# **Supporting Information**

# A fluorine-substituted pyrrolidinium-based ionic liquid for high-voltage Li-

## ion battery

Qian Liu,<sup>a</sup> Chia-Wei Hsu,<sup>b</sup> Trevor L. Dzwiniel,<sup>b</sup> Krzysztof Z. Pupek<sup>b</sup> and Zhengcheng Zhang<sup>\*a</sup>

<sup>a</sup>Chemical Sciences and Engineering Division
<sup>b</sup>Applied Materials Division
Argonne National Laboratory
9700 S. Cass Ave., Argonne, IL 60439, USA
\*Email: zzhang@anl.gov

## 1. Materials and Electrochemical Testing

## 1.1 Electrode and electrolyte preparation

LiNi<sub>0.5</sub>Mn<sub>0.3</sub>Co<sub>0.2</sub>O<sub>2</sub> cathodes (90% NMC532 (Toda Kogyo Corp.), 5% C45 conductive carbon (Timcal), and 5% PVdF (Solvay 5130) by weight), graphite composite anode (91.8% CPG-A12, 6% PVdF (Kureha 9300), 2% C45 conductive carbon and 0.17% oxalic acid) were fabricated by Cell Analysis, Modeling, and Prototyping (CAMP) Facility at Argonne National Laboratory. Active material loading is 10.26 mg/cm<sup>2</sup> for NMC532 cathode and 5.56 mg/cm<sup>2</sup> for graphite anode. The electrolytes were prepared in an argon-filled glovebox by mixing testing ionic liquid with LiFSI (Nippon ShokuBai Co., Ltd.). The water content was <20 ppm, measured by using Mettler Toledo coulometric Karl-Fischer titrator C30. The viscosity was measured by ViscoLab 4000 at room temperature.

### 1.2 Electrochemical characterization

Electrolyte conductivity ( $\sigma$ ) was calculated using the resistance data obtained by electrochemical impedance spectroscopy (EIS) using Solartron Analytical 1400 Cell test station. The distance between the electrodes (l) was kept equal to 0.172 cm using a Teflon spacer ring with the inner area (A) of 0.502 cm<sup>2</sup>. Cell impedance was measured the frequency range of 1 MHz to 0.1 Hz at the open circuit potential (OCV).

Cyclic voltammetry was performed using a Gamry Instrument potentiostat reference 600+. The measurements were carried out in a 3-electrode cell with Pt (0.5 mm diameter) as working electrode, two lithium strips as counter and reference electrodes. The scan rate was 10 mV/s.

Galvanostatic charge-discharge cycling tests were conducted on Maccor Electrochemical Analyzer (MIMSclient) with Al-coated 2032-coin cells (Pred Materials International). All cells were assembled using NMC532 as cathode and lithium metal foil or graphite as the anode with a cutoff voltage of 4.2-3.0 V, 4.3-3.0 V or 4.7-3.0 V. The separator was a glass micro-fiber disc. The effective electrode area was 1.54 cm<sup>2</sup> for cathode and 1.77 cm<sup>2</sup> for anode. The cells were formed by three C/20 cycles followed by 100 cycles at C/10 (C = 2.3 mAh, 1 C current = 2.3 mA). All electrochemical experiments were conducted at 30°C. The N/P ratio for the NMC532/graphite cell is around 1.1 - 1.2. The specific capacity (mAh/g) was calculated by the obtained cell capacity (mAh)/active cathode material weight (*i.e.* weight of NMC532 material in gram).

### 2. Precursor and PMpyr<sub>f</sub>-FSI Synthesis

### 2.1 Methyl bis(fluorosulfonyl)imide - CH<sub>3</sub>FSI



Scheme 1. Synthesis of CH<sub>3</sub>FSI.

A 2 L round bottom flask was charged with potassium bis(fluorosulfonyl)imide (60 g, 276 mmol) and 1,4-dioxane (24 mL, 276 mmol), and dimethyl sulfate (400 mL, 4.2 mol) were added slowly. The mixture was heated to 100°C for 3 h. After cooling back to 70°C, ice cold water (900 mL) was added into the flask slowly and the mixture was stirred at 70°C for 1 h. After cooling down to room temperature, the mixture was extracted with CHCl<sub>3</sub> (200 mL x 3). The combined organic layer was washed with H<sub>2</sub>O (150 mL) and dried with Na<sub>2</sub>SO<sub>4</sub>. The volatiles were removed under vacuum to get the crude product. The final product was isolated by vacuum distillation to yield as colorless liquid (26.8 g, 50%, b.p. 70-75 °C/50 torr). <sup>1</sup>H NMR (300 MHz, Acetone-*d*<sub>6</sub>)  $\delta$  3.85 (t, J = 1.6 Hz, 3H). <sup>19</sup>F NMR (282 MHz, Acetone-*d*<sub>6</sub>)  $\delta$  53.83 (q, J = 1.8 Hz).



Scheme 2. Synthesis of PMpyr<sub>f</sub>-FSI.

## 2.2 1-Boc-3-fluoropyrrolidine

A flask was charged with 1-boc-3-hydroxypyrrolidine (1.87 g, 10 mmol) and dichloromethane (DCM) (30 mL) and cooled to -78°C. XtalFluro-E (3.45 g, 15 mmol) and DBU (2.25 mL, 15 mmol) were added at -78°C and the mixture was stirred at -78°C for 2 h and then the temperature was allowed to warm up to room temperature and stirred overnight. The reaction was quenched

with NaHCO<sub>3</sub> (sat., 50 mL) and the aqueous layer was extracted with DCM (50 mL x 3). The combined organic layer was washed by brine solution and dried with Na<sub>2</sub>SO<sub>4</sub>. The volatiles were removed under vacuum to yield a brown oil and the crude was purified by silica gel chromatography (5-10 % ethyl acetate in hexanes) to give 0.9 g product (47.6%) as yellow oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  5.21 (dt, J = 52.9, 3.7 Hz, 1H), 3.59 (ddd, J = 51.5, 26.4, 15.0 Hz, 4H), 2.35 – 2.11 (m, 1H), 1.95-1.85 (m, 1H), 1.47 (s, 9H). <sup>19</sup>F{<sup>1</sup>H} NMR (282 MHz, CDCl<sub>3</sub>)  $\delta$  - 177.0, -177.4.

#### 2.3 3-Fluoropyrrolidine hydrochloride

A flask was charged with 1-boc-3-fluoropyrrolidine (0.9 g, 4.7 mmol) and 1,4-dioxane (25 mL) and HCl solution (8 mL, 4 M in 1,4-dioxane) was added and the mixture was stirred at room temperature overnight in Ar-filled glovebox. The product was collected by filtration and rinsed with Et<sub>2</sub>O as a light brownish solid (0.36 g, 60 %) and used in the next step without further purification. <sup>1</sup>H NMR (300 MHz, D<sub>2</sub>O)  $\delta$  5.48 (dt, J = 51.7, 3.9 Hz, 1H), 3.88 – 3.11 (m, 4H), 2.69 – 1.68 (m, 2H). 1.47 (s, 9H). <sup>19</sup>F{<sup>1</sup>H} NMR (282 MHz, D<sub>2</sub>O)  $\delta$  -177.0.

## 2.4 1-Propyl-3-fluoropyrrolidine

A flask was charged with 3-fluoropyrrolidine hydrochloride (2.01 g, 16 mmol),  $K_2CO_3$  (6.60 g, 48 mmol), 1-bromopropane (1.6 mL, 18 mmol) and acetonitrile (50 mL) and the mixture was heated to 50 °C and stirred for 2 days. The solid was filtered off and HCl solution (4 mL, 4 M in 1,4-dioxane) was added to the filtrate. The volatiles were removed under vacuum to yield a yellow solid and the solid was taken up into water (20 mL) and neutralized by NaOH (aq. 2.5 M). The aqueous layer was extracted with Et<sub>2</sub>O (30 mL x 3) and the combined organic layer was washed with brine solution. The majority of Et<sub>2</sub>O was removed by distillation and the product

was isolated by vacuum transfer as an Et<sub>2</sub>O solution (5.0 g, with 3 eq. E<sub>2</sub>O and 0.1 eq. 1,4dioxane per product, yield 88%) for the next step without further purification. <sup>1</sup>H NMR (300 MHz, Acetone- $d_6$ )  $\delta$  5.13 (dddt, J = 56.2, 6.9, 5.1, 1.8 Hz, 1H), 2.81 – 2.46 (m, 3H), 2.40 – 2.10 (m, 4H), 1.98 – 1.71 (m, 1H), 1.70 – 1.37 (m, 2H), 0.89 (t, J = 7.4 Hz, 3H), (1,4-dioxane is observed at  $\delta$  3.58 as singlet and Et<sub>2</sub>O is observed at  $\delta$  3.40 and 1.11 as quartet and triplet, respectively). <sup>19</sup>F{<sup>1</sup>H} NMR (282 MHz, Acetone- $d_6$ )  $\delta$  -168.3.

## 2.5 1-Methyl-1-propyl-3-fluoropyrrolidinium bis(fluorosulfonyl)imide (PMpyr<sub>f</sub>-FSI)

To the Et<sub>2</sub>O solution of 1-propyl-3-fluoropyrrolidine (5.0 g, with 3 eq. E<sub>2</sub>O and 0.1 eq. 1,4dioxane per 1-propyl-3-fluoropyrrolidine), MeFSI (2.75 g, 14 mmol) was added slowly and the mixture was stirred at room temperature for 2 h. The volatiles were removed under vacuum to yield a light-yellow oil. The crude was taken up in ethyl acetate (50 mL) and activate charcoal (4 g) was added and the mixture was stirred overnight. The activate charcoal was removed by filtration and the volatiles were removed under vacuum to yield colorless oil (3.9 g, 85%). The resulted IL was dried in lyophilizer for at least 2 days, then stored over 4 Å molecular sieves and filtered before use. <sup>1</sup>H NMR (300 MHz, Acetone- $d_6$ )  $\delta$  5.68 (d, J = 54.6 Hz, 1H), 4.31 – 3.77 (m, 4H), 3.74 – 3.49 (m, 2H), 3.42 and 3.39 (s, 3H), 3.05 – 2.43 (m, 2H), 2.07 – 1.82 (m, 2H), 1.02 and 1.01 (t, J = 7.2 Hz, 3H). <sup>19</sup>F{<sup>1</sup>H} NMR (282 MHz, Acetone- $d_6$ )  $\delta$  51.4, -168.9, -172.4. <sup>13</sup>C{<sup>1</sup>H} NMR (75 MHz, Acetone- $d_6$ )  $\delta$  92.79 (d, J = 177.6 Hz), 71.47 – 69.82 (m), 68.34 (d, J = 3.6 Hz), 64.68 (d, J = 3.6 Hz), 51.08 (d, J = 3.6 Hz), 31.52 (d, J = 2.0 Hz), 17.87 (d, J = 2.0 Hz), 10.82 (d, J = 2.0 Hz).



Scheme 3. Synthesis of P<sub>f</sub>Mpyr-FSI.

## 3. Precursor and P<sub>f</sub>Mpyr-FSI Synthesis

## 3.1 1-(2,2,3,3,3-Pentafluoropropyl)pyrrolidine<sup>1</sup>

A flask was charged with pyrrolidine (50 mL, 600 mmol) and cooled to 0°C. 2,2,3,3,3-Pentafluoropropyl trifluoromethanesulfonate (33 mL, 200 mmol) was added at 0°C and the temperature was allowed to warm up to room temperature and stirred overnight. The solids were removed by filtration and washed with Et<sub>2</sub>O. The filtrate was diluted with Et<sub>2</sub>O to a total volume of 120 mL and then the Et<sub>2</sub>O layer was washed by 5% HCl (aq.) solution (120 mL x 2). The Et<sub>2</sub>O was removed by distillation and the product was isolated by distillation (36 g, 89%, b.p. 114-115°C). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  3.12 (t, J = 15 Hz, 2H), 2.73 (br, 4H), 1.82 (br, 4H). <sup>19</sup>F NMR (282 MHz, CDCl<sub>3</sub>)  $\delta$  -84.2, -119.6 (t, J = 15.9 Hz).

3.2. 1-Methyl-1-(2,2,3,3,3-pentafluoropropyl)pyrrolidinium bis(fluorosulfonyl)imide (P<sub>f</sub>Mpyr-FSI)

A flask was charged with 1-(2,2,3,3,3-pentafluoropropyl)pyrrolidine (20.3 g, 100 mmol) and ethyl acetate (200 mL), CH<sub>3</sub>FSI (19.5 g, 14 mmol) was added slowly and the mixture was stirred at room temperature for 2 h. Then activate charcoal (20 g) was added and the mixture was stirred overnight. The activate charcoal was removed by filtration and the volatiles were removed under vacuum to yield colorless oil (33.2 g, 83%). The resulted IL was dried in lyophilizer for at least 2 days, then stored over 4 Å molecular sieves and filtered before use. <sup>1</sup>H NMR (300 MHz,

Acetone- $d_6$ )  $\delta$  4.84 (t, J = 16.7 Hz, 2H), 4.26 – 3.90 (m, 4H), 3.58 (s, 3H), 2.62 – 2.33 (m, 4H). <sup>19</sup>F NMR (282 MHz, Acetone- $d_6$ )  $\delta$  51.4, -85.75, -116.87 (t, J = 16.7 Hz). <sup>13</sup>C{<sup>1</sup>H} NMR (75 MHz, Acetone- $d_6$ )  $\delta$  120.6 (qt, J = 382.0, 33.9 Hz), 115.6 (tq, J = 389.2, 38.4 Hz), 68.7, 60.3 (t, J = 17.9 Hz), 50.6, 22.0.

## 4. Multi-NMR Spectra

Figure S1. NMR spectra of CH<sub>3</sub>FSI in acetone- $d_6.(\delta = 3.58, 1, 4$ - dioxane, 2 %)

(a) <sup>1</sup>H NMR





60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 f1(ppm)





10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -11(pm)











Figure S4. NMR spectra of 1-propyl-3-fluoropyrrolidine in acetone-*d*<sub>6</sub>.

(a) <sup>1</sup>H NMR

82.84 82.84 82.84 82.84 82.84 82.84 82.84 82.84 82.84 82.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.84 84.848





S10

--168.3

**Figure S5**. NMR spectra of 1-methyl-1-propyl-3-fluoropyrrolidinium bis(fluorosulfonyl)imide (PMpyr<sub>f</sub>-FSI) in acetone- $d_6$ .

(a) <sup>1</sup>H NMR



) 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -80 -90 -100 -110 -120 -130 -140 -150 -180 -190 -2t ft (ppm)



Figure S6. NMR spectra of 1-(2,2,3,3,3-pentafluoropropyl)pyrrolidine in CDCl<sub>3</sub>.

(a) <sup>1</sup>H NMR





**Figure S7**. NMR spectra of 1-methyl-1-(2,2,3,3,3-pentafluoropropyl)pyrrolidinium bis(fluorosulfonyl)imide ( $P_f$ Mpyr-FSI) in acetone- $d_6$ .

(a) <sup>1</sup>H NMR





# 5. Supplemental electrochemical data

|                                                  | Viscosity<br>(cP @ 25°C) | Ionic Conductivity<br>(mScm <sup>-1</sup> @ 25°C) |
|--------------------------------------------------|--------------------------|---------------------------------------------------|
| PMpyr-FSI                                        | 40                       | 9.32                                              |
| PMpyr <sub>f</sub> -FSI                          | 83                       | 4.25                                              |
| $PMpyr_{f}$ -FSI + 1 M LiFSI <sup>a</sup>        | 150                      | 2.57                                              |
| PMpyr <sub>f</sub> -FSI + 4 M LiFSI <sup>a</sup> | 528                      | 0.55                                              |
| P <sub>f</sub> Mpyr-FSI                          | 261                      | 1.68                                              |
| $P_{f}Mpyr-FSI + 1 M LiFSI^{a}$                  | 364                      | 1.18                                              |
| $P_{f}Mpyr-FSI + 4 M LiFSI^{a}$                  | 1127                     | 0.36                                              |

Table S1. Viscosity and Ionic Conductivity of Pristine Ionic Liquids and Electrolytes.

<sup>a</sup>Denoted concentration of LiFSI is determined by the X millimoles of LiFSI dissolved in 1 mL of IL.



**Figure S8.** Cyclic voltammetry profiles of (a) 1 M LiFSI PfMpyr-FSI and (b) 1 M LiFSI PMpyr-FSI. Scan potential vs  $Li^+/Li$  from -0.5 to 6 V.



**Figure S9.** Voltage profiles of NMC532/Li cells using 1 M LiFSI PMpyr<sub>f</sub>-FSI (a and c) and 4 M LiFSI PMpyr<sub>f</sub>-FSI (b and d). Cutoff voltage: 4.3 - 3.0 V (a and b); 4.7 - 3.0 V (c and d).



**Figure S10.** Voltage profiles of NMC532/graphite cells using 1 M LiFSI PMpyr<sub>f</sub>-FSI (a) and 4 M LiFSI PMpyr<sub>f</sub>-FSI (b). Cutoff voltage: 4.2 - 3.0 V.

## Reference

1. T. Mantani, K. Shiomi, T. Konno, T. Ishihara and H. Yamanaka, A Convenient Preparation of 3,3,3-Trifluoro-1-propynylamines and Their Lewis Acid Catalyzed Reaction with Carbonyl Compounds Leading to  $(Z)-\alpha$ -(Trifluoromethyl)- $\alpha$ , $\beta$ -unsaturated Amides1. J. Org. Chem. 2001, **66** (10), 3442.