849-0.73855O5.931408-2.030694-0.839568C5.327936-2.3168421.686109C6.412867-1.6027041.502685H5.788936-1.4806832.220902H6.842094-0.6396321.798703H6.02934-3.148191.612995H7.20659-2.3418431.39215C-2.8649611.614737 <t< td=""><td>С</td><td>3.216846</td><td>1.202217</td><td>-0.732014</td><td>С</td><td>3.178549</td><td>1.052725</td><td>-0.765342</td></t<>	С	3.216846	1.202217	-0.732014	С	3.178549	1.052725	-0.765342		
O 4.09831 -0.787001 0.351305 O 4.639702 -0.569319 0.310394 O 3.053506 1.747153 -2.038832 O 2.73885 1.414948 -2.07837 H 2.254455 1.2018 -0.198375 H 2.304697 0.959052 -0.108157 C 4.20486 2.081627 0.025239 C 4.061698 2.177147 -0.239812 C 2.040791 1.144908 -2.812456 C 1.823772 0.531296 -2.653342 C 4.912631 -1.893533 0.303932 C 5.679833 -1.462409 0.195871 H 1.547245 -0.907246 -3.510592 H 1.711348 -1.60207 -3.140143 H 1.059926 1.642498 -2.60728 H 0.747725 0.86047 -2.347447 As -1.959176 0.030018 -0.038011 As -2.030334 -0.071907 -0.092472 H 2.26511 1.370834 -3.862139	Н	4.600854	-0.2182	-1.560411	Н	4.629155	-0.209205	-1.717447		
O 3.053506 1.747153 -2.038832 O 2.73885 1.414948 -2.07837 H 2.254455 1.2018 -0.198375 H 2.304697 0.959052 -0.108157 C 4.20486 2.081627 0.025239 C 4.061698 2.177147 -0.239812 C 2.040791 1.144908 -2.812456 C 1.823772 0.531296 -2.653342 C 4.912631 -1.893533 0.303932 C 5.679833 -1.462409 0.195871 H 1.547245 -0.907246 -3.510592 H 1.711348 -1.60207 -3.140143 H 1.059926 1.642498 -2.60728 H 0.747725 0.86047 -2.347447 As -1.959176 0.030018 -0.038011 As -2.030334 -0.071907 -0.092472 H 2.26511 1.370834 -3.862139 H 1.818018 0.703246 -3.735455 O 5.218491 -2.422849 -0.738355	0	4.09831	-0.787001	0.351305	0	4.639702	-0.569319	0.310394		
H2.2544551.2018-0.198375H2.3046970.959052-0.108157C4.204862.0816270.025239C4.0616982.177147-0.239812C2.0407911.144908-2.812456C1.8237720.531296-2.653342C4.912631-1.8935330.303932C5.679833-1.4624090.195871H1.547245-0.907246-3.510592H1.711348-1.60207-3.140143H1.0599261.642498-2.60728H0.7477250.86047-2.347447As-1.9591760.030018-0.038011As-2.030334-0.071907-0.092472H2.265111.370834-3.862139H1.8180180.703246-3.735455O5.218491-2.422849-0.738355O5.931408-2.030694-0.839568C5.327936-2.3168421.686109C6.412867-1.6027041.502685H5.788936-1.4806832.220902H6.842094-0.6396321.798703H6.02934-3.148191.612995H7.20659-2.3418431.393215H4.446036-2.6269272.256939H5.721943-1.9101292.294398C-3.846369-1.358262-0.090455C-3.612403-1.228041-0.240094C-1.7285240.4394111.866683C-1.855160.3016661.829817C1.26559-2.78225	0	3.053506	1.747153	-2.038832	0	2.73885	1.414948	-2.07837		
C4.204862.0816270.025239C4.0616982.177147-0.239812C2.0407911.144908-2.812456C1.8237720.531296-2.653342C4.912631-1.8935330.303932C5.679833-1.4624090.195871H1.547245-0.907246-3.510592H1.711348-1.60207-3.140143H1.0599261.642498-2.60728H0.7477250.86047-2.347447As-1.9591760.030018-0.038011As-2.030334-0.071907-0.092472H2.265111.370834-3.862139H1.8180180.703246-3.735455O5.218491-2.422849-0.738355O5.931408-2.030694-0.839568C5.327936-2.3168421.686109C6.412867-1.6027041.502685H5.788936-1.4806832.220902H6.842094-0.6396321.798703H6.02934-3.148191.612995H7.20659-2.3418431.393215H4.446036-2.6269272.256939H5.721943-1.9101292.294398C-2.8649611.614737-0.77367C-2.6717631.63849-0.830964C-3.346369-1.358262-0.090455C-3.612403-1.228041-0.240094C-1.7285240.4394111.866683C-1.855160.3016661.829817C1.26559-2.782	н	2.254455	1.2018	-0.198375	н	2.304697	0.959052	-0.108157		
C2.0407911.144908-2.812456C1.8237720.531296-2.653342C4.912631-1.8935330.303932C5.679833-1.4624090.195871H1.547245-0.907246-3.510592H1.711348-1.60207-3.140143H1.0599261.642498-2.60728H0.7477250.86047-2.347447As-1.9591760.030018-0.038011As-2.030334-0.071907-0.092472H2.265111.370834-3.862139H1.8180180.703246-3.735455O5.218491-2.422849-0.738355O5.931408-2.030694-0.839568C5.327936-2.3168421.686109C6.412867-1.6027041.502685H5.788936-1.4806832.220902H6.842094-0.6396321.798703H6.02934-3.148191.612995H7.20659-2.3418431.393215H4.446036-2.6269272.256939H5.721943-1.9101292.294398C-2.8649611.614737-0.77367C-2.6717631.63849-0.830964C-3.346369-1.358262-0.090455C-3.612403-1.228041-0.240094C-1.7285240.4394111.866683C-1.855160.3016661.829817C1.26559-2.7822561.841051C1.176001-2.1275132.146779H1.628397-0.7	С	4.20486	2.081627	0.025239	С	4.061698	2.177147	-0.239812		
C4.912631-1.8935330.303932C5.679833-1.4624090.195871H1.547245-0.907246-3.510592H1.711348-1.60207-3.140143H1.0599261.642498-2.60728H0.7477250.86047-2.347447As-1.9591760.030018-0.038011As-2.030334-0.071907-0.092472H2.265111.370834-3.862139H1.8180180.703246-3.735455O5.218491-2.422849-0.738355O5.931408-2.030694-0.839568C5.327936-2.3168421.686109C6.412867-1.6027041.502685H5.788936-1.4806832.220902H6.842094-0.6396321.798703H6.02934-3.148191.612995H7.20659-2.3418431.393215H4.446036-2.6269272.256939H5.721943-1.9101292.294398C-2.8649611.614737-0.77367C-2.6717631.63849-0.830964C-3.346369-1.358262-0.090455C-3.612403-1.228041-0.240094C-1.7285240.4394111.866683C-1.855160.3016661.829817C1.26559-2.7822561.841051C1.176001-2.1275132.146779H1.628397-0.7147241.372142H2.625329-0.6875331.515363C0.819394-4.2	С	2.040791	1.144908	-2.812456	С	1.823772	0.531296	-2.653342		
H1.547245-0.907246-3.510592H1.711348-1.60207-3.140143H1.0599261.642498-2.60728H0.7477250.86047-2.347447As-1.9591760.030018-0.038011As-2.030334-0.071907-0.092472H2.265111.370834-3.862139H1.8180180.703246-3.735455O5.218491-2.422849-0.738355O5.931408-2.030694-0.839568C5.327936-2.3168421.686109C6.412867-1.6027041.502685H5.788936-1.4806832.220902H6.842094-0.6396321.798703H6.02934-3.148191.612995H7.20659-2.3418431.393215H4.446036-2.6269272.256939H5.721943-1.9101292.294398C-2.8649611.614737-0.77367C-2.6717631.63849-0.830964C-3.346369-1.358262-0.090455C-3.612403-1.228041-0.240094C-1.7285240.4394111.866683C-1.855160.3016661.829817C1.26559-2.7822561.841051C1.176001-2.1275132.146779H1.628397-0.7147241.372142H2.625329-0.6875331.515363C0.819394-4.257482-0.031755C0.285584-3.6199070.47189H0.868219-3.3	С	4.912631	-1.893533	0.303932	С	5.679833	-1.462409	0.195871		
H1.0599261.642498-2.60728H0.7477250.86047-2.347447As-1.9591760.030018-0.038011As-2.030334-0.071907-0.092472H2.265111.370834-3.862139H1.8180180.703246-3.735455O5.218491-2.422849-0.738355O5.931408-2.030694-0.839568C5.327936-2.3168421.686109C6.412867-1.6027041.502685H5.788936-1.4806832.220902H6.842094-0.6396321.798703H6.02934-3.148191.612995H7.20659-2.3418431.393215H4.446036-2.6269272.256939H5.721943-1.9101292.294398C-2.8649611.614737-0.77367C-2.6717631.63849-0.830964C-3.346369-1.358262-0.090455C-3.612403-1.228041-0.240094C-1.7285240.4394111.866683C-1.855160.3016661.829817C1.26559-2.7822561.841051C1.176001-2.1275132.146779H1.628397-0.7147241.372142H2.625329-0.6875331.515363C0.819394-4.257482-0.031755C0.285584-3.6199070.47189H0.868219-3.349471-1.983193H1.148802-3.432471-1.493803C0.97115-4.0	н	1.547245	-0.907246	-3.510592	н	1.711348	-1.60207	-3.140143		
As-1.9591760.030018-0.038011As-2.030334-0.071907-0.092472H2.265111.370834-3.862139H1.8180180.703246-3.735455O5.218491-2.422849-0.738355O5.931408-2.030694-0.839568C5.327936-2.3168421.686109C6.412867-1.6027041.502685H5.788936-1.4806832.220902H6.842094-0.6396321.798703H6.02934-3.148191.612995H7.20659-2.3418431.393215H4.446036-2.6269272.256939H5.721943-1.9101292.294398C-2.8649611.614737-0.77367C-2.6717631.63849-0.830964C-3.346369-1.358262-0.090455C-3.612403-1.228041-0.240094C-1.7285240.4394111.866683C-1.855160.3016661.829817C1.26559-2.7822561.841051C1.176001-2.1275132.146779H1.628397-0.7147241.372142H2.625329-0.6875331.515363C0.819394-4.257482-0.031755C0.285584-3.6199070.47189H0.868219-3.349471-1.983193H1.148802-3.432471-1.493803C0.97115-4.0558151.343905C0.335206-3.194531.791548H1.372579-2.	н	1.059926	1.642498	-2.60728	н	0.747725	0.86047	-2.347447		
H2.265111.370834-3.862139H1.8180180.703246-3.735455O5.218491-2.422849-0.738355O5.931408-2.030694-0.839568C5.327936-2.3168421.686109C6.412867-1.6027041.502685H5.788936-1.4806832.220902H6.842094-0.6396321.798703H6.02934-3.148191.612995H7.20659-2.3418431.393215H4.446036-2.6269272.256939H5.721943-1.9101292.294398C-2.8649611.614737-0.77367C-2.6717631.63849-0.830964C-3.346369-1.358262-0.090455C-3.612403-1.228041-0.240094C-1.7285240.4394111.866683C-1.855160.3016661.829817C1.26559-2.7822561.841051C1.176001-2.1275132.146779H1.628397-0.7147241.372142H2.625329-0.6875331.515363C0.819394-4.257482-0.031755C0.285584-3.6199070.47189H0.868219-3.349471-1.983193H1.148802-3.432471-1.493803C0.97115-4.0558151.343905C0.335206-3.194531.791548H1.372579-2.6236472.910315H1.205286-1.7853753.176526H0.603534-5.24800	As	-1.959176	0.030018	-0.038011	As	-2.030334	-0.071907	-0.092472		
O 5.218491 -2.422849 -0.738355 O 5.931408 -2.030694 -0.839568 C 5.327936 -2.316842 1.686109 C 6.412867 -1.602704 1.502685 H 5.788936 -1.480683 2.220902 H 6.842094 -0.639632 1.798703 H 6.02934 -3.14819 1.612995 H 7.20659 -2.341843 1.393215 H 4.446036 -2.626927 2.256939 H 5.721943 -1.910129 2.294398 C -2.864961 1.614737 -0.77367 C -2.671763 1.63849 -0.830964 C -3.346369 -1.358262 -0.090455 C -3.612403 -1.228041 -0.240094 C -1.728524 0.439411 1.866683 C -1.85516 0.301666 1.829817 C 1.26559 -2.782256 1.841051 C 1.176001 -2.127513 2.146779 H 1.628397 -0.714724 1.372142 H 2.625329 -0.687533 1.515363 C 0.81939	н	2.26511	1.370834	-3.862139	н	1.818018	0.703246	-3.735455		
C 5.327936 -2.316842 1.686109 C 6.412867 -1.602704 1.502685 H 5.788936 -1.480683 2.220902 H 6.842094 -0.639632 1.798703 H 6.02934 -3.14819 1.612995 H 7.20659 -2.341843 1.393215 H 4.446036 -2.626927 2.256939 H 5.721943 -1.910129 2.294398 C -2.864961 1.614737 -0.77367 C -2.671763 1.63849 -0.830964 C -3.346369 -1.358262 -0.090455 C -3.612403 -1.228041 -0.240094 C -1.728524 0.439411 1.866683 C -1.85516 0.301666 1.829817 C 1.26559 -2.782256 1.841051 C 1.176001 -2.127513 2.146779 H 1.628397 -0.714724 1.372142 H 2.625329 -0.687533 1.515363 C 0.819394 -4.257482 -0.031755 C 0.285584 -3.619907 0.47189 H 0.868219<	0	5,218491	-2.422849	-0.738355	0	5,931408	-2.030694	-0.839568		
H5.788936-1.4806832.220902H6.842094-0.6396321.798703H6.02934-3.148191.612995H7.20659-2.3418431.393215H4.446036-2.6269272.256939H5.721943-1.9101292.294398C-2.8649611.614737-0.77367C-2.6717631.63849-0.830964C-3.346369-1.358262-0.090455C-3.612403-1.228041-0.240094C-1.7285240.4394111.866683C-1.855160.3016661.829817C1.26559-2.7822561.841051C1.176001-2.1275132.146779H1.628397-0.7147241.372142H2.625329-0.6875331.515363C0.819394-4.257482-0.031755C0.285584-3.6199070.47189H0.868219-3.349471-1.983193H1.148802-3.432471-1.493803C0.97115-4.0558151.343905C0.335206-3.194531.791548H1.372579-2.6236472.910315H1.205286-1.7853753.176526H0.603534-5.248003-0.421438H-0.345869-4.4538960.180886H0.8664074.8936352.021445H0.2740242.614442.514202	C	5.327936	-2.316842	1.686109	C	6.412867	-1.602704	1.502685		
H6.02934-3.148191.612995H7.20659-2.3418431.393215H4.446036-2.6269272.256939H5.721943-1.9101292.294398C-2.8649611.614737-0.77367C-2.6717631.63849-0.830964C-3.346369-1.358262-0.090455C-3.612403-1.228041-0.240094C-1.7285240.4394111.866683C-1.855160.3016661.829817C1.26559-2.7822561.841051C1.176001-2.1275132.146779H1.628397-0.7147241.372142H2.625329-0.6875331.515363C0.819394-4.257482-0.031755C0.285584-3.6199070.47189H0.868219-3.349471-1.983193H1.148802-3.432471-1.493803C0.97115-4.0558151.343905C0.335206-3.194531.791548H1.372579-2.6236472.910315H1.205286-1.7853753.176526H0.603534-5.248003-0.421438H-0.345869-4.4538960.180886	н	5,788936	-1.480683	2,220902	н	6.842094	-0.639632	1,798703		
H4.446036-2.6269272.256939H5.721943-1.9101292.294398C-2.8649611.614737-0.77367C-2.6717631.63849-0.830964C-3.346369-1.358262-0.090455C-3.612403-1.228041-0.240094C-1.7285240.4394111.866683C-1.855160.3016661.829817C1.26559-2.7822561.841051C1.176001-2.1275132.146779H1.628397-0.7147241.372142H2.625329-0.6875331.515363C0.819394-4.257482-0.031755C0.285584-3.6199070.47189H0.868219-3.349471-1.983193H1.148802-3.432471-1.493803C0.97115-4.0558151.343905C0.335206-3.194531.791548H1.372579-2.6236472.910315H1.205286-1.7853753.176526H0.603534-5.248003-0.421438H-0.345869-4.4538960.180886	н	6.02934	-3,14819	1.612995	н	7,20659	-2.341843	1.393215		
C -2.864961 1.614737 -0.77367 C -2.671763 1.63849 -0.830964 C -3.346369 -1.358262 -0.090455 C -3.612403 -1.228041 -0.240094 C -1.728524 0.439411 1.866683 C -1.85516 0.301666 1.829817 C 1.26559 -2.782256 1.841051 C 1.176001 -2.127513 2.146779 H 1.628397 -0.714724 1.372142 H 2.625329 -0.687533 1.515363 C 0.819394 -4.257482 -0.031755 C 0.285584 -3.619907 0.47189 H 0.868219 -3.349471 -1.983193 H 1.148802 -3.432471 -1.493803 C 0.97115 -4.055815 1.343905 C 0.335206 -3.19453 1.791548 H 1.372579 -2.623647 2.910315 H 1.205286 -1.785375 3.176526 H 0.603534 -5.248003 -0.421438 H -0.345869 -4.453896 0.180886 <td>н</td> <td>4 446036</td> <td>-2 626927</td> <td>2 256939</td> <td>н</td> <td>5 721943</td> <td>-1 910129</td> <td>2 294398</td>	н	4 446036	-2 626927	2 256939	н	5 721943	-1 910129	2 294398		
C -3.346369 -1.358262 -0.090455 C -3.612403 -1.228041 -0.240094 C -1.728524 0.439411 1.866683 C -1.85516 0.301666 1.829817 C 1.26559 -2.782256 1.841051 C 1.176001 -2.127513 2.146779 H 1.628397 -0.714724 1.372142 H 2.625329 -0.687533 1.515363 C 0.819394 -4.257482 -0.031755 C 0.285584 -3.619907 0.47189 H 0.868219 -3.349471 -1.983193 H 1.148802 -3.432471 -1.493803 C 0.97115 -4.055815 1.343905 C 0.335206 -3.19453 1.791548 H 1.372579 -2.623647 2.910315 H 1.205286 -1.785375 3.176526 H 0.603534 -5.248003 -0.421438 H -0.345869 -4.453896 0.180886	C	-2 864961	1 614737	-0 77367	C	-2 671763	1 63849	-0.830964		
C -1.728524 0.439411 1.866683 C -1.85516 0.301666 1.829817 C 1.26559 -2.782256 1.841051 C 1.176001 -2.127513 2.146779 H 1.628397 -0.714724 1.372142 H 2.625329 -0.687533 1.515363 C 0.819394 -4.257482 -0.031755 C 0.285584 -3.619907 0.47189 H 0.868219 -3.349471 -1.983193 H 1.148802 -3.432471 -1.493803 C 0.97115 -4.055815 1.343905 C 0.335206 -3.19453 1.791548 H 1.372579 -2.623647 2.910315 H 1.205286 -1.785375 3.176526 H 0.603534 -5.248003 -0.421438 H -0.345869 -4.453896 0.180886	C	-3 346369	-1 358262	-0.090455	C C	-3 612403	-1 228041	-0 240094		
C 1.726524 0.455411 1.860003 C 1.85510 0.501000 1.825017 C 1.26559 -2.782256 1.841051 C 1.176001 -2.127513 2.146779 H 1.628397 -0.714724 1.372142 H 2.625329 -0.687533 1.515363 C 0.819394 -4.257482 -0.031755 C 0.285584 -3.619907 0.47189 H 0.868219 -3.349471 -1.983193 H 1.148802 -3.432471 -1.493803 C 0.97115 -4.055815 1.343905 C 0.335206 -3.19453 1.791548 H 1.372579 -2.623647 2.910315 H 1.205286 -1.785375 3.176526 H 0.603534 -5.248003 -0.421438 H -0.345869 -4.453896 0.1808866	C	-1 728524	0.439411	1 866683	C C	-1 85516	0 301666	1 829817		
H 1.20333 -0.714724 1.372142 H 2.625329 -0.687533 1.515363 C 0.819394 -4.257482 -0.031755 C 0.285584 -3.619907 0.47189 H 0.868219 -3.349471 -1.983193 H 1.148802 -3.432471 -1.493803 C 0.97115 -4.055815 1.343905 C 0.335206 -3.19453 1.791548 H 1.372579 -2.623647 2.910315 H 1.205286 -1.785375 3.176526 H 0.603534 -5.248003 -0.421438 H -0.345869 -4.453896 0.1808866	C	1 26559	-2 782256	1 841051	C	1 176001	-2 127513	2 146779		
C 0.819394 -4.257482 -0.031755 C 0.285584 -3.619907 0.47189 H 0.868219 -3.349471 -1.983193 H 1.148802 -3.432471 -1.493803 C 0.97115 -4.055815 1.343905 C 0.335206 -3.19453 1.791548 H 1.372579 -2.623647 2.910315 H 1.205286 -1.785375 3.176526 H 0.603534 -5.248003 -0.421438 H -0.345869 -4.453896 0.180886	н	1 678307	-0 714724	1 2701/0	н	2 625220	-0 687533	1 515262		
H 0.868219 -3.349471 -1.983193 H 1.148802 -3.432471 -1.493803 C 0.97115 -4.055815 1.343905 C 0.335206 -3.19453 1.791548 H 1.372579 -2.623647 2.910315 H 1.205286 -1.785375 3.176526 H 0.603534 -5.248003 -0.421438 H -0.345869 -4.453896 0.1808866	C	0 81030/	-4 257/27	-0 031755		0 285581	-3 619907	0 471 89		
C 0.97115 -4.055815 1.343905 C 0.335206 -3.19453 1.791548 H 1.372579 -2.623647 2.910315 H 1.205286 -1.785375 3.176526 H 0.603534 -5.248003 -0.421438 H -0.345869 -4.453896 0.180886	ц	0.819394	-2 2/0/71	-1 082102	Ч	1 1/10000	-3 /27/71	-1 /02202		
H 1.372579 -2.623647 2.910315 H 1.205286 -1.785375 3.176526 H 0.603534 -5.248003 -0.421438 H -0.345869 -4.453896 0.180886		0.000219	-3.343471 -1 055215	1 3/300		1.140002	-2 10/52	1 7015/19		
H 0.603534 -5.248003 -0.421438 H -0.345869 -4.453896 0.180886 H 0.866407 4.803625 2.023145 H -0.345869 -4.453896 0.180886	ц	1 272570	-4.000010	1.343903 2 010215		1 205200	-3.19433	1.731340 2 176576		
		1.3/23/9	-2.023047	2.310313		1.203200	-1./000/0	0.100000		
		0.003334	-3.240003 1 002625	-0.421438 2 020115		-0.343809 0.371001	-4.433870 2 601011	0.100000		

С	-3.044564	1.688631	-2.163584	С	-2.700403	1.791365	-2.224768			
С	-3.310487	2.663752	0.039015	С	-3.102502	2.688767	-0.011761			
С	-4.705101	-1.024996	-0.169304	С	-4.907103	-0.691111	-0.221542			
С	-2.961226	-2.704951	-0.034713	С	-3.43864	-2.612481	-0.365494			
С	-0.621621	1.208548	2.250918	С	-0.728844	1.016166	2.262128			
С	-2.630439	-0.016408	2.836397	С	-2.807278	-0.12395	2.763693			
С	-3.668428	2.799134	-2.733367	С	-3.158957	2.980298	-2.793174			
Н	-2.716239	0.872553	-2.805311	Н	-2.378048	0.978833	-2.873435			
С	-3.931292	3.775924	-0.536536	С	-3.556823	3.880266	-0.584699			
Н	-3.176924	2.617468	1.115517	Н	-3.083409	2.5842	1.068799			
С	-4.110273	3.845309	-1.919167	С	-3.585872	4.027394	-1.972233			
н	-3.81069	2.846813	-3.809304	Н	-3.183887	3.088824	-3.87383			
Н	-4.277413	4.586238	0.098851	Н	-3.890184	4.691509	0.056422			
Н	-4.593974	4.71098	-2.362237	Н	-3.940672	4.95402	-2.414062			
С	-5.669928	-2.034752	-0.188214	С	-6.014376	-1.536185	-0.319024			
Н	-5.013179	0.015019	-0.220256	Н	-5.054908	0.381655	-0.139476			
С	-3.930557	-3.709356	-0.050884	С	-4.548483	-3.454198	-0.462202			
н	-1.910049	-2.974024	0.022575	Н	-2.437898	-3.03494	-0.388796			
С	-5.284436	-3.375439	-0.128703	С	-5.83671	-2.916353	-0.43864			
н	-6.722043	-1.771845	-0.250591	Н	-7.015387	-1.114597	-0.305482			
Н	-3.628233	-4.751942	-0.007014	Н	-4.407338	-4.526867	-0.561193			
Н	-6.037165	-4.158312	-0.145614	Н	-6.700202	-3.570391	-0.518167			
С	-0.419998	1.527441	3.594561	С	-0.559592	1.310842	3.615377			
Н	0.092465	1.56908	1.51594	Н	0.025993	1.352093	1.55684			
С	-2.423074	0.30283	4.180793	С	-2.630038	0.166269	4.119827			
Н	-3.489132	-0.616407	2.550547	Н	-3.684196	-0.677575	2.441824			
С	-1.321159	1.072948	4.560453	С	-1.510192	0.883086	4.54647			
Н	0.4456	2.122054	3.869903	Н	0.317332	1.869988	3.928623			
Н	-3.125119	-0.051098	4.930543	Н	-3.371415	-0.166555	4.840884			
Н	-1.164964	1.316371	5.607629	Н	-1.379259	1.108331	5.601149			
Н	5.112263	2.222159	-0.566156	Н	4.836652	2.423955	-0.968643			
Н	4.444323	1.615932	0.982725	Н	4.516016	1.867002	0.702523			
0	3.693622	3.405995	0.239471	0	3.328359	3.397635	-0.049006			
С	2.796035	3.556274	1.242248	С	2.523836	3.461137	1.038878			
0	2.3639	2.621649	1.89037	0	2.341939	2.518484	1.786929			
С	2.437357	5.006492	1.436094	С	1.916801	4.832289	1.184064			
Н	3.298769	5.543703	1.848571	Н	2.699138	5.552267	1.449009			
Н	1.596689	5.088133	2.125712	Н	1.158592	4.816928	1.967485			
Н	2.19248	5.473067	0.477464	Н	1.480442	5.161005	0.236244			
	[Pd] = [Pd(TFA)(AsPh₃)]									
Int-C2-cis										
--------------------------	-----------	-----------	-----------	----	-------------	--------------	-----------			
E(RM06) = -2351.74956784					Frequent	cy -348.5265	727			
_					E(RIVIU6) =	-2351.726309	137			
	-0.15/8/5	-2.230594	-1.249606		-0.763958	1.953/95	-1.102824			
C	2.140362	-0.741698	-2.368016	C	-2.114978	0.697468	-2.01//25			
С	2.202706	0.478651	-1.778197	С	-2.084595	-0.575101	-1.381206			
C	3.145778	0.766501	-0.627266	С	-3.092865	-0.919775	-0.294526			
C	4.193022	-0.359342	-0.492271	С	-4.385772	-0.085135	-0.454367			
0	3.549535	-1.624313	-0.611552	0	-4.040246	1.283655	-0.652232			
Н	4.93134	-0.239239	-1.302319	Н	-4.934694	-0.45965	-1.33345			
Н	2.604356	0.914191	0.310203	Н	-2.69019	-0.768574	0.711082			
0	3.794254	2.015094	-0.97055	0	-3.393493	-2.322325	-0.449817			
Н	1.705454	1.333468	-2.22844	Н	-1.716828	-1.421789	-1.958909			
Pd	0.054506	-0.266463	-0.855043	Pd	-0.188459	-0.013824	-0.603466			
С	3.019208	-1.866973	-1.900253	С	-3.387526	1.518515	-1.878948			
н	1.581188	-0.881166	-3.289569	н	-1.664854	0.737734	-3.006749			
н	3.834908	-1.993465	-2.637073	н	-4.03928	1.215293	-2.719983			
н	2.472517	-2.809853	-1.840795	н	-3.208396	2.591875	-1.949149			
C	4.037978	2.898613	0.038253	C	-3.502706	-3.074931	0.682963			
0	3.863545	2.645107	1.208728	0	-3.477608	-2.609412	1.800188			
C	4 536624	4 209653	-0 515539	C	-3 643433	-4 535345	0 338268			
н	3 680149	4 766663	-0 909428	н	-2 651388	-4 931976	0.099462			
н	5 2/1856	4.047652	-1 33501	н	-// 283513	-1 6731/3	-0 537125			
н	5 001078	4.788252	0.28/18/	н	-4.044563	-5 07374	1 108227			
Λς	-2 129261	-0 20062	0 305/107	Λς	2 186131	0 510071	0.260881			
	0 171/2	1 70117/	-0 1/2227	^3	0 1050/7	-2 041658	-0.01/000			
	0.17142	2 160267	0.143327		1 217004	-2.041038	-0.014909			
	0.390117	-3.109307	-0.300309		-1.517094	2.072029	-0.023723			
	-0.818295	-2.064159	-2.596496		-0.062207	2.00522	-2.11055			
	0.302355	-4.540305	-0.640065		-1.108225	4.058481	0.052307			
Н	0.920848	-2.840943	0.52/563	н	-1.8899//	2.154995	0./388/2			
	-0.90/066	-4.054294	-2.6/0/01		0.059142	4.048005	-2.033188			
H	-1.266412	-1.9/5065	-3.090894	Н	0.33506/	2.128054	-2.9602/3			
	-0.348831	-4.985954	-1./92596		-0.486/08	4./49216	-0.95314			
Н	0.743291	-5.255285	0.050886	Н	-1.599437	4.598828	0.891197			
Н	-1.41727	-4.390541	-3.570466	Н	0.593199	4.58065	-2.81568			
Н	-0.42057	-6.049545	-2.004682	Н	-0.385179	5.829685	-0.899539			
С	-3.180613	1.307068	-0.13788	С	3.571126	-0.496408	-0.707075			

С	-3.432053	-1.74781	0.076856	С	2.890266	2.361456	0.194403
С	-1.876527	-0.158972	2.25262	С	2.515652	0.006732	2.1403
С	-3.113541	1.840049	-1.430922	С	3.245657	-1.090946	-1.932475
С	-4.017732	1.896763	0.818608	С	4.866403	-0.639479	-0.189746
С	-3.883415	2.956747	-1.764607	С	4.211838	-1.813448	-2.638737
н	-2.43758	1.41531	-2.166367	н	2.234846	-1.024601	-2.324518
С	-4.786441	3.011035	0.478286	С	5.828423	-1.358821	-0.899468
Н	-4.06516	1,496009	1.826914	н	5.123753	-0.200351	0.770122
C	-4.720689	3.540597	-0.812669	C	5.502435	-1.944728	-2.125833
Н	-3.812564	3.376232	-2.763917	н	3.94606	-2.282421	-3.582031
н	-5.430093	3.468888	1.224555	н	6.829836	-1.46817	-0.491355
н	-5.313451	4,413491	-1.072404	н	6.251446	-2.510458	-2.673656
C	-4 716497	-1 482596	-0 415483	C	3 889003	2 733331	-0 714502
C	-3 076494	-3.064962	0 401517	C	2 339254	3 334895	1 040513
C	-5 634948	-2 522989	-0 576549	C	4 335427	4 05631	-0 769846
н	-5 006255	-0.468967	-0 67193	н	4.335427	1 991981	-1 375349
C	-4 000114	-4 099077	0.245487	C	2 792428	4 653652	0 98914
ч	-2 078297	-3 202535	0.240407	ч	1 555786	3 067732	1 7/3688
	-5 2802/13	-3.232333	-0 24/219		3 791618	5.007732	0.083308
ц	-6 628277	-2 206468	-0.244213	ц	5 11255	J.017502	-1 477069
и П	-0.028377	-2.300408	-0.900101	ц	2 262828	5 206724	1 655825
	-5.712805	-3.113792	0.498730		2.302030	5.590754 6.04771	1.033635
	-3.990307	-4.036310	-0.309401		4.144044	1 1 4 2 5 7 2	0.045085
	-0.951714	0.781488	2.732882		1.875098	-1.143573	2.025949
	-2.367424	-0.903000	3.149081		2.209643	0.755257	2.960571
	-0.745237	0.904661	4.107637		2.09346	-1.556174	3.94218
	-0.408077	1.410884	2.039394		1.222443	-1.719052	1.976246
	-2.370524	-0.835914			3.580324	0.314683	4.296783
П	-3.305407	-1.693756	2.785185	П	3.800237	1.628463	2.618504
	-1.44958	0.096152	5.003354		2.94215	-0.828954	4.77936
н	-0.028661	1.633333	4.476404	н	1.594505	-2.44/9/4	4.311/55
н	-2.922982	-1.465592	5.216067	н	4.243239	0.884726	4.94276
Н	-1.280533	0.192808	6.072489	Н	3.105211	-1.151/56	5.804296
C	0.025827	2.759861	-0.969845	C	0.345566	-2.8849	-0.969881
0	-0.087412	2.724839	-2.193876	0	0.259251	-2.71075	-2.183811
C _	0.062675	4.145659	-0.270923	C _	0.683887	-4.301882	-0.433617
	1.353104	4.503854	-0.030149	F	-0.312432	-4.765373	0.36641/
F	-0.576193	4.137779	0.914771	F	1.810071	-4.279651	0.308716
F	-0.486226	5.105802	-1.028331	F	0.855356	-5.191961	-1.419367
С	4.912104	-0.360305	0.84994	С	-5.291393	-0.13741	0.768927
Н	5.363471	0.611461	1.052604	Н	-5.538065	-1.168288	1.025795
Н	4.221315	-0.61701	1.65526	Н	-4.815298	0.347903	1.622802
0	5.979259	-1.324407	0.802723	0	-6.528795	0.528013	0.461958
С	5.855292	-2.44013	1.568222	С	-6.772305	1.71682	1.07585
0	4.956364	-2.640445	2.352096	0	-6.060678	2.212497	1.91848
С	7.006854	-3.382216	1.300905	C	-8.060281	2.313343	0.557069
Н	6.962664	-4.218052	2.000058	Н	-8.297272	3.214708	1.123316
Н	7.961928	-2.856952	1.399777	н	-8.877063	1.589583	0.640942
Н	6.944642	-3.758475	0.273873	Н	-7.951648	2.562686	-0.504111

E(RM06) = -2351.76492680 E(RM06) = -2351.74553641 С 1.472384 -1.71275-1.689379С -0.211361 -1.823764 -1.352214 С 2.457251 -0.592229 -2.051765 С -2.325756 0.173326 -1.677815 С С 2.200527 0.540837 -1.055317 -3.276684 -0.322964 -0.613207 С 3.114984 0.604488 0.165384 С -3.813182 0.847976 0.236428 С -0.209512 4.564166 0.228047 0 -2.760276 1.753481 0.545496 0 4.537671 -1.056972-0.820501 Н -4.584403 1.355425 -0.362598 Н 4.970715 0.971185 -0.914557 Н -2.825339 -1.0974830.009558 Н -0.067522 2.789199 0.963469 0 -4.395885 -0.912423-1.3182980 3.105579 1.94578 0.688177 С -1.870787 1.450723 -1.6947 Н 2.124506 1.518895 -1.52951Н -2.171378 -0.486826 -2.52475Pd 0.307579 0.002402 -0.486435 С -2.248208 2.415927 -0.601633 С 3.93786 -1.024463 -2.106232 -1.324669 1.837396 -2.551254 Н н 2.17679 -0.2348 -3.04844 Pd 0.129471 0.104878 -0.882086 Н 4.492442 -0.325379 -2.753315 -3.000817 3.120208 -1.001832 Н Н 4.037162 -2.033544 -2.518193 Н -1.384142 2.994229 -0.2717 С 2.346788 2.173357 1.801055 С -4.940328 -2.051141 -0.81042 0 2.429315 1.796472 1.296944 0 -4.501325 -2.638827 0.154332 С 2.292869 3.646358 2.110154 С -6.176887 -2.432316 -1.582575н 1.61156 4.122736 1.3977 Н -6.030781 -2.29386 -2.656974Н 3.277139 4.108613 1.993023 Н -6.990368 -1.770655-1.262635 Н 1.919271 3.792815 3.1246 Н -6.443417 -3.466215 -1.3590720.299906 -0.571966 As -2.186426 As 2.066637 -0.554891 0.500079 0 -0.134239 2.064403 -0.179131 0.797343 -0.524578 0 2.159353 С С 1.498664 -2.342811 -0.420342 0.171183 -2.198108-2.64926 С -2.663688 0.574376 -2.215864 С -0.822172 -2.768773 -0.521806 С С 0.687241 -3.46168 -0.1635 -0.074695 -3.496704 -3.111362 н -2.045497 0.314256 -3.308088 2.237553 Н 0.65541 -1.479524С -0.220473 -3.32232 -2.398395 С -1.077594 -4.063146 -0.990733 Н 0.531918 -1.733849 0.495679 -3.636984 Н -1.106332-2.513658С -0.161416 -3.953479 -1.14585 С -0.703349 -4.430993 -2.283812 Н 0.737119 0.8082 -3.943012 Н 0.223157 -3.772381 -4.120518 н -3.700915 -3.165208 -0.890598 Н -1.569285-4.779534 -0.337563 Н -0.791929 -4.812807 -0.940099 -0.899252 -5.43713 -2.645329 Н С -3.558412 0.112973 -0.946977 С 2.362896 -2.427633 1.026126 С -2.793679 С -0.166694 -2.431319 0.592643 3.829073 0.020976

С	-2.721877	0.271178	2.008838	С	1.90969	0.409618	2.203478
С	-3.15056	0.583731	-2.201518	С	2.468874	-3.412341	0.032641
С	-4.917008	0.156102	-0.601718	С	2.476123	-2.793612	2.373127
С	-4.094739	1.082276	-3.104612	С	2.706685	-4.741502	0.385124
Н	-2.097736	0.596237	-2.468373	Н	2.344956	-3.153109	-1.014246
С	-5.856457	0.649728	-1.507271	С	2.704172	-4.12741	2.720993
н	-5.24436	-0.185264	0.376262	Н	2.387227	-2.045352	3.153843
С	-5.446192	1.111706	-2.761199	С	2.824758	-5.101422	1.729253
Н	-3.765793	1.457103	-4.069944	Н	2.784959	-5.495916	-0.392659
Н	-6.907331	0.680942	-1.231217	Н	2.787751	-4.401458	3.769266
Н	-6.178799	1.502079	-3.462773	Н	3.002946	-6.138079	2.002117
С	-3.635854	-3.086791	-0.313602	С	4.829564	-0.895622	-0.509155
С	-2.298786	-3.14126	1.697445	С	4.060528	1.395611	-0.315715
С	-3.980117	-4.42787	-0.117356	С	6.055064	-0.437019	-1.000084
Н	-4.032663	-2.552517	-1.171557	Н	4.666582	-1.961826	-0.38906
С	-2.647873	-4.477848	1.896323	С	5.286799	1.84535	-0.805142
Н	-1.645142	-2.648437	2.413096	Н	3.292349	2.112524	-0.052049
С	-3.488527	-5.125955	0.986727	С	6.284977	0.931156	-1.150169
Н	-4.639133	-4.92283	-0.826176	Н	6.829067	-1.153449	-1.262365
Н	-2.265772	-5.012033	2.762476	Н	5.4528	2.912764	-0.92079
Н	-3.761513	-6.166411	1.141625	Н	7.238107	1.283954	-1.534833
С	-2.105518	1.476913	2.372944	С	0.662076	0.907523	2.597849
С	-3.706255	-0.281063	2.840534	С	3.029876	0.608734	3.022607
С	-2.478399	2.119364	3.556035	С	0.53427	1.586574	3.811533
Н	-1.345626	1.917371	1.735222	Н	-0.203793	0.790459	1.951736
С	-4.071738	0.365788	4.02311	С	2.896103	1.286765	4.235512
Н	-4.183124	-1.220745	2.578361	Н	4.00613	0.245876	2.71354
С	-3.458373	1.567322	4.38232	С	1.648258	1.773995	4.63134
Н	-1.995504	3.053059	3.831526	Н	-0.434915	1.978209	4.107496
Н	-4.834797	-0.071373	4.662201	Н	3.767771	1.439683	4.866152
Н	-3.741906	2.069249	5.30378	Н	1.547305	2.307074	5.5729
С	-0.32767	2.714149	-1.272138	С	1.089509	2.750459	-1.625679
0	-0.259364	2.321924	-2.432546	0	1.030776	2.318427	-2.775376
С	-0.664991	4.204738	-0.997803	С	1.512975	4.227118	-1.399988
F	0.446749	4.863769	-0.573859	F	2.547806	4.323842	-0.529456
F	-1.599664	4.335971	-0.035667	F	0.480143	4.9296	-0.87491
F	-1.108719	4.830306	-2.094325	F	1.882795	4.832439	-2.535276
С	5.469747	0.143936	1.010389	С	-4.422997	0.38291	1.557318
Н	5.451024	1.091897	1.55305	Н	-4.891148	-0.595352	1.453659
Н	5.161685	-0.672774	1.66689	Н	-3.639043	0.338152	2.316295
0	6.824249	-0.071403	0.582559	0	-5.388144	1.326209	2.064286
C	7.393477	-1.27046	0.880129	C	-6.644942	1.204362	1.574633
0	6.873109	-2.126033	1.557996	0	-6.970946	0.378359	0.747312
C	8.762571	-1.365539	0.248438	С	-7.564608	2.22592	2.20034
Н	9.258938	-2.273881	0.591668	Н	-7.17734	3.235788	2.030539
Н	9.363433	-0.486794	0.502352	Н	-7.611399	2.073517	3.283827
Н	8.663613	-1.390744	-0.842346	Н	-8.561859	2.130661	1.769605

TScarie						C3-cis	
	Frequent	Cy -336.0823	21		E(RM06) =	-2351.759881	73
		-2351./22201	31		4 45 - 2000	4 400 700	4 5500.0
C	-0.602332	-1.465574	-1.547691	C	-1.457386	-1.492793	-1.55294
C	-2.26472	-0.272993	-1.499146	C	-2.574907	-0.420581	-1.507127
C	-3.160479	-0.735209	-0.354549	C	-3.52751	-0.583136	-0.305664
C	-4.022862	0.443457	0.146868	С	-4.221234	0.733656	0.091367
0	-3.140438	1.494891	0.500413	0	-3.247924	1.738589	0.308905
Н	-4.70748	0.758836	-0.655823	Н	-4.902355	1.026379	-0.724879
Н	-2.597267	-1.124405	0.492826	Н	-3.010349	-0.978363	0.570464
0	-3.991832	-1.787832	-0.882762	0	-4.557545	-1.51432	-0.718913
С	-1.877348	1.106241	-1.560037	С	-1.838092	0.928207	-1.522247
н	-2.530434	-0.745602	-2.437487	Н	-3.205405	-0.526502	-2.404022
С	-2.538437	2.108071	-0.628119	С	-2.561947	2.093943	-0.881708
н	-1.629074	1.50377	-2.543815	н	-1.527373	1.208445	-2.534422
Pd	-0.022357	0.443557	-0.797908	Pd	-0.08016	0.296954	-0.657857
н	-3.308791	2.648742	-1.209049	н	-3.291942	2.500492	-1.609988
н	-1.826472	2.840373	-0.244276	н	-1.866026	2.890206	-0.615244
С	-4.176162	-2.899676	-0.119344	С	-4.923869	-2.519684	0.114358
ο	-3.713022	-3.037524	0.991628	0	-4.343214	-2.786278	1.147282
C	-5.028809	-3.904967	-0.851497	C	-6.151926	-3.217613	-0.409046
н	-4.518116	-4.22934	-1.764467	н	-6.051756	-3.434474	-1.476473
н	-5.976842	-3.44635	-1.149992	н	-7.004301	-2.540368	-0.283338
н	-5 213777	-4 763732	-0 205544	н	-6 3208	-4 136063	0 154468
Δs	2 134277	-0 38194	0.435862	Δs	2 248731	-0 50248	0.389389
0	0 50/01/	2 465677	-0 346474	0	0 302831	2 270052	-0.0551/18
C	-0 146242	-1 607265	-0.540474	C C	-0 /20087	-1 26076	-0.033148
	-0 60524	-2 606524	_0 726917	c	-1 152061	-2 65005	-0 7/920/
	0.09534	2.000334	2 257170	C	-1.455001	-2.03905	2 705207
	0.245241 _0 107003	-2.0J3243	-2 570102	с ц	0.330400 _0 161011	-2.3/2/13	-2.703307
	-0.10/983	-0./392/1	1 22054		-0.404841	-0.33008/	-3.24/139
	-0.30/12/	-2.822/4	-1.22321		-0.490382	-3.043332	-0.335353
	-1.003522	-2.33//83	0.2819/4		-2.214053	-2.6039/3	0.010003
	0.164038	-3.983396	-2.5368/9		0.500978	-3.510995	-1.911/00
н	0.610222	-2.944978	-4.3/8428	H	1.298084	-2.24/3/8	-3.46212
H	-0.3/1145	-4./2/387	-0.583767	H	-0.525115	-4.540678	-0.314534
Н	0.459296	-4.957128	-2.917469	Н	1.248417	-4.287581	-2.043829

С	2.889	-2.136614	-0.062933	С	3.473255	-1.202134	-0.992856
С	3.756977	0.746475	0.458826	С	3.348041	0.922005	1.205693
С	1.777816	-0.590024	2.36723	С	2.328707	-1.867666	1.81891
С	3.374582	-2.296783	-1.369227	С	3.655245	-0.412482	-2.140071
С	2.9366	-3.220615	0.821661	С	4.104806	-2.447798	-0.903169
С	3.913331	-3.51741	-1.777599	С	4.470764	-0.868326	-3.177743
Н	3.33665	-1.467769	-2.071625	Н	3.159385	0.552603	-2.221003
С	3.468893	-4.444904	0.407903	С	4.914133	-2.901911	-1.94947
Н	2.564805	-3.113423	1.835962	Н	3.970414	-3.067345	-0.021455
С	3.960463	-4.594771	-0.889503	С	5.099058	-2.113793	-3.086365
н	4.293778	-3.626885	-2.789779	н	4.613391	-0.248627	-4.059283
н	3.502937	-5.279002	1.104133	н	5.401843	-3.870417	-1.871371
н	4.379331	-5.5458	-1.20785	н	5.730535	-2.467028	-3.89747
С	5.048709	0.207312	0.3939	С	4.729485	1.013928	0.991734
С	3.590159	2.134355	0.56183	С	2.717001	1.848965	2.046232
С	6.161709	1.051521	0.432696	С	5.471984	2.016531	1.62009
Н	5.19356	-0.864994	0.306519	н	5.227722	0.313497	0.328187
С	4.706007	2.972334	0.596208	С	3.462844	2.850418	2.670816
н	2.595247	2.562241	0.601075	Н	1.641973	1.812558	2.191304
С	5.992553	2.433667	0.532631	С	4.840504	2.933898	2.461708
н	7.160599	0.625685	0.381271	н	6.542935	2.082185	1.446001
н	4.559646	4.046911	0.659908	н	2.961721	3.573087	3.308524
н	6.860243	3.087822	0.555572	н	5.418314	3.71755	2.944525
С	0.449485	-0.602767	2.810204	С	1.168153	-2.584004	2.136331
С	2.814965	-0.70411	3.303479	С	3.50068	-2.106554	2.55157
С	0.158656	-0.743243	4.169459	С	1.179715	-3.535326	3.160137
н	-0.359982	-0.48463	2.093918	н	0.250336	-2.396208	1.587498
С	2.523204	-0.845142	4.661215	С	3.512977	-3.060302	3.570713
н	3.850456	-0.671339	2.976376	н	4.401949	-1.538842	2.338254
С	1.195289	-0.867299	5.095348	С	2.352873	-3.776939	3.875725
н	-0.875663	-0.748198	4.502418	н	0.270413	-4.079874	3.400888
н	3.333425	-0.930828	5.380572	н	4.426621	-3.237293	4.132243
н	0.970628	-0.972704	6.153361	н	2.362658	-4.514321	4.674023
С	0.738801	3.15031	-1.410286	С	1.11388	2.885458	-0.842944
0	0.755386	2.784119	-2.581159	0	1.748322	2.452456	-1.799683
С	0.958669	4.652328	-1.086782	С	1.190577	4.396211	-0.498479
F	1.866825	4.833	-0.098591	F	1.382729	4.610004	0.818049
F	-0.206771	5.201224	-0.666807	F	0.019583	4.990244	-0.840376
F	1.376829	5.346242	-2.152755	F	2.172845	5.015331	-1.165475
С	-4.836241	0.086727	1.385995	С	-5.020022	0.599712	1.391771
н	-5.415836	-0.821664	1.220364	н	-5.392384	-0.411935	1.543708
н	-4.170691	-0.043529	2.241547	н	-4.376223	0.885802	2.225401
0	-5.721973	1.159355	1.751379	0	-6.128646	1.519876	1.429897
С	-6.933246	1.174454	1.141785	С	-7.303681	1.065678	0.935447
О	-7.283614	0.355403	0.319256	0	-7.461623	-0.044954	0.471709
С	-7.761254	2.337347	1.633833	С	-8.374896	2.1242	1.049449
н	-7.234846	3.27891	1.446395	н	-8.061944	3.034487	0.527892
н	-7.912312	2.259656	2.715621	Н	-8.528284	2.389116	2.100906

Н	-8.724757	2.339979	1.123174	Н	-9.30536	1.749174	0.621996
	Int- E(RM06) =	C2-trans -2351.746748	337		Frequence	Sc2-trans Cy -318.1512	70
	0 4092	2 115765	0 202512	6	E(RIVIU6) =	-2351.722595	1 615742
	-0.4082	-2.115/65	-0.203513	C	-0.465028	-1.8/6865	-1.615742
	-2.599687	-0.444782	-1.416578	C	-2.090743	-0.743824	-2.29058
	-2.530961	0.797161	-0.881739		-2.13000	0.545305	-1.685254
	-3.381075	1.195452	0.302321		-3.346579	0.835749	-0.813363
	-4.394835	0.104243	0.692662	C	-3.854205	-0.370031	0.005706
	-3.8/4//1	-1.208191	0.502878	0	-3.552915	-1.643754	-0.578031
н	-4.576556	0.1/18/5	1.76863	н	-3.334744	-0.357279	0.968588
н	-3.905956	2.123943	0.052456	н	-4.133119	1.18575	-1.49876
0	-2.54168	1.490386	1.4425	0	-3.140413	1.87468	0.155961
Н	-1.99393	1.586114	-1.396213	Н	-1.799702	1.397563	-2.2/1919
C	-3.484876	-1.50406	-0.825809	C	-3.255143	-1.651944	-1.959618
н	-2.116//6	-0.664042	-2.365979	н	-1./24133	-0.802433	-3.310612
н	-2.9/111	-2.465965	-0./81/56	н	-3.061253	-2.691602	-2.2261
Н	-4.363307	-1.635965	-1.483403	Н	-4.116855	-1.302125	-2.559079
С	-2.350291	2.813751	1.725321	C	-3.121013	3.155154	-0.316302
0	-2.9206	3.709937	1.1456	0	-3.291631	3.426985	-1.483484
C	-1.338887	3.001767	2.824696	C	-2.872877	4.130419	0.803097
Н	-0.391347	3.257534	2.340183	Н	-1.856235	3.986296	1.178539
Н	-1.207542	2.095197	3.418866	Н	-3.569223	3.95027	1.628126
Н	-1.64297	3.838783	3.457604	Н	-2.983362	5.147654	0.426726
Pd	-0.226184	-0.110916	-0.202651	Pd	-0.34635	0.038451	-0.692247
As	2.184636	-0.528309	0.129478	As	1.934419	-0.478912	0.475843
0	0.058091	2.029893	-0.011929	0	-0.183727	2.076425	-0.035654
С	-0.137701	-2.890203	-1.340349	С	0.439109	-2.050853	-2.680825
С	-0.888265	-2.747008	0.952654	С	-0.835075	-2.996865	-0.850427
С	-0.371181	-4.271887	-1.329258	С	0.992828	-3.30268	-2.945401
н	0.258655	-2.425533	-2.239992	Н	0.721558	-1.200103	-3.296088
С	-1.122208	-4.126452	0.960646	С	-0.277446	-4.249834	-1.11931
н	-1.097899	-2.167014	1.847153	Н	-1.572876	-2.889977	-0.063012
С	-0.865105	-4.892776	-0.179348	С	0.636197	-4.406119	-2.163995
Н	-0.162373	-4.859248	-2.220627	Н	1.703714	-3.41485	-3.759368
Н	-1.505616	-4.59994	1.861351	Н	-0.561626	-5.104808	-0.510893

Н	-1.04656	-5.964424	-0.171025	Н	1.061793	-5.383485	-2.374895
С	3.014749	-1.061027	-1.570701	С	3.291087	-1.088895	-0.817643
С	3.205401	1.067114	0.653628	С	2.853164	1.035923	1.34919
С	2.794513	-1.874221	1.433551	С	2.027093	-1.808529	1.936135
С	2.602922	-0.3917	-2.733326	С	3.532954	-0.263312	-1.927851
С	4.003872	-2.049367	-1.641643	С	3.966808	-2.308328	-0.699792
С	3.183925	-0.72094	-3.959871	С	4.458165	-0.65495	-2.897303
Н	1.845843	0.388816	-2.681946	Н	2.997003	0.677135	-2.034678
С	4.575588	-2.373913	-2.874794	С	4.88666	-2.697064	-1.678084
Н	4.328218	-2.569167	-0.745518	Н	3.779744	-2.959522	0.14846
С	4.165632	-1.712177	-4.033483	С	5.135802	-1.871074	-2.775159
Н	2.866262	-0.198232	-4.857917	Н	4.646479	-0.008209	-3.750312
н	5.341332	-3.143429	-2.926173	н	5.408836	-3.645326	-1.578611
Н	4.611637	-1.966853	-4.991273	Н	5.854187	-2.173547	-3.53276
С	4.467528	1.32016	0.101087	С	4.228783	1.25543	1.201575
С	2.677627	1.940004	1.613667	С	2.103425	1.883398	2.175724
С	5.196396	2.438141	0.511065	С	4.84811	2.306867	1.88146
н	4.8809	0.654292	-0.649995	н	4.818249	0.616742	0.550978
С	3.412908	3.054228	2.022253	С	2.726852	2.933526	2.852102
н	1.687696	1.767143	2.020884	Н	1.030638	1.748102	2.266604
С	4.671099	3.304345	1.471776	С	4.099228	3.144963	2.709074
н	6.172448	2.632821	0.075048	Н	5.915366	2.472005	1.758523
н	2.993217	3.735041	2.757206	н	2.134632	3.594292	3.478824
н	5.237084	4.177716	1.784067	н	4.581431	3.966297	3.232424
С	2.508298	-3.233573	1.236308	С	0.877797	-2.527848	2.28406
С	3.499068	-1.476952	2.577548	С	3.205668	-2.006058	2.670884
С	2.934459	-4.179578	2.169981	С	0.907526	-3.442589	3.340369
н	1.95651	-3.560241	0.361461	н	-0.043716	-2.371739	1.733082
С	3.914007	-2.42804	3.512682	С	3.236128	-2.923961	3.721613
н	3.730273	-0.429674	2.742382	н	4.098465	-1.43423	2.434216
С	3.634919	-3.779944	3.31002	С	2.087077	-3.644813	4.057136
н	2.71034	-5.229982	2.005705	Н	0.007481	-3.992217	3.603282
н	4.45932	-2.108365	4.396601	Н	4.154904	-3.069494	4.283688
н	3.960609	-4.519124	4.036961	н	2.110921	-4.355198	4.879243
С	0.409671	2.647912	-1.07451	С	0.632484	2.7162	-0.789091
0	0.56046	2.199887	-2.213092	0	1.300609	2.298779	-1.735359
С	0.607862	4.174225	-0.870883	С	0.707238	4.228946	-0.45097
F	0.880968	4.498923	0.413938	F	0.60092	4.466417	0.878112
F	-0.51593	4.833127	-1.223931	F	-0.316873	4.879198	-1.052833
F	1.61609	4.641619	-1.626105	F	1.851689	4.782222	-0.871917
С	-5.721292	0.326303	-0.039087	С	-5.352254	-0.248802	0.252894
н	-5.617018	0.2859	-1.127736	н	-5.923292	-0.44993	-0.659659
н	-6.12953	1.311816	0.211696	н	-5.604418	0.759565	0.598732
0	-6.631226	-0.695344	0.395636	0	-5.706187	-1.205218	1.264597
с	-7.807398	-0.764468	-0.275407	С	-7.032101	-1.341383	1.508586
0	-8.097264	-0.0289	-1.192644	0	-7.88591	-0.707587	0.928963
С	-8.677163	-1.865762	0.283831	С	-7.275465	-2.375283	2.583028
н	-9.589451	-1.943579	-0.308491	н	-8.347346	-2.468521	2.760487

н	-8.931533	-1.647195	1.326593	н	-6.768938	-2.082893	3.508853			
н	-8.13/945	-2.818307	0.273261	н	-6.862097	-3.341/18	2.27619			
			¢	Int-C3-trans E(RM06) = -2351.73961815						
						2001./00010	10			
	° -)_trans								
	E(RM06) =	-2351.760278	57							
С	-1.140687	-1.441605	-2.55643	С	-0.574023	1.916815	-0.441138			
С	-2.382306	-0.552779	-2.614598	С	-2.390738	0.033792	-1.926067			
С	-2.117176	0.582405	-1.609555	С	-3.685315	0.334667	-1.217102			
С	-3.298146	0.82052	-0.675599	С	-3.815507	-0.35347	0.166408			
С	-3.85934	-0.46136	-0.030151	0	-2.906522	-1.432181	0.357332			
0	-3.772179	-1.602317	-0.892846	Н	-3.55014	0.387708	0.925253			
н	-3.243037	-0.698531	0.844355	Н	-4.470775	-0.031917	-1.893355			
н	-4.078804	1.311592	-1.275439	0	-3.941161	1.734448	-1.00581			
0	-3.00065	1.699673	0.421544	С	-1.890092	-1.22223	-1.819384			
н	-1.828908	1.515261	-2.094372	Н	-2.059143	0.728645	-2.689372			
С	-3.682529	-1.303155	-2.281814	Pd	-0.081873	-0.029243	-0.623985			
н	-2.473215	-0.152101	-3.632364	С	-2.525847	-2.150054	-0.815045			
н	-3.723541	-2.268392	-2.795058	Н	-1.144344	-1.605208	-2.512444			
н	-4.549729	-0.710731	-2.612398	Н	-1.825055	-2.915809	-0.483329			
С	-3.039974	3.038101	0.15737	Н	-3.395893	-2.657932	-1.269077			
0	-3.353054	3.491047	-0.920513	С	-4.411613	2.432666	-2.077709			
С	-2.648097	3.835903	1.372887	0	-4.565817	1.941643	-3.1737			
н	-1.559015	3.804649	1.469665	С	-4.703197	3.861724	-1.696806			
н	-3.084685	3.408723	2.279984	Н	-5.092063	4.394612	-2.56519			
н	-2.967663	4.87099	1.243561	Н	-3.786888	4.339617	-1.336644			
Pd	-0.349178	0.00904	-0.697022	н	-5.433037	3.892673	-0.880977			
As	1.962783	-0.588338	0.499525	As	2.128106	0.47481	0.371265			
0	-0.139988	2.02927	-0.112373	0	0.560021	-2.096723	-0.470955			
С	-0.240827	-1.49406	-3.645301	С	-1.190112	2.347948	0.742506			
С	-0.885223	-2.260749	-1.425943	С	-0.305082	2.855031	-1.445516			
С	0.837817	-2.364	-3.633227	С	-1.538714	3.692652	0.91427			
н	-0.418476	-0.857064	-4.507683	н	-1.401123	1.638419	1.539698			
С	0.218342	-3.146959	-1.436075	С	-0.652679	4.199823	-1.272718			
н	-1.647184	-2.35419	-0.658016	Н	0.183399	2.548188	-2.367583			
С	1.069324	-3.200832	-2.526445	С	-1.266356	4.624043	-0.091044			
н	1.508253	-2.402874	-4.487072	Н	-2.018475	4.009989	1.837612			
н	0.385034	-3.792791	-0.57905	Н	-0.432786	4.916353	-2.060873			

Н	1.91834	-3.876871	-2.527007	Н	-1.523462	5.671355	0.047375
С	3.383225	-1.221035	-0.716937	С	3.56822	-0.534984	-0.501836
С	2.886431	0.866049	1.466189	С	2.863458	2.299961	0.427861
С	1.913641	-1.959867	1.927166	С	2.194821	-0.142142	2.23912
С	3.661958	-0.418755	-1.835257	С	3.496134	-0.794447	-1.875468
С	4.075402	-2.424706	-0.539164	С	4.682835	-0.960902	0.233123
С	4.635048	-0.817854	-2.753457	С	4.538263	-1.474031	-2.510869
н	3.117285	0.510062	-1.987198	Н	2.617277	-0.50844	-2.444114
С	5.043418	-2.822186	-1.46693	С	5.721072	-1.63843	-0.407843
н	3.865963	-3.056553	0.318707	Н	4.739977	-0.773358	1.301383
С	5.325981	-2.019163	-2.573059	С	5.650366	-1.893597	-1.779611
Н	4.850762	-0.18814	-3.612693	Н	4.467227	-1.688215	-3.573251
н	5.577887	-3.75743	-1.319875	н	6.581132	-1.972178	0.166445
н	6.081359	-2.327465	-3.291275	н	6.456592	-2.428099	-2.274722
C	4.277228	1.027497	1.421907	C	4.040681	2.611205	-0.264948
C	2.115058	1.73909	2.244839	C	2.202702	3.304917	1.148937
C	4.889245	2.044851	2.157852	C	4.552569	3.910644	-0.231429
н	4,884891	0.36969	0.807875	н	4.562825	1.845287	-0.828731
C	2,73105	2,754974	2.978135	C	2,722211	4.599411	1.185114
н	1 033395	1 648525	2 256562	н	1 276228	3 088608	1 669862
C	4 117978	2 907408	2.230302	C	3 897389	4 905183	0 495287
н	5 968734	2.367 400	2.556726	н	5 466179	4.140966	-0 772883
н	2 123206	3 435417	3 567809	н	2 200942	5 369866	1 746496
н	4 595096	3 702114	3 505997	н	1 297938	5 915036	0 521469
C	0 720673	-2 658197	2 155434	C	1 634459	-1 395091	2 533027
C	3 018418	-2 215658	2.155454	C	2 786019	0.617638	3 255568
C	0 63697	-3 611184	3 174478	C	1 669809	-1 875861	3 842812
н	-0 15399	-2 446366	1 546488	н	1 18823	-1 99231	1 742562
C	2 936998	-3 170766	3 767502	C	2 812669	0 128357	4 564557
н	3 941269	-1 659246	2 614855	н	3 223233	1 586491	3 035578
C	1 747279	-3 872521	3 977929	C	2 25424	-1 116018	4 859277
н	-0 296598	-4 141671	3 342569	н	1 237487	-2 847146	4.055277
н	3 800636	-3 360602	4 399465	н	3 271638	0 722141	5 350682
н	1 684317	-4 612223	4.333403	н	2 275409	-1 / 93896	5.878032
C	0 76187	2 63981	-0 796641	C	0 885844	-2 805724	-1 488268
0	1 513461	2.00001	-1 661229	0	0 92202	-2 494592	-2 676809
C	0.816621	4 152493	-0 451141	C C	1 183476	-4 274835	-1 087304
F	0 793102	4 364547	0.887927	F	0 013187	-4 904979	-0 803837
F	-0 259255	4 781375	-0 972711	F	1 959089	-4 354353	0.013388
F	1 917558	4 73883	-0 935262	F	1 787364	-4 959969	-2 067112
Ċ	-5 298181	-0 256234	0.425305	C	-5 256416	-0 796619	0 39557
н	-5 982558	-0 217093	-0 428529	н	-5 951929	0.013805	0 147349
н	-5.397666	0.67794	0.987601	н	-5.513952	-1.662383	-0.224044
0	-5 648351	-1 364213	1 272697	0	-5 392688	-1 138117	1 782792
C	-6.949363	-1.438577	1.640308	c	-6.592425	-1.651579	2.147556
0	-7 788434	-0 634444	1 299116	0	-7 514053	-1 805037	1 37677 <i>4</i>
c l	-7 189806	-2.645989	2,516903	c C	-6 601895	-1.997998	3,617857
Н	-8.241719	-2.683617	2.801945	Н	-6.341719	-1.119328	4.216878

Н	-6.562973	-2.592209	3.413236	Н	-5.850182	-2.767271	3.824411
Н	-6.915309	-3.560627	1.981006	Н	-7.590622	-2.362427	3.898531
TS_{C3-trans} Frequency -321.1934 E(RM06) = -2351.72161818							
					C	B-trans	
					E(RM06) =	-2351.757120	49
С	-1.118224	1.447553	-0.408963	С	-1.709212	1.406544	-0.882116
С	-2.291626	0.057179	-1.451534	С	-2.572299	0.234177	-1.371949
С	-3.718788	0.380233	-1.033794	С	-4.066287	0.307421	-0.994864
С	-4.123433	-0.187256	0.348087	С	-4.348286	0.052787	0.502324
0	-3.193521	-1.134879	0.860441	0	-3.339181	-0.733907	1.136048
Н	-4.109548	0.641136	1.060622	Н	-4.331084	1.018477	1.017832
н	-4.312992	-0.093562	-1.828681	Н	-4.584928	-0.429309	-1.617979
0	-4.070842	1.771732	-1.024377	0	-4.638274	1.60334	-1.280251
С	-1.866579	-1.265966	-1.158161	С	-1.92857	-1.04587	-0.832804
н	-2.027838	0.454295	-2.42493	н	-2.52292	0.23503	-2.46367
Pd	-0.092297	-0.394719	-0.379796	Pd	-0.112346	-0.296159	-0.226078
С	-2.641389	-2.024415	-0.107977	С	-2.711378	-1.69975	0.290886
н	-1.375423	-1.843684	-1.941153	н	-1.648714	-1.754778	-1.612767
н	-1.995203	-2.713045	0.44155	н	-2.068308	-2.302009	0.93714
н	-3.435678	-2.627999	-0.584504	н	-3.471145	-2.382042	-0.134305
С	-4.256598	2.368237	-2.235285	С	-4.99039	1.855364	-2.570494
0	-4.104589	1,793546	-3.290021	0	-4.833249	1.066202	-3.474743
C	-4.670399	3.807242	-2.058806	C	-5.589975	3,23519	-2.696083
н	-4 825115	4 262631	-3 037457	н	-5 869762	3 415655	-3 734416
н	-3 892164	4 34693	-1 50988	н	-4 866062	3 988279	-2 3675
н	-5 590984	3 865932	-1 468904	н	-6 470162	3 325061	-2 051076
٨٩	2 225316	0 516375	0 3/015	Λς	2 307387	0 500249	0 387081
0	0 733858	-2 352535	-0 151133	0	0 577261	-2 292531	-0 1/18737
C	1 50060	1 904096	0.151155		1 169175	1 625223	0.148737
	-1.39009	2 466605	1 217505		1 100066	1.055555	1 916664
	-0.781220		-1.31/595		-1.190000	2.3330/0	
	-1.084069	3.148419	1.230505		-0.772749	2.789895	0.909258
Н	-1.8/3039	1.028205	1.5/2595	Н	-1.930912	0.989487	1.23/954
	-0.8/9/51	3.808509	-0.94/348		-0.508428	3.4664//	-1.3936//
Н	-0.435046	2.210954	-2.316146	H	-1.35516	2.161035	-2.8/6838
C	-1.334284	4.152533	0.329581	C	-0.303755	3.701858	-0.023656
Н	-2.036525	3.410784	2.231136	Н	-0.613989	2.962324	1.969341
Н	-0.596983	4.584521	-1.65398	Н	-0.133086	4.175326	-2.126719

Н	-1.411599	5.197861	0.616348	Н	0.236324	4.58556	0.301605
С	3.628257	0.030406	-0.95911	С	3.658975	0.173129	-1.099959
С	2.513565	2.456548	0.556484	С	2.825759	2.37389	0.858636
С	2.951185	-0.214371	2.028514	С	3.264814	-0.480959	1.875288
С	3.253143	-0.502683	-2.19829	С	3.152002	-0.260999	-2.33091
С	4.987939	0.197043	-0.658729	С	5.042116	0.346611	-0.944151
С	4.231448	-0.856521	-3.132594	С	4.021233	-0.509989	-3.397984
н	2.206374	-0.67802	-2.429145	н	2.088465	-0.441204	-2.457247
с	5.960209	-0.153461	-1.595617	С	5.904913	0.101964	-2.012396
н	5.291165	0.590824	0.307456	н	5.450384	0.665148	0.010864
с	5.582386	-0.678933	-2.834707	С	5.394547	-0.325174	-3.24194
Н	3.930701	-1.282	-4.085893	н	3.618259	-0.859097	-4.34461
н	7.012303	-0.023434	-1.355638	н	6.975637	0.237628	-1.883222
н	6.341694	-0.957599	-3.560669	н	6.069001	-0.521323	-4.071369
C	3 187753	3 205496	-0 416783	C	3 356593	3 259004	-0.088166
C	1 978193	3 114365	1 67352	C	2 503423	2 859836	2 135131
C	3 332972	4 587308	-0.26966	C	3 566392	4 602533	0 23634
н	3 610204	2 712563	-1 287039	н	3 616321	2 902002	-1 080204
C	2 131852	A 193136	1.207035	C	2 718636	4 200227	2 460983
ч	1 1/13803	2 552263	2 /3//5	ч	2.093648	7 188983	2.400505
	2 200/20	5 722784	0 951227		2.093048	5 076521	2.880133
С Ц	2.009409	5.255264	1 020907	С Ц	2 00/770	5.070351	0.507401
	5.002504	3.155907	-1.029697		5.904770	3.273000	-0.507429
	1./212/1	4.989142	2.098/2/		2.475423		3.458009
	2.929585	0.307095	0.96834		3.419500	0.119534	1.764057
	2.644557	-1.545393	2.349489	C	2.862219	-1.803289	2.113442
C	3.775604	0.532216	2.880905	C	4.281103	0.082215	2.65988
C	3.161283	-2.115678	3.514976	C	3.472928	-2.546959	3.126317
Н	2.019336	-2.13/081	1.68/012	н	2.087651	-2.25/83/	1.503407
C	4.285016	-0.044902	4.046969	C	4.883945	-0.665682	3.67389
Н	4.018494	1.564088	2.64654	Н	4.601367	1.106075	2.492628
C	3.978135	-1.368566	4.365971	C	4.480579	-1.981301	3.909103
Н	2.922264	-3.148239	3.755176	Н	3.156972	-3.572235	3.299502
н	4.922622	0.542116	4.703189	Н	5.66974	-0.218453	4.277504
Н	4.375105	-1.81606	5.273448	Н	4.950808	-2.562496	4.698058
С	0.937428	-3.051712	-1.208864	С	0.775999	-2.875757	-1.279777
0	0.747294	-2.754021	-2.386007	0	0.630376	-2.437052	-2.415204
С	1.448228	-4.476386	-0.865028	С	1.230139	-4.347259	-1.082863
F	0.433798	-5.216394	-0.356796	F	0.207469	-5.088472	-0.598578
F	2.430121	-4.445395	0.061533	F	2.24932	-4.434498	-0.20032
F	1.921824	-5.116587	-1.942607	F	1.633666	-4.904452	-2.231674
С	-5.541342	-0.748746	0.295502	С	-5.729692	-0.565048	0.687737
Н	-6.218112	-0.033452	-0.186628	Н	-6.480411	-0.009109	0.114913
Н	-5.588972	-1.685357	-0.270318	н	-5.751776	-1.60681	0.349887
0	-5.965993	-0.978634	1.646188	0	-6.050223	-0.504698	2.085925
С	-7.18326	-1.559296	1.788354	С	-7.232175	-1.063877	2.442085
0	-7.891755	-1.855849	0.852106	0	-7.994933	-1.571068	1.649718
С	-7.505746	-1.777386	3.247531	С	-7.443244	-0.966099	3.934684
Н	-7.445597	-0.831534	3.795533	Н	-7.371158	0.076206	4.261655

Н	-6.773826	-2.459342	3.693349	Н	-6.662147	-1.526995	4.458999
Н	-8.507181	-2.199181	3.338626	Н	-8.422933	-1.37134	4.189913

5. Crystal structure determination of Compound 3n

Crystal Data for C₁₆H₁₆N₂O₉ (*M* =380.31 g/mol): monoclinic, space group P2₁ (no. 4), *a* = 10.3667(3) Å, *b* = 6.84234(18) Å, *c* = 12.9093(4) Å, β = 110.345(3)°, *V* = 858.56(4) Å³, *Z* = 2, *T* = 293(2) K, μ (MoK α) = 0.122 mm⁻¹, *Dcalc* = 1.471 g/cm³, 40844 reflections measured (6.84° ≤ 2 Θ ≤ 52.032°), 3377 unique (*R*_{int} = 0.0658, R_{sigma} = 0.0280) which were used in all calculations. The final *R*₁ was 0.0433 (I > 2 σ (I)) and *wR*₂ was 0.1161 (all data).

Experimental

Massive colourless single crystals of **3n** were analyzed on a RIGAKU XtaLabPro diffractometer equipped with a Mo microfocus sealed tube generator coupled to a double-bounce confocal Max-Flux® multilayer optic and a HPAD PILATUS3R 200K detector. The crystals were kept at 293(2) K during data collection. CrysAlisPro 1.171.39.46^[1] was employed for the data processing, with SCALE3 ABSPACK scaling algorithm implemented for the empirical absorption correction using spherical harmonics. Structure solution was done by intrinsic phasing methods (SHELXT program),^[2] then the refinement by full-matrix least-squares methods on F^2 using SHELX-L.^[3] All non-hydrogen atoms of the molecular model improved by anisotropic refinement. Most of the H atoms were identified in difference maps nevertheless they were essentially positioned geometrically using a riding model with U_{iso} set to xU_{eq} (C_{carrier}) and x equal to 1.5 when parent atoms are methyl carbons, and 1.2 for the rest of the carbons tertiary CH, secondary CH₂, and aromatic ones. Methyl H atoms were idealized and included as rigid groups allowed to rotate but not tip (AFIX 137). The asymmetric unit of the monoclinic Sohncke space group, P 2_1 is made of one **3n** molecule. Despite several data collections increasing significantly data redundancy (> 8) and trying to optimize Bijvoet pairs measurements to compensate the extremely weak anomalous scattering generated by Mo radiation, the only available source at the that time, the Flack parameter that could be derived using the different approaches ^[4] was meaningless in any cases to ascertain the absolute configuration in C2, C5 of **3n**. Crystal data, data collection and structure refinement details for one tested crystal are summarized in Table 1.

CCDC 1992288 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

References

- 1 Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.
- 2 Sheldrick, G. M. (2015). Acta Crystallogr., C71, 3–8.
- 3 Sheldrick, G. M. (2015). Acta Crystallogr., A71, 3–8.

4 Watkin, D.A & Cooper, R I (2016). *Acta Crystallogr.*, **B**72, 661–683.

Table S6 Crystal data and structure refinement for Compound_3n.

Identification	code	Compound_3n		
Empirical for	mula	$C_{16}H_{16}N_2O_9$		
Formula weig	ght	380.31		
Temperature/	K	293(2)		
Crystal syster	n	monoclinic		
Space group		P21		
a	/Å	10.3667(3)		
b	/Å	6.84234(18)		
c	/Å	12.9093(4)		
$\alpha/^{\circ}$		90		
β/°		110.345(3)		
$\gamma/^{\circ}$		90		
Volume	$/\text{\AA}^3$	858.56(4)		
Ζ		2		
ρ_{calc}	(g/cm^3)	1.471		
μ	/mm ⁻¹	0.122		
F(000)		396.0		
Crystal size	/mm ³	$0.42 \times 0.37 \times 0.10$		
Radiation	/Å	$MoK\alpha \ (\lambda = 0.71073)$		
2Θ range for	data collection/c	6.84 to 52.032		
Index ranges		$-12 \le h \le 12, -8 \le k \le 8, -15 \le l \le 15$		
Reflections co	ollected	40844		
Independent r	reflections	3377 [$R_{int} = 0.0658$, $R_{sigma} = 0.0280$]		
Data/restraint	s/parameters	3377/1/247		
Goodness-of-	fit on F^2	1.074		
Final R index	es $[I \ge 2\sigma(I)]$	$R_1 = 0.0433, wR_2 = 0.1142$		
Final R index	es [all data]	$R_1 = 0.0447, wR_2 = 0.1161$		
Largest diff. p	peak/hole / e Å ⁻³	0.47/-0.31		

Table S7 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for **3n**. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	у	Z.	U(eq)
C ⁽¹⁾	6502(3)	2932(5)	7689(2)	48.8(7)
C ⁽²⁾	6058(3)	4999(4)	7390(2)	42.7(6)
C ⁽³⁾	4860(3)	5505(4)	6661(2)	42.6(6)
C ⁽⁴⁾	3887(3)	3981(4)	5981(2)	45.0(6)
C ⁽⁵⁾	4646(3)	2048(5)	6105(3)	55.3(7)
O ⁽⁶⁾	5384(2)	1624(3)	7235.4(19)	54.9(5)
C ⁽⁷⁾	7121(3)	2562(6)	8915(3)	60.3(8)
C ⁽⁸⁾	6651(3)	3060(5)	10543(2)	50.8(6)
C ⁽⁹⁾	7828(3)	7189(5)	7476(2)	49.6(6)

$C^{(10)}$	2568(2)	3803(4)	6241(2)	41.0(5)
C ⁽¹¹⁾	1309(3)	3760(4)	5381(2)	44.2(6)
O ⁽¹¹⁾	6188.6(18)	3250(3)	9439.1(15)	49.4(5)
C ⁽¹²⁾	117(3)	3572(4)	5618(2)	46.7(6)
O ⁽¹²⁾	7746(3)	2339(6)	11031(2)	94.0(11)
C ⁽¹³⁾	110(3)	3406(4)	6676(2)	48.5(6)
O ⁽¹³⁾	7043(2)	6360(4)	7984.5(16)	54.7(5)
C ⁽¹⁴⁾	1373(3)	3411(4)	7508(2)	45.9(6)
O ⁽¹⁴⁾	7657(3)	6889(7)	6531(2)	105.2(14)
C ⁽¹⁵⁾	2601(2)	3621(4)	7319(2)	43.0(6)
O ⁽¹⁵⁾	2488(3)	2832(7)	9366(2)	93.3(11)
N ⁽¹⁶⁾	1397(3)	3172(5)	8647(2)	61.6(7)
O ⁽¹⁶⁾	314(3)	3321(6)	8806(2)	90.5(10)
N ⁽¹⁷⁾	-1222(3)	3549(4)	4709(3)	61.2(7)
O ⁽¹⁷⁾	-2245(2)	3183(5)	4937(3)	83.6(9)
O ⁽¹⁸⁾	-1237(3)	3866(5)	3780(3)	89.4(9)
C ⁽¹⁹⁾	5664(4)	3757(6)	11051(3)	64.5(8)
C ⁽²⁰⁾	8966(3)	8363(6)	8236(3)	68.2(9)

Table S8 Anisotropic Displacement Parameters $(\mathring{A}^2 \times 10^3)$ for **3n**. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U 11	U_{22}	U 33	U23	U 13	U 12
C ⁽¹⁾	36.8(12)	66.2(17)	52.2(14)	7.9(13)	26.6(11)	8.9(12)
C ⁽²⁾	35.7(12)	61.0(15)	36.7(12)	1.8(11)	19.2(10)	-5.2(11)
C ⁽³⁾	37.9(12)	52.9(14)	40.8(12)	5.4(10)	18.6(10)	-1.6(10)
C ⁽⁴⁾	40.5(13)	62.3(16)	35.4(11)	0.2(11)	17.2(10)	-4.5(12)
C ⁽⁵⁾	50.4(15)	63.4(18)	60.7(17)	-14.1(14)	30.3(14)	-4.3(14)
O ⁽⁶⁾	51.8(11)	53.7(11)	67.4(13)	4.0(9)	31.1(10)	4.7(9)
C ⁽⁷⁾	41.5(13)	89(2)	57.9(16)	20.2(16)	27.4(12)	22.2(14)
C ⁽⁸⁾	44.1(14)	61.2(16)	43.6(12)	6.4(12)	11.0(11)	2.2(12)
C ⁽⁹⁾	43.1(13)	58.0(15)	49.6(15)	4.1(12)	18.6(11)	-3.9(12)
C ⁽¹⁰⁾	36.5(12)	46.7(13)	40.6(12)	-1.0(10)	14.5(9)	-0.6(11)
C ⁽¹¹⁾	42.1(13)	44.4(13)	41.3(12)	-2.8(10)	8.4(10)	-1.4(11)
O ⁽¹¹⁾	37.5(9)	68.5(12)	45.0(9)	12.1(9)	17.6(7)	12.9(8)
C ⁽¹²⁾	33.1(12)	39.8(12)	58.6(15)	-7.3(11)	5.2(11)	0.5(10)
O ⁽¹²⁾	63.7(15)	153(3)	58.0(14)	22.1(17)	12.0(12)	38.6(18)
C ⁽¹³⁾	31.3(12)	51.1(14)	64.3(16)	-7.5(13)	18.2(11)	-3.6(10)
O ⁽¹³⁾	44.6(10)	80.4(14)	40.6(10)	-5.9(9)	17.0(8)	-14.4(10)
C ⁽¹⁴⁾	38.4(13)	54.6(15)	48.8(13)	-4.2(11)	20.4(11)	-3.5(11)
O ⁽¹⁴⁾	97(2)	170(4)	54.6(14)	-4.0(18)	34.0(14)	-72(2)
C ⁽¹⁵⁾	33.1(12)	56.1(15)	40.4(12)	-1.3(11)	13.6(9)	-1.3(11)
O ⁽¹⁵⁾	66.3(16)	164(3)	54.6(13)	21.7(18)	27.5(12)	11.7(19)
N ⁽¹⁶⁾	51.1(14)	86.4(19)	56.9(14)	-0.8(14)	31.0(12)	-8.4(13)

O ⁽¹⁶⁾	58.3(14)	149(3)	83.6(17)	-10(2)	49.7(13)	-11.7(17)
N ⁽¹⁷⁾	43.1(14)	47.0(13)	74.9(18)	-12.3(12)	-3.1(12)	1.9(11)
O ⁽¹⁷⁾	34.1(11)	87.7(19)	112(2)	-24.8(16)	4.0(12)	-4.1(11)
O ⁽¹⁸⁾	69.6(16)	98(2)	69.1(16)	5.3(15)	-15.4(13)	-8.3(15)
C ⁽¹⁹⁾	65.8(19)	81(2)	50.1(15)	1.6(15)	24.9(14)	6.7(18)
C ⁽²⁰⁾	48.7(16)	73(2)	82(2)	-16.3(18)	22.7(15)	-15.3(15)

Table S9 Bond Lengths for 3n.

Aton	nAtom	Length/Å	Atom Atom	Length/Å
C ⁽¹⁾	O ⁽⁶⁾	1.419(4)	C ⁽⁹⁾ O ⁽¹³⁾	1.337(3)
C ⁽¹⁾	C ⁽²⁾	1.496(4)	C ⁽⁹⁾ C ⁽²⁰⁾	1.481(4)
C ⁽¹⁾	C ⁽⁷⁾	1.509(4)	$C^{(10)}$ $C^{(15)}$	1.386(3)
C ⁽²⁾	C ⁽³⁾	1.317(4)	$C^{(10)}$ $C^{(11)}$	1.389(3)
C ⁽²⁾	O ⁽¹³⁾	1.398(3)	$C^{(11)}$ $C^{(12)}$	1.379(4)
C ⁽³⁾	C ⁽⁴⁾	1.504(4)	$C^{(12)}$ $C^{(13)}$	1.373(4)
C ⁽⁴⁾	C ⁽⁵⁾	1.519(4)	$C^{(12)}$ $N^{(17)}$	1.473(3)
C ⁽⁴⁾	$C^{(10)}$	1.521(3)	$C^{(13)}$ $C^{(14)}$	1.374(4)
C ⁽⁵⁾	O ⁽⁶⁾	1.422(4)	$C^{(14)}$ $C^{(15)}$	1.385(3)
C ⁽⁷⁾	O ⁽¹¹⁾	1.438(3)	$C^{(14)}$ $N^{(16)}$	1.471(4)
C ⁽⁸⁾	O ⁽¹²⁾	1.197(4)	O ⁽¹⁵⁾ N ⁽¹⁶⁾	1.211(4)
C ⁽⁸⁾	O ⁽¹¹⁾	1.342(3)	$N^{(16)}$ $O^{(16)}$	1.213(3)
C ⁽⁸⁾	C ⁽¹⁹⁾	1.474(4)	N ⁽¹⁷⁾ O ⁽¹⁸⁾	1.213(5)
C ⁽⁹⁾	O ⁽¹⁴⁾	1.188(4)	N ⁽¹⁷⁾ O ⁽¹⁷⁾	1.221(4)

Table S10 Bond Angles for 3n.

Atom	Atom	n Atom	Angle/°	Aton	1 Atom	Atom	Angle/°
O ⁽⁶⁾	C ⁽¹⁾	C ⁽²⁾	110.9(2)	C ⁽¹⁵⁾	C ⁽¹⁰⁾	C ⁽⁴⁾	121.2(2)
O ⁽⁶⁾	C ⁽¹⁾	C ⁽⁷⁾	108.4(2)	C ⁽¹¹⁾	C ⁽¹⁰⁾	C ⁽⁴⁾	119.5(2)
C ⁽²⁾	C ⁽¹⁾	C ⁽⁷⁾	114.2(3)	C ⁽¹²⁾	C ⁽¹¹⁾	C ⁽¹⁰⁾	119.4(2)
C ⁽³⁾	C ⁽²⁾	O ⁽¹³⁾	123.0(3)	C ⁽⁸⁾	O ⁽¹¹⁾	C ⁽⁷⁾	114.7(2)
C ⁽³⁾	C ⁽²⁾	C ⁽¹⁾	124.2(3)	C ⁽¹³⁾	C ⁽¹²⁾	C ⁽¹¹⁾	122.9(2)
O ⁽¹³⁾	C ⁽²⁾	C ⁽¹⁾	112.8(2)	C ⁽¹³⁾	C ⁽¹²⁾	N ⁽¹⁷⁾	117.6(3)
C ⁽²⁾	C ⁽³⁾	C ⁽⁴⁾	120.6(3)	C ⁽¹¹⁾	C ⁽¹²⁾	N ⁽¹⁷⁾	119.5(3)
C ⁽³⁾	C ⁽⁴⁾	C ⁽⁵⁾	108.9(2)	C ⁽¹²⁾	C ⁽¹³⁾	C ⁽¹⁴⁾	116.4(2)
C ⁽³⁾	C ⁽⁴⁾	C ⁽¹⁰⁾	113.5(2)	C ⁽⁹⁾	O ⁽¹³⁾	C ⁽²⁾	117.8(2)
C ⁽⁵⁾	C ⁽⁴⁾	C ⁽¹⁰⁾	112.3(2)	C ⁽¹³⁾	C ⁽¹⁴⁾	C ⁽¹⁵⁾	123.2(2)
O ⁽⁶⁾	C ⁽⁵⁾	C ⁽⁴⁾	111.1(2)	C ⁽¹³⁾	C ⁽¹⁴⁾	N ⁽¹⁶⁾	117.5(2)
C ⁽¹⁾	O ⁽⁶⁾	C ⁽⁵⁾	111.4(2)	C ⁽¹⁵⁾	C ⁽¹⁴⁾	N ⁽¹⁶⁾	119.4(2)
O ⁽¹¹⁾	C ⁽⁷⁾	C ⁽¹⁾	109.2(2)	C ⁽¹⁴⁾	C ⁽¹⁵⁾	C ⁽¹⁰⁾	118.9(2)
O ⁽¹²⁾	C ⁽⁸⁾	O ⁽¹¹⁾	121.5(3)	O ⁽¹⁵⁾	N ⁽¹⁶⁾	O ⁽¹⁶⁾	124.0(3)

O ⁽¹²⁾	C ⁽⁸⁾	C ⁽¹⁹⁾	125.3(3)	O ⁽¹⁵⁾	N ⁽¹⁶⁾	C ⁽¹⁴⁾	118.3(2)
O ⁽¹¹⁾	C ⁽⁸⁾	C ⁽¹⁹⁾	113.2(2)	O ⁽¹⁶⁾	N ⁽¹⁶⁾	C ⁽¹⁴⁾	117.7(3)
O ⁽¹⁴⁾	C ⁽⁹⁾	O ⁽¹³⁾	122.1(3)	O ⁽¹⁸⁾	N ⁽¹⁷⁾	O ⁽¹⁷⁾	124.1(3)
O ⁽¹⁴⁾	C ⁽⁹⁾	C ⁽²⁰⁾	125.1(3)	O ⁽¹⁸⁾	N ⁽¹⁷⁾	C ⁽¹²⁾	118.1(3)
O ⁽¹³⁾	C ⁽⁹⁾	C ⁽²⁰⁾	112.7(3)	O ⁽¹⁷⁾	N ⁽¹⁷⁾	C ⁽¹²⁾	117.8(3)
$C^{(15)}$	$C^{(10)}$	C ⁽¹¹⁾	119.3(2)				

Table S11 Hydrogen Bonds for 3n.

DH	H A	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
C(5) H(5	A) 017_\$1 ¹	0.97	2.59	3.560(4)	176.3
C(7) H(7	B) O16_\$2 ²	0.97	2.64	3.401(4)	135.8
C(11) H(1	1) O14_\$3 ³	0.93	2.56	3.274(4)	133.7
C(19) H(1	9B) O(15)	0.96	2.64	3.315(5)	128.0
C(20) H(2	0B)012_\$44	0.96	2.41	3.281(5)	150.5

¹-X,-1/2+Y,1-Z; ²1+X,+Y,+Z; ³1-X,-1/2+Y,1-Z; ⁴2-X,1/2+Y,2-Z

Table S12 Torsion Angles for 3n.

Α	B	С	D	Angle/°	Α	B	С	D	Angle/°
O(6)	C(1)	C(2)	C(3)	-10.4(3)	C(1)	C(7)	O(11)	C(8)	-177.8(3)
C(7)	C(1)	C(2)	C(3)	-133.1(3)	C(10)	C(11))C(12)	C(13)	-0.6(4)
O(6)	C(1)	C(2)	O(13)	168.6(2)	C(10)	C(11)	C(12)	N(17)	179.3(2)
C(7)	C(1)	C(2)	O(13)	45.8(3)	C(11)	C(12))C(13)	C(14)	-0.8(4)
O(13))C(2)	C(3)	C(4)	175.1(2)	N(17)	C(12))C(13)	C(14)	179.4(2)
C(1)	C(2)	C(3)	C(4)	-6.1(4)	O(14)	C(9)	O(13)	C(2)	4.5(5)
C(2)	C(3)	C(4)	C(5)	-12.5(3)	C(20)	C(9)	O(13)	C(2)	-171.2(3)
C(2)	C(3)	C(4)	C(10)	113.4(3)	C(3)	C(2)	O(13)	C(9)	-79.7(3)
C(3)	C(4)	C(5)	O(6)	48.3(3)	C(1)	C(2)	O(13)	C(9)	101.4(3)
C(10)) C(4)	C(5)	O(6)	-78.3(3)	C(12)	C(13)	C(14)	C(15)	1.7(4)
C(2)	C(1)	O(6)	C(5)	46.9(3)	C(12)	C(13)	C(14)	N(16)	-178.1(3)
C(7)	C(1)	O(6)	C(5)	172.9(2)	C(13)	C(14)	C(15)	C(10)	-1.2(4)
C(4)	C(5)	O(6)	C(1)	-68.5(3)	N(16)	C(14)	C(15)	C(10)	178.6(3)
O(6)	C(1)	C(7)	O(11)	-71.2(3)	C(11)	C(10)	C(15)	C(14)	-0.3(4)
C(2)	C(1)	C(7)	O(11)	52.9(4)	C(4)	C(10)	C(15)	C(14)	-178.3(3)
C(3)	C(4)	C(10)) C(15)	-49.6(4)	C(13)	C(14)	N(16)	O(15)	167.4(4)
C(5)	C(4)	C(10)) C(15)	74.5(3)	C(15)	C(14)	N(16)	O(15)	-12.4(5)
C(3)	C(4)	C(10)) C(11)	132.4(3)	C(13)	C(14)	N(16)	O(16)	-12.3(5)
C(5)	C(4)	C(10)) C(11)	-103.5(3)	C(15)	C(14)	N(16)	O(16)	167.9(4)

C(15) C(10) C(11) C(12)	1.1(4)	C(13) C(12) N(17) O(18)	173.7(3)
C(4) C(10)C(11)C(12)	179.2(2)	C(11) C(12) N(17) O(18)	-6.2(4)
O(12)C(8) O(11)C(7)	-1.2(5)	C(13) C(12) N(17) O(17)	-7.4(4)
C(19) C(8) O(11) C(7)	-179.3(3)	C(11) C(12) N(17) O(17)	172.7(3)

Table S13 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for **3n**.

Atom	x	у	Z.	U(eq)
H(1)	7201.23	2617.81	7363.28	59
H(3)	4615.02	6817.76	6565.95	51
H(4)	3624.8	4376.19	5205.27	54
H(5A)	3991.44	1009.2	5786.88	66
H(5B)	5282.43	2105.07	5704.28	66
H(7A)	7286.89	1174.83	9052.39	72
H(7B)	7994.14	3240.48	9217.63	72
H(11)	1270.35	3856.79	4652.22	53
H(13)	-704.09	3296.22	6822.15	58
H(15)	3434.33	3640.7	7905.5	52
H(19A)	6127.77	3925.37	11830.94	97
H(19B)	4938.5	2816.08	10926.89	97
H(19C)	5281.82	4983.68	10726.21	97
H(20A)	9104.65	9510.23	7859.97	102
H(20B)	9793.31	7597.72	8474.47	102
H(20C)	8735.94	8742.16	8866.94	102

S56

COSY :

HSQC :

нвмс

JG G2.30Ac para CF3/1

AcO AcO СFз

---- -62.48

AcO AcO

-70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 -200 f1 (ppm)

¹⁹F NMR spectrum of **3g** (188 MHz, CDCl₃

JG G2.3OAc para F ortho F/1

09 113 113 113 113 113 113 113 113 113 11	
12.12.12.12.12.12.12.15.15.15	

AcC

¹H NMR spectrum of **3o** (300 MHz, CDCl₃)

S132

S137

S139

0.0

S147

S152

S154

S155

¹³C NMR spectrum of **4i** (75 MHz, CDCl₃)

