Supporting Information

Ultrastable Hydrido Gold Nanoclusters with the Protection of Phosphines

Shang-Fu Yuan,¹ Jiao-Jiao Li, ¹ Zong-Jie Guan,^{1,2} Zhen Lei¹ and Quan-Ming Wang^{1,2,*}

¹Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, 100084, P. R. China.

²Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.

Contents

I. Physical measurements

II. Synthesis

III. Computational details

IV. Supporting figures

I. Physical measurements

UV-Vis absorption spectra were recorded on a Shimadzu UV-2550 Spectrophotometer. Mass spectra were recorded on an Agilent Technologies ESI-TOF-MS. NMR data were recorded on a Bruker Advance II spectrometer (500MHz) (reference to external 85% H₃PO₄). ³¹P NMR spectra was recorded in CD₂Cl₂, and referenced to external 85% H₃PO₄. ¹H NMR spectra were recorded in CDCl₃, chemical shifts (δ) were reported in parts per million (ppm) relative to TMS. ²H NMR spectra were recorded in CDCl₃, 7.26).H₂ gas was analyzed on GC7920 Gas Chromatography equipped with TCD detector (N₂ carrier) at RT.

X-ray Crystallography. Intensity data of $1_{\rm H}$ and $2_{\rm H}$ were collected on an Agilent SuperNova Dual system (Cu K α) at 100K and 173K, respectively. Absorption corrections were applied by using the program CrysAlis (multi-scan). The structures were solved by direct methods, and non-hydrogen atoms except SbF₆⁻ or PF₆⁻ counteranions, solvent and water molecules were refined anisotropically by least-squares on F₂ using the SHELXTL program. The hydrogen atoms of organic ligands were generated geometrically; $1_{\rm H}$ has large solvent accessible voids since a large number of disordered solvent molecules could not be resolved. A PF₆⁻ in $2_{\rm H}$ could not be located, but the formula reported was confirmed by mass spectrometry. SQUEEZE routine in PLATON was employed in the structural refinements of $2_{\rm H}$.

II. Synthesis

Materials and reagents.

Triphenyphosphine (Ph₃P, 99.5%), 2, 2'-bipyridylamine, Sodium borodeuteride (NaBD₄, 98.0%), Thiosalicylic acid (2-COOH-PhSH, 98%) and Silver hexafluoroantimonate (AgSbF₆, 98.0%) were purchased from J&K; sodium borohydride (NaBH₄, 98%) and other reagents employed were purchased from Sinopharm Chemical ReagentCo. Ltd. (Shanghai, China). Other reagents employed were commercially available and used as received.

[Au₂₀(PPh₃)₁₂H₃](SbF₆)₃(1_H)

To a solution of Ph₃PAuCl (49 mg, 0.10 mmol) in CH₂Cl₂ (3.0 mL), AgSbF₆ (34 mg, 0.10 mmol) in methanol (2.0 mL) was added with vigorous stirring. After 60 min stirring at room temperature, the resulting solution was centrifuged for 3 min at 10000 r. min⁻¹, and the AgCl precipitate was filtered off. To this solution 2, 2'-bipyridylamine (34 mg, 0.2 mmol) was added, and EtONa (11 mg, 0.2 mmol) was subsequently added. After 30 min stirring at room temperature, a freshly prepared solution of NaBH₄ (1.8 mg in 1.0 mL of ethanol) was added dropwise with vigorous stirring. Thus, the ratio of Ph₃PAuCl/NaBH₄ is about 2:1. The solution color changed from orange to reddish-brown. After another 30 min stirring at room temperature, the mixture was refluxed at 50 °C in oil bath overnight, and finally to dark brown. Then the reaction was evaporated to dryness to give a dark brown solid. The solid was washed with ether (2×5.0 mL), then dissolved in 3.0 mL CH₂Cl₂:MeOH (v : v = 10 : 1), and the resulted solution was centrifuged for 3 min at 10000 r.min⁻¹. The brown supernatant was collected and subjected to vapor diffusion with ether : n-hexane (v : v = 1 : 5) to afford brown sheet-like crystals after 7 days in 5% yield. Red crystals of [Au₈(Ph₃P₈]²⁺ (6% yield) and black rods of [Au₉(Ph₃P₈]³⁺ (2% yield) were concomitantly crystallized, which could be separated from **1**_H manually.

Anal. UV-vis (λ , nm): 357; 414; 488; 554; 608; 715. ESI-MS (CH₂Cl₂): 2363.16 ([Au₂₀(Ph₃P)₁₂H₃]³⁺) and 2364.14 ([Au₂₀(Ph₃P)₁₂D₃]³⁺) and ²H NMR (500MHz, CHCl₃, δ , ppm): 4.69. ³¹P NMR (202 MHz, CD₂Cl₂, δ , ppm): 56.56.

[Au20(PPh3)12H2(2-COOH-PhS)](PF6)3 (2H)

To a solution of Ph₃PAuCl (49 mg, 0.10 mmol) in CH₂Cl₂ (2.0 mL), 2-COOH-PhSH (15 mg, 0.10 mmol) and HPF₆ (60 wt.% in water, 25 μ L, 0.10 mmol) were added. Then a freshly prepared solution of NaBH₄ (3.8 mg in 1.0 mL of ethanol) was added dropwise with vigorous stirring. The ratio of Ph₃PAuCl/NaBH₄ is about 1:1. The solution color changed from colorless to pale brown and finally to dark brown. After stirring overnight at room temperature in the dark, the reaction was evaporated to dryness to give a dark brown solid. The solid was washed with ether (2×5.0 mL), then dissolved in 2.5 mL CH₂Cl₂, and the resulted solution was centrifuged for 3 min at 10000 r.min⁻¹. The brown supernatant was collected and subjected to vapor diffusion with n-pentane to afford brown crystals after 7 days in 5% yield.

Anal. UV-vis (λ , nm): 339; 386; 424; 467; 603; 700. ESI-MS (CH₂Cl₂): 2413.82 ([Au₂₀(PPh₃)₁₂H₂(2-COOH-PhS)]³⁺) and 2414.67 ([Au₂₀(PPh₃)₁₂D₂(2-COOH-PhS)]³⁺). ²H NMR (500 MHz, CHCl₃, δ , ppm): 2.39.

Following the aforementioned procedures, the deuteride clusters $[Au_{20}(PPh_3)_{12}D_3](SbF_6)_3$ (1_D) and $[Au_{20}(PPh_3)_{12}D_2(2\text{-COOH-PhS})](PF_6)_3$ (2_D) can also be obtained by using NaBD₄ instead of NaBH₄.

III. Computational details

Density functional theory (DFT) calculations were performed with the quantum chemistry program Turbomole V6.4 and Gaussian 16.¹⁻² The Ph groups in cluster **1**_H was replaced by CH₃ in order to save computation time in the calculations. Starting from the structure date of the observed single crystal X-ray crystallography of $[Au_{20}(PPh_3)_{12}H_3]^{3+}$, we carried out full geometry optimization of the model cluster $[Au_{20}(PMe_3)_{12}H_3]^{3+}$.

In Turbomole calculations, geometry optimization and Time-dependent DFT calculation of the UVvis absorption spectra were done with the functional of Perdew, Burke and Ernzerhof (PBE).³⁻⁶ The def2-TZVP basis sets were used for all of the C, H, N, P and Au atoms.⁷ The calculations were performed without symmetry constraints, and the resolution of the identity method was used to speed up calculations. The TD-DFT calculations evaluate lowest 50 singlet-to-singlet excitation energies.

In Gaussian calculations, geometry optimization was done with the functional of B3LYP, and the 6-31G(d) basis set is used for C, P and H, and LANL2DZ for Au.^{2,8} The ¹H NMR calculations were computed using the gauge-including atomic orbital (GIAO) approach at the following levels of theory: PBE0/Def2-TZVP, PBE0/genecp (pcSseg-1 basis sets were used for C, P, H, and LANL2DZ for Au), B972/Def2-TZVP, B972/genecp (pcSseg-1 basis sets were used for C, P, H, and LANL2DZ for Au), B3LYP/Def2-TZVP and B3LYP/ genecp (pcSseg-1 basis sets were used for C, P, H, and LANL2DZ for Au), for Au), respectively.⁹⁻¹¹ The parameters of pcSseg-1 basis set were obtained from the well-known basis set exchange portal.¹² Total chemical shifts of atoms were defined as $\sigma = \sigma_{TMS} - \sigma_{cluster}$, where σ_{TMS} and $\sigma_{cluster}$ are, respectively, the isotropic chemical shielding of ¹H in tetramethylsilane and in the [Au₂₀(PMe₃)₁₂H₃]³⁺ cluster.

References:

- (1) F. Furche, and R. Ahlrichs, J. Chem. Phys., 2002, 117, 7433-7447.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B., Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Jr. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 16, revision C.01, Gaussian, Inc.: Wallingford, CT, 2016.
- (3) Becke, A. D. Phys. Rev. A, 1988, 38, 3098-3100.
- (4) J. P. Perdew, Phys. Rev. B, 1986, 33, 8822-8824.
- (5) J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.

- (6) R. Ahlrichs, M. Bär, M. Häser, H. Horn, and C. Kölmel, Chem. Phys. Lett., 1989, 162, 165-169.
- (7) F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297-305.
- (8) P. J. Hay, W. R. J. Wadt, Chem. Phys., 1985, 82, 299-310.
- (9) K. Wolinski, J. F. Hinton, P. Pulay, J. Am. Chem. Soc., 1990, 112, 8251-8260.
- (10) R. P. Silalahi, G. Huang, J. Liao, T. Chiu, K. K. Chakrahari, X. Wang, C. W. Liu, *Inorg. Chem.*, **2020**, *59*, 2536-2547.
- (11) F. Jensen, J. Chem. Theory Comput., 2015, 11, 132-138.
- (12) B. P. Pritchard, D. Altarawy, B. Didier, T. D. Windus, T. L. Gibson, J. Chem. Inf. Model., 2019, 59, 4814-4820.
- (13) B. Delley, J. Chem. Phys., 1990, **92**, 508-517; J. Chem. Phys., 2003, **113**, 7756-7764. Dmol3 is available from Accelrys.

IV. Supporting figures

Figure S1. The identification of the by-products (Au₈ and Au₉) in the synthesis of $[Au_{20}(PPh_3)_{12}H_3](SbF_6)_3$ by optical spectra. (Au₈ = $[Au_8(PPh_3)_8]^{2+}$ and Au₉ = $[Au_9(PPh_3)_8]^{3+}$)

Figure S2. Mass spectra of $[Au_{20}(PPh_3)_{12}H_2(2\text{-}COOH\text{-}PhS)](PF_6)_3$ and the deuteride analogue. Inset: (a) the experimental (black trace) and simulated (red trace) isotopic patterns of molecular ion peak $[Au_{20}(PPh_3)_{12}H_2(2\text{-}COOH\text{-}PhS)]^{3+}$ and (b) the experimental (black trace) and simulated (red trace) isotopic patterns of molecular ion peak $[Au_{20}(PPh_3)_{12}D_2(2\text{-}COOH\text{-}PhS)]^{3+}$, simulated (blue trace) isotopic patterns of $[Au_{20}(PPh_3)_{12}DH(2\text{-}COOH\text{-}PhS)]^{3+}$ and simulated (green trace) isotopic patterns of $[Au_{20}(PPh_3)_{12}DH(2\text{-}COOH\text{-}PhS)]^{3+}$ and simulated (green trace) isotopic patterns of $[Au_{20}(PPh_3)_{12}DH(2\text{-}COOH\text{-}PhS)]^{3+}$.

Figure S3. (a) $[Au_6H_3]$ motif in cluster 1_H and (b) $[Au_6H_2S]$ motif in cluster 2_H . Show both of the three interface bond Lengths. Atom colors: orange = Au, black = H, purple = P, yellow = S, gray = C; the positions of hydrides are hypothetic.

Figure S4. Comparison of the Au_{20} core structures of cluster 1_H (left) and 2_H (right).

Figure S5. ³¹P NMR spectroscopy of [Au₂₀(PPh₃)₁₂H₃](SbF₆)₃ in CD₂Cl₂.

Figure S6. Optimized structure of $[Au_{20}(PPh_3)_{12}H_3]^{3+}$ cluster. CH₃ group was used as a substitute of Ph in the Ph₃P ligand for simplification. Atom colors: orange=Au; purple=P; gray=C; white=H. Three hydrides were highlighted in black balls.

Figure S7. (a) Comparison of optical spectra of $1_{\rm H}$ and $2_{\rm H}$ in CH₂Cl₂. (b) Experimental and calculated UV-vis spectra of $1_{\rm H}$.

Figure S8. Comparison of optical spectra of 1_H and 2_H at eV energy scale.

Figure S9. Structural comparison of (a) [Au₉(Ph₃P)₈]³⁺, (b) Au₁₁(Ph₃P)₇Cl₃, (c) [Au₂₀(Ph₃P)₁₂H₃]³⁺.

Figure S10. Time-dependent UV-Vis spectra of $1_{\rm H}$ for monitoring stability under various conditions. (a) acidic environment: 2 mL 2.5 μ M Au₂₀ in CH₂Cl₂ and mixed with different portions of 0.1 M HPF₆ in MeOH; (b) alkaline environment: 2 mL 2.5 μ M Au₂₀ in CH₂Cl₂ and mixed with different portions of 0.1 M MeONa in MeOH; (c) 2-COOH-PhSH added experiment: 2 mL 2.5 μ M Au₂₀ in CH₂Cl₂ and added different equivalents of 2-COOH-PhSH in MeOH; (d) high temperature environment: Au₂₀ (2 mg) was dissolved in 1 mL CH₂Cl₂ and 3 mL toluene at 70 °C.

Figure S11. GC Analysis: (a) Conditions: 2 mg 1_H was dissolved in 10 mL DMF and in the presence of 1 mL CH₃COOH (black) or HNO₃ (red) for 1 h. (b) Conditions: 2 mg 1_H was dissolved in 10 mL DMF and heated at 100 °C for various times.

	Bond length (Å)				
	bond	X-ray	DFT		
Cluster 1	Au-H		1.744-1.798		
	Au-Au within Au ₁₁	2.6329(8)-3.1475(8)	2.701-3.216		
	Au-Au within Au₃	2.6395(8)–2.9559(8)	2.700-2.959		
	Au-Au (H)	2.6641(8)-2.6698(8)	2.743-2.752		
	Au-P	2.276(4)-2.306(4)	2.325-2.356		
Cluster 2	Au-H				
	Au-S	2.383(3)-2.388(3)			
	Au-Au (H)	2.6614(6)-2.6659(6)			
	Au-Au (S)	3.1920(7)			

Table S1. Selected structural parameters and the corresponding DFT computed values.

Table S2. The ²H NMR results of 1_D and the corresponding DFT computed values. NMR shifts (minimum and maximum) are shown in brackets.

Atoms	NMR shifts (ppm)							
	Expt. (² H)	Calc. (¹ H)						
Hydrides	4.69	b3lyp-	b972-	pbe0-	b3lyp-	b972-	pbe0-	
		pcSseg	pcSseg	pcSseg	tzvp	tzvp	tzvp	
		5.57	5.73	5.67	5.33	5.62	5.57	
		(5.00-6.48)	(5.17-6.66)	(5.06-6.59)	(4.69-6.40)	(4.99-6.72)	(4.93-6.66)	
CH₃-(H)		1.75	1.78	1.87	1.49	1.53	1.65	
		(1.46-2.31)	(1.49-2.33)	(1.55-2.38)	(1.24-2.99)	(1.29-2.05)	(1.39-2.15)	

Table S3. The Mulliken, natural bond orbital (NBO), and Hirshfeld charge distribution for $[Au_{20}H_3P(CH_3)_3)_{12}]^{3+}$. Charge variations (minimum and maximum) are shown in brackets. The Mulliken and NBO charge distributions are obtained from Gaussian 09, and Hirshfeld charge distribution is obtained from Dmol3.¹³

	Num.	Mulliken	NBO	Hirshfeld
Charge/Au in Au ₁₁	1	3.872	-2.161	-0.0448
inner core				
Charge/Au in Au₃	1	0.419	-1.032	-0.0530
inner core				
Charge/Au in Au-	7	-0.871 (-0.996, -0.729)	0.184 (0.160, 0.229)	-0.0312 (-0.0424, -0.0194)
[P(CH ₃) ₃] of Au ₁₁				
Charge/Au in Au-	5	-0.733 (-0.992, -0.549)	0.138 (0.102, 0.161)	-0.0241 (-0.0534, -0.0107)
[P(CH ₃) ₃] of Au ₉				
Charge/P(CH ₃) ₃ in Au-	12	0.702 (0.661, 0.722)	0.991 (0.982, 1.005)	0.2691 (0.2642, 0.2762)
[P(CH ₃) ₃]				
Charge/Au in Au ₆	6	0.022 (-0.662, 0.578)	0.077 (-0.011, 0.113)	-0.0286 (-0.0327, -0.0249)
interface				
Charge/H bridging in	3	0.080 (0.071, 0.098)	-0.203 (-0.210,-0.197)	-0.0991 (-0.1066, -0.0951)
Au₅ interface				