Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2020

# **Supporting information**

# Chemical State Tuning of Surface Ce Species on Pristine CeO<sub>2</sub> with 2400% Boosting in Peroxidase-like Activity for Glucose Detection

Jieru Zhang,<sup>a</sup> Zicong Tan,<sup>a</sup> Wanying Leng,<sup>a</sup> Yu-Cheng Chen,<sup>b</sup> Shiqing Zhang,<sup>c</sup> Benedict T.W. Lo<sup>d</sup>, Ken Kin Lam Yung<sup>c</sup> and Yung-Kang Peng<sup>\*a,e</sup>

<sup>a</sup>Department of Chemistry, City University of Hong Kong, Hong Kong, China.

<sup>b</sup>Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.

<sup>c</sup>Department of Biology, Hong Kong Baptist University, Hong Kong, China.

<sup>d</sup>Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China.

<sup>e</sup>City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.

\*Correspondence: <a href="https://www.ykengecityu.edu.hk">ykeng@cityu.edu.hk</a>

#### EXPERIMENTAL SECTION

#### Materials.

Cerium (III) nitrate hexahydrate  $(Ce(NO_3)_3 \cdot 6H_2O,$ reagent grade, Sigma-Aldrich), hexamethylenetetramine (HMT, reagent grade, Sigma-Aldrich), Sodium hydroxide (reagent grade, Sigma-Aldrich), Sodium Acetate (CH<sub>3</sub>COONa, Sigma-Aldrich), Acetic acid (AcOH, Sigma-Aldrich), Ethanol (absolute  $\geq$  99.8%, Sigma-Aldrich), Hydrogen peroxide solution (30 % (w/w) in H<sub>2</sub>O, Sigma-Aldrich), 3,3',5,5'-Tetramethylbenzidine (TMB, Aladdin), Glucose (Sigma-Aldrich), Glucose oxidase (GOx, 145.2 kU g-1,Sigma-Aldrich), Human serum sample (Solarbio.), Fetal bovine serum (FBS)(Life technologies), Horse serum sample (Life technologies), Phosphate buffer solution (PBS, pH 7.0, 10X, J&K), Acetate buffer solution (pH=4.0) was prepared by AcOH and CH<sub>3</sub>COONa, Water was purified by a Millipore Milli-Q System (resistivity is  $18.2 \text{ M}\Omega \cdot \text{cm}$ ).

#### Synthesis of CeO2 shapes.

CeO<sub>2</sub> octahedron was synthesized by mixing 1 mmol of Ce(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O and 25 mmol of HMT in deionized water (50 mL) at 75 °C for 3 hours. Both rod and cube were prepared by heating the solution of Ce(NO<sub>3</sub>)<sub>3</sub> and NaOH at 100°C and 180°C hydrothermally for 24 hours. 0.744g of Ce(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O was mixed with 30 mL of 6 M NaOH solution for rod, while 0.6513g of Ce(NO<sub>3</sub>)<sub>3</sub>.6H<sub>2</sub>O was mixed with 30 mL of 3M NaOH solution for cube. All products were washed three times with deionized water and dried at 200 °C before use.

#### Peroxidase mimicking activity and Michaelis-Menten kinetic study.

The peroxidase mimicking reaction was initiated by mixing  $25 \ \mu L \ CeO_2$  solution (1.0 mg/mL), 0.3 mL TMB solution (10 mM), 2.375 mL acetate buffer (50 mM, pH=4.0) and 0.3 mL H<sub>2</sub>O<sub>2</sub> solution (1 M). The final concentration of TMB and H<sub>2</sub>O<sub>2</sub> were thus 1 mM and 0.1 M. To compare activity of CeO<sub>2</sub> shapes with similar surface area, the concentration of CeO<sub>2</sub> rod for this reaction was fixed at 1.0 mg/mL and the concentration for cube and octahedron can be calculated 3.3 mg/mL and 2.0 mg/mL according to the difference in their surface area. For Michaelis–Menten kinetic analysis, different concentration of substrates (H<sub>2</sub>O<sub>2</sub> and TMB) were adopted to evaluate the corresponding affinity to CeO<sub>2</sub> shapes (see Figure S5). For H<sub>2</sub>O<sub>2</sub>, 0.3 mL H<sub>2</sub>O<sub>2</sub> solution (1 mg/mL). The final concentration of H<sub>2</sub>O<sub>2</sub> was 0.01, 0.2, 0.05, 0.1, 0.2, 0.5, 1, 2 M) was pre-mixed with 0.3 mL TMB solution (10 mM) and 2.375 mL acetate buffer (50 mM, pH=4.0) before adding 25  $\mu$ L CeO<sub>2</sub> solution (1 mg/mL). The final concentration of H<sub>2</sub>O<sub>2</sub> was 0.01, 0.32, 0.05, 0.1, 0.2, 0.5, 1, 2 M respectively. Similar for TMB, 0.3 mL TMB solution with different concentration of H<sub>2</sub>O<sub>2</sub> solution (0.1 M) and 2.375 mL acetate buffer (50 mM, pH=4.0) before adding 25  $\mu$ L CeO<sub>2</sub> solution (1 mg/mL). The final concentration of 1.1 M) and 2.375 mL acetate buffer (50 mM, pH=4.0) before adding 25  $\mu$ L CeO<sub>2</sub> solution (1 mg/mL). The final concentration (0.1 M) and 2.375 mL acetate buffer (50 mM, pH=4.0) before adding 25  $\mu$ L CeO<sub>2</sub> solution (1 mg/mL). The final concentration (0.1 M) and 2.375 mL acetate buffer (50 mM, pH=4.0) before adding 25  $\mu$ L CeO<sub>2</sub> solution (1 mg/mL). The final concentration (0.1 M) and 2.375 mL acetate buffer (50 mM, pH=4.0) before adding 25  $\mu$ L CeO<sub>2</sub> solution (1 mg/mL). The final concentration (0.1, 0.2, 0.5, 1, 2, 5, 10, 20 mM) was pre-mixed with 0.3 mL H<sub>2</sub>O<sub>2</sub> solution (0.1 M) and 2.375 mL acetate buffer (50 mM, pH=4.0) before adding 25  $\mu$ L CeO<sub>2</sub> solution (1 mg/mL). The final concentration of TMB was 0.01, 0.02, 0.05, 0

$$V = V_{max} \frac{[S]}{([S] + K_m)}$$

Where V is the initial speed,  $V_{max}$  is the maximum reaction speed, [S] is the concentration of  $H_2O_2$  or TMB, and  $K_m$  is the corresponding Michaelis constant. Measurements were recorded by UV-Vis every 6 second at room temperature. The initial reaction rate  $V_0$  was calculated from the first 5 minutes of the reaction.

#### H<sub>2</sub>O<sub>2</sub> and glucose detection.

For  $H_2O_2$  detection,  $H_2O_2$  solution with different concentration (0.01, 0.02, 0.03, 0.04, 0.05, 0.075, 0.1, 0.2, 0.5, 1, 2, 3 mM) was firstly prepared. 300  $\mu$ L  $H_2O_2$  solution was pre-mixed with 300  $\mu$ L TMB

solution (20 mM) and 2.35 mL acetate buffer (50 mM, pH=4.0). The reaction was carried out at 37 °C and initiated by adding 50  $\mu$ L CeO<sub>2</sub> solution (1 mg/mL). The final concentration of H<sub>2</sub>O<sub>2</sub> was 1, 2, 3, 4, 5, 7.5, 10, 20, 50, 100, 200, 300  $\mu$ M respectively. UV-vis was used to record the generation of TMB<sub>ox</sub> at 652 nm after 20 min of reaction. For glucose detection, glucose solution with different concentration (0.01, 0.02, 0.03, 0.04, 0.05, 0.075, 0.1, 0.2, 0.5, 1, 2, 3 mM) was also prepared first. 300  $\mu$ L of this solution with different concentration was allowed to react with 50  $\mu$ L GOx (10 mg/mL) for 30 minutes at 37 °C (denoted as solution A). Solution B was individually prepared by mixing 300  $\mu$ L TMB solution (20 mM), 2.3 mL acetate buffer (50 mM, pH=4.0) and 50  $\mu$ L CeO<sub>2</sub> solution (1 mg/mL). Solution A was then mixed with solution B for another 20 minutes at 37 °C. The final concentration of glucose was 1, 2, 3, 4, 5, 7.5, 10, 20, 50, 100, 200, 300  $\mu$ M respectively. UV-vis was also used to record the generation of corresponding TMB<sub>ox</sub> at 652 nm. The limit of detection (LOD) was calculated using the formula: LOD = 3 (SD / B), where B and SD represent the slope of the resulting calibration curve and the corresponding standard deviation of y-intercept.<sup>1</sup>

## Selectivity test.

300  $\mu$ L of ascorbic acid, cysteine, agarose, sucrose, D-sorbitol and glutathione solution was individually prepared (5 mM) for selectivity test. 300  $\mu$ L of each solution was mixed with 50  $\mu$ L GOx (10 mg/mL) and incubated at 37 °C for 30 minutes. The solution was then mixed with solution B prepared above and allowed to react at 37 °C for another 20 minutes. UV-vis was used to record the generation of corresponding TMB<sub>ox</sub> at 652 nm. Note that the result of 1 mM glucose solution was compared in Figure 4e.

## Glucose detection in serum samples.

Each serum sample was diluted 10 times by PBS buffer before use. 150  $\mu$ L serum sample was mixed with 50  $\mu$ L GOx (10 mg/mL) and incubated at 37 °C for 30 minutes. This solution was then mixed with solution B prepared above and allowed to react at 37 °C for another 20 minutes. UV-vis was used to record the generation of corresponding TMB<sub>ox</sub> at 652 nm.

## Linear sweep voltammetry (LSV) measurement.

LSV measurement was carried out by CHI650E Electrochemistry Workstation using Ag/AgCl as reference electrode and a Pt wire as counter electrode. The glass carbon electrode (GCE) (working electrode) was prepared by mixing 2 mg CeO<sub>2</sub> with a conductive polymer Nafion (50  $\mu$ L; 5 wt%) in 0.45 mL solvent (ethanol : H<sub>2</sub>O = 1 : 1)

## Raman spectroscopy measurement.

BaySpec's Agility<sup>TM</sup> Raman spectrometer using an excitation laser wavelength of 785 nm was employed for the monitoring of  $H_2O_2$  activation. The  $H_2O_2$  solution (6 mM) was firstly prepared using acetate buffer (pH = 4.0, 0.5 M) and 30%  $H_2O_2$ . For Raman measurement, 3 mg of CeO<sub>2</sub> (cube/octahedron) was loaded on a clean glass slide in 2 mm\*2 mm area. The corresponding Raman spectrum obtained from raw ceria was set as 0 min. The spectra were also recorded at 1, 4, 10, 15 and 30 min after the adding 10 µL of  $H_2O_2$  solution on ceria.

## <sup>31</sup>P NMR measurement.

The surface of CeO<sub>2</sub> sample (150 mg) was firstly cleaned at 373 K under vacuum ( $10^{-1}$  Pa) for 2 h before trimethylphosphine (TMP) adsorption in a glass vial. Around 300 µmol/catalyst g of TMP was then introduced to the sample vial and allowed to reach equilibrium for 15 minutes. The <sup>31</sup>P NMR measurement (Bruker Avance III 400WB) was carried out at room temperature. The <sup>31</sup>P chemical shifts were calibrated relative to 85% aqueous solution of H<sub>3</sub>PO<sub>4</sub>. The quantitative analysis of adsorbed

TMP molecules was then calculated according to the <sup>31</sup>P calibration line established in our previous literatures.<sup>2, 3</sup>

### Density functional theory (DFT) calculation.

The DFT calculation of CeO<sub>2</sub> surfaces were carried out on the Vienna *ab initio* simulation package,<sup>4</sup> with projector augmented wave (PAW).<sup>5</sup> We introduced the on-site Coulomb interactions (DFT+U) correction, effective Hubbard U of 3 eV to the Ce(4f) states,<sup>6</sup> to obtain a better understanding of the geometric and electronic structures of CeO<sub>2</sub> surface. The lattice parameter of bulk CeO<sub>2</sub> was optimized with *k*-point sampling of  $7 \times 7 \times 7$  led to a lattice constant of 5.51 Å that is consistent with the experimental value of 5.41 Å.<sup>7</sup> CeO<sub>2</sub> surfaces were constructed as a slab within the three-dimensional periodic boundary conditions. This model was separated from their periodic images in the z direction perpendicular to the surface by a vacuum layer more than 14 Å. The slab systems were constructed from bulk parameters, the bottom three layers were fixed and the rest layers were allowed relax. The electron density of surface unsaturated Ce atom ( $\rho_{surf.}$ ) can be obtained from the optimized CeO<sub>2</sub> surfaces. This value was further compared with the electron density of their 8-coordinated counterpart in bulk ( $\rho_{bulk}$ ) by equation:  $\Delta \rho = \rho_{surf.} - \rho_{bulk}$ . Since the  $\rho_{bulk}$  of Ce is a fixed constant, the magnitude of  $\Delta \rho$  is thus proportional to the corresponding  $\rho_{surf}$  of Ce for a given CeO<sub>2</sub> surface as plotted in the middle row of Figure 1. Similar methodology has been adopted by Chen et al. to visualize the electron density contours of platinum trimer on cobalt-palladium core-shell nanocatalyst.<sup>8</sup>



**Scheme S1.** The working principle of the colorimetric assay for glucose detection: (a) Conventional "enzymatic assay" using Horseradish peroxidase (HRP) as the second enzyme. (b) Using artificial nanozyme to mimic HRP in the second enzymatic reaction of glucose detection (TMB: tetramethylbenzidine).



Scheme S2. Surface crystallographic  $CeO_2(111)$ ,  $CeO_2(110)$  and  $CeO_2(100)$  structures. The number labelled on the Ce atom shows its coordination number. Middle row: the difference in electron density between saturated Ce in bulk (8 coordination) and surface unsaturated Ce on  $CeO_2$  facets. Noted that the electron density of 7-coordinated Ce on  $CeO_2(111)$  was set at 0.0000 for comparison.



Figure S1. High-resolution TEM (HRTEM) images of CeO<sub>2</sub> (a) octahedron, (b) rod and (c) cube.



**Figure S2.** XRD patterns of the CeO<sub>2</sub> morphologies indexed to JCDPS no. 65-2795 for CeO<sub>2</sub> with a fluorite type of crystal structure.



**Figure S3.** First order fitting of peroxidase mimicking activity over  $CeO_2$  shapes with same tested (a) weight (i.e. 1 mg for each shape), (b) surface area (i.e. 2 mg for octahedron, 1 mg for rod and 3.3 mg for cube).



**Figure S4.** Deconvoluted XPS  $Ce_{3d}$  results of  $CeO_2$  shapes. The binding energy 284.6 eV of  $C_{1s}$  was taken as the standard to calibrate all the XPS spectra. All  $Ce_{3d}$  XPS spectra were recorded by a Thermo XPS equipped Al as X-ray source.



**Figure S5.** Steady-state Michaelis-Menten study of  $CeO_2$  shapes with various concentration range for (a)  $H_2O_2$  (1 mM TMB was used) and (b) TMB (0.1 M  $H_2O_2$  was used). See Table S1 for corresponding Michaelis–Menten constant (K<sub>m</sub>) and maximum reaction rate (V<sub>max</sub>).



**Figure S6.**  $H_2O_2$  adsorption configuration on CeO<sub>2</sub> (111), (110), (100) facets and corresponding adsorption energy.



**Figure S7.** Time-dependent *in-situ* Raman spectra of  $CeO_2$  (a) octahedron and (b) cube in the presence of  $H_2O_2$ .



**Figure S8.** Linear sweep voltammetry (LSV) results of CeO<sub>2</sub> shapes. It is clearly that the cube shows higher current than the other two shapes when the applied voltage is higher than 1.75 V (vs Ag/AgCl). For example, the highest current can be found on the cube (0.533 mA) followed by the rod (0.463 mA) and octahedron (0.401 mA) when the applied voltage is fixed at 3V. This result again supports our finding that the electron density of surface Ce is shape-dependent in the order of cube (100) > rod (110) > octahedron (111).



**Figure S9.** The calibration curves and linear plots for (a, b)  $H_2O_2$  and (c, d) glucose detection using CeO<sub>2</sub> shapes as peroxidase mimetics (same weight of catalyst was used). Note that all error bars in this figure show the standard deviations of three replicates.

|       | exposed facet | $S_{BET}(m^2g^{-1})$ | Ce <sup>3+</sup> /Ce <sup>4+</sup> ratio | Ce acidity ( $\delta^{31}$ P) | [Ce] <sub>surface</sub> (µmol/g) |
|-------|---------------|----------------------|------------------------------------------|-------------------------------|----------------------------------|
| Octa. | (111)         | 46                   | 0.15                                     | -33                           | 0.54                             |
| Rod   | (110)         | 95                   | 0.25                                     | -47.5                         | 0.37                             |
| Cube  | (100)         | 29                   | 0.18                                     | -58                           | 0.21                             |

**Table S1.** General information of CeO<sub>2</sub> shapes including terminal facet, surface area,  $Ce^{3+}/Ce^{4+}$  ratio and the acidity of surface Ce and corresponding concentration.

|       | $\begin{array}{c} H_2O_2\\ K_m\left(M\right)  V_{max}\left(\mu M/min\right)\end{array}$ |        | TMB                 |                           |  |
|-------|-----------------------------------------------------------------------------------------|--------|---------------------|---------------------------|--|
|       |                                                                                         |        | K <sub>m</sub> (mM) | $V_{max}$ ( $\mu M/min$ ) |  |
| Octa. | 0.4152                                                                                  | 0.8163 | 3.7430              | 0.2736                    |  |
| Rod   | 0.3020                                                                                  | 2.5813 | 0.2302              | 0.1646                    |  |
| Cube  | 0.0309                                                                                  | 3.4521 | 0.1801              | 1.0904                    |  |

**Table S2.** Michaelis–Menten constant ( $K_m$ ) and maximum reaction rate ( $V_{max}$ ) of  $H_2O_2$  and TMB among CeO<sub>2</sub> morphologies.

**Table S3.** Comparison of Michaelis–Menten constant  $(K_m)$  and maximum reaction rate  $(V_{max})$  for different metal oxide nanozyme.

| Catalyst                           | Substrate | K <sub>m</sub> (mM) | V <sub>max</sub> (µM/ min) | Reference |
|------------------------------------|-----------|---------------------|----------------------------|-----------|
| Fe <sub>3</sub> O <sub>4</sub> NPs | $H_2O_2$  | 154                 | 5.868                      | 9         |
|                                    | TMB       | 0.098               | 2.064                      |           |
| CeO <sub>2</sub> NPs               | $H_2O_2$  | 64.6                | 3.042                      | 10        |
|                                    | TMB       | 0.046               | 0.564                      |           |
| CuO NPs                            | $H_2O_2$  | 41                  | N/A                        | 11        |
|                                    | TMB       | 0.016               | N/A                        |           |
| Co <sub>3</sub> O <sub>4</sub> NPs | $H_2O_2$  | 140.07              | 7.26                       | 12        |
|                                    | TMB       | 0.037               | 7.762                      |           |
| CeO <sub>2</sub> Octa.             | $H_2O_2$  | 415.2               | 0.8163                     | This work |
|                                    | TMB       | 3.743               | 0.2736                     |           |
| CeO <sub>2</sub> Rod               | $H_2O_2$  | 302                 | 2.5813                     | This work |
|                                    | TMB       | 0.230               | 0.1646                     |           |
| CeO <sub>2</sub> Cube              | $H_2O_2$  | 30.9                | 3.4521                     | This work |
|                                    | TMB       | 0.1801              | 1.0904                     |           |

**Discussion on Table S3:** Among CeO<sub>2</sub> shapes,  $H_2O_2$  and TMB both exhibit the highest affinity to cube followed by rod and octahedron with increasing K<sub>m</sub> value. Even though the rod shows similar TMB K<sub>m</sub> (0.203 mM) as that of the cube (0.1801 mM), its low peroxidase-like activity can be attributed to the low  $H_2O_2$  affinity of rod surface (same as the octahedron). This result thus suggests that the affinity of  $H_2O_2$  to nanozyme is the key step dictating its mimicking activity rather than that of TMB. Similar explanation can be extended to other metal oxides such as Fe<sub>3</sub>O<sub>4</sub>, Co<sub>3</sub>O<sub>4</sub> and CuO listed in Table S3. Although CeO<sub>2</sub> cube has the lowest TMB affinity (i.e. the highest in TMB K<sub>m</sub>) among them, its highest  $H_2O_2$  affinity (i.e. the lowest in  $H_2O_2$  K<sub>m</sub>) suggests that CeO<sub>2</sub> cube can be the best candidate as peroxidase mimetics among the listed metal oxides.

| Nanozyme               | Target   | Slope (10 <sup>-4</sup> ) | SD (10 <sup>-4</sup> ) <sup>a</sup> | <b>R-square</b> | Linear range | LOD (µM) <sup>b</sup> |
|------------------------|----------|---------------------------|-------------------------------------|-----------------|--------------|-----------------------|
| CeO <sub>2</sub> Octa. | $H_2O_2$ | 3.01                      | 2.578                               | 0.915           | 2-10 μM      | 2.569                 |
|                        | Glucose  | 2.86                      | 3.394                               | 0.897           | 2-10 μM      | 3.557                 |
| CeO <sub>2</sub> Cube  | $H_2O_2$ | 10.8                      | 1.952                               | 0.999           | 1-50 µM      | 0.542                 |
|                        | Glucose  | 8.83                      | 4.595                               | 0.983           | 1-100 µM     | 0.904                 |

**Table S4.** The fitting result of targets detection.

<sup>a</sup>SD= standard deviation. <sup>b</sup>LOD= Limit of detection.

**Table S5.** Target detection of different peroxidase mimics using colorimetry method.

| Nanozyme                            | Target   | Linear range | LOD      | Reference |
|-------------------------------------|----------|--------------|----------|-----------|
| CeO <sub>2</sub> NPs                | $H_2O_2$ | 0.5-1.5 μM   | 0.5 μΜ   | 10        |
|                                     | Glucose  | 6.6-130 μM   | 3 µM     |           |
| Co <sub>3</sub> O <sub>4</sub> NPs  | $H_2O_2$ | 0.05-25 mM   | 10 µM    | 12        |
|                                     | Glucose  | 0.01-10 mM   | 5 μΜ     |           |
| Fe <sub>3</sub> O <sub>4</sub> MNPs | $H_2O_2$ | 5-100 µM     | 3 µM     | 13        |
|                                     | Glucose  | 50-1000 μM   | 30 µM    |           |
| CeO <sub>2</sub> Octa.              | $H_2O_2$ | 2-10 µM      | 2.569 µM | This work |
|                                     | Glucose  | 2-10 µM      | 3.557 μM |           |
| CeO <sub>2</sub> Cube               | $H_2O_2$ | 1-50 µM      | 0.542 μM | This work |
|                                     | Glucose  | 1-100 µM     | 0.904 µM |           |

**Table S6.** Results of glucose level in serum samples determined by commercial glucose assay kit (method A, Scheme 1a) and using  $CeO_2$  cube as peroxidase mimetics (method B, Scheme 1b). The relative standard deviation (RSD) was obtained by dividing the standard deviation by the corresponding average value.

|        | Method A          | RSD  | Method B                   | RSD  | Recovery         |
|--------|-------------------|------|----------------------------|------|------------------|
|        | (mM) <sup>a</sup> | (%)  | ( <b>mM</b> ) <sup>b</sup> | (%)  | (%) <sup>c</sup> |
| Serum1 | $1.13\pm0.06$     | 5.30 | $1.02\pm0.04$              | 3.92 | 90.3             |
| Serum2 | $2.06\pm0.12$     | 5.83 | $2.15\pm0.16$              | 7.44 | 104.3            |
| Serum3 | $3.90\pm0.10$     | 2.56 | $4.01\pm0.18$              | 4.49 | 102.8            |

<sup>a</sup>The glucose level determined by the commercial glucose assay kit (method A, Scheme 1a).

<sup>b</sup>The glucose level determined by using CeO<sub>2</sub> cube as peroxidase mimetics (method B, Scheme 1b). <sup>c</sup>Recovery was calculated by dividing the averaged concentration obtained in method B by method A.

#### **References:**

- 1 Nirala, Narsingh R, Sens. Actuators B Chem. 2015, 42, 218.
- 2 Y.-K. Peng, L. Ye, J. Qu, L. Zhang, Y. Fu, I. F. Teixeira, I. J. McPherson, H. He, S. C. E. Tsang, J. Am. Chem. Soc. 2016, **138**, 2225–2234.
- Y.-K. Peng, Y. Hu, H.-L. Chou, Y. Fu, I. F. Teixeira, H. He, S. C. E. Tsang, *Nat. Commun.* 2017, 8, 675.
- 4 G. Kresse, J. Furthmüller, *Phys. Rev. B* 1996, **54**, 11169.
- 5 G. Kresse, D. Joubert, *Phys. Rev. B* 1999, **59**, 1758.
- 6 C. Loschen, J. Carrasco, K. M. Neyman, F. Illas, *Phys. Rev. B* 2007, **75**, 035115.
- 7 E. A Kümmerle, G Heger, J. Solid State Chem. 1999, 147, 485–500.
- 8 S. Dai, J.-P. Chou, K.-W. Wang, Y.-Y. Hsu, A. Hu, X. Pan, T.-Y. Chen, *Nat. Commun.* 2019, **10**, 440.
- 9 L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett, X. Yan, *Nat. Nanotechnol.* 2007, **2**, 577–583.
- 10 X. Jiao, H. Song, H. Zhao, W. Bai, L. Zhang, Y. Lv, Anal. Methods. 2012, 4, 3261–3267.
- 11 W. Chen, J. Chen, Y.-B. Feng, L. Hong, Q.-Y. Chen, L.-F. Wu, X.-H. Lin, X.-H. Xia, *Analyst.* 2012, **137**, 1706–1712.
- 12 J. Mu, Y. Wang, M. Zhao, L. Zhang, Chem. Commun. 2012, 48, 2540–2542.
- 13 H. Wei, E. Wang, Anal. Chem. 2008, 80, 2250–2254.