Supporting Information

Preparation of Labeled Aromatic Amino Acids via Late-Stage ${ }^{18}$ F-Fluorination of Chiral Nickel and Copper Complexes

${ }^{\dagger}$ Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, INM-5 Nuclear Chemistry, 52425 Jülich, Germany
${ }^{\ddagger}$ Institute of Radiochemistry and Experimental Molecular Imaging, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
${ }^{\S}$ Max Planck Institute for Metabolism Research, University Hospital Cologne, Gleueler Str. 50, 50931 Cologne, Germany
†contributed equally
*Corresponding Author

Table of Contents

Organic Synthesis 5
General Experimental Information 5
General procedure for alkylation upon Ni/Cu-BPX-Gly or Ala (GP1) 6
General procedure for radical bromination (GP2) 7
Experimental Procedures and Characterization Data 8
Synthesis of Ni-/Cu-BPX complexes 8
(S,S)-Ni-BPB-2-BpinPhe (3a) 10
(S, S)-Ni-BPB-2-FPhe (18a) 11
(S,S)-Ni-BPB-3-BpinPhe (3b) 12
(S, S)-Ni-BPB-3-FPhe (18b) 14
(S, S)-Cu-BPB-3-BpinPhe (19) 15
(S,S)-Ni-BPB-4-BpinPhe (3c) 16
4,4,5,5-Tetramethyl-2-(2-methyl-4-hydroxyphenyl)-1,3,2-dioxaborolane (S11) 17
2-(4-(Methoxymethoxy)-2-methylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (S12) 18
2-(4-(Methoxymethoxy)-2-bromomethylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2d) 19
(S,S)-Ni-BPB-2-Bpin-5-MOMO-Phe (3d) 20
2-Bromo-4-(methoxymethoxy)-1-methylbenzene (S14) 21
2-[5-(Methoxymethoxy)-2-methylphenyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (S15) 22
2-(2-(Bromomethyl)-5-(methoxymethoxy)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2e). 23
(S,S)-Ni-BPB-2-Bpin-4-MOMO-Phe (3e) 24
2-Fluoro-4-(methoxymethoxy)-1-methylbenzene (S17) 25
1-(Bromomethyl)-2-fluoro-4-(methoxymethoxy)benzene (S18) 26
(S,S)-Ni-BPB-2-F-4-MOMO-Phe (18e) 27
4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole (S20) 28
N,N-Dimethyl-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-3-yl)methanamine (S21) 29
N,N,N-Trimethyl-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-3-yl)methanaminium iodide (2f) 30
(S,S)-Ni-BPB-4-Bpin-Trp (3f) 31
α-Methyl-2-[$\left.{ }^{18} \mathrm{~F}\right] F P h e$ precursor (3g) 33
Ni-BPB α-methyl-2-FPhe reference compound (18g) 34
Ni-PBP-(RS)-Ala (S22) 35
General procedure for alkylation upon Ni-PBP-(RS)-Ala (GP3) 37
General procedure for decomposition of Ni-PBP- α Me-n-FPhe complexes ($\mathrm{n}=2-4$) (GP4) 37
Ni-PBP- α Me-2-FPhe (S24) 38
(RS)- α-Methyl-2-fluorophenylalanine [(RS)-4g] 39
α-Methyl-3-[$\left.{ }^{18} \mathrm{~F}\right]$ FPhe precursor (3h) 40
Ni-BPB α-methyl 3-FPhe (18h) 41
Ni-PBP- α Me-3-FPhe (S25) 42
(RS)- α-Methyl-3-fluorophenylalanine [(RS)-4h] 43
α-Methyl-4-[$\left.{ }^{18} \mathrm{~F}\right]$ FPhe precursor (3i) 44
Ni-BPB α-methyl-4FPhe Reference Compound (18i) 45
Ni-PBP- α Me-4-FPhe (S27) 46
(RS)- α-Methyl-4-fluorophenylalanine [(RS)-4i] 47
NMR Spectra 48
Radiochemistry 97
General Information and Procedures 97
Preprocessing of $\left[{ }^{18} \mathrm{~F}\right] f l u o r i d e$ 97
Synthesis of FET 97
HPLC 97
General procedure for the preparation of ${ }^{18} \mathrm{~F}$-labeled aromatic amino acids from Ni-BPX-(Bpin)AAA complexes (GP5) 100
Automated Radiosyntheses 100
Optimization of Radiofluorination Conditions 101
Automated Synthesis of Radiofluorinated Amino Acids 103
Radio HPLC traces and RCC data for ${ }^{18}$ F-labeled Products 105
Deprotection Optimization 110
Quality Control of Products 110
Determination of Enantiomeric Excess for AAA PET tracers 120
General Procedure for determination of carrier amount and molar activity (GP 6) 122
Determination of specific activity and carrier amount for $3-\left[{ }^{18} \mathrm{~F}\right]$ FPhe ($\left[{ }^{18} \mathrm{~F}\right] 4 \mathrm{~b}$) 123
Determination of specific activity and carrier amount for 4-[$\left.{ }^{18} \mathrm{~F}\right]$ FPhe ($\left[{ }^{18} \mathrm{~F}\right] 4 \mathrm{c}$) 125
Determination of specific activity and carrier amount for $\alpha \mathrm{Me}-2-\left[{ }^{18} \mathrm{~F}\right] \mathrm{FPhe}\left(\left[{ }^{18} \mathrm{~F}\right] 4 \mathrm{~g}\right)$ 126
Determination of specific activity and carrier amount for $\alpha \mathrm{Me}-3-\left[{ }^{18} \mathrm{~F}\right]$ FPhe ($\left[{ }^{18} \mathrm{~F}\right] 4 \mathrm{~h}$) 127
Determination of specific activity and carrier amount for $\alpha \mathrm{Me}-4-\left[{ }^{18} \mathrm{~F}\right] \mathrm{FPhe}\left(\left[{ }^{18} \mathrm{~F}\right] 4 \mathrm{i}\right)$ 129
Induced-Coupled Plasma Mass Spectrometry Results 130
In vitro experiments 131
General Information 131
Cellular uptake studies 131
General 134
Comparison of brain uptake of $3-\left[{ }^{18} \mathrm{~F}\right]$ FPhe in healthy rats with/without benserazide 136
References 137

Organic Synthesis

General Experimental Information

If not otherwise stated, all chemical compounds, including reference compounds and solvents were obtained from Merck (Sigma-Aldrich, Germany), Thermo-Fisher Scientific (Alfa Aesar and Acros, Germany) and Fluorochem (United Kingdom). They were used directly without prior purification. Thin-layer chromatography (TLC) experiments were carried out using precoated plates of silica gel 60 F254 (Merck, Darmstadt, Germany), and analyzed under a UV lamp at 254 nm . Moisture sensitive reactions were carried out in pre-heated glassware (2 h at $140^{\circ} \mathrm{C}$) and proceeded under an argon atmosphere. All reactions were stirred magnetically and the organic layers were dried over anhydrous $\mathrm{MgSO}_{4} .{ }^{1} \mathrm{H}$ NMR spectra were collected applying a Bruker Avance II 300 (Bruker Corporation, MA, USA) (300 MHz), Bruker Avance (600 MHz), Bruker Avance $200(200 \mathrm{MHz})$, or Varian Inova (400 MHz) spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts are reported in ppm relative to residual peaks of deuterated solvents. Higherorder NMR spectra were approximately interpreted as first-order spectra, if possible. The observed signal multiplicities are characterized as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quin $=$ quintet, $\mathrm{m}=$ multiplet, and $\mathrm{br}=$ broad. Coupling constants (J) were reported in hertz (Hz). ${ }^{13} \mathrm{C}$ NMR spectra [additional APT (Attached ProtonTest)] were collected via Bruker Avance II 300 (75.5 MHz), Varian Inova (101 MHz), Bruker Avance 200 (50.3 MHz), and Bruker Avance II 600 (125.9 MHz). ${ }^{19}$ F NMR spectra were collected applying a Bruker Avance II 300 and Bruker Avance II $600(376 \mathrm{MHz})$. All chemical shifts (δ, ppm) are provided with respect to the residual deuterated solvent peaks. Low-resolution electron spray ionization mass spectrometry [LRMS (ESI)] analyses of compounds were obtained using a LTQ Orbitrap XL (Thermo Fisher Scientific, Bremen, Germany). High-resolution electron spray ionization mass spectrometry [HRMS (ESI)] analyses of compounds were obtained using a Fouriertransform ion-cyclotron resonance LTQ FT Ultra (Thermo Fisher Scientific, Bremen, Germany). Low resolution electron impact ionization mass spectrometry gas chromatography (LRMS/GC) analyses were carried out using a ISQ GCMS system (Thermo Fisher Scientific, Bremen, Germany) equipped with ISQ (single quadrupole massspectrometer) and Trace 1310 (GC-chromatograph) under the following conditions: ionization potential: 70 eV ; detecting ion polarity: positive; scan: m/z 50-500; GC column: Optima 5 Accent $30 \mathrm{~m} \times 0.25 \mathrm{~mm}$ ID $\times 0.25$ $\mu \mathrm{m}$ FD (Macherey-Nagel, Düren, Germany), temperature gradient (${ }^{\circ} \mathrm{C}$): 0-5 min: 70; 5-10 min: $70 \rightarrow 270$; 10-15 min: 270; GC injector + transfer line: isotherm $300^{\circ} \mathrm{C}$; flow rate (carrier gas): $1.2 \mathrm{~mL} / \mathrm{min}$ (He, splitting: 1:10). High resolution electron impact ionization mass spectrometry gas chromatography (HRMS/GC) analyses were carried out using a Exactive GC
system (Thermo Fisher Scientific, Bremen, Germany) equipped with Orbitrap mass analyzer, Trace 1310 (GC-chromatograph) and TriPlus (RSH autoinjector) under the following conditions: ionization potential: 70 eV ; detecting ion polarity: positive; ion source temperature: $250{ }^{\circ} \mathrm{C}$; resolution: 60000; scan: m/z 50-500; GC column: TraceGold-5 SIL MS $30 \mathrm{~m} \times 0.25$ mm ID $\times 0.25 \mu \mathrm{~m}$ FD (Thermo Fisher Scientific, Bremen, Germany), temperature gradient (${ }^{\circ} \mathrm{C}$): $0-1 \mathrm{~min}: 40$; 1-17 min: $40 \rightarrow 280$; 17-22 min: 280; GC injector + transfer line: isotherm $300^{\circ} \mathrm{C}$; flow rate (carrier gas): $1 \mathrm{~mL} / \mathrm{min}$ (He, split: 1:20). Elemental analysis (C, H): Vario MICRO Cube (Elementar Analysensysteme GmbH, Langenselbold, Germany). Elemental analysis (C, H, O): Vario EL Cube (Elementar Analysensysteme GmbH, Langenselbold, Germany); analyses were carried out in triplicate.

The C-Bpin signal was unobservable in the ${ }^{13} \mathrm{C}$ NMR spectra.
The preparation of the MOMCl solution ($2.1 \mathrm{~m}, 18 \% \mathrm{w} / \mathrm{w}, 0.91 \mathrm{~g} / \mathrm{mL}$) in toluene was carried out according to the protocol described by Berliner et al. ${ }^{1}$

General procedure for alkylation upon Ni/Cu-BPX-Gly or Ala (GP1)

$\mathrm{NaH}(60 \%$ suspension in mineral oil) (1.6 equiv) was added in small portions to a solution of $\mathrm{Cu} / \mathrm{Ni}-(S)$-BPX-Gly or -Ala (1 equiv) and the corresponding alkylating agent $\mathbf{2 a}-\mathbf{i}$ (1.6 equiv) in DMF/MeCN (1:2) at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 20 min and thereafter, stirred at room temperature for an additional 2 hours. The reaction mixture was poured into an ice-cold 0.5 M pH 5.5 sodium phosphate buffer, the resulting emulsion was extracted thrice with EtOAc, and washed thrice with brine. The organic fraction was dried and concentrated under reduced pressure to give a red residue, which was purified by column chromatography on silica gel using a gradient elution of acetone $/ \mathrm{CHCl}_{3}$ to afford the crude product which was further purified by chromatography on C_{18} silica gel using a gradient elution with aqueous MeCN and, finally, triturated with $\mathrm{EtOAc} /$ hexane to yield green $\mathrm{Cu}-\mathrm{BPB}-\mathrm{AA}$ or red Ni-BPX-AA solid, respectively. RP Chromatography using aqueous MeCN and subsequent evaporation of the eluent at $40^{\circ} \mathrm{C}$ (under reduced pressure) sometimes caused hydrolysis of the Bpin group furnishing the corresponding boronic acids as side products (e.g., in the case of $\mathbf{3 b}$, $\mathbf{3 h}$ and $\mathbf{3 i}$; in these cases we provide NMR-spectra of the respective products before and after RP chromatography; prolonged heating (>3 h) of solutions of Bpin-substituted Ni-BPB-AAAs in $50 \% \mathrm{MeCN}$ at $50{ }^{\circ} \mathrm{C}$ caused complete hydrolysis of the Bpin group). As boronic acids are generally better suited substrates for alcohol-enhanced Cu -mediated radiofluorination than the corresponding Bpin esters, no attempts to separate them (or to convert them back into the Bpin
ester) were performed and the mixtures were directly used for the radiolabeling step. Omission of the RP purification step led in some cases to substantially lower ${ }^{18} \mathrm{~F}$-incorporation rates.

General procedure for radical bromination (GP2)

A solution of the corresponding substituted toluene (14.3 mmol), NBS (14.3 mmol) and AIBN (2.25 mmol) in cyclohexane (40 mL) was stirred under Ar under irradiation with a light source (550 W) in a quartz reaction vessel for 3 hours. The reaction mixture was filtered, and the filter cake was washed with hexane. The organic extract was dried and concentrated under reduced pressure to give a yellow oil, which was purified by column chromatography on silica gel using a gradient elution of EtOAc/hexane to give the desired product.

Experimental Procedures and Characterization Data

Synthesis of Ni-/Cu-BPX complexes

1a, 75\%
Scheme S1. The preparation of (S)-Ni-BPB-Gly (1a). ${ }^{2}$
The preparation of (S)-Ni-BPB-Gly (1a) ${ }^{3}$ was carried out according to the protocol described by Belokon et al. (Scheme S1) ${ }^{2}$. A similar protocol allowed ($S, S / R$)-Ni-BPX-Ala (1b) to be accessed (Scheme S2). ${ }^{4}$

S6, 53\%
1b, 80\%
Scheme S 2 . The preparation of ($(S, S / R)$-Ni-BPX-Ala (1b).

1c was prepared similarly to the protocol reported by Smith et al. (Scheme S3). ${ }^{5}$

Scheme S3. The preparation of chiral $\mathbf{C u}$ complex $\mathbf{1 c} .^{5}$
(S,S)-Ni-BPB-2-BpinPhe (3a)

The above compound (3a) was prepared according to GP1 whereby, $\mathbf{1 a}(0.52 \mathrm{~g}, 1.05 \mathrm{mmol})$, 2a ($0.5 \mathrm{~g}, 1.68 \mathrm{mmol}$), NaH (60% suspension in mineral oil) ($70 \mathrm{mg}, 17.5 \mathrm{mmol}$) and DMF/MeCN 1:2 (10 mL) were utilized. Yield: $78 \% ~(0.59 \mathrm{~g}, 0.82 \mathrm{mmol}$).
$\mathrm{R}_{\mathrm{f}} 0.42$, (1:20 acetone/ CHCl_{3}).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.32(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.89-7.76$ $(\mathrm{m}, 1 \mathrm{H}), 7.55-7.21(\mathrm{~m}, 8 \mathrm{H}), 7.19-7.00(\mathrm{~m}, 3 \mathrm{H}), 6.60(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.54-6.47(\mathrm{~m}, 1 \mathrm{H})$, $5.95(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=5.9 \mathrm{~Hz}$, 2H), $3.55-3.35$ (m, 2H), $3.32-3.04$ (m, 2H), $2.84-2.66$ (m, 1H), $2.62-2.44$ (m, 1H), 2.15 $-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{~s}, 6 \mathrm{H}), 1.11(\mathrm{~s}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.34,178.47,170.73$, $142.74,142.50,136.92,134.00,133.72$, 133.34, 132.05, 131.47, 131.36, 131.09, 129.01, 128.76, 128.70, 128.56, 128.35, 127.90, 127.32, 126.44, 126.18, 123.05, 120.38, 83.64, 72.96, $70.80,62.99,57.13,42.35,31.06,24.94,24.34,23.80 . C$-Bpin was not observed. Pairs of methyl groups of the Bpin residue were inequivalent. $o-$ and m-Carbons of the phenyl group of the [(2-amido)phenyl]phenylmethanimine fragment were inequivalent.

HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{40} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{NiB}^{+}$calcd.714.2644, observed 714.2642; correct isotopic pattern.

The above compound (18a) ${ }^{6}$ was prepared according to GP1 whereby, $\mathbf{1 a}(0.94 \mathrm{~g}, 1.89 \mathrm{mmol})$, 1-(bromomethyl)-2-fluorobenzene ($\mathbf{S 8}, 0.5 \mathrm{~g}, 2.65 \mathrm{mmol}$), NaH (60% suspension in mineral oil) ($120 \mathrm{mg}, 3.0 \mathrm{mmol}$) and DMF/MeCN 1:2 $(20 \mathrm{~mL})$ were utilized. Yield: $69 \%(0.83 \mathrm{~g}, 1.29$ mmol ; according to the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ solvate with 0.5 mol . $\mathrm{Et}_{2} \mathrm{O}$).
$\mathrm{R}_{\mathrm{f}} 0.35$, (1:8 acetone/ CHCl_{3}).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.28(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.47$ (m, 2H), $7.46-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.09(\mathrm{~m}, 9 \mathrm{H}), 6.98(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=4.1 \mathrm{~Hz}$, $2 \mathrm{H}), 4.29(\mathrm{dd}, J=9.1,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.56-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.31(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.06$ $(\mathrm{m}, 2 \mathrm{H}), 3.02-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.23(\mathrm{~m}, 3 \mathrm{H}), 2.01-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.58(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.25,178.41,171.98,162.03(\mathrm{~d}, J=246.6 \mathrm{~Hz}), 142.90$, 134.07, 133.56, 133.18, $132.89(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 132.32,131.53,129.70,129.34(\mathrm{~d}, J=8.1 \mathrm{~Hz})$, 128.95, 128.91, 128.76, 128.19 (d, $J=3.1 \mathrm{~Hz}$), 127.14, 126.21, 124.73 (d, $J=3.2 \mathrm{~Hz}$), 123.25, 123.09 (d, $J=15.8 \mathrm{~Hz}$), 120.49, 115.74, 115.52, 70.79, 70.34, 63.23, 57.03, 33.28, 30.76, 23.11. o - and m-Carbons of the phenyl group of the [(2-amido)phenyl]phenylmethanimine residue were inequivalent.
${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-115.29$.

HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{34} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{NiF}^{+}$calcd. 606.1698, observed 606.1698; correct isotopic pattern.

1a

3b

The above compound ($\mathbf{3 b}$) was prepared according to GP1 whereby, $\mathbf{1 a}(0.78 \mathrm{~g}, 1.56 \mathrm{mmol})$, 2b ($0.65 \mathrm{~g}, 2.20 \mathrm{mmol}$), NaH (60% suspension in mineral oil) ($100 \mathrm{mg}, 2.50 \mathrm{mmol}$) and DMF/MeCN 1:2 (10 mL) were utilized. Yield: $83 \%(0.90 \mathrm{~g}$; total yield of $\mathbf{3 b}$ and the corresponding boronic acid). In this instance partial hydrolysis of the pinacol boronate moiety to boronic acid was observed during reversed-phase purification. As boronic acids are typically even better substrates for the alcohol-enhanced Cu -mediated radiofluorination than the corresponding Bpin esters, no attempt to separate it (or to convert it back into the Bpin ester) was made and the mixture was directly used for the radiolabeling step. Omission of the RP purification step could lead to lower ${ }^{18} \mathrm{~F}$-incorporation rates.
$\mathrm{R}_{\mathrm{f}} 0.42$, (1:20 acetone/ CHCl_{3}).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$; before RP purification) $\delta 8.33(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.82 (d, J=7.4 Hz, 1H), 7.61 (s, 1H), $7.59-7.47$ (m, 2H), $7.45-7.37$ (m, 2H), 7.35 - 7.22 (m, 4H), $7.20-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{~d}$, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{dt}, J=13.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=9.6$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=13.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.16-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=13.7,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.60-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.31$ (s, 6H), 1.29 ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}; before RP purification) $\delta 180.30,178.60,171.11,143.02,136.82$, 135.08, 134.14, 133.71, 133.50, 133.29, 133.18, 132.24, 131.54, 129.67, 128.98, 128.86, 128.76, 128.73, 128.15, 127.91, 127.17, 126.00, 123.40, 120.40, 83.82, 71.51, 70.33, 63.13,
57.15, 40.15, 30.74, 24.86, 24.77, 23.28. C-Bpin was not observed. Pairs of methyl groups of the Bpin residue were inequivalent. o - and m-Carbons of the phenyl group of the [(2amido)phenyl]phenylmethanimine residue were inequivalent.

HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{40} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{NiB}^{+}$calcd. 714.2644, observed 714.2643; correct isotopic pattern.

(S, S)-Ni-BPB-3-FPhe (18b)

1 c

18b, 88%

The above compound ($\mathbf{1 8 b})^{6}$ was prepared according to GP1 whereby, $\mathbf{1 a}(0.52 \mathrm{~g}, 1.04 \mathrm{mmol})$, 1-(bromomethyl)-3-fluorobenzene ($\mathbf{S 9}, 0.32 \mathrm{~g}, 1.68 \mathrm{mmol}$), NaH (60% suspension in mineral oil) ($70 \mathrm{mg}, 1.75 \mathrm{mmol}$) and DMF/MeCN 1:2 $(10 \mathrm{~mL})$ were utilized. Yield: $88 \%(0.59 \mathrm{~g}, 0.85$ mmol ; according to the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ solvate with 0.5 mol . $\mathrm{Et}_{2} \mathrm{O}$).
$\mathrm{R}_{\mathrm{f}} 0.42$, (1:20 acetone/ CHCl_{3}).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.49$ (m, 2H), $7.48-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.00(\mathrm{~m}, 3 \mathrm{H}), 6.98-6.78(\mathrm{~m}, 3 \mathrm{H})$, $6.73-6.59(\mathrm{~m}, 2 \mathrm{H}), 4.38-4.12(\mathrm{~m}, 2 \mathrm{H}), 3.58-3.40(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.23-$ $3.11(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=12.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.43(\mathrm{~m}, 1 \mathrm{H})$, $2.43-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.08-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.69(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.37,178.22,171.36,163.07(\mathrm{~d}, J=246.6 \mathrm{~Hz}), 142.91$, 138.32 (d, $J=7.4 \mathrm{~Hz}$), 134.07, 133.53, 133.25, 132.49, 131.51, 130.15 (d, $J=8.2 \mathrm{~Hz}$), 129.90, $129.08(\mathrm{~d}, J=22.6 \mathrm{~Hz}), 128.83,128.80$, 127.76, 127.17, 126.23, 126.20, 126.06, 123.44, $120.63,117.34(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 114.37(\mathrm{~d}, J=20.9 \mathrm{~Hz}), 71.13,65.83,63.32,57.23,39.53$, 30.73, 23.20. o - and m-Carbons of the phenyl group of the [(2amido)phenyl]phenylmethanimine residue were inequivalent.
${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-112.49$.
HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{34} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{NiF}^{+}$calcd. 606.1698, observed 606.1698; correct isotopic pattern.
(S,S)-Cu-BPB-3-BpinPhe (19)

The above compound (19) was prepared according to GP1 whereby, $\mathbf{1 c}(0.40 \mathrm{~g}, 0.66 \mathrm{mmol})$, 2b ($0.314 \mathrm{~g}, 1.06 \mathrm{mmol}$), NaH (60% suspension in mineral oil) ($42 \mathrm{mg}, 1.06 \mathrm{mmol}$) and DMF/MeCN 1:2 (10 mL) were utilized. Yield: $61 \%(0.33 \mathrm{~g}, 0.40 \mathrm{mmol})$.

The paramagnetic nature of $\mathrm{Cu}(\mathrm{II})$ rendered characterization by NMR spectroscopy inapplicable.
$\mathrm{R}_{\mathrm{f}} 0.42$, (1:20 acetone/ CHCl_{3}).

HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{40} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{CuCl}_{3} \mathrm{~B}^{+}$calcd. 823.1405, observed 823.1386; correct isotopic pattern.
(S,S)-Ni-BPB-4-BpinPhe (3c)

1a

3c, 85%

The above compound ($\mathbf{3 c}$) was prepared according to GP1 whereby, $\mathbf{1 a}(1.00 \mathrm{~g}, 2.00 \mathrm{mmol}), \mathbf{2 c}$ ($0.95 \mathrm{~g}, 3.2 \mathrm{mmol}$), NaH (60% suspension in mineral oil) ($130 \mathrm{mg}, 3.2 \mathrm{mmol}$) and DMF/MeCN 1:2 (20 mL) were utilized. Yield: $85 \%(1.22 \mathrm{~g}, 1.70 \mathrm{mmol})$.
$\mathrm{R}_{\mathrm{f}} 0.42$, (1:20 acetone/ CHCl_{3}).
${ }^{1} \mathrm{H}^{\mathrm{H}} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.28(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, 2H), $7.20-7.14$ (m, 2H), 7.00 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.70$ (d, $J=3.9 \mathrm{~Hz}, 2 \mathrm{H}$), $4.34-4.25$ (m, $2 \mathrm{H}), 3.45(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-2.97(\mathrm{~m}, 2 \mathrm{H}), 2.83(\mathrm{dd}, J=13.2$, $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dd}, J=15.5,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.20-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.65-$ $1.50(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 6 \mathrm{H}) 1.35(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}{ }^{13}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.42,178.65,171.23,142.94,138.91,135.32,134.19,133.50$, 133.14, 132.37, 131.54, 130.00, 129.80, 129.12, 128.95, 128.77, 128.72, 127.83, 127.12, 126.03, 123.41, 120.57, 83.78, 71.28, 70.34, 63.34, 57.41, 39.54, 30.66, 24.90, 24.67, 23.19. C-Bpin was not observed. Pairs of methyl groups of the Bpin residue were inequivalent. o - and m-Carbons of the phenyl group of the [(2-amido)phenyl]phenylmethanimine residue were inequivalent.

HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{40} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{NiB}^{+}$calcd. 714.2644, observed 714.2643; correct isotopic pattern.

4,4,5,5-Tetramethyl-2-(2-methyl-4-hydroxyphenyl)-1,3,2-dioxaborolane (S11)

Following a literature procedure, ${ }^{7}$ a suspension of molecular sieves $(4 \AA)(7 \mathrm{~g})$ in a solution of (2-methyl-4-hydroxyphenyl)boronic acid (S10, $5.00 \mathrm{~g}, 32.9 \mathrm{mmol}$), and pinacol ($4.14 \mathrm{~g}, 35.0$ mmol) in anhydrous $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ was stirred under Ar at ambient temperature for 18 hours. The reaction mixture was filtered, and the filter cake was washed with $\mathrm{Et}_{2} \mathrm{O}$. The filtrate was dried and concentrated under reduced pressure to give an oily residue, which was purified by column chromatography using gradient elution with EtOAc/hexane affording the title compound in 98% yield ($7.61 \mathrm{~g}, 32.5 \mathrm{mmol}$) as a colorless solid. ${ }^{7}$
$\mathrm{R}_{\mathrm{f}} 0.62$, (1:10 EtOAc/hexane).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.58(\mathrm{~m}, 2 \mathrm{H}), 5.24(\mathrm{~s}, 1 \mathrm{H}), 2.49$ ($\mathrm{s}, 3 \mathrm{H}$), 1.33 ($\mathrm{s}, 12 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.80,147.57,138.02,116.78,111.83,83.25,24.82,22.17$. C-Bpin was not observed.

LRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~B}^{+}$calcd. 235.15, observed 235.26.
LRMS/GC: $R_{\mathrm{t}} 11.82 \mathrm{~min}, \mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~B}^{+},[\mathrm{M}]^{+}$calcd. 234.14, observed 234.16.

HRMS/GC: $R_{\mathrm{t}} 12.90 \mathrm{~min}, \mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~B}^{+}$, $[\mathrm{M}]^{+}$calcd. 234.1422, observed 234.1421; correct isotopic pattern.

Elemental analysis calcd (\%) for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~B}$ (234.4): C 66.70, H 8.18; found C 66.69, H 8.17.

2-(4-(Methoxymethoxy)-2-methylphenyl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane (S12)

MOMBr ($0.7 \mathrm{~mL}, 1.07 \mathrm{~g}, 8.56 \mathrm{mmol}$) was slowly added to a stirred ice-cold solution of 4,4,5,5-tetramethyl-2-(2-methyl-4-hydroxyphenyl)-1,3,2-dioxaborolane (S11) ($1.00 \mathrm{~g}, 4.27 \mathrm{mmol}$) and DIPEA ($1.49 \mathrm{~mL}, 1.11 \mathrm{~g}, 8.55 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ under Ar. Thereafter, the cooling bath was removed and the reaction mixture was stirred for 18 hours. The reaction mixture was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$, washed with brine $(2 \times 30 \mathrm{~mL})$ and dried and concentrated under reduced pressure to give an oily brown residue, which was purified by column chromatography using gradient elution with EtOAc/hexane ($0-20 \%$) affording the title compound in 90% yield ($1.07 \mathrm{~g}, 3.85 \mathrm{mmol}$) as a yellow oil. ${ }^{8}$
$\mathrm{R}_{\mathrm{f}} 0.31$, (1:20 EtOAc/hexane).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.82(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H})$, 3.49 (s, 3H), 2.56 (s, 3H), 1.36 ($\mathrm{s}, 12 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.27,147.27,137.75,117.41,112.32,93.96,83.18,55.98$, 24.88, 22.38.

HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{15} \mathrm{H}_{23} \mathrm{BO}_{4} \mathrm{Na}^{+}$calcd. 301.1582, observed 301.1584; correct isotopic pattern.

2-(4-(Methoxymethoxy)-2-bromomethylphenyl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane (2d)

The above compound (2d) was prepared according to GP2 whereby, S12 (4.00 g, 14.4 mmol), NBS ($2.55 \mathrm{~g}, 14.3 \mathrm{mmol}$), AIBN $(0.40 \mathrm{~g}, 2.44 \mathrm{mmol})$ and cyclohexane (40 mL) were utilized. Yield: $85 \%(4.36 \mathrm{~g}, 1.70 \mathrm{mmol}) . \mathbf{2 d}$ was directly used in the next step owing to its instability. $\mathrm{R}_{\mathrm{f}} 0.14$, (1:10 EtOAc/hexane).
${ }^{1} \mathrm{H}$ NMR $\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=$ $8.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 4.89(\mathrm{~s}, 2 \mathrm{H}), 3.47$ (s, 3H), 1.36 ($\mathrm{s}, 12 \mathrm{H}$).
${ }^{13}{ }^{13}$ NMR ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.56,146.36,138.31,117.81,115.16,83.68,56.15,56.03$, 33.75, 24.89. C-Bpin was not observed.

The above compound ($\mathbf{3 d}$) was prepared according to GP1 whereby, $\mathbf{1 a}$ ($1.76 \mathrm{~g}, 3.53 \mathrm{mmol}$), 2d ($1.89 \mathrm{~g}, 5.29 \mathrm{mmol}$), NaH (60% suspension in mineral oil) ($142 \mathrm{mg}, 3.54 \mathrm{mmol}$) and DMF/MeCN 1:2 (30 mL) were utilized. Yield: 70% ($1.90 \mathrm{~g}, 2.46 \mathrm{mmol}$).
$\mathrm{R}_{\mathrm{f}} 0.34$, (1:8 acetone/ CHCl_{3}).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.39(\mathrm{dd}, J=8.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{t}$, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.21(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.04(\mathrm{~m}, 4 \mathrm{H}), 6.92(\mathrm{dd}$, $J=8.3,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{ddd}, J=8.2,7.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{dd}, J=8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.93$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.93$ (dd, $J=34.0,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=7.6$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.51(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=10.5,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.37 - $3.23(\mathrm{~m}, 2 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.93-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.18-1.92(\mathrm{~m}$, 2 H), 1.18 ($\mathrm{s}, 6 \mathrm{H}$), 1.10 ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.22,178.49,170.62,159.22,144.59,142.92,138.38,133.96$, 133.74, 133.36, 132.03, 131.51, 129.09, 128.78, 128.69, 128.54, 128.27, 128.16, 126.12, $123.14,120.25,118.62,114.73,93.88,83.41,72.74,70.83,62.92,57.13,55.87,42.60,30.81$, 24.89, 24.42, 23.88. C-Bpin was not observed. Pairs of methyl groups of the Bpin residue were inequivalent. o - and m-Carbons of the phenyl group of the [(2amido)phenyl]phenylmethanimine residue were inequivalent.

HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{42} \mathrm{H}_{47} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{NiB}^{+}$calcd. 774.2856, observed 774.2853; correct isotopic pattern.

2-Bromo-4-(methoxymethoxy)-1-methylbenzene (S14)

A solution of 2.1 m MOMCl solution in toluene (20 mL) prepared according to a literary procedure ${ }^{1}$ was slowly added to a stirred ice-cold solution of 3-bromo-4-methylphenol (S13, $4.6 \mathrm{~g}, 24.6 \mathrm{mmol}$) and DIPEA ($10 \mathrm{~mL}, 7.42 \mathrm{~g}, 57.4 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$. Thereafter, the cooling bath was removed and the reaction mixture was stirred for 24 hours. The mixture was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$, brine $(3 \times 30 \mathrm{~mL})$, dried and concentrated under reduced pressure. The crude product was purified by column chromatography (EtOAc/hexane, gradient elution 20-50\%), affording the title compound ${ }^{9}$ ($5.30 \mathrm{~g}, 23 \mathrm{mmol}$) in 93\% yield.
$\mathrm{R}_{\mathrm{f}}: 0.75$, (1:2 EtOAc/hexane).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=8.4,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}$, $J=8.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.76,131.06,130.97,124.76,120.24,115.42,94.65,55.99$, 21.89 .

LRMS/GC: $R_{\mathrm{t}} 10.44 \mathrm{~min}, \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{BrO}_{2}{ }^{+}$, $[\mathrm{M}]^{+}$calcd. 229.99, observed 229.99.
HRMS/GC: $R_{\mathrm{t}} 12.90 \mathrm{~min}, \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{BrO}_{2}{ }^{+}$, [M] ${ }^{+}$calcd. 229.9937, observed 229.9935; correct isotopic pattern.

Elemental analysis calcd (\%) for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{BrO}_{2}$ (231.09): C 46.78, H 4.80; found C 46.73, H 4.96.

Elemental analysis calcd (\%) for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{BrO}_{2}$ (231.09): C 46.78, H 4.80, O 13.85; found C 46.7 $\pm<0.1$, H 4.79 ± 0.17, O $14.2 \pm<0.1$.

2-[5-(Methoxymethoxy)-2-methylphenyl]-4,4,5,5-tetramethyl-1,3,2dioxaborolane (S15)

A suspension of KOAc ($0.44 \mathrm{~g}, 4.54 \mathrm{mmol}$), 2-bromo-4-(methoxymethoxy)-1-methylbenzene (S14) ($0.5 \mathrm{~g}, 2.16 \mathrm{mmol}), \mathrm{B}_{2} \operatorname{pin}_{2}(0.66 \mathrm{~g}, 2.6 \mathrm{mmol})$, and $\operatorname{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(0.1 \mathrm{~g}, 0.15 \mathrm{mmol})$ in anhydrous DMF (10 mL) was stirred at $75^{\circ} \mathrm{C}$ for 12 h , followed by $90^{\circ} \mathrm{C}$ for 3 h . Thereafter, the solvent was removed under reduced pressure and the residue was taken up in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The mixture was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$, brine $(3 \times 10 \mathrm{~mL})$, dried and concentrated under reduced pressure. The crude product was purified by column chromatography (1:20 EtOAc/hexane) to furnish the title compound ($0.43 \mathrm{~g}, 1.55 \mathrm{mmol}$) in 72% yield as a light yellow oil.
$\mathrm{R}_{\mathrm{f}}: 0.45$, (1:10 EtOAc/hexane).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=$ $8.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.17 (s, 2H), 3.48 ($\mathrm{s}, 3 \mathrm{H}$), 2.48 ($\mathrm{s}, 3 \mathrm{H}$), 1.34 ($\mathrm{s}, 12 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.38,138.18,130.85,123.27,118.84,94.58,83.47,77.00$, 55.87, 24.86, 21.23.

HRMS (ESI) $m / z\left[\mathrm{M}+\mathrm{Na}^{+}, \mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{BNa}^{+}\right.$calcd. 301.1582, observed 301.1584; correct isotopic pattern.

2-(2-(Bromomethyl)-5-(methoxymethoxy)phenyl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane (2e)

S15

2e, 68\%

The above compound ($\mathbf{2 e}$) was prepared according to the general procedure 2 (GP2) whereby, S15 ($0.62 \mathrm{~g}, 2.25 \mathrm{mmol}$), NBS ($0.40 \mathrm{~g}, 2.45 \mathrm{mmol}$), AIBN ($44 \mathrm{mg}, 0.27 \mathrm{mmol}$) and cyclohexane (40 mL) were utilized. Yield: 68% ($0.55 \mathrm{~g}, 1.54 \mathrm{mmol}$). $\mathbf{2 e}$ was directly used for the next step owing to its instability.
$\mathrm{R}_{\mathrm{f}}: 0.60$, (1:3 EtOAc/hexane).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49(\mathrm{dd}, J=9.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.02(\mathrm{~m}, 2 \mathrm{H}), 5.20(\mathrm{~d}, J=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{~s}, 2 \mathrm{H}), 1.37,1.39(2 \times \mathrm{s}, 12 \mathrm{H})$.
(S,S)-Ni-BPB-2-Bpin-4-MOMO-Phe (3e)

1a

$\mathrm{NaH}, \mathrm{DMF}, \mathrm{MeCN}$

3e, 41\%

The above compound ($\mathbf{3 e}$) was prepared according to GP1 whereby, $\mathbf{1 a}(0.58 \mathrm{~g}, 1.16 \mathrm{mmol}), \mathbf{2 e}$ ($0.5 \mathrm{~g}, 1.40 \mathrm{mmol}$), NaH (60% suspension in mineral oil) ($56 \mathrm{mg}, 1.40 \mathrm{mmol}$) and DMF/MeCN 1:2 (15 mL) were utilized. Yield: $41 \%(0.37 \mathrm{~g}, 0.48 \mathrm{mmol})$.
$\mathrm{R}_{\mathrm{f}} 0.71$, (1:10 acetone/ $\left.\mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.36(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.23-6.99(\mathrm{~m}, 5 \mathrm{H}), 6.90(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{dd}, J=32.9,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.35$ (d, $J=12.6 \mathrm{~Hz}, 1 \mathrm{H}$), $4.28-4.19(\mathrm{~m}, 1 \mathrm{H}), 3.96-3.78(\mathrm{~m}, J=20.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{~d}, J=12.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.44-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.23(\mathrm{~m}, 2 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.89-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.59-$ $2.41(\mathrm{~m}, 1 \mathrm{H}), 2.14-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{~s}, 6 \mathrm{H}), 1.08(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}{ }^{1} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.19,178.49,170.61,159.21,144.55,142.84,138.36,133.91$, $133.72,133.34,132.00,131.48,129.07,128.75,128.67,128.52,128.25,128.13,127.33$, $126.10,123.12,120.27,118.59,114.71,93.85,83.38,72.71,70.80,62.90,57.12,55.84,42.56$, $30.79,24.86,24.39,23.85$. C-Bpin was not observed. Pairs of methyl groups of the Bpin residue were inequivalent. o - and m-Carbons of the phenyl group of the [(2amido)phenyl]phenylmethanimine fragment were inequivalent.

HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{42} \mathrm{H}_{47} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{NiB}^{+}$calcd. 774.2856, observed 774.2853; correct isotopic pattern.

2-Fluoro-4-(methoxymethoxy)-1-methylbenzene (S17)

$\operatorname{MOMBr}(11.2 \mathrm{~mL}, 17.1 \mathrm{~g}, 136.8 \mathrm{~mol})$ was slowly added to a stirred ice-cold solution of 3-fluoro-4-methylphenol (S16, $8.63 \mathrm{~g}, 68.42 \mathrm{mmol}$) and DIPEA ($24.4 \mathrm{~mL}, 18.09 \mathrm{~g}, 140.0 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. Thereafter, the cooling bath was removed and the reaction mixture was stirred for 24 hours. The reaction mixture was washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$, brine $(3 \times 30 \mathrm{~mL})$, dried and concentrated under reduced pressure. The crude orange residue was purified by column chromatography (EtOAc/hexane, gradient elution 10-40\%), affording the title compound ${ }^{10}$ as a colorless oil ($9.07 \mathrm{~g}, 78 \%$).
$\mathrm{R}_{\mathrm{f}}: 0.32$, (1:10 EtOAc/hexane).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.14-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.81-$ 6.72 (m, 2H), 5.15 ($\mathrm{s}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 2.23$ (d, J = $1.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.44(\mathrm{~d}, J=244.3 \mathrm{~Hz}), 156.33(\mathrm{~d}, J=10.8 \mathrm{~Hz}), 131.42(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}), 117.85(\mathrm{~d}, J=17.4 \mathrm{~Hz}), 111.64(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 103.86(\mathrm{~d}, J=25.5 \mathrm{~Hz}), 94.63$, $55.95,13.76$ (d, $J=3.1 \mathrm{~Hz}$).
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-115.15$.

LRMS/GC: $R_{\mathrm{t}} 8.38 \mathrm{~min}, \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{FO}_{2}{ }^{+}$, $[\mathrm{M}]^{+}$calcd. 170.07, observed 170.06.
HRMS/GC: $R_{\mathrm{t}} 7.91 \mathrm{~min}, \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{FO}_{2}{ }^{+},[\mathrm{M}]^{+}$calcd. 170.0738, observed 170.0737.

Elemental analysis calcd (\%) for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{FO}_{2}$ (170.18): C 63.52, H 6.52; found C 63.67, H 6.49. Elemental analysis calcd (\%) for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{FO}_{2}$ (170.18): C 63.52, H 6.52, O 18.80 ; found C 63.7 ± 0.22, H 6.84 ± 0.01, O 21.4 ± 0.22.

1-(Bromomethyl)-2-fluoro-4-(methoxymethoxy)benzene (S18)

S17

cyclohexane, $h v$, rt, 3 h

S18, 63\%

The above compound ($\mathbf{(S 1 8}$) was prepared according to the general procedure 2 (GP2) whereby, $\mathbf{S 1 7}(1 \mathrm{~g}, 5.88 \mathrm{mmol})$, NBS ($1.15 \mathrm{~g}, 6.46 \mathrm{mmol})$, AIBN ($100 \mathrm{mg}, 0.61 \mathrm{mmol}$) and cyclohexane $(40 \mathrm{~mL})$ were utilized. Yield: $63 \%(0.93 \mathrm{~g}, 3.73 \mathrm{mmol}) . \mathbf{S 1 8}$ was obtained as a colorless semisolid.
$\mathrm{R}_{\mathrm{f}}: 0.63$, (1:3 EtOAc/hexane).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.24(\mathrm{~m}, 1 \mathrm{H}), 6.83-6.76(\mathrm{~m}, 2 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 4.50(\mathrm{~d}$, $J=0.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.20(\mathrm{~d}, J=250.1 \mathrm{~Hz}), 158.89(\mathrm{~d}, J=10.9 \mathrm{~Hz}), 131.67(\mathrm{~d}, J$ $=5.0 \mathrm{~Hz}), 118.28(\mathrm{~d}, J=14.6 \mathrm{~Hz}), 112.33(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 104.19(\mathrm{~d}, J=24.8 \mathrm{~Hz}), 94.42,56.15$, $26.09(\mathrm{~d}, J=3.9 \mathrm{~Hz})$.
${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-114.27$.
LRMS/GC: $R_{\mathrm{t}} 10.59 \mathrm{~min}, \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{BrFO}_{2}{ }^{+},[\mathrm{M}]^{+}$calcd. 247.98, observed 248.00.
HRMS/GC: $R_{\mathrm{t}} 10.97 \mathrm{~min}, \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{FO}_{2}{ }^{+}$, $[\mathrm{M}]^{+}$calcd. 247.9843, observed 247.9840; correct isotopic pattern.

1a

S18
NaH, DMF, MeCN

18e, 63%

The above compound (18e) was prepared according to GP1 whereby, 1a ($1.06 \mathrm{~g}, 2.13 \mathrm{mmol}$), S18 ($0.85 \mathrm{~g}, 3.41 \mathrm{mmol}$), NaH (60% suspension in mineral oil) ($136 \mathrm{mg}, 3.40 \mathrm{mmol}$) DMF/MeCN 1:2 (30 mL) were utilized. Yield: $63 \% ~(0.89 \mathrm{~g}, 1.34 \mathrm{mmol})$.
$\mathrm{R}_{\mathrm{f}}: 0.57$, (1:8 acetone/ CHCl_{3}).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.26(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.47$ (m, 2H), $7.42(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.10(\mathrm{~m}$, 2H), $7.08-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.85(\mathrm{~m}, ~ J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.71-6.56$ (m, 2H), 5.06 (dd, $J=23.4,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.51(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.37-3.29(\mathrm{~m}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~d}$, $J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.03-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.46(\mathrm{~m}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.27(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.21,178.36,171.91,157.13(\mathrm{~d}, J=240.9 \mathrm{~Hz}), 153.68(\mathrm{~d}, J$ $=1.8 \mathrm{~Hz}), 142.83$, 133.97, 133.55, 133.13, 132.31, 131.51, 129.68, 128.88, 128.81, 128.77, 128.20, 128.17, 127.15, 126.20, 123.76 (d, $J=17.8 \mathrm{~Hz}$), 123.28, 120.52, 120.25 (d, $J=4.1 \mathrm{~Hz}$), $116.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 116.06(\mathrm{~d}, J=24.3 \mathrm{~Hz}), 95.00,70.72,70.36,63.18,57.06,56.02,33.55$, 30.78, 23.10. o - and m-Carbons of the phenyl group of the [(2amido)phenyl]phenylmethanimine residue were inequivalent.
${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-124.36$.

HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{36} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{NiF}^{+}$calcd. 666.1909, observed 666.1910; correct isotopic pattern.

4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole (S20)

A suspension of KOAc ($5.88 \mathrm{~g}, 60 \mathrm{mmol}$), 4-bromoindole $(\mathbf{S 1 9}, 4 \mathrm{~g}, 20 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}$ $(0.72 \mathrm{~g}, 0.8 \mathrm{mmol})$, XPhos $(0.76 \mathrm{~g}, 1.6 \mathrm{mmol})$, bis(pinacolato)diboron ($6 \mathrm{~g}, 24 \mathrm{mmol}$) in anhydrous DMSO (120 mL) was stirred at $80^{\circ} \mathrm{C}$ for 72 h . The resulting suspension was cooled to ambient temperature and added to $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ before being extracted with EtOAc $(2 \times 100 \mathrm{~mL})$. The combined organic fractions were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$, dried and concentrated under reduced pressure. The crude product was purified by column chromatography to furnish the title compound ${ }^{11}(2.54 \mathrm{~g}, 10.46 \mathrm{mmol})$ in 52% yield as a grey solid.
$\mathrm{R}_{\mathrm{f}}: 0.56,\left(1: 10\right.$ acetone/ $\left.\mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21(\mathrm{br}, 1 \mathrm{H}), 7.68(\mathrm{dd}, J=7.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.47(\mathrm{~m}$, $1 \mathrm{H}), 7.34-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.05(\mathrm{~m}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 12 \mathrm{H})$.

HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{BNO}_{2}{ }^{+}$calcd. 244.1503, observed 244.1507; correct isotopic pattern.
N, N-Dimethyl-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-3yl)methanamine (S21)

40% Dimethylamine (1.42 mL) was added to an ice-cold solution of 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole (S20) ($2.0 \mathrm{~g}, 8.22 \mathrm{mmol}$), an aqueous solution of formaldehyde (37%) and $\mathrm{AcOH}(8.4 \mathrm{~mL})$. Thereafter, the cooling bath was removed and the reaction mixture was stirred for 2 hours. The resulting reaction mixture was cooled with an icebath and the pH value was adjusted to 10 using 3 m NaOH . The mixture was extracted with EtOAc ($4 \times 50 \mathrm{~mL}$), dried, and concentrated under reduced pressure. The crude product was purified by aluminum oxide chromatography on aluminum oxide to furnish the title compound $(1.20 \mathrm{~g}, 3.99 \mathrm{mmol})$ in 49% yield as a colorless solid.
$\mathrm{R}_{\mathrm{f}}: 0.34,\left(95: 5 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right)$.
${ }^{1}{ }^{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.69(\mathrm{br}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1$ H), $7.21-7.11(\mathrm{~m}, 2 \mathrm{H}) 3.98(\mathrm{~s}, 2 \mathrm{H}), 2.66(\mathrm{~s}, 6 \mathrm{H}), 1.43(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.36,134.89,127.49,124.10,121.13,114.12,113.40,83.25$, 55.90, 45.34, 25.34. C-Bpin was not observed.

HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{17} \mathrm{H}_{26} \mathrm{BN}_{2} \mathrm{O}_{2}{ }^{+}$calcd. 301.2082, observed 301.2085; correct isotopic pattern.
N, N, N-Trimethyl-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-3yl)methanaminium iodide (2f)

MeI ($0.81 \mathrm{~g}, 5.75 \mathrm{mmol}$) was added to an ice-cold solution of N, N-dimethyl-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-indol-3-yl)methanamine (S21) ($0.36 \mathrm{~g}, 1.15 \mathrm{mmol}$) in acetone $(20 \mathrm{~mL})$ under the protection from light. Thereafter, the cooling bath was removed and stirring was continued for 12 hours at ambient temperature. The reaction mixture was placed in a fridge $\left(4^{\circ} \mathrm{C}\right)$ for 2 hours and the precipitate was filtered and washed with cold $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ to furnish the title compound $(0.38 \mathrm{~g}, 0.86 \mathrm{mmol})$ in 75% yield as a colorless solid.
${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO) $\delta 11.84$ (br, 1 H), $7.95-7.77$ (m, 1 H), 7.74-7.66 (m, 2 H), 7.21 (t, $J=8.0,1 \mathrm{H}$), $3.3(\mathrm{~s}, 2 \mathrm{H}), 3.00(\mathrm{~s}, 9 \mathrm{H}), 1.44(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 136.74,132.19,131.60,130.96,121.46,116.62,103.33,84.39$, 61.81, 51.63, 25.24. C-Bpin was not observed.

HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}-\mathrm{I}]^{+}, \mathrm{C}_{18} \mathrm{H}_{28} \mathrm{BN}_{2} \mathrm{O}_{2}{ }^{+}$calcd. 315.2239, observed 315.2243; correct isotopic pattern.

(S,S)-Ni-BPB-4-Bpin-Trp (3f)

1a

3f, 70%
$\mathrm{NaOH}(0.08 \mathrm{~g}, 2.03 \mathrm{mmol})$ powder was added to a solution of N, N, N-trimethyl-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1 H -indol-3-yl)methane-aminium iodide (2f) (0.36 g , $0.81 \mathrm{mmol})$ and $\mathbf{1 a}(0.41 \mathrm{~g}, 0.81 \mathrm{mmol})$ in anhydrous $\mathrm{MeCN}(20 \mathrm{~mL})$ under Ar and the reaction mixture was stirred for 2 hours. Sat. $\mathrm{NH}_{4} \mathrm{Cl}(60 \mathrm{~mL})$ was added and the mixture was extracted with EtOAc $(3 \times 60 \mathrm{~mL})$. The combined organic fractions were dried and concentrated under reduced pressure. The crude product was purified by silica gel chromatography to furnish the title compound $(0.43 \mathrm{~g}, 0.57 \mathrm{mmol})$ in 70% yield as a red solid.
R_{f} : 0.60 , (1:2 acetone/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.23-8.06(\mathrm{~m}, 4 \mathrm{H}), 7.51(\mathrm{dd}, J=7.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J$ $=8.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.06(\mathrm{~m}, 2 \mathrm{H}), 7.05-6.94$ (m, 3H), 6.56 (ddd, $J=8.2,7.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{dd}, J=8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=8.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-$ $4.23(\mathrm{~m}, 2 \mathrm{H}), 3.89-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.48(\mathrm{~m}, 2 \mathrm{H}), 2.96-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.53(\mathrm{~m}$, $1 \mathrm{H}), 2.30-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 6 \mathrm{H}), 1.28(\mathrm{~s}, 6 \mathrm{H}) . \mathrm{N}-\mathrm{H}$ of the indole ring was not observed.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.31,179.23,170.08,142.14,136.05,133.50,132.95,131.67$, 131.37, 130.80, 129.53, 128.82, 128.73, 128.51, 127.95, 127.46, 126.93, 126.66, 125.63, $122.94,121.06,120.58,114.23,111.89,83.71,71.33,70.89,63.11,57.19,35.74,31.10,24.65$, 24.18, 24.06. C-Bpin was not observed. Pairs of methyl groups of the Bpin residue were inequivalent. o - and m-Carbons of the phenyl group of the [(2amido)phenyl]phenylmethanimine residue were inequivalent.

HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{42} \mathrm{H}_{44} \mathrm{BN}_{4} \mathrm{NiO}_{5}{ }^{+}$calcd. 753.2753, observed 753.2758; correct isotopic pattern.
α-Methyl-2-[18F]FPhe precursor (3g)

The above compound ($\mathbf{3 g}$) was prepared according to GP1 whereby, $\mathbf{1 b}(0.40 \mathrm{~g}, 0.92 \mathrm{mmol})$, 2a ($0.44 \mathrm{~g}, 1.48 \mathrm{mmol}$), $\mathrm{NaH}(60 \%$ suspension in mineral oil) ($70 \mathrm{mg}, 1.75 \mathrm{mmol}$) and DMF/MeCN 1:2 (10 mL) were utilized. Yield: $72 \%(0.50 \mathrm{~g}, 0.77 \mathrm{mmol})$.
$\mathrm{R}_{\mathrm{f}}: 0.42,\left(1: 10\right.$ acetone $\left./ \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.49(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.39$ (m, 2H), $7.37-7.30$ (m, 4H), $7.28-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.13$ (dd, J=7.9, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.86(\mathrm{~m}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=13.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.55(\mathrm{dd}, J=13.4,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{ddt}, J=14.8,7.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{t}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.83-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.12-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.60$ (s, 3H), $1.26(\mathrm{~s}, 6 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}{ }^{13}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 182.00,181.45,161.94,142.57,141.88,136.84,133.68,133.33$, $133.24,131.65,130.95,130.93,128.88,128.68,126.52,123.53,123.34,120.88,83.69,74.69$, $70.17,62.92,57.29,44.70,30.85,25.65,25.25,24.24,23.36$. C-Bpin was not observed. Pairs of methyl groups of the Bpin residue were inequivalent.

HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{35} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{NiB}^{+}$calcd. 652.2488, observed 652.2484; correct isotopic pattern.

Ni-BPB α-methyl-2-FPhe reference compound (18g)

1b

S8
$\mathrm{NaH}, \mathrm{DMF}, \mathrm{MeCN}$

18g, 73\%

The above compound ($\mathbf{1 8 g}$) was prepared according to GP1 whereby, $\mathbf{1 b}(0.29 \mathrm{~g}, 0.66 \mathrm{mmol})$, 1-(bromomethyl)-2-fluorobenzene (S8, $0.17 \mathrm{~g}, 0.90 \mathrm{mmol}$), NaH (60% suspension in mineral oil) ($36 \mathrm{mg}, 0.90 \mathrm{mmol}$) and DMF/MeCN 1:2 (10 mL) were utilized. Yield: $73 \% ~(263 \mathrm{mg}, 0.48$ mmol).
$\mathrm{R}_{\mathrm{f}}: 0.61$, (1:10 acetone/ CHCl_{3}).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.49(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-$ $6.99(\mathrm{~m}, 1 \mathrm{H}), 6.96-6.90(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.34-$ $3.16(\mathrm{~m}, 4 \mathrm{H}), 2.53-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{td}, J=10.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-$ $1.68(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 181.47,181.16,161.99\left(\mathrm{~d}, J_{\mathrm{F}, \mathrm{C}=\mathrm{NH}}=2.6 \mathrm{~Hz},\right), 161.13(\mathrm{~d}, J=$ $248.5 \mathrm{~Hz}), 142.81,133.84,133.62,133.07,132.46(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 131.64,129.31(\mathrm{~d}, J=8.3$ $\mathrm{Hz}), 128.98,128.74,124.54(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 123.60,123.42,122.68(\mathrm{~d}, J=15.2 \mathrm{~Hz}), 121.21$, $115.53(\mathrm{~d}, ~ J=22.7 \mathrm{~Hz}), 74.13,70.04,62.81,57.02,39.60,30.73,25.61,22.93$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-116.72$.

HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{NiF}^{+}$calcd. 544.1541, observed 544.1542; correct isotopic pattern.

Ni-PBP-(RS)-Ala (S22)

S22, 83\% (over 2 steps)
Ethyl chloroformate ($7.7 \mathrm{~mL}, 8.75 \mathrm{~g}, 80.63 \mathrm{mmol}$) was added to an ice-cold solution of picolinic $\operatorname{acid}(9.97 \mathrm{~g}, 80.98 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(11.3 \mathrm{~mL}, 8.2 \mathrm{~g}, 81.04 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(130 \mathrm{~mL})$ and the reaction mixture was stirred for 20 min at ambient temperature. Afterwards, 2aminobenzophenone ($13.4 \mathrm{~g}, 67.94 \mathrm{mmol}$) was added and the reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 16 h . Thereafter, the mixture was cooled to ambient temperature washed with $\mathrm{H}_{2} \mathrm{O}$ $(3 \times 100 \mathrm{~mL})$, brine $(2 \times 50 \mathrm{~mL})$, dried and concentrated under reduced pressure. The residue was triturated with $\mathrm{Et}_{2} \mathrm{O}$, the formed precipitate was filtered, washed with $\mathrm{Et}_{2} \mathrm{O}$ and dried to give N -(2-benzoylphenyl)pyridine-2-carboxamide (S23) ${ }^{12}$ as a colorless solid ($17.5 \mathrm{~g}, 85 \%$), which was used for the next step without any characterization and purification.
5.4 N MeONa in $\mathrm{MeOH}(120 \mathrm{~mL})$ was added to a suspension of $\mathbf{S} 23(17.5 \mathrm{~g}, 57.88 \mathrm{mmol})$, $(R S)$-Ala ($11.04 \mathrm{~g}, 123.92 \mathrm{mmol})$ and $\mathrm{Ni}(\mathrm{OAc})_{2} \times 4 \mathrm{H}_{2} \mathrm{O}(30.84 \mathrm{~g}, 123.94 \mathrm{mmol})$ in $\mathrm{MeOH}(150$ mL) and the reaction mixture was stirred at $55^{\circ} \mathrm{C}$ for 90 min . The resulting deep-red solution was cooled to ambient temperature and poured to an ice-cold solution of $\mathrm{AcOH}(40 \mathrm{~mL}$ in 1.5 $\mathrm{L}_{2} \mathrm{O}$) and the resulting suspension was allowed to stay at ambient temperature for 16 h and filtered. The precipitate was washed with $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~L})$, hexane $(3 \times 100 \mathrm{~mL})$, dried, washed with $\mathrm{Et}_{2} \mathrm{O}(5 \times 100 \mathrm{~mL})$ and dried affording the title compound ${ }^{13}(24.3 \mathrm{~g}, 98 \%)$.
$\mathrm{R}_{\mathrm{f}}: 0.33$, ($1: 8$ acetone/ CHCl_{3}).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.95(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=33.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-$ $7.06(\mathrm{~m}, 7 \mathrm{H}), 6.79(\mathrm{~s}, 2 \mathrm{H}), 4.04(\mathrm{~s}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.60,171.97,169.99,153.35,146.90,143.00,140.52$, $134.46,133.73,133.37,129.78,129.17,128.74,127.90,127.03,126.93,126.62,124.03$, $123.53,121.38,67.29,21.58 . o$ - and m-Carbons of the phenyl group of the [(2amido)phenyl]phenylmethanimine residue were inequivalent.

LRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Ni}^{+}$calcd. 430.15, observed 430.07; correct isotopic pattern.
HRMS (ESI) $m / z\left[\mathrm{M}+\mathrm{Na}^{+}, \mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{NaNi}^{+}\right.$calcd. 452.05136, observed 452.05156; [M + $\mathrm{H}]^{+}, \mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{Ni}^{+}$calcd. 430.06962, observed 430.06938; correct isotopic pattern.

General procedure for alkylation upon Ni-PBP-(RS)-Ala (GP3)

$\mathrm{NaH}(0.37 \mathrm{~g}, 9.3 \mathrm{mmol} ; 60 \%$ suspension in mineral oil) was added to a suspension of $\mathbf{S 2 2}(2 \mathrm{~g}$, 4.65 mmol) in DMF (20 mL) and the mixture was stirred for 5 min . The corresponding fluorobenzyl bromide ($1.41 \mathrm{~g}, 7.44 \mathrm{mmol}$) was added to the resulting black solution and the mixture was stirred for further 60 min . Thereafter, the deep red reaction mixture was poured into an ice-cold solution of $\mathrm{AcOH}\left(0.6 \mathrm{~mL}\right.$ in $\left.300 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}\right)$ and the resulting suspension was stirred at ambient temperature for 3 h and filtered. The precipitate was washed with $\mathrm{H}_{2} \mathrm{O}$ $(300 \mathrm{~mL})$, hexane $(3 \times 50 \mathrm{~mL})$, dried, washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 40 \mathrm{~mL})$ and dried affording the corresponding Ni-PBP- α Me-n-FPhe complex ($n=2-4$) as a red solid.

General procedure for decomposition of Ni-PBP- α Me-n-FPhe complexes ($n=2-4$) (GP4)
4 m HCl was added dropwise to a boiling red suspension of the corresponding Ni-PBP-n- $\alpha \mathrm{Me}-$ FPhe complex $(\mathrm{n}=2-4)(1.0 \mathrm{~g}, 1.86 \mathrm{mmol})$ in $80 \% \mathrm{MeOH}(15 \mathrm{~mL})$ until a light green solution formed. The solution was concentrated under reduced pressure, the solid residue was dried at $50^{\circ} \mathrm{C}$ and 2 mbar under dynamic vaccum, taken up in $\mathrm{MeOH}(30 \mathrm{~mL})$ and the resulting solution was concentrated under reduced pressure ($\times 3$). The residue was taken up with a cold water (10 mL), the precipitate of $\mathbf{S} \mathbf{2 3} \times \mathrm{HCl}$ was filtered, and the filtrate was concentrated under reduced pressure. The rest was taken up with $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$, the pH of the resulting solution was carefully adjusted to $7-8$ with $25 \% \mathrm{NH}_{3}$ and the precipitated $\mathbf{S} \mathbf{2 3}$ was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL}$; α Me-2-FPhe partially co-precipitated with $\mathbf{S 2 3}$; it was however insoluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). Preswollen Amberlite IRA-120 in the H^{+}form [30 mL ; the resin was preliminary washed with $1 \mathrm{~m} \mathrm{HCl}(150 \mathrm{~mL})$ and thereafter with $\mathrm{H}_{2} \mathrm{O}$ until pH 5] was added to the water fraction, and the mixture was shaken for 45 min at $40-50^{\circ} \mathrm{C}$. The ion-exchange resin was filtered off, washed with water until the eluent reached pH 5 and treated with $7 \% \mathrm{NH}_{3}(2 \times 100 \mathrm{~mL})$ for 1 h . The combined filtrates were concentrated under reduced pressure to give a colorless to offwhite solid, which was triturated acetone. The formed precipitate was filtered off to give the appropriate $\alpha \mathrm{Me}-\mathrm{n}-\mathrm{FPhe}$ as a colorless solid.

Ni-PBP- α Me-2-FPhe (S24)

The title compound ($2.23 \mathrm{~g}, 89 \%$) was prepared according to GP3.
$\mathrm{R}_{\mathrm{f}:} 0.39$, ($1: 8$ acetone/ CHCl_{3}).
${ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.56(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{td}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}$, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.42(\mathrm{~m}, 5 \mathrm{H}), 7.26(\mathrm{~s}, 3 \mathrm{H}), 7.05-6.97(\mathrm{~m}, 1 \mathrm{H})$, $6.81(\mathrm{dd}, J=8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.73(\mathrm{~m}, 2 \mathrm{H}), 6.73-6.67(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=13.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.87(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.71,173.37,168.98,162.85(\mathrm{~d}, J=245.6 \mathrm{~Hz}), 153.38$, 146.93, 142.60, 139.83, 136.99, 134.83, 133.05 (d, $J=4.5 \mathrm{~Hz}$), 132.86, 130.44, 129.57, 129.32, 129.15 (d, $J=8.5 \mathrm{~Hz}$), 128.93, 127.46, 126.88, 126.80, $126.23,124.41(\mathrm{~d}, J=15.1 \mathrm{~Hz}), 124.06$ $(\mathrm{d}, J=3.2 \mathrm{~Hz}), 123.35(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 121.27,115.43(\mathrm{~d}, J=23.0 \mathrm{~Hz}), 81.01,41.61,28.74 . o-$ and m-Carbons of the phenyl group of the [(2-amido)phenyl]phenylmethanimine residue were inequivalent. The signal of one of the o - and m-Carbons of the phenyl group of the [(2amido)phenyl]phenylmethanimine residue has $\mathrm{C}-\mathrm{F}$ splitting.
${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-114.58$.

LRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{29} \mathrm{H}_{23} \mathrm{FN}_{3} \mathrm{O}_{3} \mathrm{Ni}^{+}$calcd. 538.20, observed 538.20; correct isotopic pattern.
HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{29} \mathrm{H}_{22} \mathrm{FN}_{3} \mathrm{O}_{3} \mathrm{NaNi}^{+}$calcd. 560.08909, observed 560.08907; [$\mathrm{M}+$ $\mathrm{H}]^{+}, \mathrm{C}_{29} \mathrm{H}_{23} \mathrm{FN}_{3} \mathrm{O}_{3} \mathrm{Ni}^{+}$calcd. 538.10714, observed 538.10729; correct isotopic pattern.
($R S$)- α-Methyl-2-fluorophenylalanine [($R S$)-4g]

The title compound ${ }^{14}$ ($85 \mathrm{mg}, 23 \%$) was prepared according to GP4.
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{MeOD}+20 \% \mathrm{DCl}) \delta 7.44-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{ddd}, J=20.7,13.1,4.7$ $\mathrm{Hz}, 2 \mathrm{H}), 3.30(\mathrm{q}, J=13.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $(101 \mathrm{MHz}, \mathrm{MeOD}+20 \% \mathrm{DCl}) \delta 173.15,162.76(\mathrm{~d}, J=244.8 \mathrm{~Hz}), 133.77(\mathrm{~d}, J=$ $3.8 \mathrm{~Hz}), 131.37(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 125.76(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 121.44(\mathrm{~d}, J=15.9 \mathrm{~Hz}), 116.64(\mathrm{~d}, J=$ $22.2 \mathrm{~Hz}), 61.45,37.01,22.13$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{MeOD}+20 \% \mathrm{DCl}$) $\delta-116.88$.

LRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{FNO}_{2} \mathrm{Ni}^{+}$calcd. 198.09, observed 198.29.
HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{FNO}_{2} \mathrm{Ni}^{+}$calcd. 198.09248, observed 198.09246.
α-Methyl-3-[18F]FPhe precursor (3h)

1b

NaH, DMF, MeCN

The above compound ($\mathbf{3 h}$) was prepared according to GP1 whereby, $\mathbf{1 b}(0.55 \mathrm{~g}, 1.26 \mathrm{mmol})$, 2b ($0.50 \mathrm{~g}, 1.68 \mathrm{mmol}$), $\mathrm{NaH}(60 \%$ suspension in mineral oil) ($74 \mathrm{mg}, 1.85 \mathrm{mmol}$) and DMF/MeCN 1:2 (10 mL) were utilized. Yield: $72 \%(0.57 \mathrm{~g}, 0.91 \mathrm{mmol}$; total yield of $\mathbf{3 h}$ and the corresponding boronic acid). RP Chromatography using aqueous MeCN and subsequent evaporation of the eluent at $40^{\circ} \mathrm{C}$ caused hydrolysis of Bpin ester to give the corresponding boronic acid as side product. As boronic acids are typically even better substrates for the alcohol-enhanced Cu-mediated radiofluorination than Bpin esters, no attempt to separate it (or to convert it back into the Bpin ester) was performed and the mixture was directly used for the radiolabeling step. Omission of the RP purification step could lead to lower ${ }^{18}$ F-incorporation rates.
$\mathrm{R}_{\mathrm{f}}: 0.45,\left(1: 10\right.$ acetone/ $\left.\mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$; before RP purification) $\delta 8.60(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.94 (d, $J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.22(\mathrm{~m}, 8 \mathrm{H}), 6.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.33(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.31-3.18(\mathrm{~m}$, $2 \mathrm{H}), 2.94-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.76$ - $1.66(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 6 \mathrm{H}), 1.18(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$; before RP purification) δ 181.51, 181.12, 161.19, 143.08, 137.32, $134.53,133.88,133.61,133.55,133.43,133.08$, 131.66, 128.90, 128.67, 128.09, 123.65, $123.00,120.96,83.75,74.23,70.00,62.70,57.11,47.53,30.77,24.84,24.80,24.61,23.04$. CBpin was not observed. Pairs of methyl groups of the Bpin residue were inequivalent.

HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{35} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{NiB}^{+}$calcd. 652.2488, observed 652.2484; correct isotopic pattern.

Ni-BPB α-methyl 3-FPhe (18h)

1b

NaH, DMF, MeCN

18h, 77\%

The above compound (18h) was prepared according to GP1 whereby, 1b ($0.20 \mathrm{~g}, 0.46 \mathrm{mmol}$), 1-(bromomethyl)-3-fluorobenzene ($\mathbf{S 9}, 0.15 \mathrm{~g}, 0.79 \mathrm{mmol}$), NaH (60% suspension in mineral oil) ($33 \mathrm{mg}, 0.83 \mathrm{mmol}$) and DMF/MeCN 1:2 (7 mL) were utilized. Yield: 77\% ($0.194 \mathrm{~g}, 0.35$ mmol).
$\mathrm{R}_{\mathrm{f}}: 0.55$, (1:10 acetone/ CHCl_{3}).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.52(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H})$, $7.40-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{td}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-6.91(\mathrm{~m}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.34$ (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.19(\mathrm{~m}, 2 \mathrm{H}), 2.82(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.33-$ $2.13(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.61,180.81,162.93(\mathrm{~d}, J=246.8 \mathrm{~Hz}$), 161.13, 143.01, 137.89 (d, $J=7.3 \mathrm{~Hz}$), 133.92, 133.82, 133.11, 131.63, 130.01 (d, $J=8.1 \mathrm{~Hz}$), $129.00,128.75$, $126.45(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 123.76,123.06,121.29,117.38(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 114.38(\mathrm{~d}, J=21.0$ $\mathrm{Hz}), 74.28,70.06,62.91,57.20,47.21,30.78,25.64,22.91$.
${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-112.42$.

HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{NiF}^{+}$calcd. 544.1541, observed 544.1541; correct isotopic pattern.

Ni-PBP- α Me-3-FPhe (S25)

The title compound ($2.25 \mathrm{~g}, 90 \%$) was prepared according to GP3.
$\mathrm{R}_{\mathrm{f}}: 0.48$, ($1: 8$ acetone $/ \mathrm{CHCl}_{3}$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.57(\mathrm{dd}, J=8.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{td}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.85-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.76(\mathrm{dd}, J=7.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.13(\mathrm{~m}, 7 \mathrm{H})$, $6.81(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{ddd}, J=8.3,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{dq}, J=8.4,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.09$ (q, $J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.52,172.45,169.03,162.91(\mathrm{~d}, J=246.5 \mathrm{~Hz}), 153.01$, 146.76, 142.45, 139.88, 139.24 (d, $J=7.3 \mathrm{~Hz}$), 136.59, 134.61, 132.90, 130.45, 129.63, 129.62 $(\mathrm{d}, J=8.0 \mathrm{~Hz}), 128.84,128.46,127.60,126.81(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 126.55$, 126.42 , $123.45(\mathrm{~d}, J=$ $19.1 \mathrm{~Hz}), 121.26,118.00,117.79,113.99(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 80.82,47.59(\mathrm{~d}, J=1.0 \mathrm{~Hz}), 28.82$. o - and m-Carbons of the phenyl group of the [(2-amido)phenyl]phenylmethanimine residue were inequivalent.
${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-112.72$.

LRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{29} \mathrm{H}_{23} \mathrm{FN}_{3} \mathrm{O}_{3} \mathrm{Ni}^{+}$calcd. 538.20, observed 538.20; correct isotopic pattern.

HRMS (ESI) $m / z\left[\mathrm{M}+\mathrm{Na}^{+}, \mathrm{C}_{29} \mathrm{H}_{22} \mathrm{FN}_{3} \mathrm{O}_{3} \mathrm{NaNi}^{+}\right.$calcd. 560.08909, observed 560.08907; [M $+\mathrm{H}^{+}, \mathrm{C}_{29} \mathrm{H}_{23} \mathrm{FN}_{3} \mathrm{O}_{3} \mathrm{Ni}^{+}$calcd. 538.10714, observed 538.10728; correct isotopic pattern.
($R S$)- α-Methyl-3-fluorophenylalanine [($R S$)-4h]

The title compound ${ }^{15}$ ($106 \mathrm{mg}, 29 \%$) was prepared according to GP4.
${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{MeOD}+20 \% \mathrm{DCl}) \delta 7.42-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.10$ - 7.02 (m, $J=8.1,7.5,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{dd}, J=56.9,14.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{MeOD}+20 \% \mathrm{DCl}\right) \delta 173.15,164.20(\mathrm{~d}, J=245.2 \mathrm{~Hz}), 137.18(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}), 131.82(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 127.29(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 118.01(\mathrm{~d}, J=21.8 \mathrm{~Hz}), 115.88(\mathrm{~d}, J=$ $21.2 \mathrm{~Hz}), 61.62,43.26,22.84$.
${ }^{19}$ F NMR ($\left.376 \mathrm{MHz}, \mathrm{MeOD}+20 \% \mathrm{DCl}\right) \delta-114.46$.

LRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{FNO}_{2} \mathrm{Ni}^{+}$calcd. 198.09, observed 198.31.
HRMS (ESI) $m / z\left[\mathrm{M}+\mathrm{Na}^{+}, \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{FNO}_{2} \mathrm{NaNi}^{+}\right.$calcd. 220.07443, observed 220.07455; [$\mathrm{M}+$ $\mathrm{H}]^{+}, \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{FNO}_{2} \mathrm{Ni}^{+}$calcd. 198.09248, observed 198.09245.
α-Methyl-4-[18F]FPhe precursor (3i)

The above compound ($\mathbf{3 i}$) was prepared according to GP1 whereby, $\mathbf{1 b}(0.50 \mathrm{~g}, 1.15 \mathrm{mmol}), \mathbf{2 c}$ ($0.55 \mathrm{~g}, 1.85 \mathrm{mmol}$), NaH (60% suspension in mineral oil) ($74 \mathrm{mg}, 1.85 \mathrm{mmol}$) and DMF/MeCN 1:2 (10 mL) were utilized. Yield: $83 \%(0.59 \mathrm{~g}, 0.95 \mathrm{mmol}$; total yield of $\mathbf{3 i}$ and the corresponding boronic acid). RP Chromatography using aqueous MeCN and subsequent evaporation of MeCN at $40^{\circ} \mathrm{C}$ under reduced pressure caused partial hydrolysis of Bpin ester to give the corresponding boronic acid as side product. As boronic acids are typically even better substrates for the alcohol-enhanced Cu -mediated radiofluorination than Bpin esters, no attempt to separate it (or to convert it back into the Bpin ester) was performed and the mixture was directly used for the radiolabeling step. Omission of the RP purification step could lead to substantially lower ${ }^{18} \mathrm{~F}$-incorporation rates.
$\mathrm{R}_{\mathrm{f}}: 0.49,\left(1: 10\right.$ acetone/ $\left.\mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$; before RP purification) $\delta 8.54(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.97-7.91(\mathrm{~m}$, $2 \mathrm{H}), 7.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.96$ $(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=13.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.27-3.14(\mathrm{~m}, 2 \mathrm{H}), 2.83(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.10(\mathrm{~m}, 3 \mathrm{H}), 2.01-1.89(\mathrm{~m}, 1 \mathrm{H})$, $1.64(\mathrm{~s}, 3 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$; before RP purification) $\delta 181.55$, 180.88 , 161.00, 142.97, 138.55, $135.08,133.82,133.72,133.10,131.63,130.02,128.90,128.67,123.70,123.13,121.18,83.72$, 74.52, 70.04, 62.87, 57.30, 48.05, 30.73, 25.43, 24.79, 24.72, 22.94.

HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{35} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{NiB}^{+}$calcd. 652.2488, observed 652.2485; correct isotopic pattern.

Ni-BPB α-methyl-4FPhe Reference Compound (18i)

1b

18i, 82\%

The above compound (18i) was prepared according to GP1 whereby, $\mathbf{1 b}(0.235 \mathrm{~g}, 0.54 \mathrm{mmol})$, 1-(bromomethyl)-4-fluorobenzene ($\mathbf{S 2 6}, 0.165 \mathrm{~g}, 0.87 \mathrm{mmol}$), NaH (60% suspension in mineral oil) ($36 \mathrm{mg}, 0.90 \mathrm{mmol}$) and DMF/MeCN 1:2 (7 mL) were utilized. Yield: $82 \%(0.26 \mathrm{~g}, 0.48$ mmol).
$\mathrm{R}_{\mathrm{f}}: 0.53,\left(1: 10\right.$ acetone $\left./ \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $8.53(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H})$, $7.42-7.21(\mathrm{~m}, 5 \mathrm{H}), 7.16-7.04(\mathrm{~m}, 4 \mathrm{H}), 6.97(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.54(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.20(\mathrm{~m}, 2 \mathrm{H}), 2.81(\mathrm{~d}, J=13.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.48-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{td}, J=10.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{dtd}, J=$ $8.8,6.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.63$ (s, 3H).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.64,180.89,162.53(\mathrm{~d}, J=246.2 \mathrm{~Hz}$), 161.07, 143.00, 133.91, 133.89 (d, $J=4.8 \mathrm{~Hz}$), 132.24, 132.16, $131.65,131.21(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 129.03,128.78$, $123.79,123.12,121.33,115.49(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 74.58,70.03,62.97,57.26,46.93,30.83,25.36$, 22.87.
${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-115.23$.

HRMS (ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{NiF}^{+}$calcd. 544.1541, observed 544.1541; correct isotopic pattern.

Ni-PBP- α Me-4-FPhe (S27)

The title compound ($2.36 \mathrm{~g}, 94 \%$) was prepared according to GP3.
$\mathrm{R}_{\mathrm{f}}: 0.22$, ($1: 8$ acetone $/ \mathrm{CHCl}_{3}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.51(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{td}, J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.46(\mathrm{~m}, 5 \mathrm{H}), 7.37-7.20(\mathrm{~m}, 4 \mathrm{H}), 6.81$ (ddd, $J=14.4,9.2,5.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.75-6.69(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=30.0,13.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 179.46, 172.28, 168.95, $162.15(\mathrm{~d}, J=246.6 \mathrm{~Hz}), 153.01$, 146.73, 142.33, 140.01, 136.61, 134.57, 132.81, 132.70, 132.63 (d, $J=8.0 \mathrm{~Hz}$), 130.47, 129.60, $129.02,128.48,127.59,126.48,126.18,123.50(\mathrm{~d}, J=10.2 \mathrm{~Hz}), 121.29,114.91(\mathrm{~d}, J=21.2$ $\mathrm{Hz})$, 81.16, 47.34, 28.67. o - and m-Carbons of the phenyl group of the [(2amido)phenyl]phenylmethanimine residue were inequivalent.
${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-114.53$.

LRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{29} \mathrm{H}_{23} \mathrm{FN}_{3} \mathrm{O}_{3} \mathrm{Ni}^{+}$calcd. 538.20, observed 538.20; correct isotopic pattern.
HRMS (ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}, \mathrm{C}_{29} \mathrm{H}_{22} \mathrm{FN}_{3} \mathrm{O}_{3} \mathrm{NaNi}^{+}$calcd. 560.08909, observed 560.08908; [$\mathrm{M}+$ $\mathrm{H}]^{+}, \mathrm{C}_{29} \mathrm{H}_{23} \mathrm{FN}_{3} \mathrm{O}_{3} \mathrm{Ni}^{+}$calcd. 538.10714, observed 538.10726; correct isotopic pattern.
$(R S)$ - α-Methyl-4-fluorophenylalanine [(RS)-4i]

The title compound ${ }^{14}$ ($142 \mathrm{mg}, 39 \%$) was prepared according to GP4.
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{MeOD}+20 \% \mathrm{DCl}\right) \delta \delta 7.34-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.05(\mathrm{~m}, 2 \mathrm{H}), 3.23$ (dd, $J=53.7,14.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{MeOD}+20 \% \mathrm{DCl}\right) \delta 173.26,163.90(\mathrm{~d}, J=245.2 \mathrm{~Hz}), 133.21(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}), 130.58(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 116.65(\mathrm{~d}, J=21.7 \mathrm{~Hz}), 61.70,42.82$, 22.70 .
${ }^{19}$ F NMR ($\left.376 \mathrm{MHz}, \mathrm{MeOD}+20 \% \mathrm{DCl}\right) \delta-114.45$.

LRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{FNO}_{2} \mathrm{Ni}^{+}$calcd. 198.09, observed 198.27.
HRMS (ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}, \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{FNO}_{2} \mathrm{Ni}^{+}$calcd. 198.09248, observed 198.09251.

NMR Spectra

(S,S)-Ni-BPB-2-BpinPhe (3a) $\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})$

3a

$\begin{aligned} & \mathrm{B}(\mathrm{~d}) \\ & 8.05 \\ & \hline \end{aligned}$		$\begin{array}{\|c\|} \hline \mathrm{D}(\mathrm{~m}) \\ 7.35 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{G}(\mathrm{~m}) \\ 6.51 \end{array}$	
A (d)	C (m)	E (m)	F (t)	H (d)
8.32	7.83	7.12	6.60	5.95
■ト	П	\square	H	П

J (t) 4.27		$\begin{array}{\|} \mathrm{L}(\mathrm{~m}) \\ 3.45 \\ \hline \end{array}$	$N(m)$2.73	
I (d)	K (d)	M (m)	O (m)	P (m)
4.36	3.87	3.19	2.54	2.02

NKB19 $\underset{\sim}{\text { f }} \underset{\sim}{\text { N }}$

C NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}^{3}\right) \delta 180.34,178.47,170.73,142.74,142.50,136.92,134.00,133.72$, $133.34,132.05,131.47,131.36,131.09,129.01,128.76,128.70,128.56,128.35,127.90,127.32$ $126.44,126.18,123.05,120.38,83.64,72.96,70.80,62.99,57.13,42.35,31.06,24.94,24.34$, 23.80 .

3a

(S,S)-Ni-BPB-2-FPhe (18a) $\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}$ NMR (400 MHz), ${ }^{13} \mathrm{C}$ NMR (101 MHz), ${ }^{19} \mathrm{~F}$ NMR (376 MHz)

(S,S)-Ni-BPB-3-BpinPhe (3b) $\left(\mathrm{CDCl}_{3}\right)^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}){ }^{13} \mathrm{C}$ NMR (101 MHz) (before RP purification)

(S,S)-Ni-BPB-3-BpinPhe (3b) (CDCl_{3}) ${ }^{1} \mathrm{H}$ NMR (400 MHz) ${ }^{13} \mathrm{C}$ NMR (101 MHz) (after RP purification)

(S,S)-Ni-BPB-3-FPhe (18b) $\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}$ NMR (400 MHz), ${ }^{13} \mathrm{C}$ NMR (101 MHz), ${ }^{19} \mathrm{~F}$ NMR (376 MHz)

(208
(S,S)-Ni-BPB-4-BpinPhe (3c) $\left(\mathrm{CDCl}_{3}\right)^{1} \mathrm{H}$ NMR (400 MHz) ${ }^{13} \mathrm{C}$ NMR (101 MHz)

4,4,5,5-Tetramethyl-2-(2-methyl-4-hydroxyphenyl)-1,3,2-dioxaborolane (S11) $\left(\mathrm{CDCl}_{3}\right)^{1} \mathrm{H}$ NMR (400 MHz) ${ }^{13} \mathrm{C}$ NMR (101 MHz)
NMR 19052020
bzd-505

2-(4-(Methoxymethoxy)-2-methylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (S12)

$\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}){ }^{13} \mathrm{C}$ NMR $(101 \mathrm{MHz})$

2-(2-(Bromomethyl)-4-(methoxymethoxy)phenyl)-4,4,5,5-tetramethyl-1,3,2-

dioxaborolane (2d) $\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}$ NMR (400 MHz) ${ }^{13} \mathrm{C}$ NMR (101 MHz)

(S,S)-Ni-BPB-2-Bpin-5-MOMO-Phe (3d) $\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}$ NMR (400 MHz) ${ }^{13} \mathrm{C}$ NMR (101 MHz)

2-Bromo-4-(methoxymethoxy)-1-methylbenzene (S14) ${ }^{1} \mathrm{H}$ NMR (400 MHz), ${ }^{13} \mathrm{C}$ NMR (101 MHz)

NMR Mai
NKFZ163

S14

2-[5-(Methoxymethoxy)-2-methylphenyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (S15) $\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}$ NMR (400 MHz) ${ }^{13} \mathrm{C}$ NMR (101 MHz)

176
NKFZ167

[^0](S,S)-Ni-BPB-2-Bpin-OMOM-Tyr (3e) $\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}){ }^{13} \mathrm{C}$ NMR (101 MHz)

1-Fluoro-4-(methoxymethoxy)-2-methylbenzene (S17) ($\left.\mathrm{CDCl}_{3}\right)^{1} \mathrm{H}$ NMR (400 MHz), ${ }^{13} \mathrm{C}$ NMR (101 MHz), ${ }^{19}$ F NMR (376 MHz)

```
NMR Mai NKFZ149
\(\stackrel{\curvearrowleft}{\stackrel{\circ}{1}}\)
```



```
NMR Mai
NKFZ149
```



```
S17
```


1-(Bromomethyl)-2-fluoro-4-(methoxymethoxy)benzene (S18) $\left(\mathrm{CDCl}_{3}\right)^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}),{ }^{13} \mathrm{C}$ NMR (101 MHz), ${ }^{19}$ F NMR (376 MHz)
 NMR27052020 bzd-513

(S,S)-Ni-BPB-2-F-OMOM-Tyr (18e) $\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}$ NMR (400 MHz), ${ }^{13} \mathrm{C}$ NMR (101 MHz), ${ }^{19} \mathrm{~F}$ NMR (376 MHz)

(208

4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole (S20) ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$,

N, N-Dimethyl-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-3-
yl)methanamine (S21) $\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}){ }^{13} \mathrm{C}$ NMR (101 MHz)

N, N, N-Trimethyl-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indol-3-
yl)methanaminium iodide (2f) (DMSO, $\left.\mathrm{d}_{6}\right)^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}),{ }^{13} \mathrm{C}$ NMR (101 MHz)

(S,S)-Ni-BPB-4-Bpin-Trp (3f) $\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}){ }^{13} \mathrm{C}$ NMR (101 MHz)

Ni-BPB-AAA $\boldsymbol{\alpha}$-methyl-2-[$\left.{ }^{\mathbf{1 8}} \mathbf{F}\right] \mathbf{F P h e}$ Precursor (3i) $\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}$ NMR (400 MHz) ${ }^{13} \mathrm{C}$ NMR (101 MHz)

$3 i$

$\boldsymbol{\alpha}$-Methyl-2-FPhe reference compound (18g) $\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}$ NMR (400 MHz), ${ }^{13} \mathrm{C}$ NMR (101 MHz), ${ }^{19}$ F NMR (376 MHz)

Ni-PBP-(RS)-Ala (S22) ${ }^{1} \mathrm{H}$ NMR (400 MHz) ${ }^{13} \mathrm{C}$ NMR (101 MHz)
NMR 19052020 bzd-506

NMR 19052020
NMR 19052
bzd-506

Ni-PBP- α Me-2-FPhe (S24) $\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}$ NMR (400 MHz), ${ }^{13} \mathrm{C}$ NMR (101 MHz), ${ }^{19} \mathrm{~F}$ NMR (376 MHz)

NMR27052020
 bzd-509

```
        N M
```

 -81.01
 \(\stackrel{\rightharpoonup}{\vec{j}} \stackrel{+}{\infty}\)

($\boldsymbol{R S}$)- $\boldsymbol{\alpha}$-Methyl-2-fluorophenylalanine $[(\boldsymbol{R S})-\mathbf{4 g}]\left(\mathrm{CD}_{3} \mathrm{OD}+20 \% \mathrm{DCl}\right){ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}),{ }^{13} \mathrm{C}$ NMR (101 MHz), ${ }^{19}$ F NMR (376 MHz)

$\begin{array}{lllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \underset{f 1}{ } 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

(RS)-4g

$\boldsymbol{\alpha}$-Methyl-3-[$\left.{ }^{\mathbf{1 8}} \mathbf{F}\right] \mathbf{F P h e}$ Precursor (3h) $\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}$ NMR (400 MHz$)^{13} \mathrm{C}$ NMR (101 MHz) (before RP chromatography)
(

$\boldsymbol{\alpha}$-Methyl-3-[$\left.{ }^{\mathbf{1 8}} \mathbf{F}\right] \mathbf{F P h e}$ Precursor (3h) $\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}$ NMR (400 MHz) ${ }^{13} \mathrm{C}$ NMR (101 MHz) (after RP chromatography)

3h

$-2 E+09$
$-1 \mathrm{E}+09$
$-1 \mathrm{E}+09$
$-1 \mathrm{E}+09$
$-1 \mathrm{E}+09$
$-9 \mathrm{E}+0$
$-8 E+08$
7E+08
5E+08
$-4 \mathrm{E}+08$
$-3 \mathrm{E}+08$
$-2 E+08$
$-1 E+08$
$-1 \mathrm{E}+08$
$-2 E+08$
$-3 \mathrm{E}+08$
$-4 \mathrm{E}+08$
$-5 \mathrm{E}+08$
$-6 \mathrm{E}+08$
$-7 E+08$
$-8 \mathrm{E}+08$

$\boldsymbol{\alpha}$-Methyl-3-FPhe reference compound (18h) $\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}$ NMR (400 MHz), ${ }^{13} \mathrm{C}$ NMR (101 MHz), ${ }^{19}$ F NMR (376 MHz)

Ni-PBP- $\boldsymbol{\alpha M e}$-3-FPhe (S25) $\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}$ NMR (400 MHz) ${ }^{13} \mathrm{C}$ NMR (101 MHz), ${ }^{19} \mathrm{~F}$ NMR (376 MHz)

NMR 19052020 bzd-507-2
 $\underset{i}{N}$

[^1]($\boldsymbol{R S}$)- $\boldsymbol{\alpha}$-Methyl-3-fluorophenylalanine $[(\boldsymbol{R S})-\mathbf{4 h}]\left(\mathrm{CD}_{3} \mathrm{OD}+20 \% \mathrm{DCl}\right){ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}),{ }^{13} \mathrm{C}$ NMR (101 MHz), ${ }^{19}$ F NMR (376 MHz)

NMR28052020
bzd-514 MeOH, DCl (20\% in D2O)

$\boldsymbol{\alpha}$-Methyl-4-[$\left.{ }^{\mathbf{1 8}} \mathbf{F}\right]$ FPhe Precursor (3i) $\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}$ NMR (400 MHz) ${ }^{13} \mathrm{C}$ NMR (101 MHz) (before RP chromatography)

$\boldsymbol{\alpha}$-Methyl-4-[$\left.{ }^{\mathbf{1 8}} \mathbf{F}\right] \mathbf{F P h e}$ Precursor (3i) $\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}$ NMR (400 MHz) ${ }^{13} \mathrm{C}$ NMR (101 MHz) (after RP chromatography)

3i

$\boldsymbol{\alpha}$-Methyl-4-FPhe reference compound (18i) $\left(\mathrm{CDCl}_{3}\right){ }^{1} \mathrm{H}$ NMR (400 MHz), ${ }^{13} \mathrm{C}$ NMR (101 MHz), ${ }^{19} \mathrm{~F}$ NMR (376 MHz)

(208

Ni-PBP- $\mathbf{\alpha M e}$-4-FPhe (S27) (CDCl_{3}) ${ }^{1} \mathrm{H}$ NMR (400 MHz), ${ }^{13} \mathrm{C}$ NMR (101 MHz), ${ }^{19} \mathrm{~F}$ NMR (376 MHz)
NMR 19052020 bzd-507-1

\qquad

 NMR 19052020 bzd-507-1

-81.16
-77.00 Chloroform-d

(RS)- $\boldsymbol{\alpha}$-Methyl-4-fluorophenylalanine $[(\boldsymbol{R S})-\mathbf{4 i}]\left(\mathrm{CD}_{3} \mathrm{OD}+20 \% \mathrm{DCl}\right){ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}),{ }^{13} \mathrm{C}$ NMR (101 MHz), ${ }^{19}$ F NMR (376 MHz)

NMR27052020
bzd-511 MeOH, DCI (20\% in D2O)

Radiochemistry

General Information and Procedures

$\left[{ }^{18} \mathrm{~F}\right]$ Fluoride was produced by bombardment of enriched $\left[{ }^{18} \mathrm{O}\right] \mathrm{H}_{2} \mathrm{O}$ by 16.5 MeV protons via ${ }^{18} \mathrm{O}(\mathrm{p}, \mathrm{n})^{18} \mathrm{~F}$ reaction at the BC1710 cyclotron (The Japan Steel Works Ltd., Shinagawa, Japan) at the INM-5 (Forschungszentrum Jülich).

All radiosyntheses were carried out using anhydrous n - BuOH and DMA stored over molecular sieves in Acroseal ${ }^{\ominus}$ flasks (Thermo-Fisher Scientific, Acros, Germany) and under ambient air. $\mathrm{Cu}(\mathrm{py})_{4}(\mathrm{OTf})_{2}$ was prepared according to the literature procedure ${ }^{16}$ and stored under ambient conditions. Sep-Pak Accell Plus QMA light carbonate cartridges (46 mg) were purchased from Waters GmBH (Eschborn, Germany).

Preprocessing of [18F]fluoride

$\left[{ }^{18} \mathrm{~F}\right]$ Fluoride was processed prior to radiosynthesis as follows: A solution of aqueous $\left[{ }^{18} \mathrm{~F}\right]$ fluoride was loaded onto a QMA light carbonate (anion-exchange cartridge) from the male side. Washing and flushing was also carried out from the male side. The $\left[{ }^{18} \mathrm{~F}\right] f l u o r i d e ~ w a s ~ e l u t e d ~$ from the female to the male side.

Synthesis of FET

$\left[{ }^{18} \mathrm{~F}\right]$ FET was prepared at the cyclotron and GMP facility of the INM-5 (Forschungszentrum, Jülich GmbH) as previously reported ${ }^{17}$.

HPLC

Gradient A1: column: Chromolith SpeedROD ${ }^{\circledR}$, $50 \times 4.6 \mathrm{~mm}$ (Merck Millipore, Germany); gradient: $0-2 \mathrm{~min}: 5 \% \mathrm{MeCN}, 2-2.5 \mathrm{~min} 5 \rightarrow 20 \% \mathrm{MeCN}, 2.5-6 \mathrm{~min}: 20 \% \mathrm{MeCN}, 6-7 \mathrm{~min}$ $20 \rightarrow 70 \% \mathrm{MeCN}, 7-9 \mathrm{~min}: 70 \% \mathrm{MeCN}, 9-12 \mathrm{~min} 70 \rightarrow 5 \% \mathrm{MeCN}$, flow rate: $2 \mathrm{~mL} / \mathrm{min}$.

Gradient A2: column: Chromolith SpeedROD ${ }^{\circledR}$, $50 \times 4.6 \mathrm{~mm}$ (Merck Millipore, Germany); gradient: $0-2 \mathrm{~min}$: $5 \% \mathrm{MeCN}, 2-2.5 \mathrm{~min}: 5 \rightarrow 70 \% \mathrm{MeCN}, 2.5-7 \mathrm{~min}: 70 \% \mathrm{MeCN}, 7-8 \mathrm{~min}$: $70 \rightarrow 5 \% \mathrm{MeCN}, 8-9 \mathrm{~min}: 5 \% \mathrm{MeCN}$, flow rate: $3 \mathrm{~mL} / \mathrm{min}$.

Gradient B1: Synergi Hydro-RP, $4 \mu \mathrm{~m}, 80 \AA, 250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$ (Phenomenex, Aschaffenburg, Germany), eluent: $6 \% \mathrm{EtOH}\left(0.2 \% \mathrm{H}_{3} \mathrm{PO}_{4}\right)$, flow rate: $1.3 \mathrm{~mL} / \mathrm{min}$. These conditions were used for the isolation of 2-[$\left.{ }^{18} \mathrm{~F}\right]$ FPhe $\left(\left[{ }^{18} \mathrm{~F}\right] \mathbf{4 a}\right)$

Gradient B2: Synergi Hydro-RP, $4 \mu \mathrm{~m}, 80 \AA, 250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$ (Phenomenex, Aschaffenburg, Germany), eluent: $4 \% \mathrm{EtOH}\left(0.2 \% \mathrm{H}_{3} \mathrm{PO}_{4}\right)$, flow rate: $1.3 \mathrm{~mL} / \mathrm{min}$. These conditions were used for the isolation of $6-\left[{ }^{18} \mathrm{~F}\right]$ FMT $\left(\left[{ }^{18} \mathrm{~F}\right] \mathbf{4 d}\right)$.

Gradient B3: Synergi Hydro-RP, $4 \mu \mathrm{~m}, 80 \AA, 250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$ (Phenomenex, Aschaffenburg, Germany), eluent: $10 \% \mathrm{EtOH}\left(0.2 \% \mathrm{H}_{3} \mathrm{PO}_{4}\right)$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$.

Gradient B4: Synergi Hydro-RP, $4 \mu \mathrm{~m}, 80 \AA, 250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$ (Phenomenex, Aschaffenburg, Germany), eluent: $7 \% \mathrm{EtOH}$, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$. These conditions were used for the isolation of $4-\left[{ }^{18} \mathrm{~F}\right] \mathrm{FTrp}\left(\left[{ }^{18} \mathrm{~F}\right] \mathbf{4 f}\right)$ for animal experiments.

Gradient B5: Hydro RP Synergi $250 \mathrm{~mm} \times 10 \mathrm{~mm}$ Synergi Hydro-RP, $4 \mu \mathrm{~m}, 80 \AA, 250 \mathrm{~mm} \times$ 4.6 mm (Phenomenex, Aschaffenburg, Germany), eluent: $10 \% \mathrm{EtOH}$ ($0.1 \% \mathrm{TFA}$), flow rate: 6 $\mathrm{mL} / \mathrm{min}$. These conditions were used for the isolation of $3-4-\left[{ }^{18} \mathrm{~F}\right]$ Phes ($\left.\left[{ }^{18} \mathrm{~F}\right] \mathbf{4 a}-\mathbf{c}\right), 2-4-\alpha \mathrm{Me}-$ $\left[{ }^{18} \mathrm{~F}\right]$ Phes $\left(\left[{ }^{18} \mathrm{~F}\right] \mathbf{4 a - c}\right)$, and $2-\left[{ }^{18} \mathrm{~F}\right] \mathrm{FTyr}\left(\left[{ }^{18} \mathrm{~F}\right] \mathbf{4 e}\right)$.

Gradient B6: Synergi Hydro-RP, $4 \mu \mathrm{~m}, 80 \AA, 250 \mathrm{~mm} \times 4.6 \mathrm{~mm}$ (Phenomenex, Aschaffenburg, Germany), eluent: 7\% EtOH, flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$. Gradient C: $1 \mathrm{~mL} / \mathrm{min} 60 \% \mathrm{EtOH}$ Chirobiotic T column (Astec ${ }^{\circledR}$), $5 \mu \mathrm{~m}, 100 \AA$ isocratic $1-12 \mathrm{~min}$. A precolumn protector was not utilized in this case.

HPLC analyses were carried out on a Dionex Ultimate 3000 HPLC system and a DAD UV detector coupled in series with a Berthold NaI detector or on a homemade HPLC system consisting of a Knauer 80-P pump, a Knauer K-2500 UV/vis detector (Knauer, Berlin, Germany), and a Rheodyne manual injector coupled in series with a $\mathrm{NaI}(\mathrm{Tl})$ well-type scintillation detector model 276 photomultiplier base with an ACE mate amplifier and BIAS supply (EG\&G Ortec Ametek, Meerbusch, Germany). Semipreparative HPLC separations were carried out using the same HPLC systems or a homemade HPLC system equipped with a Hitachi L-6000 pump (Merck, Darmstadt), a Knauer K-2500 UV/vis detector (Knauer, Berlin, Germany), and a Rheodyne manual injector (5 mL loop) coupled in series with a $\mathrm{NaI}(\mathrm{Tl})$ welltype scintillation detector model 276 photomultiplier base with an ACE mate amplifier and BIAS supply (EG\&G Ortec Ametek, Meerbusch, Germany). The unselective adsorption of ${ }^{18} \mathrm{~F}$ onto HPLC columns was determined to be $<10 \%$ in each case. The UV and radioactivity detectors were connected in sequence, giving a time delay of $0.1-0.9$ min between the corresponding responses, depending on the flow rate. The identity of the ${ }^{18} \mathrm{~F}$-labeled products was confirmed by the co-injection of the respective non-radioactive reference compound. All
radiosyntheses were carried out at least three times. In most cases, the standard deviation (SD) of RCCs did not exceed 10% of the mean values.

Gradient	Compound	Retention time (min)
A1	$\left[{ }^{18} \mathrm{~F}\right] \mathbf{1 8 a}$	8.1
A1	$\left[{ }^{18} \mathrm{~F}\right] \mathbf{1 8 b}$	8.0
A1	$\left[{ }^{8} \mathrm{~F}\right] \mathbf{1 8 c}$	8.0
A1	$\left[{ }^{18} \mathrm{~F}\right] \mathbf{1 8 d}$	8.1
A1	$\left[{ }^{18} \mathrm{~F}\right] \mathbf{1 8 e}$	8.4
A2	$\left[{ }^{18} \mathrm{~F}\right] \mathbf{1 8 f}$	3.2
A2	$\left[{ }^{18} \mathrm{~F}\right] \mathbf{1 8}$	4.4
A2	$\left[{ }^{18} \mathrm{~F}\right] \mathbf{1 8 h}$	4.6
A2	$\left[{ }^{8} \mathrm{~F}\right] \mathbf{1 8}$	4.5
A1	Cu -BPB-3- $\left[{ }^{18} \mathrm{~F}\right]$ FPhe	8.7

Table S1. Retention times of radiolabeled intermediates $\left[{ }^{18} \mathrm{~F}\right] 18 a-\mathrm{i}$ and $\mathrm{Cu}-B P B-3-\left[{ }^{18} F\right] F P h e$.

Gradient	Compound	Retention time (min)
B1	$\left.{ }^{18} \mathrm{~F}\right] \mathbf{4 a}$	4.2
B1	$\left[{ }^{18} \mathrm{~F}\right] \mathbf{4 b}$	4.1
B1	$\left.{ }^{[18} \mathrm{F}\right] \mathbf{4}$	5.0
B2	$\left[{ }^{18} \mathrm{~F}\right] \mathbf{4} \mathbf{d}$	4.0
B2	$\left[{ }^{18} \mathrm{~F}\right] \mathbf{e}$	4.8
B4	$\left.{ }^{18} \mathrm{~F}\right] \mathbf{4} \mathbf{f}$	12.2
B1	$\left.{ }^{18} \mathrm{~F}\right] \mathbf{d}$	5.4
B1	$\left[{ }^{18} \mathrm{~F}\right] \mathbf{4}$	5.8
B1	$\left.{ }^{18} \mathrm{~F}\right] \mathbf{4}$	6.5

Table S2. Retention times of radiolabeled amino acids [${ }^{18}$ F]4a-i (analytic HPLC).

Gradient	Compound	Retention time (min)
B1	$\left[{ }^{18} \mathrm{~F}\right] \mathbf{4} \mathbf{a}$	4.2
B5	$\left[{ }^{18} \mathrm{~F}\right] \mathbf{4} \mathbf{b}$	8.2
B5	$\left.{ }^{18} \mathrm{~F}\right] \mathbf{4}$	8.3
B2	$\left[{ }^{[18} \mathrm{F}\right] \mathbf{4} \mathbf{d}$	4.0
B5	$\left[{ }^{18} \mathrm{~F}\right] \mathbf{e}$	6.9
B4	$\left.{ }^{18} \mathrm{~F}\right] \mathbf{4} \mathbf{f}$	12.2
B5	$\left[{ }^{18} \mathrm{~F}\right] \mathbf{4}$	9.7
B5	$\left[{ }^{18} \mathrm{~F}\right] \mathbf{4}$	11.7
B5	$\left[{ }^{18} \mathrm{~F}\right] \mathbf{4}$	12.5

Table S3. Approximate retention times of radiolabeled amino acids $\left[{ }^{18}\right.$ F]4a-i (semi-preparative HPLC separations).

General procedure for the preparation of ${ }^{18} \mathrm{~F}$-labeled aromatic amino acids from Ni-BPX-(Bpin)AAA complexes (GP5)

The radiosynthesis commenced with the loading of [$\left.{ }^{18} \mathrm{~F}\right] f l u o r i d e ~(500-5000 \mathrm{MBq}$) onto a QMA $^{\circledR}$ light carbonate cartridge (preconditioned with $1 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$) followed by subsequent elution with $\mathrm{Et}_{4} \mathrm{NHCO}_{3}(3 \mathrm{mg}, 15.7 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(0.75 \mathrm{~mL})$. Thereafter, all volatiles were removed under reduced pressure at $80^{\circ} \mathrm{C}$ for 5 minutes, a solution of the corresponding precursor $(10 \mu \mathrm{~mol})$ and $\mathrm{Cu}(\mathrm{py})_{4}(\mathrm{OTf})_{2}(20 \mu \mathrm{~mol})$ in $\mathrm{DMA} / n \mathrm{BuOH} 2: 1(0.75 \mathrm{~mL})$ added, and the reaction mixture was stirred at $110^{\circ} \mathrm{C}$ for 15 min . The mixture was then concentrated under reduced pressure at $110^{\circ} \mathrm{C}$ for $10 \mathrm{~min} .12 \mathrm{M} \mathrm{HCl}(0.3 \mathrm{~mL})$ was added, the reaction mixture was stirred at $110{ }^{\circ} \mathrm{C}$ for 15 min and concentrated at the same temperature under reduced pressure. Thereafter, the residue was taken up in the suitable eluent (1 mL ; please refer to Table S3) and purified using high-performance liquid chromatography (HPLC). Unless otherwise stated, all columns were fitted with a precolumn protector (Phenomenex, SecurityGuard Cartridge System). If the produced tracer should be used for the in vivo studies the product fraction was concentrated under reduced pressure and the flow of argon, and the residue was taken up into saline or in PBS \{in the case of $6-\left[{ }^{18} \mathrm{~F}\right]$ FMT $\left.\left(\left[{ }^{18} \mathrm{~F}\right] 4 \mathrm{~d}\right)\right\}$. Some of ${ }^{18} \mathrm{~F}$-labeled amino acids, especially $3-\left[{ }^{18} \mathrm{~F}\right]$ FPhe ($\left[{ }^{18} \mathrm{~F}\right] \mathbf{4 b}$), were sensitive to radiolysis. If tracer was not intended to be used immediately, it was stabilized by the addition of sodium ascorbate $(10 \mathrm{mg})$ into the product vial.

Automated Radiosyntheses

All automated radiosyntheses were carried out in a home-made synthesis module. FFKM valves (Christian Bürkert GmbH\&Co. KG, Ingelfingen, Germany) were applied. All connections between the valves were made using PTFE tubes and PEEK fittings. The flow scheme for the preparation of radiolabeled amino acids is depicted in Figure S3. Synthetic air and He (Westfalen AG, Muenster, Germany) were used as operating gases.

Optimization of Radiofluorination Conditions

Figure Sl. The dependency of ${ }^{18}$ F-incorporation on temperature. Conditions: $\left[{ }^{18} F\right]$ Fluoride $(\sim 50 \mathrm{MBq})$ was loaded onto a QMA-CO 3_{3}^{-}cartridge from the male side. The cartridge was washed with water (1 mL) in the same direction and flushed with air $(5 \mathrm{~mL})$. Thereafter, ${ }^{18} \mathrm{~F}^{-}$ was eluted from the female side with a solution of $\mathrm{Et}_{4} \mathrm{NHCO}_{3}(3 \mathrm{mg})$ in $\mathrm{MeOH}(0.7 \mathrm{~mL})$. The MeOH was evaporated under a flow of air within 5 min . A solution of $\mathbf{3 b}$ ($7.1 \mathrm{mg}, 10 \mu \mathrm{~mol}$) and $\mathrm{Cu}(\mathrm{py})_{4}(\mathrm{OTf})_{2}(13.6 \mathrm{mg}, 20 \mu \mathrm{~mol})$ in $\mathrm{nBuOH} / \mathrm{DMA}(1: 2,750 \mu \mathrm{~L})$ was added, the reaction mixture was heated at the corresponding temperature for the specified time under air, diluted with water (1 mL) and analyzed by HPLC. All experiments were carried out in triplicate.

Optimization with respect to reaction temperature was carried out with precursor $\mathbf{3 b}$ at $100^{\circ} \mathrm{C}$, $110^{\circ} \mathrm{C}$, and $120^{\circ} \mathrm{C}$. It was found that $110^{\circ} \mathrm{C}$ for 15 minutes afforded the highest ${ }^{18} \mathrm{~F}$ incorporation of the three temperatures.

Figure S2. The dependency of ${ }^{18} \mathrm{~F}$-incorporation on Cu mediator concentration. Conditions: ${ }^{18}$ F]Fluoride ($\sim 50 \mathrm{MBq}$) was loaded onto a QMA-CO3 ${ }^{-}$cartridge from the male side. The cartridge was washed with water (1 mL) in the same direction and flushed with air (5 mL). Thereafter, ${ }^{18} F^{-}$was eluted from the female side with a solution of $\mathrm{Et}_{4} \mathrm{NHCO}_{3}(3 \mathrm{mg})$ in MeOH $(0.7 \mathrm{~mL})$. The MeOH was evaporated under a flow of air within 5 min . A solution of $\mathbf{3 b}$ (7.1 mg , $10 \mu \mathrm{~mol})$ and the corresponding $\mathrm{Cu}(\mathrm{py})_{4}(\mathrm{OTf})_{2}$ amount in $n \mathrm{BuOH} / \mathrm{DMA}(1: 2,750 \mu \mathrm{~L})$ was added, the reaction mixture was heated at the $110^{\circ} \mathrm{C}$ for 15 min under air, diluted with water (1 mL) and analyzed by HPLC. All experiments were carried out in triplicate.

Optimization with respect to the equivalents of $\mathrm{Cu}(\mathrm{py})_{4}(\mathrm{OTf})_{2}$ was carried out with precursor 3b at $110^{\circ} \mathrm{C}$. It was found that the application of 2 molar equivalents of $\mathrm{Cu}(\mathrm{py})_{4}(\mathrm{OTf})_{2}$ at $110{ }^{\circ} \mathrm{C}$ for 15 minutes afforded the highest ${ }^{18} \mathrm{~F}$-incorporation among the tested conditions.

Figure S3. Process flow diagram (PFD) for the automated radiosynthesis of ${ }^{18} F$-labeled AAAs. A: $\mathrm{MeOH}(2 \mathrm{~mL})$; $\mathrm{B}: \mathrm{Et}_{4} \mathrm{NHCO}_{3}(3 \mathrm{mg}, 15.7 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(0.75 \mathrm{~mL})$; C : $\mathrm{Cu}(\mathrm{py})_{4}(\mathrm{OTf})_{2}(13.6 \mathrm{mg}, 20 \mu \mathrm{~mol})$ and radiolabeling precursor ($10 \mu \mathrm{~mol}$) in $\mathrm{DMA} / \mathrm{nBuOH}(2: 1)$ (0.75 mL) $\mathrm{E}: 37 \% \mathrm{HCl}(1 \mathrm{~mL}) ; \mathrm{F}: 6 \% \mathrm{EtOH}_{a q}(1 \mathrm{~mL})$.

1. Loading of $\left[{ }^{18} \mathrm{~F}\right]$ fluoride onto an QMA ion exchange cartridge;
2. Washing of the QMA with $\mathrm{MeOH}(2 \mathrm{~mL})$;
3. Closing air valve (50), and system venting;
4. Elution of $\left[{ }^{18} \mathrm{~F}\right]$ fluoride from the ion-exchange cartridge with a methanolic solution of $\mathrm{Et}_{4} \mathrm{NHCO}_{3}$ into RV 1;
5. Open air valve (50) to completely transfer methanolic solution from QMA to RV 1;
6. Evaporation of MeOH in RV1 at $80^{\circ} \mathrm{C}$ for $3-5 \mathrm{~min}$ using a flow of synthetic air under reduced pressure;
7. Addition of a solution of the radiolabeling precursor $(10 \mu \mathrm{~mol})$ and $\mathrm{Cu}(\mathrm{py})_{4}(\mathrm{OTf})_{2}(20 \mu \mathrm{~mol})$ in $n \mathrm{BuOH} / \mathrm{DMA} 1: 2(0.75 \mathrm{~mL})$;
8. Heating of the reaction mixture in RV1 at $110^{\circ} \mathrm{C}$ for 15 min ;
9. Evaporation of reaction mixture in RV1 at $110^{\circ} \mathrm{C}$ for 10 min ;
10. Addition of $37 \% \mathrm{HCl}(1 \mathrm{~mL})$ and heating at $110^{\circ} \mathrm{C}$ for 15 min ;
11. Evaporation of reaction mixture in RV1 at $130^{\circ} \mathrm{C}$ for 10 min ;
12. Addition of the appropriate eluent (please, refer to Table S3) in RV1;
13. Injection of the loop content onto the HPLC column and elution of the tracer with the appropriate eluent (please, refer to Table S3);
14. Manual collection of the product fraction in a collection vial (CV1).

Radio HPLC traces and RCC data for ${ }^{18} \mathrm{~F}$-labeled Products [${ }^{18}$ F]18a (Gradient A1)

Nr.	Retentionszeit \min	Intensität mAU	Integral $\%$
1	0,81	1,965	2,76
2	8,07	67,890	97,24
Total:		69,855	100,00

$\left[{ }^{18} \mathrm{~F}\right] 18 \mathrm{~b}$ (Gradient A1)

Nr.	Retentionszeit min	Intensität mAU	Integral $\%$
1	0,68	9,128	9,45
2	7,97	91,921	90,55
Total:		101,048	100,00

Nr.	Retentionszeit \min	Intensität $\mathbf{m A U}$	Integral $\%$
1	0,84	57,485	14,38
2	3,39	14,358	2,94
3	8,04	468,332	82,68
Total:		540,175	100,00

[${ }^{18}$ F $]$ 18d (Gradient A1)

Nr.	Retentionszeit min	Intensität mAU	Integral $\%$		
1	0,95	1,222	5,28		
2	8,07	22,987	94,72		
Total:	24,209				100,00
		S106			

Nr.	Retentionszeit min	Intensität mAU	Integral $\%$
1	0,80	6,724	5,48
2	8,44	198,105	94,52
Total:		204,829	100,00

[${ }^{18}$ F]S16 (Gradient A1)

Nr.	Retentionszeit \min	Intensität mAU	Integral $\%$
1	1,24	14,748	3,41
2	8,69	480,914	96,59
Total:		495,662	100,00

$\left[{ }^{18} \mathrm{~F}\right] 18 \mathrm{~g}$ (Gradient A1)

Nr.	Retentionszeit \min	Intensität mAU	Integral $\%$
1	0,62	198,870	21,28
2	4,45	722,458	78,72
Total:		921,328	100,00

$\left[{ }^{18} \mathrm{~F}\right] 18 \mathrm{~h}$ (Gradient A1)

Nr.	Retentionszeit min	Intensität mAU	Integral $\%$
1	0,71	71,571	16,76
2	4,61	529,945	83,24
Total:		601,516	100,00

[$\left.{ }^{18} \mathbf{F}\right] 18$ (Gradient A1)

Nr.	Retentionszeit \min	Intensität mAU	Integral $\%$
1	0,61	44,688	4,31
2	4,50	1006,396	95,69
Total:		1051,084	100,00

Deprotection Optimization

The deprotection step was optimized with respect to time, temperature and HCl concentration. It was found that $12 \mathrm{M} \mathrm{HCl}(1 \mathrm{~mL})$ at $110^{\circ} \mathrm{C}$ for 15 min provided the highest deprotection yield (Figure S4). Exceeding any of these parameters usually resulted in the loss of product or infeasibility of the procedure towards automated module implementation.

Figure S4. Deprotection of Cu/Ni-BPB-AAA at $110^{\circ} \mathrm{C}$.

Quality Control of Products
2-FPhe (4a) (Gradient B1)

Nr.	Retentionszeit min	Intensität mAU	Integral $\%$
1	3,56	2782,507	100,00
Total:		2782,507	100,00

2-[$\left.{ }^{8} \mathbf{F}\right]$ FPhe ($\left[{ }^{18} \mathbf{F}\right] 4 a$) (Gradient B1)

3-FPhe (4b) (Gradient B1)

Nr.	Retentionszeit min	Intensität mAU	Integral $\%$
1	3,65	687,692	100,00
Total:		687,692	100,00
		S 111	

3-[$\left.{ }^{18} \mathbf{F}\right]$ FPhe ($\left[{ }^{18} \mathbf{F}\right] 4 b$) (Gradient B1)

Nr.	Retentionszeit min	Intensität mAU	Integral $\%$
1	4,06	1004,256	100,00
Total:		1004,256	100,00

4-FPhe (4c) (Gradient B1)

Bor\#441 [modified by chemie]

Nr.	Retentionszeit min	Intensität mAU	Integral $\%$
1	4,33	441,810	100,00
Total:		441,810	100,00
		S 112	

4- $\left[{ }^{18} \mathbf{F}\right]$ FPhe ($\left[{ }^{18} \mathbf{F}\right] 4 \mathrm{c}$) (Gradient B1)

Nr.	Retentionszeit min	Intensität mAU	Integral $\%$
1	4,97	143,092	100,00
Total:		143,092	100,00

6-FMT (4d) (Gradient B2)

Nr.	Retentionszeit min	Intensität mAU	Integral $\%$
1	4,48	2291,784	100,00
Total:		2291,784	100,00

6-[$\left.{ }^{[8} \mathrm{F}\right]$ FMT $\left(\left[{ }^{18} \mathrm{~F}\right] 4 d\right.$) (Gradient B2)

Nr.	Retentionszeit min	Intensität mAU	Integral $\%$
1	4,81	241,305	100,00
Total:		241,305	100,00

2-FTyr (2e) (Gradient B2)

Bor\#403 [modified by chemiel

2-[$\left.{ }^{18} \mathrm{~F}\right]$ FTyr $\left(\left[{ }^{18} \mathrm{~F}\right] 4 \mathrm{e}\right)$ (Gradient B2)

Nr.	Retentionszeit min	Intensität mAU	Integral $\%$
1	3,97	78,543	100,00
Total:		78,543	100,00

4-FTrp (4f) and 4-[$\left.{ }^{18} \mathbf{F}\right]$ FTrp $\left.\left({ }^{[18} \mathbf{F}\right] 4 f\right)$ (Gradient B3)

α-Methyl-2-FPhe (4g) (Gradient B1)

Nr.	Retentionszeit min	Intensität mAU	Integral $\%$
1	5.08	358,252	100,00
Total:		358,252	100,00

α-Methyl-2-[$\left.{ }^{18} \mathbf{F}\right]$ FPhe ($\left.\left[{ }^{18} \mathbf{F}\right] 4 \mathrm{~g}\right)$ (Gradient B1)

Nr.	Retentionszeit min	Intensität mAU	Integral $\%$
1	5,41	196,987	100,00
Total:	196,987	100,00	
		S 117	

α-Methyl-3-FPhe (4h) (Gradient B1)

Bor \#326 [modified by chemie] QC A-Me 3-D/L-FPhe reference compound

Nr.	Retentionszeit \min	Intensität mAU	Integral $\%$
1	5,80	280,639	100,00
Total:		280,639	100,00

α-Methyl-3-[$\left.{ }^{18} \mathbf{F}\right]$ FPhe ($\left[{ }^{18} \mathbf{F}\right] 4 h$) (Gradient B1)

α-Methyl-4-FPhe (4i) (Gradient B1)

Nr.	Retentionszeit min	Intensität mAU	Integral $\%$
1	5,86	320,770	100,00
Total:		320,770	100,00

α-Methyl-4-[${ }^{18}$ F]FPhe ([$\left.{ }^{18} \mathbf{F}\right] 4 i$) (Gradient B1)

Nr.	Retentionszeit min	Intensität mAU	Integral $\%$
1	6,51	35,846	100,00
Total:		35,846	100,00

Determination of Enantiomeric Excess for AAA PET tracers

rac-2-FPhe (Gradient C)

Nr.	Retentionszeit min	Intensität mAU	Integral $\%$
1	5,17	379,213	50,19
2	6,33	230,063	49,81
Total:		609,276	100,00

2-[$\left.{ }^{18} \mathrm{~F}\right]$ FPhe $\left(\left[{ }^{[8} \mathbf{F}\right] 4 a\right)$ (Gradient C)

Nr.	Retentionszeit min	Intensität mAU	Integral $\%$
1	5,78	42,251	100,00
Total:		42,251	100,00

rac-3-FPhe (Gradient C)

Nr.	Retentionszeit min	Intensität mAU	Integral $\%$
1	4,90	373,068	50,00
2	6,50	184,506	50,00
Total:		557,574	100,00

3-[$\left.{ }^{18} \mathrm{~F}\right]$ FPhe ($\left[{ }^{[8} \mathbf{F}\right] 4 \mathrm{~b}$) (Gradient C)

Nr.	Retentionszeit min	Intensität mAU	Integral $\%$
1	5,32	592,219	100,00
Total:		592,219	100,00
		S 121	

General Procedure for determination of carrier amount and molar activity (GP 6) An aliquot of the tracer obtained after HPLC purification was set aside for 24 h and thereafter concentrated under reduced pressure. The residue was re-dissolved in $10 \% \mathrm{MeOH}(0.1 \% \mathrm{TFA})$ and completely injected into the HPLC system. The peak area was determined and the carrier amount ${ }^{18}$ as well as the molar activity were calculated according to the calibration curves ($\lambda=210 \mathrm{~nm}$, Fig. S5-S9).

Tracer	Carrier amount $(\mathrm{nmol} /$ batch $)$	Molar activity $(\mathrm{GBq} / \mu \mathrm{mol})$	Tracer amount (GBq)
$3-\left[{ }^{18} \mathrm{~F}\right]$ FPhe	27.3	4.6	0.127
$3-\left[{ }^{18} \mathrm{~F}\right]$ FPhe	14.4	76.3	1.1
$3-\left[{ }^{18} \mathrm{~F}\right]$ FPhe	7.5	252.1	1.9
$4-\left[{ }^{18} \mathrm{~F}\right]$ FPhe	6.2	29.1	0.179
$2-\alpha \mathrm{Me}-\left[{ }^{18} \mathrm{~F}\right]$ FPhe	43.7	3.23	0.14
$3-\alpha \mathrm{Me}-\left[{ }^{[8} \mathrm{F}\right]$ FPhe	8.2	61.2	0.5
$3-\alpha \mathrm{Me}-\left[{ }^{18} \mathrm{~F}\right]$ FPhe	42.3	33.1	1.4
$4-\alpha \mathrm{Me}-\left[{ }^{18} \mathrm{~F}\right]$ FPhe	164.2	2.0	0.33

Table S4. Carrier amounts and molar activities for $\left[{ }^{18} F\right] 4 b, c$ and $\left[{ }^{18} F\right] 4 g-i$.

Determination of specific activity and carrier amount for 3-[18F]FPhe ([18F]4b).

Figure S5. Calibration curve for 3-FPhe (4b). Blue points: calibration points; peak areas in mAU which correspond to definite masses of 3-FPhe (Y and X values, respectively), red points; peak areas in mAU which correspond to masses of 3-FPhe in the whole batches.

Sample 1: 42 MBq aliquot was taken from 127 MBq batch of the tracer.

Peak area of the 3-FPhe peak in the injected aliquot: 37.27 mAU .

Mass of injected 3-FPhe: $1.67 \mu \mathrm{~g}$.
3-FPhe in the whole batch: $5.01 \mu \mathrm{~g}$.
$\operatorname{Mr}(3-$ FPhe $)=183.18 \mathrm{Da}$.
Carrier amount: $27.3 \mathrm{nmol} / \mathrm{batch}$

Molar activity: $4.6 \mathrm{GBq} / \mu \mathrm{mol}$.

Sample 2: 0.2 GBq aliquot was taken from 1.1 GBq batch of the tracer.

Peak area of the 3-FPhe peak in the injected aliquot: 10.7 mAU .
Mass of injected 3-FPhe: $0.48 \mu \mathrm{~g}$.

3-FPhe in the whole batch: $2.64 \mu \mathrm{~g}$.
Carrier amount: $14.4 \mathrm{nmol} / \mathrm{batch}$

Molar activity: 76.3 GBq/ $\mu \mathrm{mol}$.

Sample 3: 0.25 GBq aliquot was taken from 1.9 GBq batch of the tracer.

Peak area of the 3-FPhe peak in the injected aliquot: 4.1 mAU .
Mass of injected 3-FPhe: $0.18 \mu \mathrm{~g}$.

3-FPhe in the whole batch: $1.38 \mu \mathrm{~g}$.
Carrier amount: $7.5 \mathrm{nmol} /$ batch
Molar activity: $252.1 \mathrm{GBq} / \mu \mathrm{mol}$.

Determination of specific activity and carrier amount for $4-\left[{ }^{18} \mathrm{~F}\right]$ FPhe ($\left[{ }^{18} \mathrm{~F}\right] 4 \mathrm{c}$).

Figure S6. Calibration curve for 4-FPhe (4b). Blue points: calibration points; peak areas in $m A U$ which correspond to definite masses of 4-FPhe (Y and X values, respectively), red points; peak areas in mAU which correspond to mass of 4-FPhe in the whole batch.

Sample: 60 MBq aliquot was taken from 179 MBq batch of the tracer.
Peak area of the 4-FPhe peak in the injected aliquot: 7.62 mAU .

Mass of injected 4-FPhe: $0.38 \mu \mathrm{~g}$.
4-FPhe in the whole batch: $1.13 \mu \mathrm{~g}$.
$\operatorname{Mr}(4-\mathrm{FPhe})=183.18 \mathrm{Da}$.

Carrier amount: $6.2 \mathrm{nmol} / \mathrm{batch}$
Molar activity: 29.1 GBq/ $/$ mol.

Determination of specific activity and carrier amount for α Me-2-[18F]FPhe ($\left[{ }^{18} \mathrm{~F}\right] \mathbf{4 g}$).

Figure S7. Calibration curve for α Me-2-FPhe (4g). Blue points: calibration points; peak areas in mAU which correspond to definite masses of $\alpha M e-2-F P h e ~(Y$ and X values, respectively), red points; peak areas in $m A U$ which correspond to mass of $\alpha M e-2-F P h e ~ i n ~ t h e ~ w h o l e ~ b a t c h . ~$

Sample: 47 MBq aliquot was taken from 140 MBq batch of the tracer.

Peak area of the $\alpha \mathrm{Me}-2$-FPhe peak in the injected aliquot: 58.6 mAU .

Mass of injected α Me-2-FPhe: $2.87 \mu \mathrm{~g}$.
$\alpha \mathrm{Me}-2$-FPhe in the whole batch: $8.62 \mu \mathrm{~g}$.
$\operatorname{Mr}(\alpha \mathrm{Me}-2-\mathrm{FPhe})=197.21 \mathrm{Da}$.

Carrier amount: $43.7 \mathrm{nmol} / \mathrm{batch}$

Molar activity: $3.23 \mathrm{GBq} / \mu \mathrm{mol}$.

Determination of specific activity and carrier amount for α Me-3-[18F]FPhe ([18F]4h).

Figure S8. Calibration curve for α Me-3-FPhe (4h). Blue points: calibration points; peak areas in mAU which correspond to definite masses of $\alpha M e-3-F P h e ~(Y$ and X values, respectively), red points; peak areas in mAU which correspond to masses of $\alpha M e-3-F P h e ~ i n ~ t h e ~ w h o l e ~$ batches.

Sample 1: 167 MBq aliquot was taken from 500 MBq batch of the tracer.

Peak area of the $\alpha \mathrm{Me}-3$-FPhe peak in the injected aliquot: 12.3 mAU .

Mass of injected α Me-3-FPhe: $0.54 \mu \mathrm{~g}$.
$\alpha \mathrm{Me}-3-\mathrm{FPhe}$ in the whole batch: $1.61 \mu \mathrm{~g}$.
$\operatorname{Mr}(\alpha \mathrm{Me}-3-\mathrm{FPhe})=197.21 \mathrm{Da}$.

Carrier amount: $8.2 \mathrm{nmol} / \mathrm{batch}$
Molar activity: $61.2 \mathrm{GBq} /$ mol.
Sample 2: 0.2 GBq aliquot was taken from 1.4 GBq batch of the tracer.
Peak area of the α Me-3-FPhe peak in the injected aliquot: 27.3 mAU .

Mass of injected α Me-3-FPhe: $1.16 \mu \mathrm{~g}$.
$\alpha \mathrm{Me}-3$-FPhe in the whole batch: $8.35 \mu \mathrm{~g}$.

Carrier amount: $42.3 \mathrm{nmol} / \mathrm{batch}$
Molar activity: $33.1 \mathrm{GBq} / \mu \mathrm{mol}$.

Determination of specific activity and carrier amount for α Me-4-[18F]FPhe ([18F]4i).

Figure S9. Calibration curve for $\alpha \mathrm{Me}-4-\mathrm{FPhe}(4 i)$. Blue points: calibration points; peak areas in $m A U$ which correspond to definite masses of $\alpha M e-4-F P h e$ (Y and X values, respectively), red points; peak areas in $m A U$ which correspond to mass of $\alpha M e-3-F P h e$ in the whole batch.

Sample 1: 110 MBq aliquot was taken from 330 MBq batch of the tracer.

Peak area of the $\alpha \mathrm{Me}-4$-FPhe peak in the injected aliquot: 170.2 mAU .

Mass of injected α Me-4-FPhe: $10.79 \mu \mathrm{~g}$.
$\alpha \mathrm{Me}-4-\mathrm{FPhe}$ in the whole batch: $32.38 \mu \mathrm{~g}$.
$\operatorname{Mr}(\alpha \mathrm{Me}-4-\mathrm{FPhe})=197.21 \mathrm{Da}$.

Carrier amount: $164.2 \mathrm{nmol} / \mathrm{batch}$

Molar activity: 2.0 GBq/ $\mu \mathrm{mol}$.

Induced-Coupled Plasma Mass Spectrometry Results

Sample	Ni		Cu	
	$\begin{aligned} & \text { Mean } \\ & {[\mathrm{mg} / \mathrm{L}]} \end{aligned}$	Amount per product batch (mg)	Mean [mg/L]	Amount per product batch (mg)
2-[$\left.{ }^{18} \mathrm{~F}\right]$ FPhe	0.125	0.004	0.703	0.021
3-[$\left.{ }^{18} \mathrm{~F}\right]$ FPhe	0.215	0.006	1.803	0.054
4- $\left.{ }^{18} \mathrm{~F}\right]$ FPhe	0.041	0.001	0.82	0.024
2-[$\left.{ }^{18} \mathrm{~F}\right] \mathrm{FTyr}$	2.016	0.060	4.413	0.013
6-[$\left.{ }^{18} \mathrm{~F}\right]$ FMT	27.4	0.082	84.6	0.2538
$\alpha \mathrm{Me}-2-\left[{ }^{18} \mathrm{~F}\right]$ FPhe	0.845	0.025	1.213	0.036
$\alpha \mathrm{Me}-3-\left[{ }^{18} \mathrm{~F}\right]$ FPhe	9.42	0.028	15	0.045
$\alpha \mathrm{Me}-4-\left[{ }^{18} \mathrm{~F}\right]$ FPhe	58.3	0.1749	124	0.372
3-[$\left.{ }^{18} \mathrm{~F}\right]$ FPhe*	-	-	0.248	0.007

*Prepared via 19.
Table S5. Induced-Coupled Plasma Mass Spectrometry results.

In vitro experiments

General Information

MDA-MB-231
MDA-MB-231 cells were purchased from the Leibniz-Institute DSMZ (German Collection of Microorganisms and Cell Cultures GmbH) and cultured in a mixture Dulbecco's modified Eagle's medium (DMEM)/Ham's F12 medium (1:1) supplemented with L-glutamine (2 mM), FBS (10\%), and penicillin/streptomycin (1\%).

MCF-7

Human breast adenocarcinoma MCF-7 cells were purchased from the Leibniz-Institute DSMZ (German Collection of Microorganisms and Cell Cultures GmbH) and cultured in minimum essential medium (Gibco, 41090028) supplemented with 10% fetal bovine serum (Sigma Aldrich F 2442), $100 \mathrm{U} / \mathrm{ml}$ penicillin/streptomycin (Gibco 15140122), 1% sodium pyruvate (Gibco 11360070), 1% non-essential amino acid and $10 \mu \mathrm{~g} / \mathrm{mL}$ human insulin at $37^{\circ} \mathrm{C}$ in a humidified atmosphere of $5 \% \mathrm{CO}_{2}$ in air.

PC-3
Human prostate carcinoma PC-3 cells were purchased from the Leibniz-Institute DSMZ (German Collection of Microorganisms and Cell Cultures GmbH) and cultured in F-12 K Nutrit Mix Medium (Gibco, 21127022) supplemented with 10% fetal bovine serum (Sigma Aldrich F 2442) and $100 \mathrm{U} / \mathrm{ml}$ penicillin/streptomycin (Gibco 15140122) at $37{ }^{\circ} \mathrm{C}$ in a humidified atmosphere of $5 \% \mathrm{CO}_{2}$ in air.

HD-MB03

Human medulloblastoma HD-MB03 cells were purchased from the Leibniz-Institute DSMZ (German Collection of Microorganisms and Cell Cultures GmbH) and cultured in RPMI 1640 Medium (Gibco, 6187010) supplemented with 10% fetal bovine serum (Sigma Aldrich F 2442), $100 \mathrm{U} / \mathrm{ml}$ penicillin/streptomycin (Gibco 15140122) and 1% non-essential amino acid at $37^{\circ} \mathrm{C}$ in a humidified atmosphere of $5 \% \mathrm{CO}_{2}$ in air.

Cellular uptake studies

Cells were used in their exponential growth phase. 48 hours prior to the start of the uptake studies the cells were seeded to obtain a cell density of 2.5×10^{5} cells per vial. The culture medium was then replaced by an incubation medium. Cell viability assays were performed
according to a standard protocol using trypan blue (95% of cells vital). The incubation medium was aspirated and cells were incubated with 1 mL of radiotracer containing medium ($150 \mu \mathrm{Ci}$ radiotracer $/ \mathrm{mL}$ medium) each for $20,40,60,80,100$ and 120 minutes at $37^{\circ} \mathrm{C}$ in a humidified atmosphere of $5 \% \mathrm{CO}_{2}$ in air.

At the respective time points, the supernatant medium was aspirated, cells were washed three times with 1 mL ice-cold PBS each, detached with trypsin and suspended in medium. Radiotracer uptake was determined by counting in a gamma counter. Radioactivity was referenced to a 1 mL sample of medium containing $150 \mu \mathrm{Ci}$ of the radiotracer (100% value). All determinations were performed in triplicate. For direct comparison, all given percentages have been normalized to 250,000 cells.

Figure S10. $3-\left[{ }^{18} F\right] F P h e(4 b)$ uptake in various cell lines.
[${ }^{18}$ F]FET vs. $3-\left[{ }^{18} \mathrm{~F}\right]$ FPhe

Chart Sl. Uptake of $\left[{ }^{18} \mathrm{~F}\right] F E T$ and $3-\left[{ }^{18} \mathrm{~F}\right] F \mathrm{Fhe}\left(\left[^{18} \mathrm{~F}\right] 4 \mathrm{~b}\right)$ in different tumor cell lines after 1 h incubation.

PET Evaluation

General

Animals

Experiments were carried out in accordance with the EU directive 2010/63/EU for animal experiments and the German Animal Welfare Act (TierSchG, 2006) and were approved by regional authorities (LANUV NRW, 84-02.04.2017.A288). Six healthy male Long Evans rats (243-534 g body weight) were used for this study. Rats were housed in pairs in individually ventilated cages (NexGen Ecoflo, cages RAT1800 with $1805 \mathrm{~cm}^{2}$ floor space and 41 cm height; Allentown Inc., Allentown, NJ, USA) under controlled ambient conditions ($22 \pm 1^{\circ} \mathrm{C}$ and $55 \pm$ 5% relative humidity) on an inversed $12 \mathrm{~h} \mathrm{light/dark} \mathrm{schedule} \mathrm{(lights} \mathrm{on} \mathrm{9:00} \mathrm{p.m} .\mathrm{to} \mathrm{9:00} \mathrm{a.m).}$. Food and water were available at all times.

PET Imaging

The six rats were assigned to two groups ($\mathrm{n}=3$ each): With and without AADC inhibition. In the AADC inhibition group, rats received an intraperitoneal injection of $15 \mathrm{mg} / \mathrm{kg}$ benserazide in 0.5 mL NaCl 1 h before tracer injection. Prior to PET measurements, animals were anesthetized (initial dosage, 5% isoflurane in $\mathrm{O}_{2} /$ air (3:7), then reduction to 2%), and a catheter for tracer injection was inserted into the lateral tail vein. Rats were placed on an animal holder (Minerve, Esternay, France) and fixed with a tooth bar in a respiratory mask. Dynamic PET scans in list mode were performed using a Focus 220 micro-PET scanner (CTI-Siemens, Germany) with a resolution at center of field of view of 1.4 mm . Data acquisition started with tracer injection ($65.5 \pm 2.6 \mathrm{MBq}$ of $3-\left[{ }^{18} \mathrm{~F}\right] \mathrm{FPhe}\left(\left[{ }^{18} \mathrm{~F}\right] \mathbf{4 b}\right.$) in 0.5 mL , i.v.), continued for 120 min, and was followed by a 10 min transmission scan using a $\left[{ }^{57} \mathrm{Co}\right]$ point source. The breathing rate was monitored and kept around $60 / \mathrm{min}$ by adjusting isoflurane concentration (1.5-2.5\%). Body temperature was maintained at $37^{\circ} \mathrm{C}$ by warm airflow through the animal bed. Following Fourier rebinning, data were reconstructed using an iterative OSEM3D/MAP procedure including attenuation and decay correction in two different ways: (1) 28 frames ($2 \times 1 \mathrm{~min}, 2 \times$ $2 \mathrm{~min}, 6 \times 4 \mathrm{~min}, 18 \times 5 \mathrm{~min})$ for a compilation of time-activity curves; (2) 4 frames (4×30 min) for visual display. Resulting voxel sizes were always $0.38 \mathrm{~mm} \times 0.38 \mathrm{~mm} \times 0.79 \mathrm{~mm}$.

Image analysis and statistics

Data analysis was performed using the software VINCI 4.72. Images were manually coregistered with a structural MR image template, Gauss filtered (1 mm FWHM), and SUV $_{\text {bw }}$ was determined by dividing each image by the injected dose and multiplying the result by bodyweight times 100. To obtain bone TACs, an elliptical $4 \mathrm{~mm}^{3}$ (36 voxels) volume of interest (VOI) was placed over the lambdoidal crest of the skull. For brain TACs, a $620 \mathrm{~mm}^{2}$ (5400 voxels) VOI was used, which was carefully placed to avoid areas with radioactivity spillover from bones. VOI mean $\mathrm{SUV}_{\mathrm{bw}}$ values were extracted from each of the 28 frames and plotted over time.

Differences in $3-\left[{ }^{18} \mathrm{~F}\right]$ FPhe brain uptake were evaluated using a two-way ANOVA (Graphpad Prism 6.0) with the factors AADC inhibition (no repeated measures) and timepoint (repeated measures), followed by Sidak's multiple comparison test.

Comparison of brain uptake of $3-\left[{ }^{18} \mathrm{~F}\right]$ FPhe in healthy rats with/without benserazide

Figure S11: Biodistribution of $\left.3-{ }^{18} F\right] F P h e$ in healthy rat brains with and without the peripheral amino acid decarboxylase (AADC) inhibitor benserazide. A: Horizontal PET images displayed in frames of 30 min and projected onto an MRI template. b: Lambdoidal crest where bone uptake was measured for time-activity curves (TACs). B: TACs ($n=3$ each) for bone (left) and whole brain (right). Asterisks: significantly different $3-\left[{ }^{18} F\right] F P h e\left(\left[{ }^{18} F\right] 4 b\right)$ uptake at the respective time points.

While bone uptake of $3-\left[{ }^{18} \mathrm{~F}\right]$ FPhe ($\left[{ }^{18} \mathrm{~F}\right] \mathbf{4 b}$) was similar in the two groups, brain uptake was significantly higher when peripheral AADC was blocked with benserazide. Two-way ANOVA revealed a significant main effect of factor AADC inhibition: $F(1,4)=26.4$; $p=0.0068$. Sidak's post-hoc comparison showed significant differences in $3-\left[{ }^{18} \mathrm{~F}\right]$ FPhe uptake ($\mathrm{p}<0.05$) from 20 \min p.i. through 120 min p.i. (except 95 min p.i.).

References

1. M. A. Berliner and K. Belecki, J. Org. Chem., 2005, 70, 9618-9621.
2. Y. N. Belokon, V. I. Tararov, V. I. Maleev, T. F. Savel'eva and M. G. Ryzhov, Tetrahedron: Asymmetry, 1998, 9, 4249-4252.
3. Y. N. Belokon, V. I. Bakhmutov, N. I. Chernoglazova, K. A. Kochetkov, S. V. Vitt, N. S. Garbalinskaya and V. M. Belikov, J. Chem. Soc., Perkin Trans. 1, 1988, 305-312.
4. Y. N. Belokon, S. M. Motsishkite, V. I. Tararov and V. I. Maleev, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1991, 40, 1355-1360.
5. D. J. Smith, G. P. A. Yap, J. A. Kelley and J. P. Schneider, J. Org. Chem., 2011, 76, 15131520.
6. V. P. Kukhar, Y. N. Belokon, V. A. Soloshonok, N. Yu. Svistunova, A. B. Rozhenko and N. A. Kuz'mina, Synthesis, 1993, 117-120.
7. J. Zischler, N. Kolks, D. Modemann, B. Neumaier and B. D. Zlatopolskiy, Chem. Eur. J., 2017, 23, 3251-3256.
8. Janssen Pharmaceutica NV; G.-H. Kuo, M. R. Player, S.-M. Yang, Y.-M. Zhang, and H. Huang, WO/2016/057731, 2016, A1 Location in patent: 85-86, 102.
9. Laboratoire Biodim; R. Benarous, F. Chevreuil, B. Ledoussal, S. Chasset and F. Le Strat, WO/2014/057103, 2014, A1.
10. Hoffmann-La Roche Inc.; P. Barbier, I. Huber, F. Schneider, J. Stadlwieser and S. Taylor, US5583222, 1996, A.
11. S. Bartolucci, F. Bartoccini, M. Righi and G. Piersanti, Org. Lett., 2012, 14, 600-603.
12. H. Ueki, T. K. Ellis, C. H. Martin, and V. A. Soloshonok, Eur. J. Org. Chem., 2003, 19541957.
13. Y. N. Belokon, N. B. Bespalova, T. D. Churkina, I. Císařová, M. G. Ezernitskaya, S. R. Harutyunyan, R. Hrdina, H. B. Kagan, P. Kočovský, K. A. Kochetkov, O. V. Larionov, K. A. Lyssenko, M. North, M. Polášek, A. S. Peregudov, V. V. Prisyazhnyuk and Štěpán Vyskočil, J. Am. Chem. Soc., 2003, 125, 12860-12871.
14. W. S. Saari, J. Williams, S. F. Britcher, D. E. Wolf and F. A. Kuehl, J. Med. Chem., 1967, 10, 1008-1014.
15. R. E. Counsell, P. Desai, T. D. Smith and P. S. Chan, J. Med. Chem., 1970, 13, 1040-1042.
16. J. S. Haynes, S. J. Rettig, J. R. Sams, J. Trotter and R. C. Thompson, Inorg. Chem. 1988, 27, 1237-1241.
17. K. Hamacher and H. H. Coenen, Appl. Radiat. Isot., 2002, 57, 853-856.
18. D. J. Modemann, B. D. Zlatopolskiy, E. A. Urusova, J. Zischler, A. Craig, J. Ermert, M. Guliyev, H. Endepols and B. Neumaier, Synthesis, 2019, 51, 664-676.

[^0]:

[^1]: 20

