ArNMeCH(SiMe₃)₂: A Useful Precursor of Formal α-Aminoalkyl

Diradical in Visible-Light-Mediated Homo- or Hetero- Diaddition

with Alkenes

Shunfa Liu, Yufan Yang, Lu Gao* and Zhenlei Song*

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.

E-mail: lugao@scu.edu.cn; zhenleisong@scu.edu.cn

Table of Contents

1. General Methods	
2. Experimental Procedures and Spectral Data of Products	
2.1. Synthesis of 4	
2.2. Synthesis of 1a-m and 8	
2.3. Synthesis of 2a-y and 7	
2.4. Synthesis of 6a-m	
2.5. Synthesis of 3a-k	
2.7. Cyclic Voltammetry Analysis	
3. ¹ H and ¹³ C NMR Spectral Copies	S56-S224

1. General Methods

All reagents purchased from Energy-Chemical, Inno-Chem, JK-chemical, BiDepharm, LaaJoo, Aladdin and TCI without additional purification. Synthesis of substrates were performed using common anhydrous, argon atmosphere with magnetic stirring. Visible-light-induced catalytic reactions were performed in 15 ml Schlenk seal tubes (purchased from Synthware Glass, Art. No. P260001) at room temperature under an argon atmosphere and under irradiation with 40W blue LEDs lamp Kessil PR160-427nm. Inert atmosphere techniques was carried out through Schlenk system and Standard Glovebox (purchased from Vigor Gas Purification Technologies (Suzhou) Co. Ltd.) Reactions were monitored by TLC which was performed on glass-backed silica plates (purchased from Yantai Jiangyou Silica Gel Development Co. Ltd.) and visualized using UV, KMnO₄ stains, H₃PO₄·12MoO₃/EtOH stains, H₂SO₄ (conc.)/ anisaldehyde/ EtOH stains. Column chromatography was performed using silica gel (200-300 or 300-400 mesh) eluting with EtOAc/petroleum ether. Melting point were recorded at WRX-4 Melting-point Apparatus (purchased from Shanghai Yice Apparatus & Equipments Co. Lit.). ¹H NMR spectra were recorded at 400 MHz (Varian and Bruker) or 600 MHz (Agilent), ¹³C NMR spectra were recorded at 100 MHz (Bruker) or 150 MHz (Agilent) using CDCl₃ (except where noted) with TMS as standard. NMR standards were used as follows: $CDCl_3 = 7.26 \text{ ppm} (^{1}\text{H NMR}), 77.1$ ppm (¹³C NMR). Infrared spectra were obtained using PerkinElmer Spectrum Two FT-IR Spectrometer. High-resolution mass spectral analyses performed on Waters Q-TOF in positive mode. Electrochemical potentials were obtained with a standard set of conditions to main internal consistency. Cyclic voltammograms were collected with a CH Instruments Model 600E Series Electrochemical Analyzer/Workstation containing platinum wire working electrode, platinum wire counter electrode, saturated KCl silver-silver chloride electrode reference electrode (Sweep rate: 20 mV/s). TMSCl were distilled from CaH₂. CH₂Cl₂ were distilled from CaH₂, THF were distilled from Na. All spectral data obtained for new compounds are reported here.

2. Experimental Procedures and Spectral Data of Products

2.1. Synthesis of bis(trimethylsilyl)methylamine (BSMA) 4

4 was synthesized according to this protocol reported by Picard and coworkers.¹

To a mixture of granular lithium (3.92 g, 564.5 mmol), trimethylsilyl cyanide (8.83 mL, 70.6 mmol) and chlorotrimethylsilane (358 mL, 2.82 mol) in THF (175 mL) was added dropwise the mixture of hexamethylphosphoramide (126 mL) and THF (35 mL) at 0 $^{\circ}$ C. The mixture was stirred for four days at 0 $^{\circ}$ C, then concentrated in vacuo. To the residue was added water (400 mL). The resulting mixture was neutralized with sat. aq. NaOH, then extracted with hexane (3 × 50 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated in vacuo to afford crude residue, which was used for next reaction without purification.

To the mixture of the above residue in MeOH (14.5 mL, 352.8 mmol) was added dropwise chlorotrimethylsilane (45 mL, 352.8 mmol) at 0 °C. The mixture was stirred for 30 min at 25 °C, then concentrated in vacuo. To the residue was added water (100 mL). The resulting mixture was filtered and the filtration was alkalized with sat. aq. NaOH, and extracted with Et_2O (4 × 30 mL). The combined organic layers were dried over NaOH, filtered and concentrated in vacuo to afford bis(trimethylsilyl)methylamine **4** (8.4 g, yield: 68 %) as a faint yellow liquid, which was used for next reaction without purification.

Spectral Data of 4

¹H NMR (400 MHz, CDCl₃) δ 1.61 (s, 1H), 0.97 (s, 2H), 0.04 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 31.5, -1.6;

1. J. P. Picard, S. Grelier, T. Constantieux, and J. Dunogués, Organometallics, 1993, 12, 1378.

IR (neat) cm⁻¹ 2955, 1650, 1594, 1249, 841, 751;

HRMS (ESI-TOF, m/z) calcd for C₇H₂₂NSi₂ (M+H)⁺: 176.1285, found 176.1286.

2.2. Synthesis of Geminal Bis(silyl) Amines 1a-m and 8

<u>General procedure A</u>. A dried 15 mL Schlenk seal tube was charged with $Pd(OAc)_2$ (17.5 mg, 0.078 mmol), S-Phos (64 mg, 0.16 mmol) and NaOt-Bu (225 mg, 2.34 mmol) in Standard Glovebox. Then to the mixture was added aryl bromides **S1a-m** (1.56 mmol), bis(trimethylsilyl)methylamine **4** (300 mg, 1.72 mmol) and toluene (5 mL) at 25 °C under positive argon pressure. The mixture was stirred for 12 h at 40 °C, then quenched with water (10 mL) and extracted with EtOAc (3 × 10 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated in vacuo. The residues were purified by silica gel chromatography (gradient eluent: petroleum ether/EtOAc = $500:1\rightarrow 250:1$) to afford geminal bis(silyl) secondary aryl amines **5a-m**.

To a suspension of **5a-m** (1.0 mmol) and sodium cyanoborohydride (630 mg, 10 mmol) in CH₃CN (5 mL) was added 40 % formaldehyde aqueous solution (0.7 mL, 10 mmol) and CH₃CO₂H (0.5 mL) at 0 °C. The mixture was stirred for additional 60 min at 0 °C and warmed to25 °C for 24 h. The reaction was quenched with water (10 mL) and extracted with EtOAc (3 × 10 mL). The combined organic layers were dried over MgSO₄, filtered and concentrated in vacuo. The residues were purified by silica gel chromatography (gradient eluent: petroleum ether/EtOAc = 500:1→250:1) to afford geminal bis(silyl) aryl amines **1a-m**.

Preparation of 1a

According to General Procedure A, bromobenzene (S1a, 245 mg, 1.56 mmol) was converted to corresponding 5a (302 mg, 77 % yield) as a colorless liquid. 5a (252 mg, 1.0 mmol) was converted to 1a (231 mg, 87 % yield) as a faint yellow liquid.

Spectral Data of 5a

¹H NMR (400 MHz, CDCl₃) δ 7.12 (dd, J_1 = 8.4 Hz, J_2 = 7.2 Hz, 2H), 6.59-6.52 (m, 3H), 3.28 (s, 1H), 2.41 (s, 1H), 0.07 (s, 18H);

¹³C NMR (100 MHz, CDCl₃) δ 150.2, 129.1, 115.7, 112.3, 34.3, -1.0;

IR (neat) cm⁻¹ 2953, 1599, 1499, 1317, 1251, 843, 764;

HRMS (ESI-TOF, m/z) calcd for $C_{13}H_{26}NSi_2$ (M+H)⁺: 252.1598, found 252.1600.

Spectral Data of 1a

¹H NMR (400 MHz, CDCl₃) δ 7.19 (dd, J_1 = 9.0 Hz, J_2 = 7.2 Hz, 2H), 6.62 (d, J = 9.0 Hz, 2H), 6.56 (t, J = 7.2 Hz, 1H), 2.96 (s, 3H), 2.91 (s, 1H), 0.11 (s, 18H);

¹³C NMR (100 MHz, CDCl₃) δ 150.7, 129.0, 114.1, 111.0, 43.5, 38.9, 0.6;

IR (neat) cm⁻¹ 2953, 2896, 1560, 1502, 1353, 1251, 841;

HRMS (ESI-TOF, m/z) calcd for $C_{14}H_{28}NSi_2$ (M+H)⁺: 266.1755, found 266.1757.

Preparation of 1b

According to the General Procedure A, 1-bromo-4-methylbenzene (**S1b**, 267 mg, 1.56 mmol) was converted to corresponding **5b** (294 mg, 71 % yield, mp: 46-48.5 °C) as a white solid. **5b** (266 mg, 1 mmol) was converted to **1b** (62 mg, 22 % yield) as a colorless liquid.

Spectral Data of 5b

¹H NMR (400 MHz, CDCl₃) δ 6.94 (d, *J* = 8.0 Hz, 2H), 6.47 (d, *J* = 8.0 Hz, 2H), 3.19 (s, 1H), 2.37 (s, 1H), 2.23 (s, 3H), 0.07 (s, 18H);

¹³C NMR (100 MHz, CDCl₃) δ 148.1, 129.6, 124.7, 112.3, 34.5, 20.4, -0.9;

IR (neat) cm⁻¹ 2952, 1616, 1514, 1313, 1249, 1013, 839, 763;

HRMS (ESI-TOF, m/z) calcd for C₁₄H₂₈NSi₂ (M+H)⁺: 266.1755, found 266.1755.

Spectral Data of 1b

¹H NMR (400 MHz, CDCl₃) δ 6.99 (d, *J* = 8.4 Hz, 2H), 6.54 (d, *J* = 8.4 Hz, 2H), 2.93 (s, 3H), 2.86 (s, 1H), 2.23 (s, 3H), 0.10 (s, 18H);

¹³C NMR (100 MHz, CDCl₃) δ 148.8, 129.6, 123.0, 111.1, 43.7, 39.0, 20.2, 0.7;

IR (neat) cm⁻¹ 2953, 1616, 1516, 1349, 1250, 1193, 1015, 839, 795, 765;

HRMS (ESI-TOF, m/z) calcd for $C_{15}H_{30}NSi_2$ (M+H)⁺: 280.1911, found 280.1904.

Preparation of 1c

According to the General Procedure A, 1-bromo-2-methylbenzene (**S1c**, 267 mg, 1.56 mmol) was converted to corresponding **5c** (373 mg, 90 % yield) as a faint yellow liquid. Then **5c** (266 mg, 1 mmol) was converted to **1c** (168 mg, 60% yield) as a colorless liquid.

Spectral Data of 5c

¹H NMR (400 MHz, CDCl₃) δ 7.15 (t, *J* = 8.0 Hz, 1H), 7.07 (d, *J* = 8.0 Hz, 1H), 6.61-6.58 (m, 2H), 3.28 (s, 1H), 2.60 (s, 1H), 2.20 (s, 3H), 0.15 (s, 18H);

¹³C NMR (100 MHz, CDCl₃) δ 147.6, 129.8, 127.1, 120.7, 115.0, 109.0, 33.9, 17.5, -1.0; IR (neat) cm⁻¹ 2953, 1605, 1509, 1250, 843;

HRMS (ESI-TOF, m/z) calcd for C₁₄H₂₈NSi₂ (M+H)⁺: 266.1755, found 266.1754.

Spectral Data of 1c

¹H NMR (400 MHz, CDCl₃) δ 7.10-7.06 (m, 2H), 7.00-6.98 (m, 1H), 6.79 (td, $J_1 = 8.4$ Hz, $J_2 = 1.2$ Hz, 1H), 2.90 (s, 3H), 2.64 (s, 1H), 2.29 (s, 3H), 0.12 (s, 18H);

¹³C NMR (100 MHz, CDCl₃) δ 154.2, 131.7, 129.7, 126.0, 120.3, 119.4, 46.6, 42.1, 20.3, 1.3;

IR (neat) cm⁻¹ 2951, 2897, 1596, 1490, 1249, 838, 756;

HRMS (ESI-TOF, m/z) calcd for C₁₅H₃₀NSi₂ (M+H)⁺: 280.1911, found 280.1910.

Preparation of 1d

According to the General Procedure A, 1-bromo-4-butylbenzene (**S1d**, 326 mg, 1.56 mmol) was converted to corresponding **5d** (302 mg, 63 % yield) as a colorless liquid. Then **5d** (308 mg, 1 mmol) was converted to **1d** (196 mg, 61 % yield) as a colorless liquid.

Spectral Data of 5d

¹H NMR (400 MHz, CDCl₃) δ 6.92 (d, *J* = 8.4 Hz, 2H), 6.46 (d, *J* = 8.4 Hz, 2H), 3.17 (s, 1H), 2.48 (t, *J* = 8.0 Hz, 2H), 2.36 (s, 1H), 1.58-1.51 (m, 2H), 1.39-1.30 (m, 2H), 0.92 (t, *J* = 7.2Hz, 3H), 0.06 (s, 18H);

¹³C NMR (100 MHz, CDCl₃) δ 148.3, 130.1, 128.9, 112.4, 34.8, 34.6, 34.1, 22.5, 14.1, -0.9;

IR (neat) cm⁻¹ 2955, 1614, 1514, 1313, 1251, 844;

HRMS (ESI-TOF, m/z) calcd for $C_{17}H_{34}NSi_2$ (M+H)⁺: 308.2224, found 308.2217.

Spectral Data of 1d

¹H NMR (400 MHz, CDCl₃) δ 6.99 (d, *J* = 8.8 Hz, 2H), 6.55 (d, *J* = 8.8 Hz, 2H), 2.93 (s, 3H), 2.87 (s, 1H), 2.49 (t, *J* = 7.6 Hz, 2H), 1.59-1.52 (m, 2H), 1.40-1.30 (m, 2H), 0.92 (t, *J* = 7.2 Hz, 3H), 0.10 (s, 18H);

¹³C NMR (100 MHz, CDCl₃) δ 149.0, 128.8, 128.4, 111.1, 43.7, 39.0, 34.6, 34.1, 22.6, 14.1, 0.7;

IR (neat) cm⁻¹ 2954, 1614, 1686, 1515, 1350, 1250, 1015, 839, 767;

HRMS (ESI-TOF, m/z) calcd for $C_{18}H_{36}NSi_2$ (M+H)⁺: 322.2381 , found 322.2381.

Preparation of 1e

According to the General Procedure A, 1-bromo-4-cyclohexylbenzene (**S1e**, 373 mg, 1.56 mmol) was converted to corresponding **5e** (224 mg, 43 % yield, mp: 29.5-32 °C) as a white solid. Then **5e** (334 mg, 1 mmol) was converted to **1e** (174 mg, 50 % yield, mp: 52.5-55 °C) as a white solid.

Spectral Data of 5e

¹H NMR (400 MHz, CDCl₃) δ 6.95 (d, *J* = 8.4 Hz, 2H), 6.47 (d, *J* = 8.4 Hz, 2H), 3.16 (s, 1H), 2.40-2.30 (m, 2H), 1.86-1.70 (m, 5H), 1.38-1.22 (m, 5H), 0.06 (s, 18H);

¹³C NMR (100 MHz, CDCl₃) δ 148.3, 135.5, 127.2, 112.3, 43.5, 34.8, 34.6, 27.2, 26.4, -0.9;

IR (neat) cm⁻¹ 2923, 1613, 1513, 1250, 843;

HRMS (ESI-TOF, m/z) calcd for $C_{19}H_{36}NSi_2~(M\text{+}H)^{+}\text{: }334.2381$, found 334.2381.

Spectral Data of 1e

¹H NMR (400 MHz, CDCl₃) δ 7.02 (d, *J* = 8.4 Hz, 2H), 6.56 (d, *J* = 8.4 Hz, 2H), 2.93 (s, 3H), 2.87 (s, 1H), 2.41-2.34 (m, 1H), 1.87-1.70 (m, 5H), 1.42-1.31 (m, 5H), 0.09 (s, 18H);

¹³C NMR (100 MHz, CDCl₃) δ 149.2, 133.8, 127.1, 111.1, 43.7, 43.3, 39.0, 34.8, 27.2, 26.4, 0.7;

IR (neat) cm⁻¹ 2922, 2850, 1613, 1514, 1350, 1249, 1015, 837, 803, 765;

HRMS (ESI-TOF, m/z) calcd for $C_{20}H_{38}NSi_2$ (M+H)⁺: 348.2537, found 348.2531.

Preparation of 1f

According to the General Procedure A, 1-bromo-4-cyclopropylbenzene (**S1f**, 308 mg, 1.56 mmol) was converted to corresponding **5f** (250 mg, 55 % yield, mp: 41-45 °C) as a white solid. Then **5f** (292 mg, 1 mmol) was converted to **1f** (217 mg, 71 % yield) as a colorless liquid.

Spectral Data of 5f

¹H NMR(400 MHz, CDCl₃) δ 6.87 (d, J = 8.4 Hz, 2H), 6.46 (d, J = 8.4 Hz, 2H), 3.19 (d, J = 9.6 Hz, 1H), 2.36 (s, J = 9.6 Hz, 1H), 1.82-1.75 (m, 1H), 0.86-0.81 (m, 2H), 0.60-0.56 (m, 2H), 0.07 (s, 18H);

¹³C NMR (100 MHz, CDCl₃) δ 148.2, 130.6, 126.7, 112.3, 34.5, 14.6, 8.1, -0.9;

IR (neat) cm⁻¹ 2953, 1615, 1515, 1250, 842, 751;

HRMS (ESI-TOF, m/z) calcd for $C_{16}H_{32}NSi_2$ (M+H)⁺: 294.2068, found 294.2065.

Spectral Data of 1f

¹H NMR (400 MHz, CDCl₃) δ 6.92 (d, *J* = 8.4 Hz, 2H), 6.54 (d, *J* = 8.4 Hz, 2H), 2.93 (s, 3H), 2.85 (s, 1H), 1.83-1.76 (m, 1H), 0.85-0.80 (m, 2H), 0.60-0.56 (m, 2H), 0.09 (s,

18H);

¹³C NMR (100 MHz, CDCl₃) δ 149.0, 128.9, 126.6, 111.2, 43.6, 39.0, 14.4, 8.1, 0.7; IR (neat) cm ⁻¹ 3004, 2953, 2895, 1679, 1614, 1518, 1338, 1251, 1115, 842; HRMS (ESI-TOF, m/z) calcd for $C_{17}H_{32}NSi_2$ (M+H)⁺: 306.2068, found 306.2075.

Preparation of 1g

According to the General Procedure A, 1-bromo-4-methoxybenzene (**S1g**, 292 mg, 1.56 mmol) was converted to corresponding **5g** (299 mg, 68 % yield, mp: 37.5-43 °C) as a white solid. Then **5g** (282 mg, 1 mmol) was converted to **1g** (142 mg, 48 % yield) as a colorless liquid.

Spectral Data of 5g

¹H NMR (400 MHz, CDCl₃) δ 6.73 (d, *J* = 8.8 Hz, 2H), 6.49 (d, *J* = 8.8 Hz, 2H), 3.74 (s, 3H), 3.04 (s, 1H), 2.29 (s, 1H), 0.06 (s, 18H);

¹³C NMR (100 MHz, CDCl₃) δ 150.9, 144.9, 114.8, 113.3, 55.9, 35.2, -0.9;

IR (neat) cm⁻¹ 3408, 2951, 1507, 1247, 1044, 839, 762;

HRMS (ESI-TOF, m/z) calcd for C14H28NOSi2 (M+H)+: 282.1704, found 282.1704.

Spectral Data of 1g

¹H NMR (400 MHz, CDCl₃) δ 6.79 (d, *J* = 8.8 Hz, 2H), 6.56 (d, *J* = 8.8 Hz, 2H), 3.75 (s, 3H), 2.92 (s, 3H), 2.80 (s, 1H), 0.09 (s, 18H);

¹³C NMR (100 MHz, CDCl₃) δ 134.8, 114.8, 113.6, 112.1, 55.9, 44.2, 39.2, 0.7;

IR (neat) cm⁻¹ 2953, 1674, 1512, 1342, 1246, 1112, 1033, 833;

HRMS (ESI-TOF, m/z) calcd for C₁₅H₃₀NOSi₂ (M+H)⁺: 296.1860, found 296.1851.

Preparation of 1h

According to the General Procedure A, 1-bromo-3-methoxybenzene (**S1h**, 292 mg, 1.56 mmol) was converted to corresponding **5h** (378 mg, 86 % yield, mp: 54-59 °C) as a white solid. Then **5h** (282 mg, 1 mmol) was converted to **1h** (180.3 mg, 61 % yield) as a colorless liquid.

Spectral Data of 5h

¹H NMR (400 MHz, CDCl₃) δ 7.01 (t, *J* = 8.4 Hz, 1H), 6.15 (tdd, *J*₁ = 7.2 Hz, *J*₂ = 2.0 Hz, *J*₃ = 1.2 Hz, 2H), 6.08 (t, *J* = 2.4 Hz, 1H), 3.77 (s, 3H), 3.33 (d, *J* = 4.4 Hz, 1H), 2.38 (s, *J* = 7.2 Hz, 1H), 0.07 (s, 18H);

¹³C NMR (100 MHz, CDCl₃) δ 160.9, 151.6, 129.7, 105.9, 100.6, 98.1, 55.1, 34.4, -1.0;

IR (neat) cm⁻¹ 3408, 2952, 1609, 1505, 1492, 1250, 1208, 1160, 840;

HRMS (ESI-TOF, m/z) calcd for $C_{14}H_{28}NOSi_2$ (M+H)⁺: 282.1704, found 282.1711.

Spectral Data of 1h

¹H NMR (400 MHz, CDCl₃) δ 7.11-7.07 (m, 1H), 6.27-6.25 (m, 1H), 6.16-6.14 (m, 2H), 3.79 (s, 3H), 2.94 (s, 3H), 2.87 (s, 1H), 0.10 (s, 18H);

¹³C NMR (100 MHz, CDCl₃) δ 160.7, 152.1, 129.6, 104.7, 98.6, 97.8, 55.1, 43.7, 39.0, 0.6;

IR (neat) cm⁻¹ 2952, 2897, 1607, 1572, 1496, 1250, 1167, 839, 764;

HRMS (ESI-TOF, m/z) calcd for C₁₅H₃₀NOSi₂ (M+H)⁺: 296.1860, found 296.1855.

Preparation of 1i

According to the General Procedure A, (4-bromophenyl)(methyl)sulfane (**S1i**, 317 mg, 1.56 mmol) was converted to corresponding **5i** (362 mg, 78 % yield, mp: 47-48.2 °C) as a faint yellow solid. Then **5i** (298 mg, 1 mmol) was converted to **1i** (171 mg, 55 % yield) as a faint yellow liquid.

Spectral Data of 5i

¹H NMR (400 MHz, CDCl₃) δ 7.17 (d, *J* = 8.4 Hz, 2H), 6.47 (d, *J* = 8.4 Hz, 2H), 3.35 (s, 1H), 2.40 (s, 3H), 2.38 (s, 1H), 0.06 (s, 18H);

¹³C NMR (100 MHz, CDCl₃) δ 149.2, 131.9, 121.7, 112.8, 34.5, 19.6, -0.9;

IR (neat) cm⁻¹ 3412, 2952, 1594, 1495, 1313, 1249, 841, 757;

HRMS (ESI-TOF, m/z) calcd for C₁₄H₂₈NSSi₂ (M+H)⁺: 298.1476, found 298.1480.

Spectral Data of 1i

¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, *J* = 8.8 Hz, 2H), 6.55 (d, *J* = 8.8 Hz, 2H), 2.94 (s, 3H), 2.86 (s, 1H), 2.40 (s, 3H), 0.10 (s, 18H);

¹³C NMR (100 MHz, CDCl₃) δ 149.7, 132.0, 120.0, 111.6, 43.7, 39.0, 19.7, 0.6;

IR (neat) cm⁻¹ 2952, 1592, 1498, 1356, 1250, 1201, 840, 801;

HRMS (ESI-TOF, m/z) calcd for C₁₅H₃₀NSSi₂ (M+H)⁺: 312.1632, found 312.1631.

Preparation of 1j

According to the General Procedure A, 4-bromo-1,1'-biphenyl (**S1j**, 364 mg, 1.56 mmol) was converted to corresponding **5j** (245 mg, 48 % yield, mp: 37-42 °C) as a white solid.

Then **5j** (323 mg, 1 mmol) was converted to **1j** (113 mg, 33 % yield, mp: 74-79 °C) as a white solid.

Spectral Data of 5j

¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 7.2 Hz, 2H), 7.32-7.26 (m, 4H), 7.13 (t, *J* = 7.6 Hz, 1H), 6.51 (d, *J* = 8.4 Hz, 2H), 3.33 (d, *J* = 8.0 Hz, 1H), 2.37 (d, *J* = 8.0 Hz, 1H), 0.00 (s, 18H);

¹³C NMR (100 MHz, CDCl₃) δ 149.6, 141.4, 128.6, 128.4, 127.8, 126.1, 125.7, 112.5, 34.5, -0.9;

IR (neat) cm⁻¹ 3418, 3026, 2952, 1610, 1521, 1489, 1250, 844, 760;

HRMS (ESI-TOF, m/z) calcd for $C_{19}H_{30}NSi_2$ (M+H)⁺: 328.1911, found 328.1915.

Spectral Data of 1j

¹H NMR (400 MHz, CDCl₃) δ 7.57-7.54 (m, 2H), 7.47 (d, *J* = 8.8 Hz, 2H), 7.38 (t, *J* = 8.0 Hz, 2H), 7.22 (t, *J* = 8.0 Hz, 1H), 6.69 (d, *J* = 8.8, 2H), 3.00 (s, 3H), 2.95 (s, 1H), 0.13 (s, 18H);

¹³C NMR (100 MHz, CDCl₃) δ 150.1, 141.3, 128.6, 127.6, 126.6, 126.0, 125.6, 111.3, 43.7, 39.1, 0.6;

IR (neat) cm⁻¹ 2953, 2896, 1607, 1522, 1488, 1359, 1251, 1202, 1013, 840, 759;

HRMS (ESI-TOF, m/z) calcd for $C_{20}H_{32}NSi_2$ (M+H)⁺: 342.2068 , found 342.2063.

Preparation of 1k

According to the General Procedure A, 1-bromo-4-fluorobenzene (**S1k**, 273 mg, 1.56 mmol) was converted to corresponding **5k** (177 mg, 42 % yield) as a yellow liquid. Then **5k** (270 mg, 1 mmol) was converted to **1k** (94 mg, 33 % yield) as a yellow liquid.

Spectral Dates of 5k

¹H NMR (400 MHz, CDCl₃) δ 6.83 (t, *J* = 8.8 Hz, 2H), 6.45 (q, *J* = 4.4 Hz, 2H), 3.18 (d, *J* = 8.8 Hz, 1H), 2.31 (d, *J* = 8.8 Hz, 1H), 0.07 (s, 18H);

¹³C NMR (100 MHz, CDCl₃) δ 154.8 (d, J = 154.6 Hz), 146.7, 115.5 (d, J = 14.7 Hz), 112.7 (d, J = 4.8 Hz), 35.2, -1.0;

IR (neat) cm⁻¹ 2954, 1509, 1252, 1226, 842, 764, 751;

HRMS (ESI-TOF, m/z) calcd for $C_{13}H_{25}NFSi_2 (M+H)^+$: 270.1504, found 270.1504.

Spectral Dates of 1k

¹H NMR (400 MHz, CDCl₃) δ 6.89 (t, *J* = 9.2 Hz, 2H), 6.53-6.50 (m, 2H), 2.93 (s, 3H), 2.81 (s, 1H), 0.10 (s, 18H);

¹³C NMR (100 MHz, CDCl₃) δ 154.0 (d, *J* = 231.0 Hz), 147.7 (d, *J* = 1.3 Hz), 115.3 (d, *J* = 21.7 Hz), 111.5 (d, *J* = 7.1 Hz), 44.3, 39.2, 0.6;

IR (neat) cm⁻¹ 2953, 1679, 1511, 1335, 1227, 1115, 981, 837;

HRMS (ESI-TOF, m/z) calcd for C₁₄H₂₇FNSi₂ (M+H)⁺: 284.1661, found 284.1657.

Preparation of 11

According to the General Procedure A, 1-bromo-3-fluorobenzene (**S1I**, 273 mg, 1.56 mmol) was converted to corresponding **5I** (181 mg, 43 % yield) as a colorless liquid. Then **5I** (270 mg, 1 mmol) was converted to **1I** (136 mg, 48 % yield) as a colorless liquid.

Spectral Dates of 51

¹H NMR (400 MHz, CDCl₃) δ 7.04-6.98 (m, 1H), 6.29 (ddd, $J_1 = 8.0$ Hz, $J_2 = 2.0$ Hz,

 $J_3 = 0.8$ Hz, 1H), 6.26-6.24 (m, 1H), 6.20 (dt, $J_1 = 12.0$ Hz, $J_2 = 2.4$ Hz, 1H), 3.44 (d, J = 8.0 Hz, 1H), 2.35 (d, J = 8.0 Hz, 1H), 0.07 (s, 18H);

¹³C NMR (100 MHz, CDCl₃) δ 164.4 (d, J = 240.2 Hz), 151.9 (d, J = 10.8 Hz), 130.0 (d, J = 10.5 Hz), 108.4 (d, J = 2.0 Hz), 102.0 (d, J = 21.6 Hz), 98.4 (d, J = 25.5 Hz), 34.7, -1.0;

IR (neat) cm⁻¹ 3428, 2954, 1618, 1587, 1505, 1493, 1251, 1147, 839;

HRMS (ESI-TOF, m/z) calcd for C₁₃H₂₅NFSi₂ (M+H)⁺: 270.1504, found 270.1505.

Spectral Dates of 11

¹H NMR (400 MHz, CDCl₃) δ 7.09 (dd, J_1 = 15.6 Hz, J_2 = 8.4 Hz, 1H), 6.36 (dd, J_1 = 8.4 Hz, J_2 = 2.4 Hz, 1H), 6.31-6.22 (m, 2H), 2.94 (s, 3H), 2.83 (s, 1H), 0.11 (s, 18H);

¹³C NMR (100 MHz, CDCl₃) δ 164.4 (d, J = 239.0 Hz), 152.3 (d, J = 10.7 Hz), 129.9 (d, J = 10.6 Hz), 106.7 (d, J = 2.0 Hz), 100.6 (d, J =21.7 Hz), 97.8 (d, J = 26.2 Hz), 44.0, 39.0, 0.5;

IR (neat) cm⁻¹ 2954, 2897, 1615, 1575, 1497, 1362, 1251, 1161, 1003, 884, 840;

HRMS (ESI-TOF, m/z) calcd for C₁₄H₂₇FNSi₂ (M+H)⁺: 284.1661, found 284.1667.

Preparation of 1m

According to the General Procedure A, 1-bromo-4-(trifluoromethyl)benzene (**S1m**, 351 mg, 1.56 mmol) was converted to corresponding **5m** (448 mg, 90 % yield, mp: 44-47 °C) as a white solid. Then **5m** (319 mg, 1 mmol) was converted to **1m** (326 mg, 98 % yield) as a colorless liquid.

Spectral Dates of 5m

¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, J = 8.8 Hz, 2H), 6.52 (d, J = 8.8 Hz, 2H), 3.68

(d, *J* = 10.0 Hz, 1H), 2.46 (d, *J* = 10.0 Hz, 1H), 0.08 (s, 18H);

¹³C NMR (100 MHz, CDCl₃) δ 152.2, 126.6 (q, *J* = 2.5 Hz), 125.3 (q, *J* = 178.9 Hz), 117.0 (q, *J* = 21.5 Hz), 111.2, 34.4, -1.1;

IR (neat) cm⁻¹ 3433, 2955, 1614, 1528, 1327, 1279, 1252, 1184, 1158, 1107, 1067, 844, 763;

HRMS (ESI-TOF, m/z) calcd for $C_{14}H_{25}F_3NSi_2$ (M+H)⁺: 320.1472, found 320.1473.

Spectral Dates of 1m

¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 8.8 Hz, 2H), 6.52 (d, *J* = 8.8 Hz, 2H), 2.98 (s, 3H), 2.92 (s, 1H), 0.11 (s, 18H);

¹³C NMR (100 MHz, CDCl₃) δ 152.4, 126.4 (q, *J* = 3.6 Hz), 125.5 (q, *J* = 268.0 Hz), 115.4 (q, *J* = 32.4 Hz), 110.1, 44.0, 39.1, 0.5;

IR (neat) cm⁻¹ 2955, 2896, 1613, 1527, 1368, 1330, 1264, 1252, 1200, 1162, 840, 808, 764;

HRMS (ESI-TOF, m/z) calcd for $C_{15}H_{27}F_3NSi_2$ (M+H)⁺: 334.1629, found 334.1629.

Preparation of 8

$$\begin{array}{c} \text{SiMe}_{3} \\ \text{HN} \\ \text{SiMe}_{3} \\ \text{Ph} \\ \end{array}$$

According to the reductive amination of General Procedure A, bis(trimethylsilyl)methylamine **4** (176 mg, 1.0 mmol) and phenylpropyl aldehyde (0.15 mL, 1.2 mmol) was converted to **8** (186.5 mg, 64 % yield) as a colorless thick liquid.

Spectral Dates of 8

¹H NMR (400 MHz, CDCl₃) δ 7.32-7.28 (m, 2H), 7.22-7.19 (m, 3H), 6.42 (s, 1H), 2.96-2.92 (m, 2H), 2.69 (t, *J* = 7.2 Hz, 2H), 2.22-2.14 (m, 2H), 2.06 (s, 1H), 0.19 (s, 18H);

¹³C NMR (100 MHz, CDCl₃) δ 139.6, 128.8, 128.5, 126.6, 51.4, 41.5, 32.7, 27.4, -0.1.;

IR (neat) cm⁻¹ 2955, 2330, 2178, 1604, 1454, 1257, 1118, 1029, 831;

HRMS (ESI-TOF, m/z) calcd for C₁₆H₃₂NSi₂ (M+H)⁺: 294.2068, found 294.2077.

2.3. Synthesis of Homo-Diaddition Products 2 and 7

General Procedure B (alkenes were added after deoxygenation of DMF). A dried 15 mL Schlenk seal tube was charged with Ru(bpy)₃Cl₂ (1.3 mg, 0.002mmol) and sealed with rubber plug in Standard Glovebox. Geminal bis(silyl) aryl amines **1** (0.1 mmol) and DMF (2 mL) was added into the tube at 25 °C under positive argon pressure. The solution was allowed to purge with high purity argon gas using a 15 cm syringe needle for at least 10 mins at 25 °C before adding alkene (0.5 mmol) using syringe under positive argon pressure. The rubber plug was changed to polytetrafluoroethylene seal plug under positive argon pressure. The resulting mixture was stirred for 12 h under irradiation with 427 nm blue LED. The reaction was concentrated in vacuo and purified using silica gel chromatography (gradient eluent: petroleum ether/EtOAc = $50:1 \rightarrow 10:1$) to afford **2**.

General procedure C (alkenes were added before deoxygenation of DMF). A dried 15 mL Schlenk seal tube was charged with Ru(bpy)₃Cl₂ (1.3 mg, 0.002mmol) and sealed with rubber plug in Standard Glovebox. Geminal bis(silyl) aryl amines **1** (0.1 mmol), alkenes (0.5 mmol) and DMF (2 mL) was added into the tube at 25 °C under positive argon pressure. The solution was allowed to purge with high purity argon gas using a 15 cm syringe needle for at least 10 mins at 25 °C. The rubber plug was changed to polytetrafluoroethylene seal plug under positive argon pressure. The solution was stirred for 12 h under irradiation with 427 nm blue LED. The reaction was concentrated

in vacuo and purified using silica gel chromatography (gradient eluent: petroleum ether/EtOAc = $50:1 \rightarrow 10:1$) to afford **2**.

Preparation of 2a

According to the General Procedure B, 1a (27 mg, 0.1 mmol) and methyl acrylate (46 μ L, 0.5 mmol) were converted to corresponding products 2a (25 mg, 85 % yield) as a colorless liquid.

Spectral Data of 2a

¹H NMR (400 MHz, CDCl₃) δ 7.19 (dd, J_1 = 8.4 Hz, J_2 = 7.2 Hz, 2H), 6.74 (d, J = 8.4 Hz, 2H), 6.67 (t, J = 7.2 Hz, 1H), 4.00-3.93 (m, 1H), 3.58 (s, 6H), 2.67 (s, 3H), 2.28-2.24 (m, 4H), 1.94-1.79 (m, 4H);

¹³C NMR (100 MHz, CDCl₃) δ 173.8, 150.9, 129.2, 116.7, 112.7, 56.5, 51.6, 31.0, 29.4, 28.1;

IR (neat) cm⁻¹ 2951, 1733, 1598, 1504, 1436, 1196, 1170, 1104;

HRMS (ESI-TOF, m/z) calcd for C₁₆H₂₃NNaO₄ (M+Na)⁺: 316.1519, found 316.1527.

Preparation of 2b

According to the General Procedure B, **1a** (27 mg, 0.1 mmol) and *tert*-butyl acrylate (74 μ L, 0.5 mmol) were converted to corresponding products **2b** (17 mg, 45 % yield) as a colorless liquid.

Spectral Data of 2b

¹H NMR (400 MHz, CDCl₃) δ 7.18 (dd, *J*₁ = 8.0 Hz, *J*₂ = 7.2 Hz, 2H), 6.74 (d, *J* = 8.0 Hz, 2H), 6.66 (t, *J* = 7.2 Hz, 1H), 4.00-3.89 (m, 1H), 2.67 (s, 3H), 2.17 (t, *J* = 7.6 Hz, 4H), 1.88-1.73 (m, 4H), 1.38 (s, 18H);

¹³C NMR (100 MHz, CDCl₃) δ 172.9, 151.1, 129.2, 116.4, 112.8, 80.3, 56.8, 32.5, 29.5, 28.2, 28.1;

IR (neat) cm⁻¹ 2977, 2929, 1725, 1598, 1505, 1366, 1249, 1147, 849;

HRMS (ESI-TOF, m/z) calcd for C₂₂H₃₅NNaO₄ (M+Na)⁺: 400.2458, found 400.2460.

Preparation of 2c

According to the General Procedure B, 1a (27 mg, 0.1 mmol) and allyl acrylate (61 μ L, 0.5 mmol) were converted to corresponding products 2c (26 mg, 74 % yield) as a colorless liquid.

Spectral Data of 2c

¹H NMR (400 MHz, CDCl₃) δ 7.18 (t, *J* = 8.0 Hz, 2H), 6.74 (d, *J* = 8.0 Hz, 2H), 6.67 (t, *J* = 7.2 Hz, 1H), 5.87-5.77 (m, 2H), 5.27-5.18 (m, 4H), 4.49 (d, *J* = 5.6 Hz, 4H), 4.02-3.95 (m, 1H), 2.68 (s, 3H), 2.29 (t, *J* = 7.2 Hz, 4H), 1.96-1.80 (m, 4H);

¹³C NMR (100 MHz, CDCl₃) δ 173.0, 150.9, 132.2, 129.3, 118.3, 116.7, 112.8, 65.2, 56.6, 31.2, 29.5, 28.1;

IR (neat) cm⁻¹ 2931, 1730, 1597, 1504, 1168, 1103, 988, 924;

HRMS (ESI-TOF, m/z) calcd for $C_{20}H_{27}NNaO_4$ (M+Na)⁺: 368.1832, found 368.1840.

Preparation of 2d

According to the General Procedure B, 1a (27 mg, 0.1 mmol) and 2-methoxyethyl acrylate (65 μ L, 0.5 mmol) were converted to corresponding products 2d (32 mg, 83 % yield) as a colorless liquid.

Spectral Data of 2d

¹H NMR (400 MHz, CDCl₃) δ 7.17 (dd, J_1 = 8.8 Hz, J_2 = 7.2 Hz, 2H), 6.73 (d, J = 8.8 Hz, 2H), 6.66 (t, J = 7.2 Hz, 1H), 4.13 (t, J = 4.8 Hz, 4H), 4.01-3.94 (m, 1H), 3.47 (t, J = 4.8 Hz, 4H), 3.32 (s, 6H), 2.66 (s, 3H), 2.29 (t, J = 8.0 Hz, 4H), 1.95-1.78 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 173.4, 150.1, 129.2, 116.6, 112.7, 70.4, 63.4, 59.0, 56.5, 31.2, 29.5, 28.0;

IR (neat) cm⁻¹ 2927, 2885, 2817, 1729, 1597, 1504, 1452, 1322, 1248, 1197, 1172, 1127, 1100, 1032, 864;

HRMS (ESI-TOF, m/z) calcd for C₂₀H₃₁NNaO₆ (M+Na)⁺: 404.2044, found 404.2061.

Preparation of 2e

According to the General Procedure B, 1a (27 mg, 0.1 mmol) and 2-phenoxyethyl acrylate (70 μ L, 0.5 mmol) were converted to corresponding products 2e (34 mg, 80 % yield) as a colorless liquid.

Spectral Data of 2e

¹H NMR (400 MHz, CDCl₃) δ 7.32 (t, *J* = 8.0 Hz, 4H), 7.21 (dt, *J*₁ = 20.8 Hz, *J*₂ = 8.0 Hz, 4H), 6.93 (d, *J* = 8.0 Hz, 4H), 6.84 (d, *J* = 8.0 Hz, 2H), 6.73 (t, *J* = 7.2 Hz, 1H),

4.20-4.12 (m, 1H), 2.74 (s, 3H), 2.56-2.52 (m, 4H), 2.08-1.93 (m, 4H);

¹³C NMR (100 MHz, CDCl₃) δ 171.9, 150.9, 150.6, 129.5, 129.4, 125.8, 121.6, 117.0, 112.9, 56.5, 31.3, 29.6, 27.9;

IR (neat) cm⁻¹ 2926, 1753, 1596, 1193, 1162, 1131;

HRMS (ESI-TOF, m/z) calcd for C₂₆H₂₇NNaO₄ (M+Na)⁺: 440.1832, found 440.1843.

According to the General Procedure B, **1a** (27 mg, 0.1 mmol) and methyl methacrylate (54 μ L, 0.5 mmol) were converted to corresponding products **2f** (19.9 mg, 61 % yield, dr = 3:2:1) as a colorless liquid.

Spectral Data of 2f

¹H NMR (400 MHz, CDCl₃) δ 7.20 (dd, J_1 = 8.4 Hz, J_2 = 7.2 Hz, 2H), 6.76 (d, J = 8.4 Hz, 2H), 6.68 (t, J = 7.2 Hz, 1H), 4.00-3.93 (m, 1H), 3.54 (s, 6H), 2.64 (s, 3H), 2.46-2.36 (m, 2H), 2.08-2.01 (m, 2H), 1.51-1.44 (m, 2H), 1.12 (s, 3H), 1.10 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 176.9, 150.4, 129.2, 116.7, 112.8, 53.7, 51.6, 36.8, 36.8, 29.8, 17.4;

IR (neat) cm⁻¹ 2924, 1734, 1598, 1504, 1275, 1261, 1167, 750;

HRMS (ESI-TOF, m/z) calcd for C₁₈H₂₇NNaO₄ (M+Na)⁺: 344.1832, found 344.1835.

Preparation of 2g

According to the General Procedure B, 1a (27 mg, 0.1 mmol) and benzyl methacrylate (86 μ L, 0.5 mmol) were converted to corresponding products 2g (31 mg, 64 % yield, dr = 5.5:1) as a colorless liquid.

Spectral Data of 2g

¹H NMR (400 MHz, CDCl₃) δ 7.33-7.08 (m, 12H), 6.72-6.62 (m, 3H), 5.07-4.82 (m, 4H), 4.15-4.05 (m, 1H), 2.65-2.62 (m, 3H), 2.49-2.37 (m, 2H), 2.14-2.05 (m, 1H), 1.94-1.85 (m, 1H), 1.65-1.55 (m, 1H), 1.50-1.44 (m, 1H), 1.16-1.12 (m, 6H);

¹³C NMR (100 MHz, CDCl₃) δ 176.3, 176.3, 176.3, 150.6, 150.5, 136.1, 136.0, 136.0, 129.2, 129.2, 128.5, 128.5, 128.3, 128.3, 128.2, 128.2, 128.1, 116.7, 116.6, 112.8, 112.7, 66.3, 66.2, 54.2, 54.0, 37.2, 37.1, 37.0, 36.5, 36.4, 36.3, 29.9, 29.7, 18.6, 18.2, 17.6; IR (neat) cm⁻¹ 2971, 1729, 1597, 1504, 1276, 1260, 1163, 764;

HRMS (ESI-TOF, m/z) calcd for C₃₀H₃₅NNaO₄ (M+Na)⁺: 496.2458, found 496.2463.

Preparation of 2h

According to the General Procedure C, 1a (27 mg, 0.1 mmol) and methyl 2phenylacrylate (83 mg, 0.5 mmol, which was prepared according to the procedure described by Loh and coworkers.²) were converted to corresponding products 2h (41.4

² B. Jiang, M. zhao, S. S. Li, Y. H. Xu, T. P. Loh, Angew. Chem. Int. Ed., 2018, 57, 555.

mg, 91 % yield, dr = 1.8:1:1) as a colorless liquid.

Spectral Data of 2h

¹H NMR (400 MHz, CDCl₃) δ 7.31-7.22 (m, 10H), 7.14 (dd, $J_1 = 8.8$ Hz, $J_2 = 7.2$ Hz, 2H), 6.67 (t, J = 7.2 Hz, 1H), 6.52 (d, J = 8.8 Hz, 2H), 4.06-4.00 (m, 1H), 3.55-3.51 (m, 8H), 2.62 (s, 3H), 2.42-2.35 (m, 2H), 1.91-1.84 (m, 2H);

¹³C NMR (100 MHz, CDCl₃) δ 174.0, 150.4, 139.3, 129.1, 128.8, 127.8, 127.4, 116.8, 112.8, 54.1, 52.0, 48.2, 37.2, 29.8;

IR (neat) cm⁻¹ 3028, 2950, 2923, 1730, 1597, 1504, 1454, 1434, 1356, 1253, 1210, 1162;

HRMS (ESI-TOF, m/z) calcd for C₂₈H₃₁NNaO₄ (M+Na)⁺: 468.2145, found 468.2153.

Preparation of 2i

According to the General Procedure B, **1a** (27 mg, 0.1 mmol) and 3methylenedihydrofuran-2(3H)-one (45 μ L, 0.5 mmol) were converted to corresponding products **2i** (33 mg, 95 % yield, dr = 2.5:1.4:1) as a colorless semisolid.

Spectral Data of 2i

¹H NMR (400 MHz, CDCl₃) δ 7.23 (dd, *J*₁ = 8.0 Hz, *J*₂ = 7.2 Hz, 2H), 6.88 (d, *J* = 8.0 Hz, 2H), 6.72 (t, *J* = 7.2 Hz, 1H), 4.51-4.44 (m, 1H), 4.32-4.24 (m, 2H), 4.13-3.97 (m, 2H), 2.74 (s, 3H), 2.62-2.53 (m, 1H), 2.37-2.27 (m, 3H), 2.18-2.11 (m, 1H), 2.00-1.79 (m, 4H), 1.52-1.43 (m, 1H);

¹³C NMR (100 MHz, CDCl₃) δ 179.7, 179.4, 150.6, 129.7, 117.2, 112.6, 66.5, 53.9, 36.8, 36.2, 34.6, 34.0, 29.8, 29.5, 29.2;

IR (neat) cm⁻¹ 2921, 1763, 1597, 1505, 1205, 1159, 1022, 751;

HRMS (ESI-TOF, m/z) calcd for C₁₈H₂₃NNaO₄ (M+Na)⁺: 340.1519, found 340.1519.

Preparation of 2j

According to the General Procedure B, 1a (27 mg, 0.1 mmol) and acrylonitrile (34 μ L, 0.5 mmol) were converted to corresponding products 2j (11.6 mg, 50 % yield) as a colorless liquid.

Spectral Data of 2j

¹H NMR (400 MHz, CDCl₃) δ 7.27 (dd, J_I = 8.8 Hz, J_2 = 7.2 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 6.80 (t, J = 7.2 Hz, 1H), 4.10-4.03 (m, 1H), 2.71 (s, 3H), 2.36-2.23 (m, 4H), 2.05-1.95 (m, 2H), 1.92-1.83 (m, 2H);

¹³C NMR (100 MHz, CDCl₃) δ 150.1, 129.7, 119.2, 118.5, 113.6, 56.7, 29.7, 28.7, 14.6; IR (neat) cm⁻¹ 2922, 2851, 2246, 1596, 1503, 1314, 1106, 1033, 751;

HRMS (ESI-TOF, m/z) calcd for C₁₄H₁₇N₃Na (M+Na)⁺: 250.1315, found 250.1307.

Preparation of 2k

According to the General Procedure B, 1a (27 mg, 0.1 mmol) and 4-(trifluoromethyl)styrene (75 μ L, 0.5 mmol) were converted for 24 h to corresponding products 2k (32 mg, 68 % yield) as a colorless liquid.

Spectral Dates of 2k

¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 8.0 Hz, 4H), 7.21-7.14 (m, 6H), 6.70 (t, *J* = 7.2 Hz, 1H), 6.63 (d, *J* = 8.4 Hz, 2H), 3.81-3.75 (m, 1H), 2.78 (s, 3H), 2.68-2.54 (m, 4H), 1.98-1.89 (m, 2H), 1.86-1.77 (m, 2H);

¹³C NMR (100 MHz, CDCl₃) δ 150.9, 146.0, 129.3, 128.8, 128.4 (q, *J* = 33.0 Hz), 125.3 (q, *J* = 3.8 Hz), 124.4 (q, *J* = 270.2 Hz), 116.7, 112.9, 56.5, 34.6, 32.9, 29.8;

IR (neat) cm⁻¹ 2929, 2860, 1597, 1504, 1323, 1161, 1115, 1067, 1018, 841;

HRMS (ESI-TOF, m/z) calcd for C₂₆H₂₆F₆N (M+H)⁺: 466.1964, found 466.1964.

According to the General Procedure C, **1a** (27 mg, 0.1 mmol) and 4-vinylbenzonitrile (65.6 mg, 0.5 mmol, which was prepared according to the procedure described by Gilmour and coworkers³) were converted to corresponding products **2l** (27 mg, 71 % yield, mp: 125-129.5 °C) as a white solid.

Spectral Data of 21

¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 8.4 Hz, 4H), 7.20 (dd, *J*₁ = 8.0 Hz, *J*₂ = 7.2 Hz, 2H), 7.14 (d, *J* = 8.4 Hz, 4H), 6.72 (t, *J* = 7.2 Hz, 1H), 6.65 (d, *J* = 8.0 Hz, 2H), 3.83-3.76 (m, 1H), 2.76 (s, 3H), 2.69-2.53 (m, 4H), 1.98-1.89 (m, 2H), 1.84-1.76 (m, 2H);

¹³C NMR (100 MHz, CDCl₃) δ 150.7, 147.5, 132.2, 129.3, 129.2, 119.1, 116.9, 112.9, 109.9, 56.7, 34.5, 33.2, 29.7;

IR (neat) cm⁻¹ 2924, 2856, 2226, 1596, 1503, 1177, 1093, 840, 822;

3. F. Scheidt, M. Schäfer, J. C. Sarie, C. G. Daniliuc, J. J. Molloy and R. Gilmour, Angew. Chem. Int. Ed., 2018, 57, 16431.

HRMS (ESI-TOF, m/z) calcd for C₂₆H₂₅N₃Na (M+Na)⁺: 402.1941, found 402.1924.

Preparation of 2m

According to the General Procedure C, **1a** (27 mg, 0.1 mmol) and methyl 4vinylbenzoate (82 mg, 0.5 mmol) were converted to corresponding products **2m** (16 mg, 36 % yield) as a white semisolid.

Spectral Data of 2m

¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 8.4 Hz, 4H), 7.20 (dd, J_1 = 8.8 Hz, J_2 = 7.2 Hz, 2H), 7.13 (d, J = 8.4 Hz, 4H), 6.72-6.66 (m, 3H), 3.90 (s, 6H), 3.85-3.78 (m, 1H), 2.78 (s, 3H), 2.68-2.53 (m, 4H), 1.98-1.89 (m, 2H), 1.86-1.78 (m, 2H);

¹³C NMR (100 MHz, CDCl₃) δ 167.2, 150.9, 147.5, 129.8, 129.3, 128.5, 127.9, 116.5, 112.9, 56.8, 52.1, 34.6, 33.1, 29.8;

IR (neat) cm⁻¹ 2924, 2854, 1716, 1597, 1504, 1434, 1276, 1178, 1107, 1019;

HRMS (ESI-TOF, m/z) calcd for $C_{28}H_{31}NNaO_4$ (M+Na)⁺: 468.2145, found 468.2157.

Preparation of 20

According to the General Procedure B, **1b** (28 mg, 0.1 mmol) and methyl acrylate (45 μ L, 0.5 mmol) were converted to corresponding products **20** (25 mg, 81 % yield) as a colorless liquid.

Spectral Data of 20

¹H NMR (400 MHz, CDCl₃) δ 7.00 (d, *J* = 8.4 Hz, 2H), 6.65 (d, *J* = 8.4 Hz, 2H), 3.93-3.86 (m, 1H), 3.59 (s, 6H), 2.65 (s, 3H), 2.28-2.21 (m, 7H), 1.93-1.77 (m, 4H);

¹³C NMR (100 MHz, CDCl₃) δ 173.9, 148.9, 129.7, 125.8, 113.0, 57.0, 51.6, 31.1, 29.6, 28.0, 20.2;

IR (neat) cm⁻¹ 2951, 1735, 1617, 1519, 1436, 1196, 1171, 1103, 805;

HRMS (ESI-TOF, m/z) calcd for C₁₇H₂₅NNaO₄ (M+Na)⁺: 330.1676, found 330.1674.

Preparation of 2p

According to the General Procedure B, 1d (33 mg, 0.1 mmol) and methyl acrylate (46 μ L, 0.5 mmol) were converted to corresponding products 2p (30 mg, 84 % yield) as a colorless liquid.

Spectral Data of 2p

¹H NMR (400 MHz, CDCl₃) δ 7.00 (d, *J* = 8.8 Hz, 2H), 6.66 (d, *J* = 8.8 Hz, 2H), 3.94-3.86 (m, 1H), 3.58 (s, 6H), 2.65 (s, 3H), 2.49 (t, *J* = 7.6 Hz, 2H), 2.29-2.24 (m, 4H), 1.93-1.77 (m, 4H), 1.58-1.51 (m, 2H), 1.39-1.30 (m, 2H), 0.92 (t, *J* = 7.2 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 173.9, 149.0, 131.1, 129.1, 112.9, 56.9, 51.6, 34.6, 34.0, 31.1, 29.6, 28.0, 22.5, 14.1;

IR (neat) cm⁻¹ 2953, 2927, 2856, 1733, 1613, 1516, 1436, 1250, 1194, 1169, 1102, 806; HRMS (ESI-TOF, m/z) calcd for C₂₀H₃₁NNaO₄ (M+Na)⁺: 372.2145, found 372.2149.

Preparation of 2q

According to the General Procedure B, **1e** (35 mg, 0.1 mmol) and methyl acrylate (45 μ L, 0.5 mmol) were converted to corresponding products **2q** (29.5 mg, 78 % yield, mp: 54.5-57 °C) as a white solid.

Spectral Data of 2q

¹H NMR (400 MHz, CDCl₃) δ 7.03 (d, *J* = 8.8 Hz, 2H), 6.67 (d, *J* = 8.8 Hz, 2H), 3.94-3.87 (m, 1H), 3.58 (s, 6H), 2.65 (s, 3H), 2.41-2.33 (m, 1H), 2.39-2.25 (m, 4H), 1.93-1.77 (m, 8H), 1.72 (d, *J* = 12.4 Hz, 1H), 1.42-1.31 (m, 4H), 1.27-1.18 (m, 1H);

¹³C NMR (100 MHz, CDCl₃) δ 173.9, 149.1, 136.5, 127.4, 113.0, 56.9, 51.5, 43.5, 34.8, 31.2, 29.6, 28.0, 27.1, 26.3;

IR (neat) cm⁻¹ 2922, 2850, 1734, 1612, 1517, 1436, 1251, 1194, 1169, 1103, 811;

HRMS (ESI-TOF, m/z) calcd for C₂₂H₃₃NNaO₄ (M+Na)⁺: 398.2302, found 398.2306.

Preparation of 2r

According to the General Procedure B, **1f** (31 mg, 0.1 mmol) and methyl acrylate (46 μ L, 0.5 mmol) were converted to corresponding products **2r** (26 mg, 77 % yield) as a colorless liquid.

Spectral Data of 2r

¹H NMR (400 MHz, CDCl₃) δ 6.93 (d, *J* = 8.4 Hz, 2H), 6.65 (d, *J*= 8.4 Hz, 2H), 3.92-3.85 (m, 1H), 3.59 (s, 6H), 2.64 (s, 3H), 2.27-2.23 (m, 4H), 1.92-1.76 (m, 5H), 0.87-0.82 (m, 2H), 0.60-0.56 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 173.9, 149.0, 131.8, 126.7, 113.0, 57.0, 51.6, 31.1, 29.6, 28.0, 14.4, 8.2;

IR (neat) cm⁻¹ 2999, 2950, 1731, 1615, 1518, 1435, 1250, 1196, 1168, 1018, 811;

HRMS (ESI-TOF, m/z) calcd for C₁₉H₂₇NNaO₄ (M+Na)⁺: 356.1832, found 356.1826.

Preparation of 2s

According to the General Procedure B, 1g (30 mg, 0.1 mmol) and methyl acrylate (40 μ L, 0.5 mmol) were converted to corresponding products 2s (12 mg, 37 % yield, mp: 36.5-39 °C) as a white solid.

Spectral Data of 2s

¹H NMR (400 MHz, CDCl₃) δ 6.79 (d, *J* = 9.2 Hz, 2H), 6.70 (d, *J* = 9.2 Hz, 2H), 3.82-3.73 (m, 4H), 3.59 (s, 6H), 2.62 (s, 3H), 2.33-2.21 (m, 4H), 1.92-1.74 (m, 4H);

¹³C NMR (100 MHz, CDCl₃) δ 173.9, 151.6, 145.7, 114.7, 114.7, 58.1, 55.8, 51.6, 31.2, 29.9, 27.8;

IR (neat) cm⁻¹ 2950, 1731, 1510, 1436, 1242, 1170, 1103, 1036, 816;

HRMS (ESI-TOF, m/z) calcd for $C_{17}H_{25}NNaO_5$ (M+Na)⁺: 346.1625, found 346.1618.

Preparation of 2t

According to the General Procedure B, **1i** (32 mg, 0.1 mmol) and methyl acrylate (46 μ L, 0.5 mmol) were converted to corresponding products **2t** (12.4 mg, 36 % yield) as a faint yellow liquid.

Spectral Data of 2t

¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, *J* = 8.8 Hz, 2H), 6.68 (d, *J* = 8.8 Hz, 2H), 3.98-3.97 (m, 1H), 3.58 (s, 6H), 2.66 (s, 3H), 2.41 (s, 3H), 2.24 (t, *J* = 8.0 Hz, 4H), 1.93-1.78 (m, 4H);

¹³C NMR (100 MHz, CDCl₃) δ 173.7, 149.8, 131.4, 123.6, 113.4, 56.7, 51.6, 31.0, 29.6, 28.0, 19.1;

IR (neat) cm⁻¹ 2921, 1731, 1594, 1500, 1485, 1250, 1197, 1170, 1110, 1092, 810;

HRMS (ESI-TOF, m/z) calcd for C₁₇H₂₅NNaO₄S (M+Na)⁺: 362.1397, found 362.1395.

Preparation of 2u

According to the General Procedure B, 1j (35 mg, 0.1 mmol) and methyl acrylate (46 μ L, 0.5 mmol) were converted to corresponding products 2u (32.3 mg, 85 % yield) as a colorless liquid.

Spectral Data of 2u

¹H NMR (400 MHz, CDCl₃) δ 7.56-7.53 (m, 2H), 7.47 (d, *J* = 8.8 Hz, 2H), 7.39 (t, *J* = 7.2 Hz, 2H), 7.25 (t, *J* = 7.2 Hz, 1H), 6.81 (d, *J* = 8.8 Hz, 2H), 4.07-4.00 (m, 1H), 3.59 (s, 6H), 2.73 (s, 3H), 2.29 (t, *J* = 8.0 Hz, 4H), 1.97-1.82 (m, 4H);

¹³C NMR (100 MHz, CDCl₃) δ 173.8, 150.3, 141.1, 129.3, 128.7, 127.8, 126.3, 126.1, 112.9, 56.5, 51.6, 31.0, 29.6, 28.1;

IR (neat) cm⁻¹ 2950, 1734, 1609, 1524, 1488, 1436, 1254, 1201, 1172, 1104, 820, 764; HRMS (ESI-TOF, m/z) calcd for C₂₂H₂₇NNaO₄ (M+Na)⁺: 392.1832, found 392.1833.

Preparation of 2v

According to the General Procedure B, 1k (29 mg, 0.1 mmol) and methyl acrylate (40 μ L, 0.5 mmol) were converted to corresponding products 2v (15 mg, 48 % yield) as a colorless liquid.

Spectral Dates of 2v

¹H NMR (400 MHz, CDCl₃) δ 6.89 (dd, *J*₁ = 9.2 Hz, *J*₂ = 8.4 Hz, 2H), 6.68-6.64 (m, 2H), 3.89-3.81 (m, 1H), 3.58 (s, 6H), 2.63 (s, 3H), 2.27-2.23 (m, 4H), 1.92-1.76 (m, 4H);

¹³C NMR (100 MHz, CDCl₃) δ 173.8, 155.4 (d, *J* = 234.0 Hz), 147.6 (d, *J* = 1.6 Hz), 115.5 (d, *J* = 22.0 Hz), 114.0 (d, *J* = 7.3 Hz), 57.7, 51.6, 31.1, 29.9, 27.9;

IR (neat) cm⁻¹ 2952, 1730, 1508, 1436, 1226, 1197, 1167, 1103, 815;

HRMS (ESI-TOF, m/z) calcd for C₁₆H₂₂FNNaO₄ (M+Na)⁺: 334.1425, found 334.1416.

Preparation of 2w

According to the General Procedure B, 1c (28 mg, 0.1 mmol) and methyl acrylate (45 μ L, 0.5 mmol) were converted to corresponding products 2w (18.6 mg, 61 % yield) as a colorless liquid.

Spectral Data of 2w

¹H NMR (400 MHz, CDCl₃) δ 7.15-7.11 (m, 2H), 7.04 (d, *J* = 7.6 Hz, 1H), 6.93 (t, *J* = 6.4 Hz, 1H), 3.63 (s, 6H), 3.07-3.00 (m, 1H), 2.63 (s, 3H), 2.41-2.36 (m, 4H), 2.24 (s, 3H), 1.94-1.76 (m, 4H);

¹³C NMR (100 MHz, CDCl₃) δ 174.1, 151.4, 132.3, 131.5, 126.4, 122.7, 121.9, 59.4, 51.6, 33.2, 31.3, 26.0, 19.1;

IR (neat) cm⁻¹ 2951, 1733, 1597, 1492, 1436, 1255, 1196, 1167, 1087, 762;

HRMS (ESI-TOF, m/z) calcd for C₁₇H₂₅NNaO₄ (M+Na)⁺: 330.1676, found 330.1674.

Preparation of 2x

According to the General Procedure B, **1h** (30 mg, 0.1 mmol) and methyl acrylate (45 μ L, 0.5 mmol) were converted to corresponding products **2x** (23.3 mg, 71 % yield) as a colorless liquid.

Spectral Data of 2x

¹H NMR (400 MHz, CDCl₃) δ 7.09 (t, J = 8.4 Hz, 1H), 6.36 (dd, J_1 = 8.4 Hz, J_2 = 2.4 Hz, 1H), 6.29-6.24 (m, 2H), 3.99-3.91 (m, 1H), 3.78 (s, 3H), 3.59 (s, 6H), 2.66 (s, 3H), 2.25 (t, J = 8.0 Hz, 4H), 1.93-1.78 (m, 4H);

¹³C NMR (100 MHz, CDCl₃) δ 173.8, 160.8, 152.3, 129.8, 105.8, 101.3, 99.3, 56.5, 55.1, 51.6, 31.0, 29.6, 28.1;

IR (neat) cm⁻¹ 2951, 1730, 1607, 1573, 1497, 1435, 1231, 1197, 1163, 1104, 1052, 990, 825, 751;

HRMS (ESI-TOF, m/z) calcd for C₁₇H₂₅NNaO₅ (M+Na)⁺: 346.1625, found 346.1625.

Preparation of 2y

To a solution of aspirin (361 mg, 2.0 mmol) and $(COCl)_2$ (0.19 mL, 2.2 mmol) in CH_2Cl_2 (5 mL) was added DMF (0.1 mL) at 0 °C. After stirring for 5 mins at 0 °C, the reaction was warmed to 25 °C for additional 30 mins. Then the mixture was concentrated in vacuo to afford crude acyl chloride as a white solid.

To a solution of acyl chloride, 2-hydroxyethyl acrylate (0.23 mL, 2.2 mmol) in CH₂Cl₂ (5 mL) was added dropwise Et₃N (0.84 mL, 6.0 mmol) at 0 °C. The reaction was stirred for 12 h at 25 °C before quenching with water (5 mL) and extracting with EtOAc (3 × 10 mL). The combined organic layers were washed with sat. aq. NaCl (2 × 10 mL), dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by silica gel chromatography (gradient eluent: petroleum ether/EtOAc = $5:1\rightarrow2:1$) to afford **S2** (452 mg, 81 % yield) as a colorless thick liquid.

Spectral Data of S2

¹H NMR (400 MHz, CDCl₃) δ 8.03 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.6$ Hz, 1H), 7.57 (td, $J_1 = 8.0$ Hz, $J_2 = 1.6$ Hz, 1H), 7.32 (td, $J_1 = 7.6$ Hz, $J_2 = 1.2$ Hz, 1H), 7.11 (dd, $J_1 = 7.6$ Hz, $J_2 = 1.2$ Hz, 1H), 6.45 (dd, $J_1 = 17.6$ Hz, $J_2 = 1.6$ Hz, 1H), 6.15 (dd, $J_1 = 17.6$ Hz, $J_2 = 10.4$ Hz, 1H), 5.87 (dd, $J_1 = 10.4$ Hz, $J_2 = 1.6$ Hz, 1H), 4.53-4.50 (m, 2H), 4.48-4.46 (m, 2H), 2.34 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 169.7, 166.0, 164.2, 150.9, 134.2, 132.0, 131.6, 128.0, 126.1, 123.9, 122.8, 62.8, 62.2, 21.1;

IR (neat) cm⁻¹ 2960, 1766, 1720, 1607, 1452, 1410, 1368, 1290, 1251, 1182, 1135, 1083, 1068, 915, 809, 752;

HRMS (ESI-TOF, m/z) calcd for C₁₄H₁₄NaO₆ (M+Na)⁺: 301.0683, found 301.0680.

According to the General Procedure C, **1a** (27 mg, 0.1 mmol) and **S2** (85 mg, 0.3 mmol) were converted to corresponding products **2y** (38 mg, 55 % yield) as a colorless semisolid.

Spectral Data of 2y

¹H NMR (400 MHz, CDCl₃) δ 7.98 (dd, J_1 = 8.0 Hz, J_2 = 1.6 Hz, 2H), 7.56 (td, J_1 = 8.0 Hz, J_2 = 1.6 Hz, 2H), 7.30 (td, J_1 = 7.6 Hz, J_2 = 1.2 Hz, 2H), 7.16 (dd, J_1 = 8.8 Hz, J_2 = 7.2 Hz, 2H), 7.10 (dd, J_1 = 8.0 Hz, J_2 = 0.8 Hz, 2H), 6.72 (d, J = 8.0 Hz, 2H), 6.65 (t, J = 7.2 Hz, 1H), 4.38-4.35 (m, 4H), 4.28-4.25 (m, 4H), 4.03-3.94 (m, 1H), 2.64 (s, 3H), 2.33-2.26 (m, 10H), 1.94-1.79 (m, 4H);

¹³C NMR (100 MHz, CDCl₃) δ 173.1, 169.7, 164.1, 150.8, 150.8, 134.2, 131.9, 129.2, 126.1, 123.9, 123.9, 122.8, 116.8, 112.7, 62.8, 62.1, 56.4, 31.1, 29.4, 28.0, 21.0;

IR (neat) cm⁻¹ 2925, 1766, 1723, 1597, 1504, 1452, 1368, 1292, 1251, 1188, 1041, 1081, 1041, 916, 750;

HRMS (ESI-TOF, m/z) calcd for C₃₆H₃₉NNaO₁₂ (M+Na)⁺: 700.2364, found 700.2358.

Preparation of 2z

To a solution of dehydrocholic acid (403 mg, 1.0 mmol) and (COCl)₂ (0.1 mL, 1.1 mmol) in CH₂Cl₂ (5 mL) was added DMF (0.1 mL) at 0 °C. After stirring for 5 mins at

0 °C, the reaction was warmed to25 °C for additional 30 mins. Then the reaction was concentrated in vacuo to afford crude acyl chloride as a white solid.

To a solution of acyl chloride, 2-hydroxyethyl acrylate (0.12 mL, 1.1 mmol) in CH₂Cl₂ (5 mL) was added dropwise Et₃N (0.42 mL, 3.0 mmol) at 0 °C. The reaction was stirred for 12 h at 25 °C before quenching with water (5 mL) and extracting with EtOAc (3 × 10 mL). The combined organic layers were washed with sat. aq. NaCl (2 × 10 mL), dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by silica gel chromatography (gradient eluent: petroleum ether/EtOAc = $5:1\rightarrow2:1$) to afford **S3** (353 mg, 70 % yield, mp: 157.7-159.1 °C) as a white soild.

Spectral Data of S3

¹H NMR (400 MHz, CDCl₃) δ 6.42 (dd, $J_I = 17.2$ Hz, $J_2 = 1.2$ Hz, 1H), 6.13 (dd, $J_I = 17.2$ Hz, $J_2 = 10.4$ Hz, 1H), 5.85 (dd, $J_I = 10.4$ Hz, $J_2 = 1.2$ Hz, 1H), 4.36-4.29 (m, 4H), 2.93-2.80 (m, 3H), 2.45-2.18 (m, 8H), 2.14-2.10 (m, 2H), 2.07-1.92 (m, 4H), 1.87-1.79 (m, 2H), 1.60 (td, $J_I = 14.0$ Hz, $J_2 = 4.8$ Hz, 1H), 1.41-1.24 (m, 7H), 1.05 (s, 3H), 0.83 (d, J = 9.6 Hz, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 211.9, 209.0, 208.7, 173.8, 165.9, 131.4, 128.1, 62.4, 62.0, 57.0, 51.8, 49.1, 46.9, 45.7, 45.6, 45.0, 42.8, 38.7, 36.5, 36.1, 35.5, 35.3, 31.4, 30.4, 27.7, 25.2, 22.0, 18.7, 11.9;

IR (neat) cm⁻¹ 2961, 2870, 1721, 1699, 1446, 1426, 1409, 1385, 1297, 1275, 1184, 1163, 1077, 810;

HRMS (ESI-TOF, m/z) calcd for C₂₉H₄₀NaO₇ (M+Na)⁺: 523.2666, found 523.2662.

According to the General Procedure C, 1a (27 mg, 0.1 mmol) and S3 (115 mg, 0.22

mmol) were converted to corresponding products 2z (71 mg, 63 % yield, mp: 147.5-150.5 °C) as a white solid.

Spectral Data of 2z

¹H NMR (400 MHz, CDCl₃) δ 7.16 (dd, *J*₁ = 8.4 Hz, *J*₂ = 7.2 Hz, 2H), 6.71 (d, *J* = 8.4 Hz, 2H), 6.64 (t, *J* = 7.2 Hz, 1H), 4.12-4.10 (m, 8H), 4.00-3.92 (m, 1H), 2.93-2.79 (m, 7H), 2.65 (s, 3H), 2.40-2.07 (m, 26 H), 2.02-1.76 (m, 18H), 1.63-1.53 (m, 3H), 1.26-1.23 (m, 8H), 1.03 (s, 6H), 0.81 (d, *J* = 6.8 Hz, 6H);

¹³C NMR (100 MHz, CDCl₃) δ 211.9, 209.1, 208.7, 173.7, 173.1, 150.8, 129.2, 116.7, 112.6, 62.2, 61.9, 56.9, 56.4, 51.7, 49.0, 46.8, 45.6, 45.5, 45.0, 42.8, 38.6, 36.5, 36.0, 35.5, 35.3, 31.2, 31.0, 30.3, 29.7, 29.4, 27.9, 27.6, 25.1, 21.9, 18.6, 11.8;

IR (neat) cm⁻¹ 2924, 1732, 1707, 1597, 1505, 1434, 1381, 1268, 1249, 1162, 1103, 954; HRMS (ESI-TOF, m/z) calcd for $C_{66}H_{91}NNaO_{14}$ (M+Na)⁺: 1144.6332, found 1144.6339.

Preparation of 7

According to the General Procedure B, **5a** (26 mg, 0.1 mmol) and methyl acrylate (46 μ L, 0.5 mmol) were converted to corresponding products **7** (19.7 mg, 68 % yield) as a colorless liquid.

Spectral Data of 7

¹H NMR (400 MHz, CDCl₃) δ 7.14 (t, *J* = 5.2 Hz, 2H), 6.66 (t, *J* = 5.2 Hz, 1H), 6.55 (d, *J* = 5.2 Hz, 2H), 3.63 (s, 6H), 3.51-3.46 (m, 1H), 3.41 (s, 1H), 2.42 (t, *J* = 5.2 Hz, 4H), 1.93-1.87 (m, 2H), 1.82-1.76 (m, 2H);

¹³C NMR (100 MHz, CDCl₃) δ 174.1, 147.6, 129.4, 117.2, 112.9, 52.1, 51.7, 30.7, 30.3.;
IR (neat) cm⁻¹ 3388, 2951, 1730, 1602, 1498, 1436, 1319, 1256, 1195, 1173, 1115, 992, 871;

HRMS (ESI-TOF, m/z) calcd for C₁₅H₂₁NNaO₄ (M+Na)⁺: 302.1363 , found 302.1366.

2.4. Synthesis of Mono-Addition products 6

General procedure D (alkenes (0.12 mmol) were added after deoxygenation of NMP).

A dried 15 mL Schlenk seal tube was charged with Ru(bpy)₃Cl₂ (1.3 mg, 0.002mmol) and sealed with rubber plug in Standard Glovebox. Geminal bis(silyl) aryl amines **1a** (0.1 mmol) and NMP (2 mL) were added into the tube at 25 °C under positive argon pressure. The solution was allowed to purge with high purity argon gas using a 15 cm syringe needle for at least 10 mins at 25 °C and charged with alkene (0.12 mmol) using syringe under positive argon pressure. The rubber plug was changed to polytetrafluoroethylene seal plug under positive argon pressure. The solution was stirred for 12 h under irradiation with 427 nm blue LED. The reaction was quenched with water (5 mL) and extracted with EtOAc (3 × 10 mL). The combined organic layers were washed with brine (3 × 20 mL), dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by silica gel chromatography (gradient eluent: petroleum ether/EtOAc = 100:1→20:1) to afford desired products **6a-g**.

General procedure E (alkenes (0.50 mmol) were added after deoxygenation of DMF).

A dried 15 mL Schlenk seal tube was charged with Ru(bpy)₃Cl₂ (1.3 mg, 0.002mmol) and sealed with rubber plug in Standard Glovebox. Geminal bis(silyl) aryl amines **1a**, **1l or 1m** (0.1 mmol) and DMF (2 mL) were added into the tube at 25 °C under positive argon pressure. The solution was allowed to purge with high purity argon gas using a 15 cm syringe needle for at least 10 mins at 25 °C and charged with alkene (0.5 mmol) using syringe under positive argon pressure. The rubber plug was changed to polytetrafluoroethylene seal plug under positive argon pressure. The solution was

stirred for 12 h under irradiation with 427 nm blue LED. The reaction was quenched with water (5 mL), extracted with EtOAc (3 × 10 mL). The combined organic layers were washed with brine (3 × 20 mL), dried over MgSO₄, filtered and concentrated in vacuo. The residue was purified by silica gel chromatography (gradient eluent: petroleum ether/EtOAc = 100:1 \rightarrow 20:1) to afford desired products **6h-m**.

Preparation of 6a

According to the General Procedure D, 1a (27 mg, 0.1 mmol) and methyl acrylate (11 μ L, 0.12 mmol) were converted to corresponding product 6a (17 mg, 60 % yield) as a colorless liquid and by-product 2a (4.3 mg, 14 % yield).

Spectral Data of 6a

¹H NMR (400 MHz, CDCl₃) δ 7.19 (dd, J_1 = 8.8 Hz, J_2 = 7.2 Hz, 2H), 6.70 (d, J = 8.8 Hz, 2H), 6.62 (t, J = 7.2 Hz, 1H), 3.59 (s, 3H), 3.41 (dd, J_1 = 12.4 Hz, J_2 = 3.6 Hz, 1H), 2.80 (s, 3H), 2.39-2.22 (m, 2H), 2.10-2.00 (m, 1H), 1.93-1.84 (m, 1H), 0.07 (s, 9H);

¹³C NMR (100 MHz, CDCl₃) δ 174.2, 151.2, 129.1, 115.4, 111.8, 51.5, 50.0, 34.0, 32.3, 24.0, -1.7;

IR (neat) cm⁻¹ 2951, 1735, 1596, 1503, 1364, 1249, 1201, 837;

HRMS (ESI-TOF, m/z) calcd for C₁₅H₂₆NO₂Si (M+H)⁺: 280.1727, found 280.1725.

Preparation of 6b

According to the General Procedure D, 1a (27 mg, 0.1 mmol) and tert-butyl acrylate

(18 µL, 0.12 mmol) were converted to corresponding product **6b** (16.4 mg, 50 % yield) as a colorless liquid and by-product **2b** (3 mg, 7 % yield).

Spectral Data of 6b

¹H NMR (400 MHz, CDCl₃) δ 7.18 (dd, J_1 = 8.8 Hz, J_2 = 7.2 Hz, 2H), 6.70 (d, J = 8.8 Hz, 2H), 6.61 (t, J = 7.2 Hz, 1H), 3.39 (dd, J_1 = 12.0 Hz, J_2 = 3.6 Hz, 1H), 2.79 (s, 3H), 2.30-2.13 (m, 2H), 2.03-1.93 (m, 1H), 1.87-1.79 (m, 1H), 1.40 (s, 9H), 0.05 (s, 9H);

¹³C NMR (100 MHz, CDCl₃) δ 173.3, 151.3, 129.1, 115.2, 111.9, 80.2, 50.0, 34.0, 33.4, 28.2, 23.8, -1.6;

IR (neat) cm⁻¹ 2954, 1725, 1596, 1503, 1366, 1250, 1144, 83;

HRMS (ESI-TOF, m/z) calcd for C₁₈H₃₂NO₂Si (M+H)⁺: 322.2197, found 322.2193.

Preparation of 6c

According to the General Procedure D, **1a** (27 mg, 0.1 mmol) and allyl acrylate (15 μ L, 0.12 mmol) were converted to corresponding product **6c** (16 mg, 51 % yield) as a colorless liquid and by-product **2c** (7 mg, 21 % yield).

Spectral Data of 6c

¹H NMR (400 MHz, CDCl₃) δ 7.18 (dd, J_1 = 8.8 Hz, J_2 = 7.2 Hz, 2H), 6.69 (d, J = 8.8 Hz, 2H), 6.61 (t, J = 7.2 Hz, 1H), 5.88-5.78 (m, 1H), 5.25 (dq, J_1 = 17.2 Hz, J_2 = 1.6 Hz, 1H), 5.19 (dq, J_1 = 10.4 Hz, J_2 = 1.6 Hz, 1H), 4.50 (dq, J_1 = 5.6 Hz, J_2 = 1.6 Hz, 2H), 3.41 (dd, J_1 = 12.4 Hz, J_2 = 3.6 Hz, 1H), 2.79 (s, 3H), 2.42-2.24 (m, 2H), 2.10-2.00 (m, 1H), 1.93-1.84 (m, 1H), 0.06 (s, 9H);

¹³C NMR (100 MHz, CDCl₃) δ173.5, 151.2, 132.3, 129.1, 118.3, 115.4, 111.9, 65.1, 50.0, 34.0, 32.4, 24.0, -1.6;

IR (neat) cm⁻¹ 2952, 1733, 1596, 1503, 1371, 1249, 1194, 1144, 987, 836;

HRMS (ESI-TOF, m/z) calcd for C₁₇H₂₇NNaO₂Si (M+Na)⁺: 328.1703, found 328.1701.

Preparation of 6d

According to the General Procedure D, **1a** (27 mg, 0.1 mmol) and phenyl acrylate (17 μ L, 0.12 mmol) were converted to corresponding product **6d** (14 mg, 40 % yield, mp: 59-62 °C) as a white solid and by-product **2e** (14 mg, 33 % yield).

Spectral Data of 6d

¹H NMR (400 MHz, CDCl₃) δ 7.34 (t, *J* = 8 Hz, 2H), 7.23-7.18 (m, 3H), 6.95 (d, *J* = 8.8 Hz, 2H), 6.75 (d, *J* = 8.0 Hz, 2H), 6.65 (t, *J* = 7.2 Hz, 1H), 3.51 (dd, *J*₁ = 12.4 Hz, *J*₂ = 3.6 Hz, 1H), 2.83 (s, 3H), 2.66-2.49 (m, 2H), 2.19-2.09 (m, 1H), 2.03-1.95 (m, 1H), 0.08 (s, 9H);

¹³C NMR (100 MHz, CDCl₃) δ 172.3, 151.3, 150.8, 129.4, 129.3, 125.8, 121.7, 115.6, 112.0, 50.0, 34.1, 32.3, 23.8, -1.6;

IR (neat) cm⁻¹ 2952, 1756, 1595, 1503, 1493, 1365, 1308, 1250, 1192, 1162, 1125, 837; HRMS (ESI-TOF, m/z) calcd for C₂₀H₂₈NO₂Si (M+H)⁺: 342.1884, found 342.1882.

Preparation of 6e

According to the General Procedure D, 1a (27 mg, 0.1 mmol) and methyl methacrylate (13 μ L, 0.12 mmol) were converted to corresponding product **6e** (16 mg, 54 % yield, dr = 1.1:1) as a colorless liquid.

Spectral Data of 6e

¹H NMR (400 MHz, CDCl₃) δ 7.18 (t, J = 8.4 Hz, 2H), 6.70 (d, J = 8.4 Hz, 2H), 6.61 (t, J = 7.2 Hz, 1H), 3.50 (s, 3H), 3.44 (dd, J_I = 12.4 Hz, J_2 = 3.2 Hz, 1H), 2.76 (s, 3H), 2.43-2.35 (m, 1H), 2.29-2.21 (m, 1H), 1.50-1.44 (m, 1H), 1.11 (d, J = 6.8 Hz, 3H), 0.03 (s, 9H);

¹³C NMR (100 MHz, CDCl₃) δ 177.4, 150.9, 129.1, 115.4, 111.9, 51.5, 48.0, 37.5, 33.9, 32.9, 16.8, -1.6;

IR (neat) cm⁻¹ 2951, 2925, 2855, 1733, 1596, 1503, 1249, 1198, 1160, 857, 837;

HRMS (ESI-TOF, m/z) calcd for C₁₆H₂₇NNaO₂Si (M+Na)⁺: 316.1703, found 316.1709.

Preparation of 6f

According to the General Procedure D, 1a (27 mg, 0.1 mmol) and benzyl methacrylate (21 μ L, 0.12 mmol) were converted to corresponding products **6f** (30 mg, 78 % yield, dr = 1.5:1) as a colorless liquid.

Spectral Data of 6f

¹H NMR (400 MHz, CDCl₃) δ 7.32-7.29 (m, 3H), 7.20-7.16 (m, 4H), 6.71 (d, *J* = 8.4 Hz, 2H), 6.62 (t, *J* = 7.2 Hz, 1H), 5.02 (d, *J* = 12.4 Hz, 1H), 4.82 (d, *J* = 12.4 Hz, 1H), 3.45 (dd, *J*₁ = 12.4 Hz, *J*₂ = 3.2 Hz, 1H), 2.75 (s, 3H), 2.50-2.41 (m, 1H), 2.33-2.25 (m, 1H), 1.52-1.46 (m, 1H), 1.14 (d, *J* = 6.8 Hz, 3H), 0.03 (s, 9H);

¹³C NMR (100 MHz, CDCl₃) δ 176.8, 150.9, 136.2, 129.2, 128.5, 128.2, 128.1, 115.5, 112.0, 66.2, 48.3, 37.8, 34.0, 32.9, 17.0, -1.6;

IR (neat) cm⁻¹ 2927, 1725, 1595, 1502, 1455, 1249, 1152, 835, 857;

HRMS (ESI-TOF, m/z) calcd for C₂₂H₃₂NO₂Si (M+H)⁺: 370.2197, found 370.2196.

Preparation of 6g

According to the General Procedure D, 1a (27 mg, 0.1 mmol) and acrylonitrile (8 μ L, 0.12 mmol) were converted to corresponding products 6g (12 mg, 47 % yield) as a faint yellow liquid.

Spectral Data of 6g

¹H NMR (400 MHz, CDCl₃) δ 7.22 (dd, J_1 = 8.8 Hz, J_2 = 7.2 Hz, 2H), 6.76 (d, J = 8.8 Hz, 2H), 6.67 (t, J = 7.2 Hz, 1H), 3.43 (dd, J_1 = 12.4 Hz, J_2 = 3.2 Hz, 1H), 2.81 (s, 3H), 2.41-2.24 (m, 2H), 2.15-2.05 (m, 1H), 1.95-1.87 (m, 1H), 0.07 (s, 9H);

¹³C NMR (100 MHz, CDCl₃) δ 150.9, 129.4, 120.0, 116.3, 112.3, 50.1, 34.1, 25.4, 15.6, -1.6;

IR (neat) cm⁻¹ 2953, 1596, 1502, 1250, 837, 747, 691;

HRMS (ESI-TOF, m/z) calcd for $C_{14}H_{23}N_2Si$ (M+H)⁺: 247.1625 , found 247.1622.

Preparation of 6h

According to the General Procedure E, **11** (29 mg, 0.1 mmol) and methyl acrylate (46 μ L, 0.5 mmol) were converted to corresponding product **6h** (14 mg, 46 % yield) as a colorless liquid and homo-diaddition by-product (8 mg, 25 % yeild).

Spectral Dates of 6h

¹H NMR (400 MHz, CDCl₃) δ 7.09 (q, J = 8.4 Hz, 1H), 6.43 (dd, $J_1 = 8.4$ Hz, $J_2 = 2.8$

Hz, 1H), 6.35 (dt, *J*₁ = 13.6 Hz, *J*₂ = 2.8 Hz, 1H), 6.29 (tdd, *J*₁ = 8.4 Hz, *J*₂ = 2.8 Hz, *J*₃ = 0.8 Hz, 1H), 3.59 (s, 3H), 3.33 (dd, *J*₁ = 12.4 Hz, *J*₂ = 3.6 Hz, 1H), 2.77 (s, 3H), 2.36-2.19 (m, 2H), 2.07-1.97 (m, 1H), 1.92-1.84 (m, 1H), 0.06 (s, 9H);

¹³C NMR (100 MHz, CDCl₃) δ 174.1, 164.4 (d, *J* = 239.7 Hz), 152.8 (d, *J* = 10.6 Hz), 130.3 (d, *J* = 10.5 Hz), 107.3 (d, *J* = 2.1 Hz), 101.8 (d, *J* = 21.6 Hz), 98.6 (d, *J* = 25.9 Hz), 51.6, 50.2, 34.2, 32.1, 23.9, -1.8;

IR (neat) cm⁻¹ 2952, 1734, 1615, 1577, 1497, 1250, 1159, 836, 750;

HRMS (ESI-TOF, m/z) calcd for $C_{15}H_{24}FNNaO_2Si$ (M+Na)⁺: 320.1453, found 320.1449.

Preparation of 6i

According to the General Procedure E, 1m (34 mg, 0.1 mmol) and methyl acrylate (46 μ L, 0.5 mmol) were converted to corresponding product **6i** (21 mg, 59 % yield, mp: 49.5-52.5 °C) as a white solid.

Spectral Dates of 6i

¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 8.8 Hz, 2H), 6.68 (d, J = 8.8 Hz, 2H), 3.58 (s, 3H), 3.46 (dd, $J_1 = 12.0$ Hz, $J_2 = 3.6$ Hz, 1H), 2.82 (s, 3H), 2.34-2.18 (m, 2H), 2.09-1.99 (m, 1H), 1.95-1.87 (m, 1H), 0.07 (s, 9H);

¹³C NMR (100 MHz, CDCl₃) δ 173.9, 153.0, 126.5 (q, *J* = 3.8 Hz), 125.3 (q, *J* = 268.3 Hz), 116.7 (q, *J* = 32.5 Hz), 110.7, 51.6, 49.9, 34.1, 32.0, 23.9, -1.8;

IR (neat) cm⁻¹ 2953, 1736, 1614, 1528, 1328, 1252, 1201, 1162, 1101, 1070, 839, 814;

HRMS (ESI-TOF, m/z) calcd for $C_{16}H_{25}F_3NO_2Si$ (M+H)⁺: 348.1601, found 348.1610.

Preparation of 6j

According to the General Procedure E, **1a** (27 mg, 0.1 mmol) and cyclohex-2-en-1-one (49 μ L, 0.5 mmol) were converted to corresponding products **6j** (9 mg, 31 % yield, dr = 1:1, mp: 81-84 °C) as a white solid.

<u>Spectral Data of 6j</u>

¹H NMR (400 MHz, CDCl₃) δ 7.18 (dd, *J*₁ = 8.0 Hz, *J*₂ = 7.2 Hz, 2H), 6.64 (d, *J* = 8.0 Hz, 2H), 6.60 (t, *J* = 7.2 Hz, 1H), 3.26 (d, *J* = 10.0 Hz, 1H), 2.82 (s, 3H), 2.40-2.33 (m, 2H), 2.30-2.22 (m, 2H), 2.18-2.11 (m, 1H), 2.00-1.91 (m, 2H), 1.74-1.62 (m, 1H), 1.49-1.39 (m, 1H), 0.11 (s, 9H);

¹³C NMR (100 MHz, CDCl₃) δ 211.4, 150.7, 129.2, 115.2, 111.3, 56.0, 47.4, 41.6, 40.9, 35.2, 30.5, 25.9, -0.2;

IR (neat) cm⁻¹ 2947, 1710, 1596, 1508, 1251, 857, 836;

HRMS (ESI-TOF, m/z) calcd for $C_{17}H_{27}NNaO_4Si (M+Na)^+$: 312.1754, found 312.1742.

Preparation of 6k

PhMeN CONMe₂ 6k

According to the General Procedure E, **1a** (27 mg, 0.1 mmol) and *N*,*N*-dimethylacrylamide (52 μ L, 0.5 mmol) was converted to corresponding product **6k** (18 mg, 60 % yield) as a colorless liquid after 24 h of stirring time.

Spectral Data of 6k

¹H NMR (400 MHz, CDCl₃) δ 7.17 (dd, J_1 = 8.8 Hz, J_2 = 7.2 Hz, 2H), 6.68 (d, J = 8.8 Hz, 2H), 6.59 (t, J = 7.2 Hz, 1H), 3.44 (q, J = 5.2 Hz), 2.87 (s, 3H), 2.79 (s, 3H), 2.71

(s, 3H), 2.30-2.18 (m, 2H), 2.05-1.93 (m, 2H), 0.06 (s, 9H);

¹³C NMR (100 MHz, CDCl₃) δ 172.9, 151.4, 129.1, 115.1, 111.7, 49.8, 37.1, 35.4, 34.0, 30.6, 23.9, -1.6.;

IR (neat) cm⁻¹ 2951, 1644, 1595, 1248, 835;

HRMS (ESI-TOF, m/z) calcd for $C_{26}H_{28}N_2NaOSi (M+Na)^+$: 315.1863, found 315.1860.

Preparation of 61

According to the General Procedure E, **1a** (27 mg, 0.1 mmol) and 1-morpholinoprop-2-en-1-one (64 μ L, 0.5 mmol) were converted to corresponding product **6l** (16 mg, 47 % yield, mp: 87.5-91 °C) as a white solid.

Spectral Data of 61

¹H NMR (400 MHz, CDCl₃) δ 7.17 (dd, J_1 = 8.0 Hz, J_2 = 7.2 Hz, 2H), 6.68 (d, J = 8.0 Hz, 2H), 6.61 (t, J = 7.2 Hz, 1H), 3.60-3.35 (m, 7H), 3.24-3.11 (m, 2H), 2.79 (s, 3H), 2.30-2.17 (m, 2H), 2.02-1.97 (m, 2H), 0.06 (s, 9H);

¹³C NMR (100 MHz, CDCl₃) δ 171.4, 151.4, 129.2, 115.3, 111.7, 66.9, 66.4, 49.8, 45.7, 41.9, 34.1, 30.1, 23.7, -1.7;

IR (neat) cm⁻¹ 2954, 2920, 2853, 1647, 1595, 1503, 1432, 1249, 1115, 837;

HRMS (ESI-TOF, m/z) calcd for $C_{18}H_{30}N_2NaO_2Si$ (M+Na)⁺: 357.1969 , found 357.1980.

Preparation of 6m

According to the General Procedure E, 1a (27 mg, 0.1 mmol) and ethyl buta-2,3dienoate (60 µL, 0.5 mmol) was converted to corresponding product 6m (17 mg, 54 % yield) as a colorless liquid.

Spectral Data of 6m

¹H NMR (400 MHz, CDCl₃) δ 7.20 (dd, *J*₁ = 8.8 Hz, *J*₂ = 7.2 Hz, 2H), 6.75 (d, *J* = 8.8 Hz, 2H), 6.65 (t, *J* = 7.2 Hz, 1H), 5.04 (s, 1H), 5.00 (s, 1H) 4.12 (s, 1H), 4.06-3.89 (m, 2H), 3.00 (d, *J* = 2.8 Hz, 2H), 2.97 (s, 3H), 1.17 (t, *J* = 7.2 Hz, 3H), 0.18 (s, 9H);

¹³C NMR (100 MHz, CDCl₃) δ 171.2, 150.5, 142.2, 129.0, 115.8, 114.1, 111.9, 60.6, 58.4, 40.6, 37.6, 14.2, -0.4;

IR (neat) cm⁻¹ 2955, 1733, 1597, 1502, 1252, 839;

HRMS (ESI-TOF, m/z) calcd for C₁₇H₂₇NNaO₂Si (M+Na)⁺: 328.1703 , found 328.1700.

2.5. Synthesis of Hetero-Diaddition Products 3

General procedure F (alkenes were added after deoxygenation of DMF). A dried 15 mL Schlenk seal tube was charged with Ru(bpy)₃Cl₂ (1.3 mg, 0.002mmol) and sealed with rubber plug in Standard Glovebox. **6a**, **6k** or **6l** (0.1 mmol) and DMF (2 mL) were added into the tube at 25 °C under positive argon pressure. The solution was allowed to purge with high purity argon gas using a 15 cm syringe needle for at least 10 mins at 25 °C and charged with alkene (0.5 mmol) using syringe under positive argon pressure. The rubber plug was changed to polytetrafluoroethylene seal plug under positive argon pressure. The solution was stirred for 12 h under irradiation with 427 nm blue LED.

The reaction was concentrated in vacuo and purified by silica gel chromatography (gradient eluent: petroleum ether/EtOAc = $50:1 \rightarrow 10:1$) to afford **3**.

General procedure G (alkenes were added before deoxygenation of DMF). A dried 15 mL Schlenk seal tube was charged with Ru(bpy)₃Cl₂ (1.3 mg, 0.002mmol) and sealed with rubber plug in Standard Glovebox. **6a**, **6k** or **6l** (0.1 mmol), alkenes (0.5 mmol) and DMF (2 mL) were added into the tube at 25 °C under positive argon pressure. The solution was allowed to purge with high purity argon gas using a 15 cm syringe needle for at least 10 mins at 25 °C. The rubber plug was changed to polytetrafluoroethylene seal plug under positive argon pressure. The solution was stirred for 12 h under irradiation with 427 nm blue LED. The reaction was concentrated in vacuo and purified by silica gel chromatography (gradient eluent: petroleum ether/EtOAc = $50:1 \rightarrow 10:1$) to afford the desired products **3**.

Preparation of 3a

According to the General Procedure F, **6k** (30 mg, 0.1 mmol) and methyl acrylate (46 μ L, 0.5 mmol) were converted to corresponding product **3a** (24 mg, 79 % yield) as a colorless liquid.

Spectral Data of 3a

¹H NMR (400 MHz, CDCl₃) δ 7.18 (dd, *J*₁ = 8.8 Hz, *J*₂ = 7.2 Hz, 2H), 6.73 (d, *J* = 8.8 Hz, 2H), 6.65 (t, *J* = 7.2 Hz, 1H), 4.03-3.96 (m, 1H), 3.58 (s, 3H), 2.86 (s, 3H), 2.70 (s, 3H), 2.67 (s, 3H), 2.28-2.16 (m, 4H), 1.97-1.80 (m, 4H);

¹³C NMR (100 MHz, CDCl₃) δ 174.0, 172.4, 151.1, 129.2, 116.4, 112.6, 56.5, 51.6, 37.0, 35.4, 31.2, 29.5, 29.5, 28.3, 28.1;

IR (neat) cm⁻¹ 2926, 1733, 1640, 1596, 1503, 1396, 1262, 1163, 1101;

HRMS (ESI-TOF, m/z) calcd for C₁₇H₂₆N₂NaO₃ (M+Na)⁺: 329.1836, found 329.1847.

Preparation of 3b

According to the General Procedure F, **6k** (30 mg, 0.1 mmol) and allyl acrylate (62 μ L, 0.5 mmol) were converted to corresponding product **3b** (21 mg, 62 % yield) as a colorless liquid.

Spectral Data of 3b

¹H NMR (400 MHz, CDCl₃) δ 7.17 (dd, J_1 = 8.8 Hz, J_2 = 6.8 Hz, 2H), 6.73 (d, J = 8.8 Hz, 2H), 6.65 (t, J = 6.8 Hz, 1H), 5.87-5.77 (m, 1H), 5.24 (dq, J_1 = 17.2 Hz, J_2 = 1.6 Hz, 1H), 5.18 (dq, J_1 = 10.4 Hz, J_2 = 1.6 Hz, 1H), 4.48 (d, J = 5.6 Hz, 2H), 4.04-3.97 (m, 1H), 2.86 (s, 3H), 2.70 (s, 3H), 2.68 (s, 3H), 2.30 (t, J = 7.6 Hz, 2H), 2.23-2.14 (m, 2H), 1.97-1.80 (m, 4H);

¹³C NMR (100 MHz, CDCl₃) δ 173.2, 172.4, 151.1, 132.2, 129.2, 118.3, 116.4, 112.6, 65.2, 56.5, 37.0, 35.4, 31.4, 29.5, 28.2, 28.1;

IR (neat) cm⁻¹ 2926, 1732, 1642, 1596, 1504, 1396, 1266, 1158, 1101, 988, 923;

HRMS (ESI-TOF, m/z) calcd for $C_{19}H_{28}N_2NaO_3$ (M+Na)⁺: 355.1992, found 355.1991.

Preparation of 3c

According to the General Procedure F, **6k** (30 mg, 0.1 mmol) and 2-methoxyethyl acrylate (66 μ L, 0.5 mmol) were converted to corresponding product **3c** (26 mg, 73 % yield) as a colorless liquid.

Spectral Data of 3c

¹H NMR (400 MHz, CDCl₃) δ 7.17 (dd, *J*_{*l*} = 8.8 Hz, *J*₂ = 7.2 Hz, 2H), 6.73 (d, *J* = 8.8 Hz, 2H), 6.45 (t, *J* = 7.2 Hz, 1H), 4.13 (t, *J* = 4.8 Hz, 2H), 4.04-3.96 (m, 1H), 3.48 (t, *J* = 4.8 Hz, 2H), 3.33 (s, 3H), 2.86 (s, 3H), 2.70 (s, 3H), 2.67 (s, 3H), 2.31 (t, *J* = 7.6 Hz, 2H), 2.23-2.14 (m, 2H), 1.97-1.80 (m, 4H);

¹³C NMR (100 MHz, CDCl₃) δ 173.6, 172.4, 151.1, 129.2, 116.4, 112.6, 70.4, 63.4, 59.0, 56.5, 37.0, 35.4, 31.4, 29.5, 29.5, 28.2, 28.1;

IR (neat) cm⁻¹ 2924, 1732, 1643, 1597, 1504, 1397, 1129, 1101, 1034;

HRMS (ESI-TOF, m/z) calcd for C₁₉H₃₀N₂NaO₄ (M+Na)⁺: 373.2098, found 373.2096.

Preparation of 3d

According to the General Procedure F, **6k** (30 mg, 0.1 mmol) and phenyl acrylate (71 μ L, 0.5 mmol) were converted to corresponding product **3d** (29 mg, 78 % yield) as a colorless liquid.

Spectral Data of 3d

¹H NMR (400 MHz, CDCl₃) δ 7.33 (t, *J* = 7.6 Hz, 2H), 7.23-7.17 (m, 3H), 6.94 (d, *J* = 8.0 Hz, 2H), 6.79 (d, *J* = 7.6 Hz, 2H), 6.69 (t, *J* = 7.2 Hz, 1H), 4.13-4.06 (m, 1H), 2.86 (s, 3H), 2.71 (s, 3H), 2.70 (s, 3H), 2.54 (t, *J* = 7.2 Hz, 2H), 2.26-2.15 (m, 2H), 2.08-1.84 (m, 4H);

¹³C NMR (100 MHz, CDCl₃) δ 172.3, 172.1, 151.1, 150.7, 129.3, 129.3, 125.8, 121.6, 116.6, 112.7, 56.6, 37.0, 35.4, 31.5, 29.6, 29.5, 28.1, 28.1;

IR (neat) cm⁻¹ 2924, 1755, 1641, 1596, 1504, 1397, 1193, 1162, 1132, 1101;

HRMS (ESI-TOF, m/z) calcd for C₂₂H₂₈N₂NaO₃ (M+Na)⁺: 391.1992, found 391.1996.

Preparation of 3e

According to the General Procedure F, **6k** (30 mg, 0.1 mmol) and methyl methacrylate (55 μ L, 0.5 mmol) were converted to corresponding product **3e** (26 mg, 81 % yield, dr = 1.6:1) as a colorless liquid.

Spectral Data of 3e

¹H NMR (400 MHz, CDCl₃) δ 7.17 (dd, *J*₁ = 8.8 Hz, *J*₂ = 7.2 Hz, 2H), 6.75-6.69 (m, 2H), 6.64 (t, *J* = 7.2 Hz, 1H), 4.08-3.99 (m, 1H), 3.52-3.49 (m, 3H), 2.86-2.85 (m, 3H), 2.73-2.64 (m, 6H), 2.47-2.37 (m, 1H), 2.22-2.04 (m, 3H), 1.95-1.78 (m, 2H), 1.66-1.48 (m, 1H), 1.16-1.11 (m, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 177.0, 172.4, 172.3, 151.0, 150.9, 129.1, 116.4, 116.3, 112.6, 112.5, 55.3, 54.9, 51.6, 51.5, 37.2, 37.1, 37.1, 37.0, 36.9, 36.4, 35.4, 35.4, 29.8, 29.7, 29.6, 29.4, 28.1, 28.1, 18.2, 17.4;

IR (neat) cm⁻¹ 2927, 1731, 1643, 1597, 1504, 1396, 1196, 1165;

HRMS (ESI-TOF, m/z) calcd for $C_{18}H_{28}N_2NaO_3$ (M+Na)⁺: 343.1992, found 343.1990.

Preparation of 3f

According to the General Procedure F, **6k** (30 mg, 0.1 mmol) and benzyl methacrylate (87 μ L, 0.5 mmol) were converted to corresponding product **3f** (37 mg, 93 % yield, dr = 1.5:1) as a colorless liquid.

Spectral Data of 3f

¹H NMR (400 MHz, CDCl₃) δ 7.34-7.27 (m, 3H), 7.23-7.11 (m, 4H), 6.75-6.62 (m, 3H), 5.06-4.83 (m, 2H), 4.08-4.01 (m, 1H), 2.86-2.84 (m, 3H), 2.72-2.63 (m, 6H), 2.53-2.43 (m, 1H), 2.20-1.76 (m, 5H), 1.68-1.50 (m, 1H), 1.18-1.14 (m, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 176.4, 176.4, 172.4, 172.3, 150.9, 136.1, 136.1, 129.2, 129.2, 128.5, 128.5, 128.3, 128.2, 128.1, 128.1, 116.4, 116.4, 112.6, 112.6, 66.3, 66.2, 55.3, 55.2, 37.3, 37.2, 37.1, 37.0, 36.9, 36.5, 35.4, 35.4, 29.8, 29.7, 29.6, 29.3, 28.2, 28.1, 18.3, 17.6;

IR (neat) cm⁻¹ 2928, 1729, 1644, 1597, 1504, 1455, 1396, 1159;

HRMS (ESI-TOF, m/z) calcd for C₂₄H₃₂N₂NaO₃ (M+Na)⁺: 419.2305, found 419.2305.

Preparation of 3g

According to the General Procedure F, **6l** (34 mg, 0.1 mmol) and methyl acrylate (46 μ L, 0.5 mmol) were converted to corresponding product **3g** (28 mg, 80 % yield) as a colorless liquid.

Spectral Data of 3g

¹H NMR (400 MHz, CDCl₃) δ 7.18 (dd, J_1 = 8.8 Hz, J_2 = 7.2 Hz, 2H), 6.73 (d, J = 8.8 Hz, 2H), 6.67 (t, J = 7.2 Hz, 1H), 4.05-3.97 (m, 1H), 3.58-3.34 (m, 9H), 3.23-3.09 (m, 2H), 2.67 (s, 3H), 2.27 (t, J = 7.6 Hz, 2H), 2.21-2.16 (m, 2H), 1.98-1.81 (m, 4H);

¹³C NMR (100 MHz, CDCl₃) δ 173.9, 171.0, 151.1, 129.3, 116.6, 112.6, 66.8, 66.4, 56.5, 51.6, 45.7, 42.0, 31.2, 29.5, 29.1, 28.3, 27.9;

IR (neat) cm⁻¹ 2922, 2854, 1733, 1641, 1596, 1504, 1434, 1228, 1114, 1032, 750;

HRMS (ESI-TOF, m/z) calcd for $C_{19}H_{28}N_2NaO_4$ (M+Na)⁺: 371.1941, found 371.1938.

Preparation of 3h

According to the General Procedure F, 6k (30 mg, 0.1 mmol) and 4-(trifluoromethyl)styrene (76 μ L, 0.5 mmol) were converted to corresponding product **3h** (29 mg, 74 % yield) as a colorless liquid.

Spectral Dates of 3h

¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 8.0 Hz, 2H), 7.20-7.16 (m, 4H), 6.70-6.65 (m, 3H), 4.00-3.92 (m, 1H), 2.87 (s, 3H), 2.73 (s, 3H), 2.71 (s, 3H), 2.63-2.59 (m, 2H), 2.24-2.19 (m, 2H), 2.03-1.79 (m, 4H);

¹³C NMR (100 MHz, CDCl₃) δ 172.5, 151.2, 146.3, 129.2, 128.8, 125.3 (q, *J* = 3.8 Hz), 124.5 (q, *J* = 270.0 Hz), 116.4, 112.7, 56.6, 37.0, 35.4, 35.0, 33.0, 29.6, 29.5, 28.1; IR (neat) cm⁻¹ 2926, 1644, 1597, 1324, 1161, 1120, 1067;

HRMS (ESI-TOF, m/z) calcd for $C_{22}H_{27}F_3N_2NaO(M+Na)^+$: 415.1968, found 415.1967.

Preparation of 3i

According to the General Procedure G, **6k** (30 mg, 0.1 mmol) and 4-vinylbenzonitrile (66 mg, 0.5 mmol) were converted to corresponding products **3i** (25 mg, 71 % yield) as a colorless liquid.

Spectral Data of 3i

¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 8.0 Hz, 2H), 7.20-7.15 (m, 4 H), 6.69-6.65 (m, 3H), 3.99-3.91 (m, 1H), 2.87 (s, 3H), 2.71 (s, 3H), 2.70 (s, 3H), 2.64-2.57 (m, 2H),

2.25-2.16 (m, 2H), 2.02-1.79 (m, 4H);

¹³C NMR (100 MHz, CDCl₃) δ 172.4, 151.1, 147.8, 132.2, 129.3, 129.2, 119.2, 116.5, 112.6, 109.7, 56.5, 37.0, 35.4, 34.7, 33.3, 29.6, 29.3, 28.0;

IR (neat) cm⁻¹ 2924, 2855, 2226, 1638, 1596, 1503, 1395, 1095;

HRMS (ESI-TOF, m/z) calcd for C₂₂H₂₇N₃NaO (M+Na)⁺: 372.2046, found 372.2050.

Preparation of 3j

According to the General Procedure F, **6a** (28 mg, 0.1 mmol) and allyl acrylate (60 μ L, 0.5 mmol) were converted to corresponding product **3j** (28 mg, 89 % yield) as a colorless liquid.

Spectral Data of 3j

¹H NMR (400 MHz, CDCl₃) δ 7.19 (dd, J_1 = 8.8 Hz, J_2 = 7.2 Hz, 2H), 6.74 (d, J = 8.8 Hz, 2H), 6.67 (t, J = 7.2 Hz, 1H), 5.87-5.77 (m, 1H), 5.24 (dq, J_1 = 17.2 Hz, J_2 = 1.6 Hz, 1H), 5.19 (dq, J_1 = 10.4 Hz, J_2 = 1.6 Hz, 1H), 4.49 (dt, J_1 = 5.6 Hz, J_2 = 1.6 Hz, 2H), 4.02-3.94 (m, 1H), 3.58 (s, 3H), 2.68 (s, 3H), 2.31-2.24 (m, 4H), 1.96-1.79 (m, 4H);

¹³C NMR (100 MHz, CDCl₃) δ 173.8, 173.0, 150.9, 132.2, 129.2, 118.4, 116.7, 112.7, 65.2, 56.5, 51.6, 31.2, 31.1, 29.5, 28.1, 28.0;

IR (neat) cm⁻¹ 2926, 1730, 1597, 1504, 1248, 1194, 1169, 1103, 988, 922;

HRMS (ESI-TOF, m/z) calcd for C₁₈H₂₅NNaO₄ (M+Na)⁺: 342.1676, found 342.1673.

Preparation of 3k

According to the General Procedure F, **6a** (28 mg, 0.1 mmol) and acrylonitrile (34 μ L, 0.5 mmol) were converted to corresponding product **3k** (15 mg, 56 % yield) as a colorless liquid.

Spectral Data of 3k

¹H NMR (400 MHz, CDCl₃) δ 7.23 (dd, *J*₁ = 8.8 Hz, *J*₂ = 7.2 Hz, 2H), 6.80 (d, *J* = 8.8 Hz, 2H), 6.74 (t, *J* = 7.2 Hz, 1H), 4.06-3.99 (m, 1H), 3.59 (s, 3H), 2.69 (s, 3H), 2.31-2.24 (m, 4H), 2.00-1.79 (m, 4H);

¹³C NMR (100 MHz, CDCl₃) δ 173.5, 150.5, 129.5, 119.6, 117.6, 113.2, 56.5, 51.7, 30.8, 29.6, 28.9, 27.7, 14.6;

IR (neat) cm⁻¹ 2951, 2246, 1731, 1596, 1504, 1436, 1319, 1196, 1159, 1105, 1032, 988, 916, 750;

HRMS (ESI-TOF, m/z) calcd for $C_{15}H_{20}N_2NaO_2$ (M+Na)⁺: 283.1417, found 283.1416.

2.7. Cyclic Voltammetry Analysis

Cyclic Voltammetry experiments were conducted with a computer controlled CH Instruments Model 600E Series Electrochemical Analyzer/Workstation containing platinum wire working electrode, platinum wire counter electrode and saturated KCl silver-silver chloride electrode reference electrode.

Sample were prepared with 0.1 mmol of analyte (1a, 6a and 9) in 10 mL of 0.05 M *tetra-N*-butylammonium hexafluorophosphate in dry and degassed acetonitrile. Measurements employed a scan rate of 20 mV/s. 9 was prepared according to a published procedure described by Mariano and coworkers.⁴

190

)()

77.417 -77.100 76.782

-31.510

--1.646

ŢMS

H 5a `TMS

)()

.168		
150		

-129.102

100 90 f1 (ppm) **S59**

-34.266

-]

6	
<u> </u>	
- Ĥ	

3	
0	
e.	
-	

-150.729

	' '	1		· 1	,		1		1			·		1		·		T	· · ·	1			· 1		·		- I	1 1	-
)0	190)	180	17	0	160		150	140	13	0	120)	110	100	90	80	70	60		50	40	3	0	20	10		0	-1
															f1	(ppm)													
																S61													

	 	 77.418 77.100 76.784	 	
TMS N TMS 5b				
		u.		

r		1	'	· ·	'	· 1	· 1	'	·	·		·	1	1	·	' '	·	' '	·	· 1		'	
	190	180	170	160	150	140	130	120	110	100	90	80	7	70	60	50	40	30	20	10	(3	-]
										f1 ((ppm)												
										S	63												

	 	-111.102	77.419 77.101 76.784	 	0.680
16					
	1				

		·	·	·	1	'	·	'	1	1		'		·	'	·	· 1		· 1		1
)()	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
										f1 ((ppm)										
										S	65										

-147.631

ŢMS

Ĥ 5c `TMS

160

150

140

130

190

)()

180

170

29.845	27.079	20.691	14.968	09.049
1	1	1		1(
2-		2		5

120

110

100 90 f1 (ppm) **S67**

80

70

60

50

40

-17.510

10

-]

0

20

30

-1.031

-33.901

	 <pre>/131.686 /129.714 /120.282 /119.441</pre>	77.417 77.100 76.784		 	
[
		li			
			1 1		

	'	1		·		' '		1	'		· 1		·	'	'	'	'		'	1 1	· · · · ·	_
)0	190		180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
	f1 (ppm)																					
												69										

		√130.118 √128.925	 $\frac{77.418}{77.101}$	$\frac{34.772}{34.632}$ $\frac{34.632}{34.062}$ -22.511 -14.107	
n-BU N H TMS	15				
5d					
	ł				

	'	·	'	'	'	1		'	'	1	·	·	·	'	'	1		'	· · · ·	(_
)()	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
	f1 (ppm)																				
										9	571										

n-Bu∖

1d

-149.044	<pre>128.845 128.381</pre>	 77.418 77.100 76.783	∠43.675 ∠38.996 ∑34.596 34.054	
TMS M TMS				

	'	·	'	1	1	·	'	1	1	'	'	1	'		1	'		1	1	1	
)()	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
										f1 S	(ppm) 573										

		 	 77.417 77.099 76.782	-43.514 $\int 34.841$ $\int 34.555$	27.156 26.375	
TMS						
5e	6					

	· ·		'	'	1	'	1	'	· 1		·	1	·	·	'	· 1	· ·	'			-
)0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
	fl (ppm)																				
										9	S75										

	—149.150	 	77.417 77.100 76.782	 43.658 43.316 38.964 34.825 27.183 26.402 	
	1S TMS				
1e					

	'	1				·	' '		·		· 1	'	· 1	1	1	·		'	·	·	'	
)()	190	18	30	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-]
											f1	(ppm)										
												S77										

48.247	
-14	

5f

328
, vi
=
- T

-34.507

-14.610

	1

		al	
I .			

	·	1	·	'	1	1		1	1		'	1		1	1	'		1			-
)0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
										f1	(ppm)										
										S	79										

-	ഹ
×	~ ∞
×,	വ
× ×	്യ
Ň	Ñ
_	
	1

-149.035

-111.150

۸.			
<u>\</u>			
5			
5			

√ 14.444	~8.097	∕-0.659
	1	

I	

	'	·	·		1	1	'	'	1	'	'	1	·	1	1	'	'	'		'	
)0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
										f1 ((ppm)										
										c .	0 4										

	<u>1</u>		

	·	1	'	'	1	1	'	'	1	'	·	1	·	1	'	1		'		· 1	
)()	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
										f1	(ppm)										
										c	00										

	 $\int \frac{114.753}{113.585}$	$\frac{\int 77.417}{\int 77.100}$	 	-0.693
MeO TMS N TMS				
1g				

			1	·	·	1		1	1	1	1	· 1	1		1	1	· 1	1	-		
)()	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
										f1	(ppm)										

S85

1860^{-1}	LSF-7-105-CDCL3-C13-2020-2-17.1	10.fid	_						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.878	1.579	9.720	5.878).567 107	418 100 782	084	439	981
$\begin{array}{c} OMe \\ \leftarrow \\ \leftarrow \\ H \\ H \\ H \end{array}$		- 16(- 151	-129	$\sim 10^{\circ}$	77. 76.		- 34.	-0.
OMe C TMS 5n 5n		1	1	'			1		
	OMe I								
Sh Sh		1S							
5h	N H	TMS							
	5h								
						i i			
				I					
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1999 - ABA (1499 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1	an a	มีประกรณรีแหล่งสามประมาณ เรื่องการเป็น เป็นการเป็น เป็น เป็น เป็น เป็น เป็น เป็น เป็น		**************************************	newspace of the second second second second	and the second second second second	and a second and a sub-second and a second
					· · · · · · · ·			· · · · · · ·	· · · · · · · · · · · · · · · · · · ·
00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 −1 f1 (ppm)	)0 190 180 170	160	150	140 130 120	110 100 90 f1 (ppm)	80 70	60 50	40 30 20	10 0 -1

LSF-5-20_H1_CDC13_2020-2-10.10.fid --



LSF-5-20_C13_CDC13_2020-2-	-10. 10. f1d 		 ∽104.670 ∫98.567 `97.811	$\frac{77.417}{77.100}$	-55.106			0.559
OMe	TMS TMS I 1 1h							
							14 mar	
)0 190 180 170	) 160	150	 	80 70	60 50	40	-1 $-1$ $-1$ $-1$ $-1$ $-1$ $-1$ $-1$	0 -1

f1 (ppm) S89



LSF-7-10B_C13_CDC13_2019-12-20.10.fid --

		-131.935	-121.713	-112.752	$\frac{\int 77.417}{\int 77.100}$	 — 19.644	-1.004
MeS N H 5i	IS TMS						

		ılı		I	

'	'	'	·	'		1 1	·	1	·	'	'	1	1	1	1	·	1		1	
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
									f1	(ppm)										
									9	591										



	—149.721	-131.958	-120.033	-111.601	77.418 77.100	76.782	—43.747 —38.993		00//61	0.557
	S MS									
1i										
		1		1						
	I									
**************************************			Services and the service of the serv					on and the second second second	างสาวสินส์เหมูการน่าสาวสาวารราบการระบบ	

	'	1		'		·	· 1	' '	1	·			' '			·	'	·	· 1	'	·	· 1	
)0	19	)	180	170	160	150	140	130	120	110	100	90	8	0	70	60	50	40	30	20	10	0	-1
											f1	(ppm)											
												S93											

LSF-7-16_H1_CDC13_2019-12-24.70.fid —



































18.30-

0.0

-0.5

-1

0.5

1.5

1.0

4.5 f1 (ppm) S94 3.5 5.5 4.0 6.0 5.0

9.5









1	

1			
	1		
		<u>u</u>	

		l	
NIL NIL			

	1 1	· ·	- I - I	- I I	- I I			'	1	· · · ·		· · ·	'	· · ·	·	'	·	·			
)0	190	180	170	160	150	140	130	120	110	100 f1 (	90 ppm)	80	70	60	50	40	30	20	10	0	-1
										SS	95										

--0.941



Ph.

9.5

.0

9.0

8.5

8.0

7.5

7.0

6.5

6.0



∕_3.003

TMS TMS 1 1j 1j



1.5

1.0

2.0

0.5

0.0

-0.5

-1

0.129





5.5

5.0













4.0

3.5

3.0

Ph.

ŢMS

Μ

1j

`TMS





-43.748	-39.074
Ĺ	- É

6
-
9
0

		1		

	1	I	- I - I	· 1		'	· 1	· 1	'	1			·	· 1	' '	' '	1	1	· · ·	' '	1	· 1	'
)0	190	]	180	170	160	150	140	130	120	110	100 f1	90	80	70	) 6	) 5	) .	40	30	20	10	0	-]
											11	(ppiii)											
												S97											



LSF-6-116-CDCL3-C13-2019-12-12 — LSF-6-116-CDCL3-C13-2019-12-12 —  $\int \frac{115.551}{115.404}$   $\int \frac{112.769}{112.721}$ 

5.549	4.003	6.719		
เดิง	ň	4		
	7	ī		

F	TMS TMS
5k	1

_[ 77.311	-77.100	√76.887
<u> </u>	$ \rightarrow $	

	$\sim$	1.5	
_	0	$\infty$	
3	-	8	
		Ψ.	
18	1		
<u> </u>			

-35.213

-0.970

	1	·	·	'	'		1		'	1	1	1		'	'	'	' '	·	'		
)0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
										f1	(ppm)										
										9	599										



ر 155.127	~152.817	~147.661	147.648	
-	$\gamma$	$\searrow$		



	0	0
	0	$-\infty$
4	-	
- N	<u> </u>	<u></u>
- Á	1	- 15
$\sim$	1	



$\supset$	$\infty$
$\mathbf{c}$	0
di.	<u> </u>
÷	õ
ŕ –	- 1 [†]

-0.614

 $\int 115.393$  $\int 115.176$  $\gamma 111.567$ 

√111.496







1		

		, , , , , , , , , , , , , , , , , , ,		1		1	1	1	· · · ·		· · ·	 1		· ·	1			 1	 		 1		-	1	 	 	 	
)0	1	90	180	17	)	160	]	150	14	0	130	120	1	110	100	)	90	80	70	60	50	40		30	20	10	0	-1
															f	1 (pp	pm)											
																S101	L											



.0



























0.068

17.80-∃

0.0

-0.5

-1

$\sim 165.579 - 7.65.579$ $\sim 163.177 - 10.119 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - 7.607 - $	$\begin{pmatrix} 130.075 \\ 129.970 \end{pmatrix}$	$\int \frac{108.374}{108.354}$ $\int \frac{102.111}{101.895}$ $\int \frac{98.567}{98.312}$	77.418 77.101 76.783	 
TMS TMS TMS TMS				
51				

		1	'	·	1	1	1	'	'	1		1	1		1	1	- 1	'			1
)0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
	fl (ppm)																				
	S103																				



$\sim 165.561$ $\sim 165.561$ $\sim 165.561$ $\sim 163.171$ $\sim 152.388$ $\sim 152.281$	$ <^{129.943} $	$\int_{-106.741}^{106.741} 106.721$ $\int_{-100.660}^{100.660} 0.443$ $\int_{-97.917}^{-97.655} $	$\frac{77.418}{77.100}$	 0.496
TMS TMS N TMS 1 1				
11 1				

	·   ·	I	·	·	· 1	'	· · · ·	'	· I	· 1	·	·	· 1	· 1	·	· · ·		· 1	· 1	· 1	
)0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
	f1 (ppm)																				
										S	105										





)0 -1f1 (ppm) S107

LSF-6-117-CDCL3-C13-2019-12-12 — LSF-6-117-CDCL3-C13-2019-12-12 —

.0

8.5

9.0

8.0

7.5

7.0

6.5

6.0

5.5

5.0



4.5 f1 (ppm) S108

4.0

3.5

3.0

2.5

1.5

1.0

0.0

-0.5

-1




						· · ·					· · ·										· · ·	
)0	190	180	) 17	0	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
											f1	(ppm)										
											9	5109										

LSF-8-58-CDCL3-H1-2020-5-9.10.fid -



SiMe₃

8

`SiMe₃

HN Ph-⁴⁾3

128.830
128.485
126.621 -139.627





41.535	32.705	27.417
4	$\mathcal{O}$	2
$\sim$	$\sim$	$\leq$

1		
	1	

งหนุ่มๆไขน้ำไข่มีได้มีเป็นจะไปเรียง ก็ได้เป็นไปไป การเป็นไปไปไปไปไปไปไปไปไปไปไปไปไปไปไปไปไปไปไ	<mark>ปองที่มีเป็นแปละเหลือไปไม่เป็นไปได้ไปไม่ไปไปไปไปไปไปไปไปไปไปไปไปไปไปไปไปไปไ</mark>	wall the state of	etninikonprosiptioptionikoptioptionatioptiopti	nendanishi kan	Charleman , Marken Marken Japangan Jalan Bark	ntapalaphuulmaanstadmittyruntaansiyyt	anan dentan semperatur dentan he	เมาการแปล้างที่สุดทำการเการเล่าง	langendarandarippetingan bayastrafikenutet.
10 190 180 17	0 160 150	140 130	120 110	100 90	80 70	60 50		20	10 0 -

f1 (ppm) **S111** 

-1



LSF-6-9P-CDCL3-C13-2019-	-10-28.20.fid —					
				$\frac{77.417}{77.100}$		$\int 31.044$ 29.466 28.054
PhMeN	CO ₂ Me CO ₂ Me 2a					
ļ						
₹\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$	ŊŊĸĸĸĸġĊĸĸĸſŔĸĸĬĬĬŔĸŔĸĸĔĸŎġĊġĬŢĬĬĔġĔĸŀĸĸĸĬŔĸĬĬĸĸĬĸĸĬĸĸĬĸĸĬĬĸŔŊŔŎŖĸĬĸĸĸĸĸĸŔĸĬĬĸĸĸĸĸ	langrav ^r igilandargevonevusaalse	nyalistan dipist inganakutan kalanda uparis penyali ting kita kanan duan kana ang upa	Yanaburaaduliyo" ^m uuqoondaannoodingaaray yaadadaannoo	rand Papar go I Palanta gabier og sjon de fastafsfør	ĸĸŧġĦĸĸĸġĊſĸŊĔŦĸĬĬĬŢĸĬŗĸţĸĹĹĸŎŀġĊĸĸĸġĸĦŦĬĸġġſĸġĠĸĊĬĸŔĊŔſĬĸĸĸſĊĸġĊĸĸĸĬĸĸĊĸţĸĸĬĊŊŔġŦġĬŊġĹĸĸŔĸŀĊſĸĬŊŎġĿŎ

		1		1		1		1	1		1	'		1 1		·	- 1		1			· 1		1		1		1 1	
)()	190		180	170	16	0	150		140	1	30	120	11	10	100	90		80	70	60	50	40	30		20		10	0	-1
															f1	(ppm)													
															9	5113													



LSF-6-98BP_C13_CDC13_2	2019-12-4.10.fid	_					
					80.263 77.419 77.100 76.783		$\int_{-28.116}^{32.462} 29.474$ $\int_{-28.154}^{28.116} 28.116$
PhMeN	CO ₂ t-Bu CO ₂ t-Bu <b>2b</b>						
					n		
			A				
)0 190 180	170 160	150 140	130 1	20 110 100 9 f1 (ppm) S115	0 80 70	60 50 4	40 30 20 10 0 -1





-1

LSF-6-34P-CDCL3-C13-2019-11-1.60.fic	I —				
		√132.225 ~129.252	∠118.336 ~116.727 ~112.805	$\frac{77.418}{77.100}$ -65.183	 $\frac{531.241}{29.518}$
PhMeN CO ₂ al	Iyi Iyi				

|--|

	·	- I - I			'	· 1	· 1	'	·	·	'	·	· 1	·	·	·	· · · ·	·	·	1	
)0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-]
										f1	(ppm)										

S117





	I	1 1		1	' '	'	' '	' '	' '		'	· · ·	1	1	' '			· 1	· 1		' '				
)0		190	180	170	160	150	140	130	120	110	100 f1	90 (nnm)	)	80	70	)	60	50	40	30	20	)	10	0	-]
											11	S119													

LSF-6-71P_H1_CDC13_2019-11-22.20.fid ---





LSF-6-71P_C13_CDC13_2019-11-2	22.20.fid —				
—171.887	150.944     150.629	$\begin{pmatrix} 129.459\\ 129.404\\ 125.811\\ 121.590\\ 116.995\\ 112.927 \end{pmatrix}$	<u>77.417</u>		$\int 31.314$ 
PhMeN 2e	CO ₂ Ph CO ₂ Ph				
geun auch demonster auch de la service - de compensation auch autor auch autor auch autor auch autor autor auc					
)0 190 180 170	160 150 140	130 120 110	100 90 80 f1 (ppm) <b>S121</b>	70 60 50 4	0 30 20 10 0 -I















2g



18.186

18.561

66.223

54.181 37.154 36.973 36.530 36.396 36.318 36.318 29.745

37.071

f1 (ppm) **S127** -10 -20













)()



LSF-6-60AP_H1_CDC13_2019-11-18.10.fid --









## LSF-6-86BP_H1_CDC13_2019-12-2.10.fid —





## LSF-6-86BP_C13_CDC13_2019-12-2.10.fid --

)0



## LSF-6-99P_H1_CDC13_2019-12-6.30.fid --



)()



## LSF-6-97BP_H1_CDC13_2019-12-5.10.fid —

.0

9.5

9.0

8.5

8.0

7.5

7.0



4.5 f1 (ppm) **S140** 

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

-1

6.5

6.0

5.5





LSF-8-23_C13_CDC13_2020-3-9.10.fid	_					
3.909	8.860	9.736 5.838	3.023	.418 .100 .782	.979	.127 .564 .991 .233
	— 14	1 12	II –	77 77	—56 —51	<pre>3127272020</pre>
Me N Me 20	CO ₂ Me CO ₂ Me					
						1
Bernessen and a second		mannalteration	or have have the second of the second s	and and the second s		

			1 1	'	· · · ·		'	·	·	·	· 1	·	·	'	·	1	1	1	·	
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
f1 (ppm) \$1/3																				
									5	143										


n-Bu	0. f1d — 86.841   CO₂Me	√131.084 ~129.064	— 112.938	77.418 77.101 76.783	 34.578         34.008         34.008         34.008         24.008         21.129         22.450         14.072	
N Me 2p	CO2Me					

	'			·	·	'	1	·	'	1	, 1	'	·	' '	· · ·	· 1	1		1	'	· 1		- I
)()	19	0	180	170	160	150	140	130	120	110	100	90	80	70	60	50	) 4	0	30	20	10	0	-]
											f1	(ppm)											
											S	5145											



LSF-7-82P_C13_CDC13_2020-1-21.10.fid --



	1 1	1	·	'	'	·	'	·	· 1	·	'	·	1	·	·	·	·	·	· · · ·		
)0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
										f1	(ppm)										

S147

LSF-7-111-CDCL3-H1-2020-2-20.10.fid —

760	201	943	921	661	639	924	911	899	887	875		C08	850	585	643	272	269	256	250	235	231	922	904	887	868	846	827	815	794	781	760	867	856	851	846	840	835	830	819	595	584	582	579	571	567	555
	•	•	•	•		•	•	•			•	•	•	•	•							•	•	•	•	•	•	•	•		•		•	•	•	•	•	•	•	•	•	•	•	•		•
1	×	9	9	9	9	$\mathcal{C}$	3	$-\infty$	$-\infty$	<b>(</b>	) c	S I	$\mathfrak{c}$	3	2	0	2	2	0	0	2	-	_	-	-	-	-	1	_	-	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1		- L	- L				- L		- L.	- L			L	- L			- L.	- L.	- L	- L	- L	- L	- L	- L	- L	- L	- L																			



LSF-7-111-CDCL3-C13-2020-2-20.10.	fid —				
		— 131.796 — 126.744	 $\frac{\int 77.418}{\int 77.101}$	 $\frac{\int 31.115}{\int 29.585}$	
N Me 2r	CO ₂ Me CO ₂ Me				

	·   ·		1	'			1	·	' '	' '	·	·	· 1	· · ·	· 1		'	·	· · ·	1
190	180	170	160	150	140	130	120	110	100	90	80	70	) 60	50	40	) 30	) 20	10	0	-]
									f1	(ppm)										
										S149										

.0



LSF-7-56BP-CDCL3-C13-2020-1-9.10.f	fid —				
3.938	5.671	4.738 4.721	.417 .100 .782	.094 .828 .598	.216 .887 .817
-17		$\langle 11 \rangle$	$\int \frac{77}{76}$	∕58 ~55 ~51	$\frac{531}{27}$
MeO	`CO₂Me `CO₂Me				

		· · · ·				'	·	'	·	· · · ·	·	1	·	· · ·	'	·	· ·	·	1	·	
)()	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
										f1 (	(ppm)										
										S1	151										

.0





LSF-7-113-CDCL3-H1-2020-2-20.10.fid —



____



'	'	'	·	'	' '	·	'	·	· 1	1	· 1	' '	· · ·	·	' '	' '	1		· 1	
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-]
									f1	(ppm)										
									S	155										





LSF-7-57BP-CDCL3-C13-2020-1-9.10.fid —

-173.786	$   \sqrt{156.535}   $ $   -154.196   $ $   \sqrt{147.621}   $ $   \sqrt{147.605}   $	$\int \frac{115.630}{115.410}$ $\int \frac{114.069}{113.996}$	77.417 77.100 76.782	57.683 51.622	∑ 31.070 ~
F N Me 2v	CO ₂ Me CO ₂ Me				

· · · ·	- I I	1	'	'	'	1	·	1	'	'	·	1		1	'	1	' '	'			
)0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
										f1 s	(ppm) 157										









LSF-7-101_C13_CDC13_2020-2-14.10.fid —						
	— 129.848	ン105.837 ン101.348 、99.317	77.418 77.100 76.782	∑56.511 ~55.138 ~51.594	$\int 30.994$ -29.603 28.091	
OMe CO ₂ Me Me CO ₂ Me 2x						
	un a cha un command alamou a carron and					
190 180 170 160 150	140 130 120	) 110 100 90 f1 (ppm) <b>S161</b>	80 70	60 50 4	40 30 20	10 0 -1



LSF-7-106-CDCL3-C13-2020-2-17.10.fid --



Т 100 90 f1 (ppm) **S163** )() -1

LSF-8-2	H1	CDC13	2020-2-	-25.	10.	fid	—

.0

7.994	7.990	7.975	7.970	7.562	7.559	7.543	7.539	7.319	7.316	7.300	7.297	7.281	7.278	7.260	7.181	7.162	7.159	7.141	7.106	7.104	7.086	7.084	6.730	6.710	6.645	4.375	4.369	4.364	4.356	4.351	4.347	4.278	4.269	4.264	4.257	4.253	2.643	2.327	2.320	2.302	2.276	2.263	2.257	1.860	1.841	1.805
										L .	Ĵ,	<u> </u>					_																					<u> </u>				1	1.1			





## LSF-8-2_C13_CDC13_2020-2-25.10.fid --





LSF-8-18-CDCL3-C13-20203-9. 10. 1 69 100 100 100 100 100 100 100 10		~131.395 ~128.054	77.418 -77.099 -77.099 -62.374 -61.991 -51.821	45.051 46.896 45.615 45.040 45.040 36.539 36.539 36.539 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547 35.547	241.62 21.967 18.662 11.901
	<b>1</b> 80 170 160 1		110 100 90 80 f1 (ppm)		•••••••••••••••••••••••••••••••••••••

LSF-8-26_H1_CDC13_2020-3-12.10.fid —

0 1 8 1 9 1 0	V = 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u> </u>	0     0     1     0     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0
9 L U U U I O 9 4	$\omega \phi \phi$	8 4 9 H L L L 4 0 L 7 8 L 5	
	ດັ່ວ ແລະ	$ \begin{matrix} \rho & \rho$	
0000177777	4 9 9 9 9 9 9 9 9		





LSF-8-26_C13_CDC13_2020-3-12. 10. fid **44 508 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17** 

∽173.744 ∽173.051	150.765       129.189       1129.189       116.653       1112.616       77.418       77.100	76.782 -62.207 -61.923 -56.862 -56.365 -51.748 -48.962 -46.819	745.605 745.494 744.978 742.785 738.635 736.482	-36.004 -36.004 -35.464 -35.258 -31.241 -31.241 -30.985 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402 -29.402
			m	



2z

	1			·	'		·	'	.   .						'				'	· · · ·	- 1 - 1	1	
220	210	200	190	180	170	160	150	140	130	120	110 f1 (pp	100 om)	90	80	70	60	50	40	30	20	10	0	-]

S169









LSF-5-107A	AP-CDCL3-C13-2020-2-7	.10.fid —						
				~115.371 ~111.825	$\frac{\int 77.417}{\int 77.100}$	√51.479 ∖_49.979	~33.974 732.257 ~24.008	—-1.651
	SiMe ₃ PhMeN	`CO₂Me						
)0 190	180 170	160 150 1 ⁴	40 130	120 110 100	90 80 70	60 50	1 1 1 1 1 1 40 30 20	10 0 -1

f1 (ppm) S173





LSF-8-13A_C13_CDC13_2020-3-2.21.fi	528 — b	113	236 368	79 11 33	36	59 56 13 13	-
			~115.2 ~111.8	80.17 77.4 77.10 76.78		∑33.95 23.45 28.10 23.83	—-1.61
PhMeN CO2 6b	ŧ-Bu						

	1	1		·		1	'		1 1	1	·	'		1		1	· 1	1	1		·	
)()	190		180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
											f1	(ppm)										
											S	175										



LSF-8-12A_C13_0	CDC13_2020-3-2.	10.fid —						
		—151.173	~132.293 ~129.142	∕118.315 ~115.396 ∕111.856	77.418 77.100 76.782 65.122		~33.999 \32.402 ~23.974	1.631
	SiMe PhMeN	કે `CO₂allyl						
							. ] ]	
anna an								www.yot.com/diaReation-spearce.
)0 190	180 170	160 150	140 130	120 110 100 f1	90 80 70 (ppm) \$177	60 50 40	) 30 20 10	0 -1



LSF-8-8a_C13_CDC13_2020	0-2-26.10.fid —						
	151.267	129.409 129.261 125.770	└ 121.663	$\frac{77.418}{77.101}$		~34.092 32.349 ~23.796	
PhMeN	SiMe ₃ CO ₂ Ph 6d						
	! 1,						
)0 190 180	170 160 150	  140 130 12	20 110 100 90 f1 (ppm) S179		50 40		•••••••••••••••••••••••••••••••••••••




LSF-8	-14B_C13_CDC13_	_2020-3-3.10.fi	.d —		<b>N</b>				
	-177.406		-150.876	-129.101	-115.397	-77.418 -77.100 -76.784	-51.461 -47.963 -37.483 -33.889	-16.780	1.607
	I			I	\ /			I	
	Ph∿	SiMe ₃	)-Me						
		6e	2000						
					I				
ېريې£دىمىمىكىنىڭ	anna 18. comh an an a gun a gun an Sanna Maria (gun aid		anan ang kang pang pang pang pang pang pang pang p	And a second					
)0	190 180	170 160	) 150	140 130	120 110 100	90 80 70	60 50 40 3	0 20 10	) 0 -]



S183



LSF-8-15B_C13_CDC1	3_2020-3-3.10.fid -	_									
		-150.918	$\int_{\int 129.170} 128.502$	L 128.075 	~ 112.000	$\frac{77.418}{77.101}$			ノ37.805 ノ33.960 \32.881		
Ph	SiMe ₃ Me CO ₂ Br	I				4					
						hýt mylesen Apala					
)0 190 180	170 160	150	140 130	120	110 100 90 f1 (ppm) S185	80 7	0 60	50	40 30 2	0 10	0 -1

## LSF-8-17_H1_CDC13_2020-3-3.10.fid —











rspace	77.417 $76.782$ $76.782$ $49.870$ $-1.800$
F ₃ C SiMe ₃ Me CO ₂ Me <b>6i</b>	$\int_{126.614} 129.297$ $\int_{126.512} 126.512$ $\int_{126.474} 126.437$ $-123.931$ $-123.931$ $-121.249$ $-121.249$ $-121.249$ $-116.498$ $116.175$
	wavenus and
	130 128 126 124 122 120 118 116 f1 (ppm)

	·   ·		·	·	· 1	· 1	·	'	1	·	·	· 1	·	· 1		· 1	· 1	·	·	· ·	T
)0	190	180	170	160	150	140	130	120	110	100 f1	90 (ppm)	80	70	60	50	40	30	20	10	0	-:

S191











			'			'	'	'	1		'	1 1		1 1		1	1	'			- 1
)0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	
	f1 (ppm)																				
										S	196										



LSF-6-49P-CDCL3-C13-201	9-11-12.10.fid -	_					
			-129.215	~ 115.305 ~ 111.708	77.417 77.100 76.782 66.853 66.435	$\sqrt{49.794}$ $\sqrt{45.691}$ $\sqrt{41.910}$ $-34.069$ $-30.143$ $\sqrt{23.664}$	—-1.659
9	SiMe ₃						
PhMeN	0 6l	) J					
	J					lana-lana-lana-lana-lana-lana-lana	
)0 190 180	170 160	150 140	130 120	110 100 90	80 70 60	50 40 30 20 10	0 -1
				f1 (ppm) <b>S198</b>			



LSF-6-70P_C13_C	DC13_2020-1-21.10.fi	id —								
	-171.211			-128.995	$\int 115.821$ - 114.065 $\int 111.903$		√60.639 ``58.384	~40.607 ~37.601	— 14.153	
	SiMe ₃ PhMeN	0₂Et								
\$\$\$.44.1/p3%+45%+45%+40%+40%+40%+40%+40%	tergenduptrumpropulsions	(and many of the state of the s	when the design of the second s	YA, MADER & COMPANY BOTH		ĨĨŧġŎŎĨĸĸŎĬŎĸĬĬţĸĸĸŎĬŎĸĨijĴŎĸŎţŎŎŎĬŎĬĬ ĨĨŧġŎŎĨĸĸŎĬŎĸĬĬţĸĸŎŎĬŎĸĨijĴŎĸŎţŎŎĬŎĬIJĬĬ	ully 47 jayuu valid magalaning yang paga 190	uterrubien figuri spectra ding.e	grupping from the same of the same	LAND THE REAL PROPERTY AND THE
)0 190	180 170 160	150	140	130	120 110 1	1 1 1 1 1 00 90 80 70	60 5	50 40 30	20 10	0 -1

f1 (ppm) **S200** 



LSF-6-42P-CDCL3-H1-2019-11-7.10.fid -















LSF-7-4P_C13_CDC13_201	19-12-18.10.f	id —					
7172.310	172.065	∕-151.144 \-150.684	<ul> <li>✓ 129.383</li> <li>✓ 129.298</li> <li>✓ 125.758</li> <li>✓ 121.628</li> <li>✓ 116.577</li> <li>✓ 112.702</li> </ul>	<pre></pre>	-56.571	37.011         33.011         33.5424         31.502         29.557         29.557         28.127         28.127         28.082	
	× 	r Dh			I		
PhMeN							
	CONI 3d	Me 2					
				į.			
Ny managember and a state of the					Notional States and the		www.constatestaget
)0 190 180	170 160	150 1	40 130 120 110 100 f1 (r s20	90 80 70 ppm) 28	60 5	0 40 30 20 10 0	-1

LSF-6-112P_H1_CDC13_2019-12-11.10.fid —

0 1 6 6 1 6 6 6	0 0 4 0 0	0 1 2 1 0 4 4	0 1 0 2 0 2 0 1 0 1	0 7 7 7 7 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0
0010040-0	0 0 4 0 4	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	4 6 1 0 8 1 7 9 6	
	$\circ$ $\circ$ $\circ$ $\circ$	0000488700	0 <del>4</del> <del>4</del> <del>6</del> <del>6</del> <del>6</del> <del>6</del> <del>6</del>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.00	÷ 0 0 0 0	4 4 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	5 5 5 5 5 5 5 5	
	i i i i i			





LSF-6-112P_C13_CDC13_2019-12-11.10.fid —				
-177.037 -172.308 $\left\{ 150.986$ $\left\{ 150.879$	-129.116 $\int 116.365$ $\int 116.326$ $\int 112.512$	77.418 77.100 76.783	$\int 55.340 \\ 54.907 \\ 51.593 \\ 51.478 \\$	37.194 37.076 37.076 35.942 35.404 29.551 29.551 29.561 29.365 29.365 18.191
Me				
CONMe ₂ 3e				
		1		
		Υ-		
)0 190 180 170 160 150 140	130 120 110 100	90 80 70	60 50	40 30 20 10 0 -]
	f1 () S2	opm) 11		




















## LSF-7-34P_C13_CDC13_2020-1-7.10.fid ---

)()



.0







			'	1	·	·	· ·	'	· 1	'	'	·		·	1	1	·	'	'	1	
)0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1
f1 (ppm)																					
										S2	222										



.0



