Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2020

Bimolecular Vinylation of Arenes by Vinyl Cation

Zhilong Li,^a Vincent Gandon,^{*a,b} and Christophe Bour^{*a}

^a Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420,
 91405 Orsay cedex (France).

^b Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau cedex, France

> vincent.gandon@universite-paris-saclay.fr christophe.bour@universite-paris-saclay.fr

16 Sep 2020

Note added after first publication: This Supplementary Information file replaces that originally published on 05 May 2020. The reaction time in pentane in the scheme on page 2 was incorrectly stated as 1 h in error. This has been corrected to 24 h in this updated version.

Supporting Information

CONTENTS

1	General Information	2
2	General Procedures for the alkenylation of aromatics	2
3	Deuterium labeling experiment	7
4	DFT Calculations	7
5	References	18
6	¹ H, ¹³ C, ¹⁹ F NMR spectral data	19

1 General Information

All reactions were performed in a glovebox under argon atmosphere with O_2 and $H_2O < 0.5$ ppm. All the glassware and stir bars were dried in a 120 °C oven for at least 24 h before use. Reactions were monitored using thin-layer chromatography (TLC) on silica gel plates (0.25 mm). The spots were visualized with ultraviolet light and/or *p*-anisaldehyde stain with heat as developing agent. Products were purified by flash chromatography on silica gel.

NMR characterization data was collected at 296 K on AM 250, AV 300, AV 360 or DRX 400 Bruker spectrometers operating at 250, 300, 360 or 400 MHz for ¹H NMR, ¹³C NMR and ¹⁹F NMR. ¹H NMR chemical shifts are reported in ppm using residual solvent peak as reference (CHCl₃: δ = 7.26 ppm). Data for ¹H NMR are presented as follows: chemical shift δ (ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, br = broad), coupling constant *J* (Hz) and integration; ¹³C NMR spectra were recorded at 63, 75, 91 or 100 MHz using broadband proton decoupling and chemical shifts are reported in ppm using residual solvent peaks as reference (CHCl₃: δ = 77.16 ppm). MS were recorded on DSQ Thermo Fisher instrument by electronic impact. HRMS was performed on a MicrOTOFq Bruker spectrometer.

Materials. Reagents were purchased from commercially suppliers (Alfa Aesar, Sigma Aldrich or Strem). All the solvents were distilled, degassed (freeze-pump-thaw technique) and then stored inside the glove box over 4 Å molecular sieves. The liquid substrates were passed through a glass pipette filled with aluminum oxide before use to remove traces of water. The catalyst [Li][Al(OC(CF₃)₃)₄] was synthesized according to a reported protocol.^[1] The starting vinyl triflates were synthesized according to described methods.^[2,3]

2 General Procedures for the alkenylation of aromatics

In a glovebox, a dram vial was charged with a magnetic stir bar, $[Li][Al(OC(CF_3)_3)_4]$ (0.02 equiv, 1.95 mg, 0.002 mmol) and LiHMDS (1.5 equiv, 25.10 mg, 0.15 mmol). These salts were suspended in the indicated aromatic compound (0.5 mL) or in 0.5 mL of pentane in which 2 equiv of aromatic compound were added. The heterogeneous mixture was stirred for 5 min to improve dispersion of the lithium salts. The vinyl triflate (1 equiv, 0.1 mmol) was added to the reaction mixture, which was stirred at 80 °C for 1-2 h (arene as solvent) or at rt for 24 h (pentane as solvent). After completion (TLC monitoring), the reaction mixture was cooled to room temperature and brought outside of the glovebox. It was quenched by addition of technical diethyl ether, passed through a short plug of silica and concentrated. The crude was purified by flash chromatography on silica gel.

Oct-1-en-2-ylbenzene (**2b**).^[4] Following the general procedure, using benzene as solvent at 80 °C for 1 h, product **2b** was obtained as a colorless oil in 62% yield after purification.

¹**H NMR** (360 MHz, CDCl₃) δ 7.48 – 7.20 (m, 5H), 5.29 (d, *J* = 1.6 Hz, 1H), 5.08 (d, *J* = 1.6 Hz, 1H), 2.53 (td, *J* = 7.4, 1.3 Hz, 2H), 1.53 – 1.41 (m, 2H), 1.41 – 1.25 (m, 7H), 0.90 (t, *J* = 6.7 Hz, 3H).

¹³C NMR (91 MHz, CDCl₃) δ 148.81, 141.50, 128.23, 127.23, 126.13, 112.00, 35.38, 31.69, 29.05, 28.25, 22.65, 14.10.

2,3,4,5-Tetrahydro-1,1'-biphenyl (**2d**).^[5] Following the general procedure, using benzene as solvent at 80 °C for 2 h, product **2d** was obtained as a colorless oil in 63% yield after purification.

¹**H NMR** (300 MHz, CDCl₃) δ 7.45 – 7.21 (m, 5H), 6.16 (dt, *J* = 4.0, 2.2 Hz, 1H), 2.49 – 2.41 (m, 2H), 2.29 – 2.20 (m, 2H), 1.87 – 1.77 (m, 2H), 1.76 – 1.65 (m, 2H).

 $^{13}\textbf{C}$ NMR (75 MHz, CDCl₃) δ 142.69, 136.57, 128.19, 126.51, 124.93, 124.79, 27.40, 25.90, 23.08, 22.18.

Methyl-2,3,4,5-tetrahydro-1,1'-biphenyl (**2e**).^[6] Following the general procedure, using toluene as solvent at 80 °C for 2 h, the mixture of o,m,p-product **2e** (ratio = 3:2:1) was obtained as a colorless oil in 73% yield after purification.

¹**H NMR** (360 MHz, CDCl₃) δ 7.33 – 7.08 (m, 8H), 6.17 – 6.09 (m, 1H), 5.61 – 5.56 (m, 1H), 2.46 – 2.40 (m, 2H), 2.39 (s, 1H, *o*-methyl product), 2.37 (s, 2H, *m*-methyl product), 2.32 (s, 3H, *p*-methyl product), 2.26 – 2.17 (m, 6H), 1.85 – 1.66 (m, 8H).

¹³C NMR (91 MHz, CDCl₃) δ 144.68, 142.77, 139.87, 138.86, 137.64, 136.71, 136.39, 136.11, 135.02, 129.96, 128.89, 128.30, 128.10, 127.28, 126.39, 125.81, 125.65, 125.48, 124.82,

124.63, 123.94, 122.10, 30.12, 27.51, 27.44, 25.88, 25.42, 23.14, 23.11, 22.23, 21.57, 21.06, 19.79.

1-Phenylcyclohept-1-ene (**2g**).^[5] Following the general procedure, using benzene as solvent at 80 °C for 2 h, product **2g** was obtained as a colorless oil in 82% yield after purification. ¹H NMR (300 MHz, CDCl₃) δ 7.41 – 7.20 (m, 5H), 6.15 (t, *J* = 6.8 Hz, 1H), 2.73 – 2.61 (m, 2H), 2.38 – 2.29 (m, 2H), 1.93 – 1.85 (m, 2H), 1.74 – 1.66 (m, 2H), 1.65 – 1.56 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 145.01, 145.00, 130.47, 128.14, 126.27, 125.68, 32.86, 32.82, 28.92, 26.97, 26.84.

Ethene-1,1-diyldibenzene (**2i**).^[7] Following the general procedure, using benzene as solvent at 80 °C for 0.5 h or pentane as solvent with 2 equiv of benzene at rt for 24 h, product **2i** was obtained as a colorless oil in 83% yield after purification.

¹**H NMR** (360 MHz, CDCl₃) δ 7.43 – 7.34 (m, 10H), 5.52 (s, 2H).

 $^{13}\textbf{C}$ NMR (91 MHz, CDCl_3) δ 150.20, 141.62, 128.40, 128.29, 127.83, 114.42.

1-Fluoro-4-(1-phenylvinyl)benzene (**2j**).^[8] Following the general procedure, using pentane as solvent with 2 equiv of benzene at rt for 24 h, product **2j** was obtained as a colorless oil in 68% yield after purification.

¹**H NMR** (360 MHz, CDCl₃) δ 7.39 – 7.29 (m, 4H), 7.09 – 7.02 (m, 2H), 5.47 (d, *J* = 1.2 Hz, 1H), 5.45 (d, *J* = 1.2 Hz, 1H).

¹³C NMR (91 MHz, CDCl₃) δ 162.53 (d, J = 246.7 Hz), 149.07, 141.33, 137.56 (d, J = 3.3 Hz), 129.90 (d, J = 8.0 Hz), 128.26, 128.21, 127.89, 115.05 (d, J = 21.3 Hz), 114.24.
¹⁹F NMR (235 MHz, CDCl₃) δ -114.69.

1-Chloro-4-(1-phenylvinyl)benzene (**2k**).^[7] Following the general procedure, using pentane as solvent with 2 equiv of benzene at rt for 24 h, product **2k** was obtained as a colorless oil in 68% yield after purification.

¹**H NMR** (300 MHz, CDCl₃) δ 7.41 – 7.28 (m, 9H), 5.50 (d, *J* = 1.1 Hz, 1H), 5.48 (d, *J* = 1.1 Hz, 1H).

¹³**C NMR** (91 MHz, CDCl₃) δ 149.00, 141.04, 139.97, 133.62, 129.59, 128.37, 128.30, 128.22, 127.95, 114.72.

1-Bromo-4-(1-phenylvinyl)benzene (**2I**).^[8] Following the general procedure, using pentane as solvent with 2 equiv of benzene at rt for 24 h, product **2I** was obtained as a white solid in 69% yield after purification.

¹**H NMR** (300 MHz, CDCl₃) δ 7.53 – 7.46 (m, 2H), 7.41 – 7.32 (m, 5H), 7.29 – 7.22 (m, 2H), 5.51 (d, J = 1.1 Hz, 1H), 5.49 (d, J = 1.1 Hz, 1H).

¹³**C NMR** (91 MHz, CDCl₃) δ 149.05, 140.95, 140.44, 131.34, 129.93, 128.31, 128.22, 127.98, 121.81, 114.78.

1-(1-Phenylvinyl)-4-(trifluoromethyl)benzene (**2m**).^[7] Following the general procedure, using pentane as solvent with 2 equiv of benzene at rt for 24 h, product **2m** was obtained as a white solid in 58% yield after purification.

¹**H NMR** (300 MHz, CDCl₃) δ 7.62 (d, J = 8.2 Hz, 2H), 7.48 (d, J = 8.1 Hz, 2H), 7.41 – 7.31 (m, 5H), 5.59 (d, J = 1.0 Hz, 1H), 5.54 (d, J = 1.0 Hz, 1H).

¹³C NMR (91 MHz, CDCl₃) δ 149.10, 145.23, 140.77, 129.69 (q, *J* = 32.4 Hz), 128.69, 128.50, 128.29, 128.22, 125.30 (q, *J* = 3.8 Hz), 124.34 (d, *J* = 271.8 Hz), 116.04.
¹⁹F NMR (235 MHz, CDCl₃) δ -62.43.

1-Methyl-3-(1-phenylvinyl)benzene (**2n**).^[8] Following the general procedure, using pentane as solvent with 2 equiv of benzene for 24 h, product **2n** was obtained as a colorless oil in 41% yield after purification.

¹**H NMR** (300 MHz, CDCl₃) δ 7.37 (d, *J* = 1.2 Hz, 5H), 7.29 – 7.23 (m, 1H), 7.22 – 7.14 (m, 3H), 5.48 (s, 2H), 2.38 (s, 3H).

¹³C NMR (91 MHz, CDCl₃) δ 150.16, 141.62, 141.49, 137.74, 128.96, 128.48, 128.28, 128.14, 128.06, 127.66, 125.46, 114.17, 21.45.

1,3,5-Trimethyl-2-(1-phenylvinyl)benzene (**2o**).^[9] Following the general procedure, using pentane as solvent with 2 equiv of mesitylene for 24 h, product **2o** was obtained as a colorless oil in 63% yield after purification.

¹**H NMR** (360 MHz, CDCl₃) δ 7.26 – 7.13 (m, 5H), 6.90 – 6.80 (m, 2H), 5.88 (d, *J* = 1.4 Hz, 1H), 5.02 (d, *J* = 1.4 Hz, 1H), 2.25 (s, 3H), 2.04 (s, 6H).

¹³**C NMR** (91 MHz, CDCl₃) δ 146.84, 139.56, 138.17, 136.45, 136.15, 128.42, 128.10, 127.54, 125.83, 114.56, 21.06, 20.10.

1,4-Dimethyl-2-(1-phenylvinyl)benzene (**2p**).^[7] Following the general procedure, using pentane as solvent with 2 equiv of *p*-xylene for 24 h, product **2p** was obtained as a colorless oil in 62% yield after purification.

¹**H NMR** (360 MHz, CDCl₃) δ 7.35 – 7.26 (m, 5H), 7.14 – 7.05 (m, 3H), 5.78 (d, *J* = 2.0 Hz, 1H), 5.22 (d, *J* = 2.0 Hz, 1H), 2.37 (s, 3H), 2.04 (s, 3H).

¹³**C NMR** (91 MHz, CDCl₃) δ 149.57, 141.48, 140.68, 135.07, 132.96, 130.69, 129.98, 128.32, 128.20, 127.53, 126.52, 114.69, 20.94, 19.63.

1,4-Dimethoxy-2-(1-phenylvinyl)benzene (**2q**).^[10] Following the general procedure, using pentane as solvent with 2 equiv of 1,4-dimethoxybenzene for 24 h, product **2q** was obtained as a colorless oil in 65% yield after purification.

¹**H NMR** (300 MHz, CDCl₃) δ 7.38 – 7.23 (m, 5H), 6.91 – 6.77 (m, 3H), 5.76 (d, *J* = 1.4 Hz, 1H), 5.35 (d, *J* = 1.4 Hz, 1H), 3.81 (s, 3H), 3.60 (s, 3H).

¹³**C NMR** (91 MHz, CDCl₃) δ 153.59, 151.37, 146.86, 140.81, 132.22, 128.09, 128.05, 127.98, 127.37, 126.38, 126.34, 117.10, 115.47, 113.39, 112.78, 56.48, 55.75.

1,3,5-Trimethoxy-2-(1-phenylvinyl)benzene (**2r**).^[11] Following the general procedure, using pentane as solvent with 2 equiv of 1,3,5-trimethoxybenzene for 24 h, product **2r** was obtained as a white solid in 55% yield after purification.

¹**H NMR** (360 MHz, CDCl₃) δ 7.37 – 7.32 (m, 2H), 7.28 – 7.20 (m, 3H), 6.22 (s, 2H), 5.96 (d, *J* = 1.5 Hz, 1H), 5.22 (d, *J* = 1.5 Hz, 1H), 3.88 (s, 3H), 3.71 (s, 6H).

¹³**C NMR** (91 MHz, CDCl₃) δ 160.62, 158.72, 141.12, 140.77, 128.02, 127.98, 127.09, 125.82, 116.26, 112.37, 90.92, 56.03, 55.36.

1,2-Diphenylethyne.^[12] Following the general procedure, the product was obtained as a white solid in 71% yield.

¹H NMR (300 MHz, CDCl₃) δ 7.64 – 7.50 (m, 4H), 7.45 – 7.31 (m, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 131.64, 128.36, 128.27, 123.32, 89.40.

3 Deuterium labeling experiment

Following the general procedure, using 2 equiv of d⁶-benzene as the nucleophile in 0.2M pentane, compounds $2i-d_5^{[13]}$ and $2i-d_6^{[14]}$ (1:1 mixture of Z/E isomer) were obtained in total 63% isolated yield. The percentage of $2i-d_5$ is 67%, $E-2i-d_6$ is 16%, $Z-2i-d_6$ is 16%, which has been determined by ¹H NMR and ¹³C NMR.

¹H NMR (360 MHz, CDCl₃) δ 7.33 – 7.20 (m, 5H), 5.39 (s, 1.33H, **2i-d**₅), 5.38 (s, 0.16H, **2i-d**₆), 5.37 (s, 0.16H, **2i-d**₆).

¹³C NMR (91 MHz, CDCl₃) δ 150.03, 149.95, 141.52, 141.32, 128.30, 128.19, 127.73, 114.30 (**2i-d**₅), 114.01 (**2i-d**₆), 113.74(**2i-d**₆).

GC-MS: **2i-d**₅ *m*/*z*: 185.2 and **2i-d**₆ *m*/*z*: 186.3.

4 DFT calculations

Calculations were performed with the Gaussian 16 software package.^[15] Minima and transition states were optimized using the ω B97-XD functional^[16] and the 6-311+G(d,p) basis set, with an ultrafine grid. Solvation energy was obtained using the SMD model.^[17] This level of theory was recently used by Lavallo, Houk, Nelson and co-workers to study CH-insertion at vinyl carbocations deriving from vinyl triflates.^[18] Due to the size of the system, the structure of the Int-a/[Al(OC(CF₃)₃)₄] adduct was optimized at the ω B97-XD/6-31G(d,p) level.

Table S1. Geometries (selected distances in Å), imaginary frequencies (cm⁻¹), energies(optimized structure and SMD single point, Hartree) and coordinates (x,y,z) of the computedspecies.

E(RwB97XD) = E(RwB97XD) =	Li+ -7.29270972418 -7.35818344695		Q	E(RwB97XD) E(RwB97XD)	i = -1270.436 = -1270.446	65299
Li O	0	0	こ こ	0.466848 0.341221 -0.588612 -2.256873 -1.961389 -2.891221 -0.606417 -1.436739 -0.493385 -0.980709 -2.494872 1.180589 1.655645 2.566449 1.883367 3.694438 3.011577 3.920776 2.377864 1.17727 4.390857 3.180435 4.799104	1.527179 2.770791 3.313246 1.272963 0.452721 0.212445 0.931877 -1.219814 -1.07156 -1.971576 -1.971576 -1.797943 3.263754 0.656718 0.78592 -0.304144 -0.019846 -1.110712 -0.969891 1.500502 -0.415714 0.083858 -1.851476 -1.603478	-0.243797 0.194083 0.09465 0.910779 -0.228435 -1.287718 -0.948432 0.429335 1.345416 -0.557663 0.974063 0.665373 -0.17445 0.875989 -1.161063 0.927596 -1.103753 -0.062409 1.669032 -1.974481 1.751682 -1.876764 -0.017088
		-			2.01	

	E(RwB97XD)	-1277.793	13653		Frequenc	cy -219.79	92
	E(RwB97XD)	-1277.843	19326		E(RwB97XD)	-1277.772	31825
					E(RwB97XD)	-1277.818	38845
0	-0.676193	1.088084	-0.831958	0	-0.741497	1.225672	-0.780852
С	0.528161	1.67585	-0.270063	С	1.093834	1.93359	-0.367507
С	0.460354	2.949107	0.072531	С	0.898602	3.19151	-0.579348
С	1.660906	0.742565	-0.223191	С	1.859286	0.798418	-0.082303
Н	-0.460877	3.512774	0.013836	н	-0.054273	3.616967	-0.859414
Н	1.355428	3.453061	0.41268	Н	1.769387	3.835522	-0.474326
S	-1.754131	0.42152	0.097991	S	-1.640962	0.482233	0.121602
0	-1.901575	1.057417	1.366247	0	-1.292923	0.541504	1.557892
0	-2.920671	0.284892	-0.780158	0	-3.073413	0.785987	-0.025818
С	-1.175473	-1.356055	0.353867	С	-1.444305	-1.304943	-0.378467
Li	-4.482653	0.409189	-1.650908	Li	-3.274606	0.873638	1.953625
F	-0.154015	-1.369018	1.169628	F	-0.187691	-1.673159	-0.188341
F	-0.858836	-1.875209	-0.813036	F	-1.768898	-1.45262	-1.643739
F	-2.197215	-2.007191	0.877314	F	-2.241749	-2.037666	0.384998
С	2.528683	0.766573	0.870095	С	2.005564	0.365361	1.250887
С	1.884734	-0.157621	-1.267842	С	2.491105	0.108811	-1.137531
С	3.614374	-0.096852	0.912262	С	2.796691	-0.733913	1.519311
н	2.340286	1.445604	1.693981	Н	1.493964	0.896441	2.043691
С	2.968715	-1.021068	-1.217281	С	3.276245	-0.989571	-0.851152
н	1.221942	-0.170133	-2.125349	н	2.356521	0.451502	-2.156449
С	3.834056	-0.991738	-0.128486	С	3.425547	-1.406424	0.47187
н	4.283039	-0.078221	1.76442	н	2.927454	-1.073657	2.53897
н	3.145217	-1.71214	-2.032861	н	3.774543	-1.524899	-1.649504
н	4.68006	-1.667781	-0.091396	н	4.043909	-2.269852	0.689931
	E(RwB97XD) = E(RwB97XD) =	Int-b = -1277.776 = -1277.824	82505 .01455		E(RwB97XD) = E(RwB97XD) =	C ₆ H ₆ = -232.2209 = -232.2288	948799 361910
0	-0.845012	1.438548	-0.633321	С	0.32214	1.352859	0.000036
С	1.778495	2.027541	-0.338009	С	1.332913	0.397381	-0.000069

С	1.472329	3.234183	-0.629993	С	-1.01059	0.955532	0.000026
С	2.165856	0.76065	-0.033351	С	1.010707	-0.955423	-0.000032
н	0.458954	3.458991	-0.95504	С	-1.332907	-0.397521	-0.000024
н	2.213613	4.026201	-0.554049	С	-0.322267	-1.352836	0.000022
S	-1.680013	0.586622	0.186814	н	2.372006	0.707599	-0.000049
0	-1.243508	0.397854	1.598816	н	-1.798525	1.700581	-0.000118
0	-3.13119	0.869187	0.214732	н	1.798375	-1.700722	0.000172
С	-1.54092	-1.110422	-0.565853	н	-2.372078	-0.707368	-0.000106
Li	-3.163458	0.61901	2.14723	н	-0.573152	-2.407804	0.00015
F	-0.264346	-1.494195	-0.55577	Н	0.573397	2.407765	0.000197
F	-1.981257	-1.100355	-1.807008				
F	-2.252081	-1.969822	0.154679				
С	1.994105	0.266018	1.290647				
С	2.73052	-0.063862	-1.048412				
С	2.393516	-1.016516	1.581874				
н	1.533862	0.900405	2.037108				
С	3.126042	-1.340631	-0.731459				
н	2.838452	0.33031	-2.051616				
С	2.957355	-1.808027	0.576682				
н	2.268854	-1.415155	2.580267				
н	3.560213	-1.984016	-1.485821				
Н	3.269685	-2.818682	0.816747				
						V	
	E(RwB97XD)	LiOTf = -969.0572	115322			Int-c	
	E(RwB97XD)	LiOTf = -969.0572	115322		E(RwB97XD)	Int-c = -540.9295	527094
	E(RwB97XD)	LiOTf = -969.0572	15322		E(RwB97XD) E(RwB97XD)	Int-c = -540.9295 = -540.9785	527094 584690
0	E(RwB97XD)	LiOTf = -969.0572 -0.45046	1.189796	C	E(RwB97XD) E(RwB97XD) -1.296276	Int-c = -540.9295 = -540.9785 -0.006476	527094 584690 -1.306931
O S	E(RwB97XD)	LiOTf = -969.0572 -0.45046 0.290212	1.189796 -0.000025	C C	E(RwB97XD) E(RwB97XD) -1.296276 0.294261	Int-c = -540.9295 = -540.9785 -0.006476 -0.026853	527094 584690 -1.306931 1.449308
0 S O	E(RwB97XD) -1.287752 -0.777609 -1.288251	LiOTf = -969.0572 -0.45046 0.290212 -0.448944	1.189796 -0.00025 -1.190443	C C C	E(RwB97XD) E(RwB97XD) -1.296276 0.294261 -0.759397	Int-c = -540.9295 = -540.9785 -0.006476 -0.026853 -0.040162	527094 584690 -1.306931 1.449308 2.168711
0 S O O	E(RwB97XD) -1.287752 -0.777609 -1.288251 -0.891127	LiOTf = -969.0572 -0.45046 0.290212 -0.448944 1.721016	1.189796 -0.00025 -1.190443 0.000877	C C C C	E(RwB97XD) E(RwB97XD) -1.296276 0.294261 -0.759397 1.450977	Int-c = -540.9295 = -540.9785 -0.006476 -0.026853 -0.040162 -0.013152	527094 584690 -1.306931 1.449308 2.168711 0.728804

F	1.622733	0.407086	1.080588	Н	-1.748814	-0.03604	1.699772
F	1.623365	0.408817	-1.079564	н	-0.382379	-0.018961	-1.89172
F	1.215637	-1.421008	-0.001088	С	-1.914558	-1.205785	-0.959364
Li	-2.081134	-1.734915	0.00016	С	-1.869943	1.209553	-0.940813
				С	-3.104057	-1.189229	-0.239005
				н	-1.481624	-2.150727	-1.268213
				С	-3.059626	1.226349	-0.220838
				н	-1.402355	2.142428	-1.23569
				С	-3.675213	0.026827	0.132977
				н	-3.5953	-2.11982	0.02064
				н	-3.51625	2.170467	0.052732
				н	-4.611467	0.039908	0.679327
				С	2.051535	-1.241712	0.334279
				С	2.043831	1.229739	0.369036
				С	3.214894	-1.215745	-0.398035
				н	1.580667	-2.175845	0.616101
				C	3.207208	1.231617	-0.363685
				Н	1.567151	2.15261	0.676959
				С	3.784824	0.014814	-0.742851
				н	3.689585	-2.138385	-0.706599
				Н	3.676096	2.165492	-0.64624
				Н	4.702387	0.025803	-1.321166
		2.24		0=		Int-d	
					E(RwB97XD) =	-540.9424	31730
		TS _{cd}			E(RwB97XD) =	-540.9945	34562
	Frequence	cy -259.757	77				
	E(RwB97XD)	-540.9220	77870				
	E(RwB97XD)	-540.9694	22942				
С	-1.220942	-0.435027	-0.937163	С	-0.073496	1.460269	0.059076
C	-0.009422	-0.126092	0.916909	Η	-1.236263	3 168322	0.456664

С	-0.794003	-0.154737	1.944371	С	-0.254628	2.767381	0.235567
С	1.312738	-0.058064	0.414758	н	1.946507	1.791348	-0.486308
Н	-0.321097	-0.173787	2.924582	н	0.561301	3.479806	0.180098
Н	-1.877918	-0.163979	1.893907	С	1.338735	0.906877	-0.165853
Н	-0.349612	-0.789338	-1.471695	С	2.071096	0.500067	1.042304
С	-2.250559	-1.347394	-0.619835	С	1.494897	0.025052	-1.329377
С	-1.458699	0.951996	-0.832973	С	2.947486	-0.548314	1.028391
С	-3.446526	-0.879417	-0.128602	С	2.375946	-1.019427	-1.323442
Н	-2.088443	-2.408933	-0.762111	С	3.096327	-1.296192	-0.151169
С	-2.679563	1.417428	-0.353534	Н	1.924865	1.10002	1.935012
Н	-0.691954	1.650021	-1.149047	Н	0.913925	0.262211	-2.214954
С	-3.658198	0.505783	0.007226	Н	3.51121	-0.815205	1.913263
Н	-4.239961	-1.569933	0.130868	Н	2.510532	-1.639726	-2.200275
Н	-2.863193	2.481213	-0.270925	Н	3.793496	-2.128813	-0.153711
Н	-4.611863	0.861929	0.380465	С	-1.161032	0.452346	0.077179
С	2.013876	-1.241855	0.11819	С	-2.432265	0.777023	-0.404343
С	1.934515	1.194076	0.258767	С	-0.938555	-0.836228	0.569727
С	3.326747	-1.167153	-0.305625	С	-3.456845	-0.158323	-0.371532
Н	1.522942	-2.200886	0.237808	С	-1.964006	-1.771404	0.603624
С	3.248644	1.253917	-0.167645	С	-3.22712	-1.432844	0.133828
Н	1.38535	2.099205	0.49125	н	-2.615239	1.758542	-0.826529
С	3.939566	0.077362	-0.450996	н	0.033818	-1.117147	0.966685
Н	3.878721	-2.073134	-0.522703	н	-4.43601	0.106382	-0.752453
Н	3.739519	2.212814	-0.277836	н	-1.779105	-2.761662	1.002613
Н	4.968473	0.129872	-0.787644	Н	-4.028277	-2.161785	0.156012
C ^e	Frequence E(RwB97XD)	TS _{de} cy -922.230 = -540.9122	03 .06131		E(RwB97XD)	Int-e = -540.9993	304895
	E(RwB97XD)	= -540.9632	35437		E(RwB97XD)	-541.0478	318388
С	-0.031431	1.168073	0.026662	С	-0.004967	1.047341	0.002898
н	-0.933872	3.073748	0.316307	н	-0.821684	2.963582	0.549427
С	-0.015017	2.529166	0.128234	С	-0.02234	2.533338	-0.052826
Н	0.63961	1.240327	-1.007962	н	-0.202177	2.815374	-1.099965
н	0.89416	3.105191	-0.013093	н	0.93477	2.97634	0.21288
С	1.314021	0.386959	-0.064582	С	1.248318	0.35053	-0.026389
С	2.471337	0.877728	0.568656	С	2.405967	0.900903	0.571444

С	1.34474	-0.834613	-0.758947	С	1.35651	-0.890524	-0.699049
С	3.632465	0.131901	0.519357	С	3.602489	0.21556	0.53547
С	2.518741	-1.567554	-0.797007	С	2.570093	-1.54669	-0.765891
С	3.658253	-1.085526	-0.162537	С	3.68806	-1.002391	-0.139224
Н	2.442511	1.799025	1.136669	н	2.348903	1.832982	1.119215
Н	0.453281	-1.195111	-1.259105	н	0.498819	-1.291396	-1.22446
Н	4.519148	0.487096	1.029649	н	4.475214	0.625893	1.027837
Н	2.545758	-2.511256	-1.326964	н	2.651616	-2.477767	-1.312656
Н	4.574807	-1.66284	-0.191793	н	4.636626	-1.525121	-0.183529
С	-1.295185	0.38602	0.043188	С	-1.246843	0.335351	0.036738
С	-2.372294	0.777122	-0.753074	С	-2.430247	0.92315	-0.470131
С	-1.42108	-0.706983	0.902513	С	-1.325983	-0.946653	0.631118
С	-3.569792	0.077501	-0.689055	С	-3.622629	0.233661	-0.432292
С	-2.624262	-1.392495	0.97245	С	-2.53351	-1.615478	0.693889
С	-3.696463	-1.003296	0.175282	С	-3.675894	-1.033654	0.152242
Н	-2.272679	1.615345	-1.435372	н	-2.397817	1.901248	-0.934069
Н	-0.58627	-1.012545	1.524085	н	-0.44843	-1.376403	1.097419
Н	-4.401514	0.375164	-1.315802	н	-4.517939	0.675733	-0.851148
Н	-2.726742	-2.231466	1.649883	н	-2.591345	-2.583818	1.174888
Н	-4.632397	-1.546694	0.226668	Н	-4.620696	-1.563311	0.196182

	E(RwB97XD) =	-4755.410	36464		E(RwB97XD) =	-4747.920	59108
					E(RwB97XD) =	-4747.937	22274
Al	0.09767	0.007393	0.048726	Al	0.005108	0.015461	-0.022266
0	-0.963034	1.233462	-0.739843	0	0.780448	1.350813	0.804844
С	-1.131168	2.541976	-1.075503	С	0.641188	2.500854	1.475994
С	-2.675697	2.778954	-1.207394	С	2.066271	2.95513	1.954365
F	-3.253713	2.895227	-0.02234	F	2.762416	3.483613	0.94339
F	-2.997762	3.818018	-1.952297	F	2.00909	3.880203	2.926812
F	-3.23785	1.674122	-1.794533	F	2.755103	1.921032	2.421343

С	-0.434146	2.808104	-2.453464	С	-0.284297	2.304554	2.728599
F	-1.11899	2.191514	-3.427526	F	0.357917	1.643999	3.694817
F	-0.370275	4.103946	-2.746221	F	-0.710468	3.46569	3.246776
F	0.792238	2.30867	-2.447564	F	-1.356419	1.590634	2.396022
С	-0.556613	3.512436	0.013045	С	0.029634	3.615651	0.551639
F	-0.796613	3.024544	1.223599	F	0.549053	3.542665	-0.667757
F	0.758454	3.646303	-0.125059	F	-1.292333	3.469788	0.441279
F	-1.111578	4.722349	-0.07734	F	0.258428	4.853145	1.021796
0	-0.392657	-0.20452	1.687146	0	1.246677	-0.815344	-0.93282
0	-0.685691	-1.299735	-0.903476	0	-0.718892	-1.14526	1.067253
0	1.775815	0.249879	-0.166033	0	-1.265277	0.683532	-1.025217
С	-1.308279	-0.598429	2.587999	С	2.372165	-0.755521	-1.653908
С	3.020506	0.293345	0.361709	С	-2.395658	0.480217	-1.713333
С	-0.541993	-2.246761	-1.866454	С	-0.607386	-2.209149	1.870872
С	-2.742934	-0.116311	2.174064	С	3.559335	-0.182547	-0.796232
F	-3.717522	-0.739	2.819185	F	4.760443	-0.502632	-1.305182
F	-2.883486	1.189786	2.344843	F	3.497734	1.148969	-0.728542
F	-2.944382	-0.351315	0.842748	F	3.505692	-0.654729	0.443017
С	-0.930258	0.044347	3.971389	С	2.172934	0.150283	-2.921071
F	0.10659	-0.591821	4.511079	F	1.458947	-0.485008	-3.854081
F	-0.590561	1.316396	3.80596	F	1.511172	1.255832	-2.592648
F	-1.948054	-0.006831	4.837787	F	3.334155	0.516505	-3.483309
С	-1.30194	-2.163826	2.712219	С	2.721306	-2.215879	-2.111987
F	-1.897449	-2.588106	3.826721	F	3.62474	-2.239934	-3.105826
F	-1.945456	-2.710455	1.670898	F	3.224144	-2.924157	-1.096668
F	-0.057848	-2.619318	2.698263	F	1.633359	-2.844547	-2.540538
С	3.249455	1.680177	1.055171	C	-2.741554	1.808666	-2.476588
F	4.310193	1.670961	1.86221	F	-3.623815	1.612004	-3.470374
F	3.427575	2.639627	0.147039	F	-3.271596	2.712638	-1.647516
F	2.177632	2.002981	1.780066	F	-1.647431	2.341516	-3.006588
С	3.218406	-0.852732	1.416887	C	-2.210831	-0.678802	-2.75593
F	2.624135	-1.966945	0.989143	F	-1.558367	-1.694703	-2.1974
F	4.503813	-1.122715	1.636427	F	-3.376159	-1.146996	-3.224882
F	2.657951	-0.525818	2.582016	F	-1.492414	-0.265582	-3.803069
С	4.039366	0.114061	-0.81661	C	-3.580916	0.117981	-0.746563
F	4.096213	-1.16516	-1.194746	F	-3.523065	-1.16441	-0.383217
F	3.655148	0.827934	-1.868982	F	-3.522207	0.855969	0.355009
F	5.271091	0.498883	-0.476604	F	-4.782218	0.320679	-1.312984
С	0.584922	-3.275439	-1.521388	C	-1.001246	-3.510318	1.085355
F	0.520391	-3.603928	-0.239618	F	-0.423612	-3.523724	-0.109316
F	0.457826	-4.38445	-2.255101	F	-0.634974	-4.628928	1.732307
F	1.783486	-2.754336	-1.760668	F	-2.322657	-3.572778	0.896855
С	-0.237747	-1.520479	-3.219061	С	-1.59186	-2.008553	3.078404
F	0.022366	-2.335706	-4.226309	F	-1.836319	-3.1502	3.741489

F	-1.327833	-0.778241	-3.543914	F	-1.087006	-1.135558	3.956192
F	0.769777	-0.673486	-3.074928	F	-2.756076	-1.528216	2.659628
С	-1.917246	-3.000527	-1.970535	С	0.855929	-2.370291	2.42384
F	-2.081623	-3.86323	-0.987248	F	1.651775	-2.940168	1.517157
F	-2.9251	-2.081101	-1.856276	F	1.367485	-1.178729	2.715989
F	-2.093125	-3.619458	-3.126134	F	0.906579	-3.12328	3.532934
Li	-2.291302	-0.123586	-1.333142				
2	Int-a//						
	F(RwB97XD) =	= -6024 259	58311				
	E(RwB97XD) =	6024.263 6024.263	49897				
0	4,176231	0.095158	-0.74578				
C	5.230289	-0.600075	-1.403199				
C	5.307184	-0.524715	-2.725473				
C	6.04611	-1.391573	-0.465818				
н	4.636616	0.104101	-3.295768				
н	6.050329	-1.106258	-3.255936				
S	4.172027	1.683385	-0.587147				
0	4.756363	2.35751	-1.713894				
0	2.82392	1.970542	-0.129744				
C	5.293106	1.934108	0.87628				
Li	1.197818	0.686419	-0.228322				
F	6.522579	1.588125	0.534196				
F	4.877094	1.190915	1.885053				
F	5.251681	3.212539	1.204287				
С	7.374165	-1.703067	-0.772827				
С	5.492121	-1.847579	0.734194				
С	8.129873	-2.473167	0.101853				
Н	7.82245	-1.322489	-1.685053				
С	6.253571	-2.614438	1.606916				
н	4.46507	-1.609708	0.97798				
С	7.571852	-2.931004	1.292892				
н	9.161262	-2.70557	-0.141239				
н	5.810891	-2.967182	2.532375				
Н	8.165937	-3.528146	1.976691				
Al	-1.527753	-0.088731	0.00308				
0	-0.417955	0.195468	-1.388552				

С	-0.435331	0.437333	-2.732139
С	0.971541	0.052641	-3.282964
F	1.123766	-1.266496	-3.353501
F	1.230438	0.577031	-4.474803
F	1.924074	0.507113	-2.429399
С	-0.700219	1.953274	-2.970993
F	0.345934	2.663845	-2.520103
F	-0.877146	2.242106	-4.260175
F	-1.776872	2.341282	-2.296381
С	-1.509965	-0.422917	-3.464351
F	-1.485677	-1.673069	-3.014086
F	-2.726532	0.076325	-3.255701
F	-1.286121	-0.442471	-4.783218
0	-0.144773	-0.526631	1.05124
0	-2.144783	1.409291	0.604888
0	-2.739433	-1.26672	-0.300105
С	0.520685	-1.622223	1.505556
С	-4.064839	-1.539368	-0.184086
С	-1.952388	2.447771	1.442711
С	1.093231	-2.412738	0.290687
F	1.704969	-3.540668	0.631009
F	0.135255	-2.687645	-0.585403
F	1.999081	-1.627028	-0.348348
С	-0.395529	-2.550093	2.360088
F	-1.10913	-1.831593	3.216581
F	-1.232326	-3.227229	1.574866
F	0.336623	-3.43445	3.049225
с	1.691225	-1.097936	2.393379
F	2.620147	-2.027526	2.632854
F	2.308903	-0.076966	1.756242
F	1.250807	-0.631442	3.552513
C	-4,441057	-2.526007	-1.331852
F	-5,616907	-3.122542	-1.10596
F.	-4.524363	-1.87798	-2,498757
F.	-3 511046	-3 469426	-1 453867
, C	-4 344973	-2.213894	1,193869
F	-3 607818	-1 558574	2 161105
F	-5 647894	-2 215626	1 490476
F	-3 919/	-3 479/25	1 20207/
	-1 933833	-0 24/725	_0 202017
F	-7.00020 -7.002601	0.244755	0.290917
	-1 1/2017	0.732300	-1 21/1612
	-4.443217	-0 525044	-0 606366
	-0.203203	2 1052044	2 856581
	-2.21200	2.102002	2.000004

F	-2.131306	0.879653	3.214202
F	-2.073825	2.968106	3.781607
F	-3.847095	2.137452	2.858829
С	-2.705233	3.682903	0.854945
F	-2.848977	4.654721	1.763347
F	-2.023126	4.186044	-0.181938
F	-3.908174	3.327278	0.423482
С	-0.433972	2.795379	1.575421
F	0.192291	1.976502	2.424884
F	0.16912	2.624662	0.371519
F	-0.21016	4.044891	1.961878

5 References

- R. Owarzany, K. J. Fijalkowski, T. Jaroń, P. J. Leszczyński, Ł. Dobrzycki, M. K. Cyrański, W. Grochala, *Inorg. Chem.* 2016, *55*, 37–45.
- [2] S. Popov, B. Shao, A. L. Bagdasarian, T. R. Benton, L. Zou, Z. Yang, K. N. Houk, H. M. Nelson, *Science*, **2018**, *361*, 381–387.
- [3] X. Su, H. Huang, Y. Yuan, Y. Li, Angew. Chem. Int. Ed. 2017, 56, 1338–1341.
- [4] L. Nattmann, S. Lutz, P. Ortsack, R. Goddard, J. Cornella, J. Am. Chem. Soc. 2018, 140, 13628–13633.
- [5] M. O. Ganiu, A. H. Cleveland, J. L. Paul, R. Kartika, Org. Lett. 2019, 21, 5611–5615.
- [6] E. Shirakawa, R. Watabe, T. Murakami, T. Hayashi, *Chem. Commun.* **2013**, *49*, 5219–5221.
- [7] R. J. Sullivan, G. P. R. Freure, S. G. Newman, ACS Catal. **2019**, *9*, 5623–5630.
- [8] C. Chatalova-Sazepin, Q. Wang, G. M. Sammis, J. Zhu, Angew. Chem. Int. Ed. 2015, 54, 5443–5446.
- [9] P. K. Hota, A. Jose, S. K. Mandal, Organometallics, 2017, 36, 4422–4431.
- [10] Z. Zhao, Y. Dai, T. Bao, R. Li, G. Wang, J. Catal. 2012, 288, 44–53.
- [11] C. Blons, S. Mallet-Ladeira, A. Amgoune, D. Bourissou, Angew. Chem. Int. Ed. 2018, 57, 11732–11736.
- [12] Y. Zhao, Q. Song, *Chem. Commun.* **2015**, *51*, 13272–13274.
- [13] G. Zhang, Y. Lin, X. Luo, X. Hu, C. Chen, A. Lei, *Nat. Commun.* 2018, 9, 1–7.
- [14] M. Kuriyama, G. Yano, H. Kiba, T. Morimoto, K. Yamamoto, Y. Demizu, O. Onomura, Org. Process Res. Dev. 2019, 23, 1552–1557.
- [15] Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- [16] J.-D. Chai, M. Head-Gordon, *Phys. Chem. Chem. Phys.*, **2008**, *10*, 6615–6620.
- [17] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378–6398.
- B. Wigman, S. Popov, A. L. Bagdasarian, B. Shao, T. R. Benton, C. G. Williams, S. P. Fisher, V. Lavallo, K. N. Houk, H. M. Nelson, *J. Am. Chem. Soc.*, **2019**, *141*, 9140–9144.

6 ¹H, ¹³C, ¹⁹F NMR spectral data

