Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2020

Table of Contents

General Information:	2
Synthesis of substrates:	3
Asymmetric synthesis of products:	14
Determination of t _{1/2} rac and Rotation Barrier	24
Mechanistic studies:	46
Derivatizations of chiral products:	48
Application of chiral aniline catalyst 10s:	51
References:	52
X-Ray structures:	53
HPLC traces:	54
NMR spectrums:	81

General Information:

Unless otherwise noted, all commercial reagents were used without further purification. Dichloromethane, toluene, ether, THF were purified by passage through an activated alumina column under argon. Thin-layer chromatography (TLC) analysis of reaction mixtures were performed using Huanghai silica gel HSGF254 TLC plates, and visualized under UV or by staining with ceric ammonium molybdate or potassium permanganate. Flash column chromatography was carried out on Huanghai Silica Gel HHGJ-300, 300-400 mesh. Nuclear magnetic resonance (NMR) spectra were recorded using Bruker Avance III HD spectrometer (FT, 400 MHz for ¹H, 101 MHz for ¹³C). ¹H and ¹³C chemical shifts are reported in ppm downfield of tetramethylsilane and referenced to residual solvent peak (CHCl₃; $\delta H = 7.26$ and $\delta C = 77.16$, CD₃OD, $\delta H = 3.31$ and $\delta C = 49.00$, (CD₃)₂CO, $\delta H = 2.05$ and $\delta C = 29.84$). Multiplicities are reported using the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, m =multiplet, br = broad resonance. FT-IR spectras were recorded on PerkinElmer Frontier FT-IR Spectrometer, and absorption frequencies are reported in reciprocal centimeters (cm⁻¹). Mass spectral data were obtained from the Agilent Technologies 6230 TOF LC/MS spectrometer in electrospray ionization (ESI+) mode. Optical rotations were measured with an Autopol V Plus/VI digital polarimeter. X-Ray structure analyses were performed using a Bruker D8 Venture X-ray single crystal diffractometer. Enantiomeric excesses were determined on an Agilent 1260 Chiral HPLC using IA, IB, IC and ID columns under the detective wavelength of 254 nm. The racemic products were synthesized by using (\pm) -A3 or (\pm) -A8 as catalyst.

Synthesis of substrates:

Method A for synthesis of substrate 3a-3f,3h-3j

General procedure of method A for synthesis of substrate 3a-3f, 3h-3j: To a solution of 5-(tert-butyl)benzene-1,3-diamine S1^[1] (246 mg, 1.5 mmol) in DCM (8 mL) was added trimethylamine (0.19 mL, 1.35 mmol, 0.9 equiv.). Then acyl chloride (1.35 mmol, 0.9 equiv.) was added slowly at 0 °C. After stirring overnight at room temperature, the reaction mixture was quenched by adding water (15mL). The mixture was extracted with DCM for 3 times and the combined organic layer was dried over Na₂SO₄ and concentrated under vacuum, which was purified by flash column chromatography to give the substrate **3**.

N-(3-amino-5-(tert-butyl)phenyl)pivalamide (3a)

This reaction was performed on 1.5 mmol scale of **S1** with pivaloyl chloride according to **method A**. Purification by flash column chromatography (petroleum ether/EtOAc = 6: 1) gave the product **3a** (260 mg, 70%).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.26 (s, 1H), 7.06 (t, J = 2.1 Hz, 1H), 6.70 (d, J = 1.8 Hz, 1H), 6.46 (t, J = 1.9 Hz, 1H), 3.65 (s, 2H), 1.30 (s, 9H), 1.26 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 176.5, 153.2, 146.9, 138.7, 108.4, 107.2, 104.3, 39.6, 34.6, 31.2, 27.7. IR (cm⁻¹): f = 3382, 3173, 2960, 2862, 1640, 1599, 1487, 848, 700. m/z HRMS (ESI) found [M+H]⁺ 249.1955, C₁₅H₂₅N₂O⁺ requires 249.1961.

N-(3-amino-5-(tert-butyl)phenyl)isobutyramide (3b)

This reaction was performed on 1.5 mmol scale of **S1** with isobutyryl chloride according to **method A**. Purification by flash column chromatography (petroleum ether/EtOAc = 4: 1) gave the product **3b** (195 mg, 56%).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.63 (s, 1H), 7.01 (t, J = 2.1 Hz, 1H), 6.79 (t, J = 1.8 Hz, 1H), 6.43 (t, J = 1.9 Hz, 1H), 3.51 (s, 2H), 2.48 (hept, J = 6.8 Hz, 1H), 1.23 (s, 9H), 1.20 (d, J = 6.9 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 175.6, 153.2, 146.8, 138.9, 108.4, 107.4, 104.3, 36.7, 34.6, 31.2, 19.7. IR (cm⁻¹): f = 3306, 2963, 2870, 1661, 1611, 1548, 1427, 1220, 844, 733, 699. m/z HRMS (ESI) found [M+H]⁺ 235.1800, C₁₄H₂₃N₂O⁺ requires 235.1805.

N-(3-amino-5-(tert-butyl)phenyl)cyclohexanecarboxamide (3c)

This reaction was performed on 1.5 mmol scale of **S1** with cyclohexanecarbonyl chloride according to **method A**. Purification by flash column chromatography (petroleum ether/EtOAc = 4: 1) gave the product **3c** (227 mg, 55%).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.24 (s, 1H), 7.07 (t, *J* = 2.0 Hz, 1H), 6.70 (t, *J* = 1.7 Hz, 1H), 6.45 (t, *J* = 1.9 Hz, 1H), 3.44 (s, 2H), 2.19 (tt, *J* = 11.7, 3.5 Hz, 1H), 1.99 – 1.44 (m, 8H), 1.29 (d, 2H), 1.25 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 174.5, 153.3, 146.9, 138.9, 108.4, 107.2, 104.2, 46.8, 34.7, 31.3, 29.8, 25.8. IR (cm⁻¹): *f* = 3296, 2926, 2853, 1657, 1611, 1549, 1427, 1202, 843, 698. m/z HRMS (ESI) found [M+H]⁺ 275.2110, C₁₇H₂₇N₂O⁺ requires 275.2118.

N-(3-amino-5-(tert-butyl)phenyl)propionamide (3d)

This reaction was performed on 1.5 mmol scale of **S1** with propionyl chloride according to **method A**. Purification by flash column chromatography (petroleum ether/EtOAc = 3: 2) gave the product **3d** (198 mg, 60%).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.47 (s, 1H), 7.01 (s, 1H), 6.73 (s, 1H), 6.44 (s, 1H), 3.37 (s, 2H), 2.34 (q, *J* = 7.5 Hz, 2H), 1.22 (m, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 171.2, 152.1, 145.7, 137.7, 107.4, 106.3, 103.3, 33.6, 30.2, 29.7, 8.7. IR (cm⁻¹): *f* = 3303, 2962, 1569, 1613, 1551, 1430, 1222, 844, 698. m/z HRMS (ESI) found [M+H]⁺ 221.1645, C₁₃H₂₁N₂O⁺ requires 221.1648.

N-(3-amino-5-(tert-butyl)phenyl)acetamide (3e)

This reaction was performed on 1.5 mmol scale of **S1** with acetyl chloride according to **method A**. Purification by flash column chromatography (petroleum ether/EtOAc = 2: 3) gave the product **3e** (105 mg, 34%).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 (s, 1H), 7.03 (d, J = 2.1 Hz, 1H), 6.65 (t, J = 1.8 Hz, 1H), 6.45 (t, J = 1.8 Hz, 1H), 3.65 (s, 2H), 2.12 (s, 3H), 1.24 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 168.5, 153.2, 146.9, 138.7, 108.6, 107.4, 104.4, 34.7, 31.3, 24.8. IR (cm⁻¹): f = 3419, 3314, 2958, 1667, 1596, 1556, 1471, 1417, 1362, 1261, 856, 842, 698. m/z HRMS (ESI) found [M+H]⁺ 207.1488, C₁₂H₁₉N₂O⁺ requires 207.1492.

N-(3-amino-5-(tert-butyl)phenyl)benzamide (3f)

This reaction was performed on 1.5 mmol scale of **S1** with benzoyl chloride according to **method A**. Purification by flash column chromatography (petroleum ether/EtOAc = 4: 1) gave the product **3f** (267 mg, 66%).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.89 (s, 1H), 7.85 (dd, J = 7.2, 1.8 Hz, 2H), 7.56 – 7.48 (m, 1H), 7.48 – 7.40 (m, 2H), 7.19 (t, J = 2.1 Hz, 1H), 6.82 (t, J = 1.8 Hz, 1H), 6.51 (t, J = 1.9 Hz, 1H), 3.69 (s, 2H), 1.28 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 165.7, 153.3, 147.0, 138.7, 135.3, 131.7, 128.7, 127.0, 108.8, 107.6, 104.6, 34.7, 31.2. IR (cm⁻¹): f = 3426, 3314, 3218, 2954, 2899, 1647, 1610, 1550, 1421, 1294, 846, 701. m/z HRMS (ESI) found [M+H]⁺ 269.1641, C₁₇H₂₁N₂O⁺ requires 269.1648.

tert-butyl (3-amino-5-(tert-butyl)phenyl)carbamate (3g)

Procedure for synthesis **3g**: To a residue of **S2**^[1] (546 mg, 1.5 mmol) was added a solution of HCl/EA (10 mL, 2.0 M). After stirring for 1h, an aqueous solution of 1M NaOH was added until the pH of reaction mixture reached 7. The mixture was extracted with EA for 3 times and the combined organic layer was dried over Na₂SO₄ and concentrated under vacuum, which was purified by flash column chromatography (petroleum ether/EtOAc = 4: 1) to give the product **3g** (158 mg, 40%).

¹H NMR (400 MHz, Chloroform-*d*) δ 6.83 (s, 1H), 6.55 (t, *J* = 1.9 Hz, 1H), 6.48 (s, 1H), 6.40 (t, *J* = 1.9 Hz, 1H), 3.61 (s, 2H), 1.51 (s, 9H), 1.25 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 153.3, 152.9, 146.9, 139.1, 107.5, 106.3, 102.9, 80.3, 34.7, 31.3, 28.5. IR (cm⁻¹): *f* = 3426, 3348, 2955, 1726, 1603, 1549, 1495, 1233, 1153, 1065, 880, 858, 700. m/z HRMS (ESI) found [M+H]⁺ 265.1905, C₁₅H₂₅N₂O₂⁺ requires 265.1911.

benzyl (3-amino-5-(tert-butyl)phenyl)carbamate (3h)

This reaction was performed on 1.22 mmol scale of **S1** with benzyl carbonochloridate according to **method A** (using DIEPA instead of Et_3N). Purification by flash column chromatography (petroleum ether/EtOAc = 4: 1) gave the product **3h** (202 mg, 56%).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 – 7.30 (m, 5H), 6.82 (s, 1H), 6.68 – 6.54 (m, 2H), 6.43 (t, *J* = 1.9 Hz, 1H), 5.19 (s, 2H), 3.66 (s, 2H), 1.26 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 153.5, 147.0, 138.5, 136.3, 128.7, 128.4, 128.4, 108.0, 106.5, 103.0, 67.0, 34.7, 31.3, 1.2. IR (cm⁻¹): *f* = 3673, 3411, 3341, 2965, 2900, 1727, 1601, 1565, 1491, 1227, 1070, 835, 761, 693. m/z HRMS (ESI) found [M+H]⁺ 299.1746, C₁₈H₂₃N₂O₂⁺ requires 299.1754.

isopropyl (3-amino-5-(tert-butyl)phenyl)carbamate (3i)

This reaction was performed on 1.5 mmol scale of **S1** with isopropyl carbonochloridate according to **method A**. Purification by flash column chromatography (petroleum ether/EtOAc = 5: 1) gave the product **3i** (57 mg, 15%).

¹H NMR (500 MHz, Chloroform-*d*) δ 6.80 (s, 1H), 6.62 (t, *J* = 1.8 Hz, 1H), 6.56 – 6.46 (m, 1H), 6.42 (t, *J* = 1.8 Hz, 1H), 5.00 (hept, *J* = 6.2 Hz, 1H), 3.65 (s, 2H), 1.28 (d, *J* = 6.2 Hz, 6H), 1.25 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 153.4, 153.3, 146.9, 138.9, 107.7, 106.4, 102.9, 68.6, 34.7, 31.3, 22.2. IR (cm⁻¹): *f* = 3428, 2968, 2900, 1725, 1602, 1533, 1264, 1219, 736, 704. m/z HRMS (ESI) found [M+H]⁺ 251.1750, C₁₄H₂₃N₂O₂⁺ requires 251.1754.

N-(3-amino-5-(tert-butyl)phenyl)-4-methylbenzenesulfonamide (3j)

This reaction was performed on 1.6 mmol scale of **S1** with 4-methylbenzenesulfonyl chloride according to **method A**. Purification by flash column chromatography (petroleum ether/EtOAc = 4: 1) gave the product **3j** (305 mg, 60%).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.75 – 7.61 (m, 2H), 7.19 (d, *J* = 8.1 Hz, 2H), 6.99 (s, 1H), 6.42 (t, *J* = 1.8 Hz, 1H), 6.37 (t, *J* = 1.7 Hz, 1H), 6.33 (t, *J* = 2.0 Hz, 1H), 3.65 (s, 2H), 2.35 (s, 3H), 1.14 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 153.7, 147.0, 143.7, 137.4, 136.2, 129.6, 127.5, 109.5, 109.2, 105.5, 34.7, 31.1, 21.6. IR (cm⁻¹): *f* = 3385, 3254, 2964, 1598, 1315, 1153, 1090, 883. m/z HRMS (ESI) found [M+H]⁺ 319.1469, C₁₇H₂₃N₂O₂S⁺ requires 319.1475.

5-(tert-butyl)-N1-phenylbenzene-1,3-diamine (3k)

Procedure for synthesis of **3k**: To a 50 mL Schlenk tube, **S1** (1.5 mmol), Pd(dba)2 (86 mg, 0.15 mmol), BINAP (280 mg, 0.45 mmol), tBuONa (1.7 g, 18 mmol), bromobenzene (236 mg, 1.5 mmol), and toluene (15 mL) were added. The tube was charged with N₂ for three times and the mixture was then heated at 90 °C for 12 h. After cooling to room temperature, the reaction mixture was diluted with ethyl acetate and filtered through a short pad of silica. The filtrate was concentrated under vacuum to give a residue, which was purified by flash column chromatography (petroleum ether/EtOAc = 10: 1) to give the substrate **3k** (90 mg, 25%).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.25 – 7.21 (m, 2H), 7.11 – 6.99 (m, 2H), 6.94 – 6.84 (m, 1H), 6.49 (t, *J* = 1.8 Hz, 1H), 6.31 (t, *J* = 1.8 Hz, 1H), 6.28 (t, *J* = 2.0 Hz, 1H), 5.62 (s, 1H), 3.56 (s, 2H), 1.26 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 153.9, 147.1, 143.9, 143.5, 129.4, 120.7,

118.0, 106.5, 105.9, 101.8, 34.7, 31.4. IR (cm⁻¹): *f* = 3335, 3275, 2949, 1584, 1487, 1452, 1175, 837, 752, 694. m/z HRMS (ESI) found [M+H]⁺ 241.1695, C₁₆H₂₁N₂⁺ requires 241.1699.

General procedure of method B for synthesis of substrate 31-30:

S5: To a solution of 3-bromo-5-nitroaniline **S3** (810 mg, 3.7 mmol) in DCM (15 mL) was added trimethylamine (0.55 mL, 3.9 mmol, 1.05 equiv.). Then pivaloyl chloride (0.51 mL, 4.1 mmol, 1.1 equiv.) was added slowly at 0°C. After stirring at rt overnight, the reaction mixture was quenched by adding water (20 mL). The mixture was extracted with DCM for 3 times and the combined organic layer was dried over Na₂SO₄ and concentrated under vacuum to afford a residue, which was purified by column chromatography (petroleum ether/EtOAc = 10:1) as eluent to give the product **S4** (1.08 g, 96%). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.28 (t, *J* = 2.0 Hz, 1H), 8.24 (t, *J* = 1.9 Hz, 1H), 8.06 (t, *J* = 1.9 Hz, 1H), 7.62 (s, 1H), 1.33 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 177.3, 149.0, 140.2, 128.5, 123.2, 121.9, 113.5, 40.1, 27.6. IR (cm⁻¹): *f* = 3307, 2969, 1663, 1584, 1518, 1339, 1170, 742.

A mixture of **S4** (322 mg, 1.5 mmol), R-B(OH)₂ or R-B(pin) (1.95 mmol), tetrakis(triphenylphosphine) palladium (86 mg, 0.075 mmol) and K₂CO₃ (496 mg, 3.6 mmol) were dissolved in 1,4-dioxane (16 mL) and H₂O (8 mL). The mixture was purged with N₂ for 3 times, and then heated to reflux overnight. The reaction mixture was then cooled to room temperature and filtered through celite to give the filtrate, which was extracted with EtOAc for 3 times. The combined organic layers were dried over Na₂SO₄ and concentrated under vacuum to give a residue, which was purified by flash column chromatography to give the product **S5**.

To a solution of **S5** (1.0 equiv.) in MeOH (5 mL) was add Pd/C (10 mol%). After stirring under H_2 atmosphere (1 atm) overnight, the reaction mixture was filtered through celite and concentrated under vacuum to give a residue, which was purified by flash column chromatography to give the product **3l-3o**.

N-(3-amino-5-isopropylphenyl)pivalamide (31)

This reaction was performed on 0.67 mmol scale of **S4** with 4,4,5,5-tetramethyl-2-(prop-1-en-2-yl)-1,3,2-dioxaborolane according to **method B**. Purification by flash column chromatography (petroleum ether/EtOAc = 4: 1) gave the product **31** (152 mg, 97%).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 (s, 1H), 6.98 (t, J = 2.1 Hz, 1H), 6.63 (t, J = 1.8 Hz, 1H), 6.29 (t, J = 1.8 Hz, 1H), 3.63 (s, 2H), 2.74 (hept, J = 6.9 Hz, 1H), 1.28 (s, 9H), 1.18 (d, J = 7.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 176.6, 150.8, 147.2, 139.0, 109.3, 108.2, 104.5, 39.6, 34.2, 27.6, 23.8. IR (cm⁻¹): f = 3307, 2954, 2869, 1650, 1600, 1549, 1429, 1200, 844, 696. m/z HRMS (ESI) found [M+H]⁺ 235.1800, C₁₄H₂₃N₂O⁺ requires 235.1805.

N-(3-amino-5-cyclopentylphenyl)pivalamide (3m)

This reaction was performed on 1 mmol scale of **S4** with 2-(cyclopent-1-en-1-yl)-4,4,5,5tetramethyl-1,3,2-dioxaborolane according to **method B**. Purification by flash column chromatography (petroleum ether/EtOAc = 4: 1) gave the product **3m** (213 mg, 82%).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.23 (s, 1H), 7.01 (t, J = 2.0 Hz, 1H), 6.62 (t, J = 1.8 Hz, 1H), 6.32 (t, J = 1.8 Hz, 1H), 3.61 (s, 2H), 3.04 – 2.73 (m, 1H), 2.12 – 1.92 (m, 2H), 1.76 (qt, J = 6.5, 3.8 Hz, 2H), 1.70 – 1.48 (m, 4H), 1.29 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 176.6, 148.6, 147.1, 139.0, 110.0, 108.8, 104.4, 46.0, 39.7, 34.4, 27.7, 25.6. IR (cm⁻¹): f = 3435, 3354, 3303,

2953, 2864, 1639, 1599, 1532, 1480, 1433, 1205, 928, 843, 678. m/z HRMS (ESI) found [M+H]⁺ 261.1955, C₁₆H₂₅N₂O⁺ requires 261.1961.

N-(3-amino-5-cyclohexylphenyl)pivalamide (3n)

This reaction was performed on 1 mmol scale of **S4** with cyclohex-1-en-1-ylboronic acid according to **method B**. Purification by flash column chromatography (petroleum ether/EtOAc = 4: 1) gave the product **3n** (213 mg, 71%).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.33 (s, 1H), 6.96 (t, J = 2.0 Hz, 1H), 6.65 (t, J = 1.8 Hz, 1H), 6.28 (t, J = 1.8 Hz, 1H), 3.69 (s, 2H), 2.34 (ddd, J = 11.5, 8.1, 3.4 Hz, 1H), 1.80 (dq, J = 10.3, 6.8, 5.5 Hz, 4H), 1.35 (ddd, J = 17.6, 14.4, 10.6 Hz, 4H), 1.27 (s, 9H), 1.25 – 1.06 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 176.6, 150.1, 146.8, 138.9, 109.9, 108.8, 104.7, 44.7, 39.6, 34.3, 27.6, 26.9, 26.2. IR (cm⁻¹): f = 3419, 3357, 3333, 2967, 2922, 2849, 1653, 1611, 1598, 1538, 1432, 1201, 840, 690. m/z HRMS (ESI) found [M+H]⁺ 275.2111, C₁₇H₂₇N₂O⁺ requires 275.2118.

N-(3-amino-5-propylphenyl)pivalamide (30)

This reaction was performed on 0.86 mmol scale of **S4** with cyclopropylboronic acid according to **method B**. Purification by flash column chromatography (petroleum ether/EtOAc = 4: 1) gave the product **30** (183 mg, 91%).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.22 (s, 1H), 7.00 (t, *J* = 2.1 Hz, 1H), 6.56 (d, *J* = 1.8 Hz, 1H), 6.26 (t, *J* = 1.8 Hz, 1H), 3.63 (s, 2H), 2.44 (dd, *J* = 8.6, 6.7 Hz, 2H), 1.60 (q, *J* = 7.5 Hz, 2H), 1.29 (s, 9H), 0.92 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.6, 147.2, 144.7, 139.0, 111.3, 110.2, 104.3, 39.7, 38.2, 27.7, 24.4, 14.0. IR (cm⁻¹): *f* = 3420, 3290, 2961, 2927, 2869, 1649, 1606, 1528, 1477, 1432, 1201, 814, 694. m/z HRMS (ESI) found [M+H]⁺ 235.1800, C₁₄H₂₃N₂O⁺ requires 235.1805.

N-(3-amino-5-methylphenyl)pivalamide (3p)

Procedure for synthesis **3p**: To a solution of 3-methyl-5-nitroaniline (**S6**, 304 mg, 2 mmol) in DCM (15mL) was added trimethylamine (0.3 mL, 2.1 mmol, 1.05 equiv.). Then pivaloyl chloride (0.27 mL, 2.2 mmol, 1.1 equiv.) was added slowly at 0°C. The mixture was stirred at rt overnight. After the completion of reaction, water (20 mL) was added. The mixture was extracted with DCM for 3 times. The combined organic layer was dried over Na_2SO_4 and concentrated under vacuum to afford a residue.

To the solution of the abovementioned residue in MeOH (5 ml) was add Pd/C (10 mol%). After stirring under H₂ atmosphere (1 atm) overnight, the reaction mixture was filtered through celite and concentrated under vacuum to give a residue, which was purified by flash column chromatography (petroleum ether/EtOAc = 4: 1) to give the product **3p** (370 mg, 90%).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.21 (s, 1H), 6.97 (d, J = 2.2 Hz, 1H), 6.57 (d, J = 1.9 Hz, 1H), 6.25 (t, J = 1.7 Hz, 1H), 3.62 (s, 2H), 2.21 (s, 3H), 1.28 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 176.6, 147.2, 139.8, 139.0, 111.8, 110.7, 104.0, 39.7, 27.7, 21.5. IR (cm⁻¹): f = 3482, 3389, 3275, 2964, 1644, 1606, 1434, 1203, 836, 690. m/z HRMS (ESI) found [M+H]⁺ 207.1488, C₁₂H₁₉N₂O⁺ requires 207.1492.

Substrates 6b and 6c were synthesized from S7 and S8 by adopting general method B: General procedure of method B:

N-(3-isopropyl-5-(methylamino)phenyl)pivalamide (6b)

¹H NMR (500 MHz, Chloroform-*d*) δ 7.23 (s, 1H), 6.94 (t, J = 2.2 Hz, 1H), 6.57 (d, J = 2.6 Hz, 1H), 6.24 (d, J = 2.9 Hz, 1H), 3.72 (s, 1H), 2.83 (s, 3H), 2.79 (hept, J = 7.0 Hz, 1H), 1.31 (s, 9H), 1.22 (d, J = 6.8 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 176.6, 150.8, 150.2, 139.2, 107.0, 106.9, 101.5, 39.8, 34.5, 30.9, 27.8, 24.0. IR (cm⁻¹): f = 3329, 2957, 2871, 1653, 1615, 1602, 1440, 1399, 1209, 837, 701. m/z HRMS (ESI) found [M+H]⁺ 249.1954, C₁₅H₂₅N₂O⁺ requires 249.1961.

N-(3-(dimethylamino)-5-isopropylphenyl)pivalamide (6c)

¹H NMR (500 MHz, Chloroform-*d*) δ 7.26 (s, 1H), 7.01 (t, *J* = 2.3 Hz, 1H), 6.63 (s, 1H), 6.34 (s, 1H), 2.93 (s, 6H), 2.80 (hept, *J* = 7.0 Hz, 1H), 1.30 (s, 9H), 1.22 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 176.6, 151.4, 150.5, 139.0, 107.1, 106.2, 102.0, 40.8, 39.8, 34.8, 27.8, 24.1. IR (cm⁻¹): *f* = 3334, 2956, 2925, 1650, 1610, 1550, 1426, 825, 697. m/z HRMS (ESI) found [M+H]⁺ 263.2110, C₁₆H₂₇N₂O⁺ requires 263.2118.

Asymmetric synthesis of products:

General procedure for the asymmetric synthesis of products 5a to 5p: To a solution of 3 (0.2 mmol), 2 (0.24 mmol) in Toluene (1 mL) was added (s)-cat A7 (0.02 mmol) at -40 °C. After

stirring at -40 °C for 3 h, the reaction was directly purified by flash column chromatography to give the product 5. (Noting: The product 5b, 5f, 5p were synthesized by using (R)-cat A1 catalyst)

(*R*)-Dibenzyl-1-(4-amino-2-(tert-butyl)-6-pivalamidophenyl)hydrazine-1,2-dicarboxylate (5a)

106 mg, 97% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.77 (m, 1H), 7.39 – 7.06 (m, 11), 6.84 (d, *J* = 7.2 Hz, 1H), 6.43 (t, *J* = 3.0 Hz, 1H), 5.25 – 4.80 (m, 4H), 3.67 (s, 2H), 1.22 – 1.09 (m, 18). ¹³C NMR (101 MHz, CDCl₃) δ 176.6, 156.7, 155.0, 147.0, 145.7, 137.3, 134.2, 133.9, 127.6, 127.6, 127.5, 127.5, 127.4, 127.3, 119.5, 109.4, 108.3, 67.7, 67.7, 38.8, 34.7, 30.7, 26.3. [α]_D²⁵ = -51.50 (c = 1.0, DCM). IR (cm⁻¹): *f* = 3673, 3289, 2968, 2900, 1706, 1524, 1455, 1230, 1056, 740, 694. m/z HRMS (ESI) found [M+H]⁺ 547.2907, C₃₁H₃₉N₄O₅⁺ requires 547.2915. HPLC: Chiralpak ID column, 80:20 hexanes/isopropanol, 1 ml/min; t_R = 10.9 min (major), 13.2 min (minor); 98:1.5 er.

(S)-dibenzyl-1-(4-amino-2-(tert-butyl)-6-isobutyramidophenyl)hydrazine-1,2-dicarboxylate (5b)

100 mg, 94% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 10.04 (m, 1H), 8.05 – 7.50 (m, 1H), 7.34 (d, J = 6.4 Hz, 5H), 7.30 – 7.12 (m, 5H), 6.90 (d, J = 10.7 Hz, 1H), 6.45 (d, J = 2.7 Hz, 1H), 5.58 – 4.86 (m, 4H), 3.41 (s, 2H), 2.62 (hept, J = 6.9 Hz, 1H), 1.22 – 1.03 (m, 15H). ¹³C NMR (101 MHz, CDCl₃) δ 176.5, 158.4, 156.1, 148.5, 147.3, 138.8, 135.4, 134.9, 128.8, 128.8, 128.6, 128.5, 128.4, 128.3, 119.1, 109.7, 107.1, 68.9, 68.8, 36.3, 32.0, 19.9, 19.4. [α]_D²⁵ = 10.30 (c = 1.0, DCM). IR (cm⁻¹): f = 3673, 3274, 2964, 1706, 1683, 1614, 1225, 1056, 734, 695. m/z HRMS

(ESI) found $[M+H]^+$ 533.2753, $C_{30}H_{37}N_4O_5^+$ requires 533.2758. HPLC: Chiralpak IA column, 80:20 hexanes/isopropanol, 1 ml/min; $t_R = 10.0$ min (major), 13.5 min (minor); 93.5:6.5 er. (*R*)-dibenzyl-1-(4-amino-2-(tert-butyl)-6-(cyclohexanecarboxamido)phenyl)hydrazine-1,2dicarboxylate (**5c**)

109 mg, 95% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.93 (m, 1H), 7.64 (dd, J = 43.7, 2.6 Hz, 1H), 7.32 – 7.23 (m, 5H), 7.21 – 7.07 (m, 5H), 6.85 (m, 1H), 6.37 (d, J = 2.7 Hz, 1H), 5.21 – 4.90 (m, 4H), 3.68 (s, 2H), 2.26 (m, 1H), 1.90 – 1.21 (m, 10H), 1.15 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 175.7, 158.3, 156.1, 148.4, 147.3, 138.8, 135.4, 135.0, 128.8, 128.7, 128.6, 128.5, 128.3, 128.3, 119.0, 109.6, 107.0, 68.8, 68.7, 46.2, 35.8, 32.0, 29.6, 29.4, 25.8. [α]_D²⁵ = -20.30 (c = 1.0, DCM). IR (cm⁻¹): f = 3673, 3273, 2966, 2924, 1707, 1454, 1231, 1057, 733, 694. m/z HRMS (ESI) found [M+H]⁺ 573.3064, C₃₃H₄₁N₄O₅⁺ requires 573.3071. HPLC: Chiralpak IA column, 80:20 hexanes/isopropanol, 1 ml/min; t_R = 15.1 min (minor), 18.5 min (major); 93:7 er.

(*R*)-dibenzyl-1-(4-amino-2-(tert-butyl)-6-propionamidophenyl)hydrazine-1,2-dicarboxylate (5d)

93 mg, 90% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.96 (m, 1H), 7.64 (m, 1H), 7.41 – 7.06 (m, 10H), 6.91 (m, 1H), 6.37 (d, J = 2.8 Hz, 1H), 5.42 – 4.77 (m, 4H), 3.74 (s, 2H), 2.63 – 1.98 (m, 2H), 1.15 (s, 9H), 1.03 (t, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.2, 158.4, 156.0, 148.5, 147.4, 138.6, 135.5, 134.9, 128.7, 128.7, 128.5, 128.5, 128.3, 128.3, 118.9, 109.6, 106.8, 68.8, 68.6, 35.8, 31.9, 30.6, 9.9. [α]_D²⁵ = -11.90 (c = 1.0, DCM). IR (cm⁻¹): f = 3673, 3270, 2967, 1705, 1682, 1455, 1225, 1056, 733, 694. m/z HRMS (ESI) found [M+H]⁺ 519.2595, C₂₉H₃₅N₄O₅⁺

requires 519.2602. HPLC: Chiralpak IA column, 80:20 hexanes/isopropanol, 1 ml/min; $t_R = 12.5$ min (minor), 15.0 min (major); 91:9 er.

(*R*)-dibenzyl-1-(2-acetamido-4-amino-6-(tert-butyl)phenyl)hydrazine-1,2-dicarboxylate (5e)

73 mg, 72% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 10.03 (m, 1H), 7.62 (m, 1H), 7.37 – 7.05 (m, 10H), 6.84 (mm, 1H), 6.40 (d, J = 2.8 Hz, 1H), 5.39 – 4.81 (m, 4H), 3.71 (s, 2H), 1.97 (m, 3H), 1.17 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 169.4, 158.5, 156.0, 148.6, 147.4, 138.6, 135.6, 134.9, 128.8, 128.8, 128.6, 128.4, 128.4, 118.9, 109.7, 106.7, 68.9, 68.7, 35.8, 32.0, 24.5. [α]_D²⁵ = -10.50 (c = 1.0, DCM). IR (cm⁻¹): f = 3673, 3270, 2967, 2900, 1705, 1615, 1455, 1232, 1057, 733, 695. m/z HRMS (ESI) found [M+H]⁺ 505.2440, C₂₈H₃₃N₄O₅⁺ requires 505.2445. HPLC: Chiralpak IA column, 80:20 hexanes/isopropanol, 1 ml/min; t_R = 13.7 min (minor), 15.1 min (major); 93.5:6.5 er.

(S)-dibenzyl-1-(4-amino-2-benzamido-6-(tert-butyl)phenyl)hydrazine-1,2-dicarboxylate (5f)

110 mg, 97%yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 10.59 (m, 1H), 7.87 (m, 2H), 7.67 – 6.72 (m, 15H), 6.48 (p, *J* = 2.8 Hz, 1H), 4.99 (m, 4H), 3.84 – 3.18 (m, 2H), 1.30 – 0.93 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 166.4, 158.1, 156.2, 148.4, 147.1, 138.1, 135.2, 135.1, 134.9, 131.4, 128.7, 128.6, 128.5, 128.4, 128.3, 128.2, 127.9, 120.9, 111.0, 109.5, 68.9, 68.8, 35.8, 31.8. $[\alpha]_D^{25} = 33.90$ (c = 1.0, DCM). IR (cm⁻¹): *f* = 3673, 3245, 2968, 2900, 1705, 1661, 1533, 1455, 1240, 1056, 692. m/z HRMS (ESI) found [M+H]⁺ 567.2594, C₃₃H₃₅N₄O₅⁺ requires 567.2602.

HPLC: Chiralpak ID column, 70:30 hexanes/isopropanol, 1 ml/min; $t_R = 23.4$ min (minor), 26.1 min (major); 88:12 er.

(*R*)-dibenzyl-1-(4-amino-2-((tert-butoxycarbonyl)amino)-6-(tert-butyl)phenyl)hydrazine-1,2dicarboxylate (**5g**)

111 mg, 99% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 9.39 (m, 1H), 7.54 – 7.12 (m, 11H), 6.87 (m, 1H), 6.39 (dd, J = 5.7, 2.7 Hz, 1H), 5.35 – 4.80 (m, 4H), 3.60 (s, 2H), 1.49 (d, J = 7.6 Hz, 9H), 1.20 (m, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 158.0, 156.1, 153.9, 148.5, 147.2, 139.2, 135.5, 135.1, 128.7, 128.6, 128.4, 128.1, 127.8, 127.8, 118.9, 108.9, 105.8, 79.6, 68.6, 68.6, 35.7, 31.9, 28.4. [α]_D²⁵ = -21.30 (c = 1.0, DCM). IR (cm⁻¹): f = 3673, 3272, 2968, 2900, 1703, 1538, 1454, 1231, 1154, 1056, 734, 694. m/z HRMS (ESI) found [M+H]⁺ 563.2854, C₃₁H₃₉N₄O₆⁺ requires 563.2864. HPLC: Chiralpak ID column, 80:20 hexanes/isopropanol, 1 ml/min; t_R = 10.2 min (major), 12.8 min (minor); 92:8 er.

(*R*)-dibenzyl-1-(4-amino-2-(((benzyloxy)carbonyl)amino)-6-(tert-butyl)phenyl)hydrazine-1,2-dicarboxylate (**5h**)

118mg, 99%yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 10.12 – 9.49 (m, 1H), 7.40 – 7.18 (m, 10H), 7.18 – 6.97 (m, 6H), 6.83 (m, 1H), 6.34 (t, J = 2.7 Hz, 1H), 5.38 – 4.60 (m, 6H), 3.68 (s, 2H), 1.14 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 158.3, 156.0, 154.3, 148.7, 147.3, 138.8, 137.1, 135.5, 135.0, 128.7, 128.6, 128.5, 128.4, 128.4, 128.1, 128.0, 127.8, 127.7, 119.2, 109.4, 106.0,

68.8, 68.6, 66.2, 35.8, 31.9. $[\alpha]_D^{25}$ = -30.80 (c = 1.0, DCM). IR (cm⁻¹): *f* = 3673, 3251, 2968, 2900, 1701, 1224, 1056, 732, 693. m/z HRMS (ESI) found [M+H]⁺ 597.2696, C₃₄H₃₇N₄O₆⁺ requires 597.2708. HPLC: Chiralpak IA column, 80:20 hexanes/isopropanol, 1 ml/min; t_R = 23.0 min (major), 27.6 min (minor); 94.5:5.5 er.

(*R*)-dibenzyl-1-(4-amino-2-(tert-butyl)-6-((isopropoxycarbonyl)amino)phenyl)hydrazine-1,2dicarboxylate (**5i**)

108 mg, 99% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.52 (s, 1H), 7.34 – 7.06 (m, 11H), 6.81 (m, 1H), 6.34 (t, *J* = 2.5 Hz, 1H), 5.29 – 4.94 (m, 4H), 4.94 – 4.72 (m, 1H), 3.56 (s, 2H), 1.38 – 1.00 (m, 15H). ¹³C NMR (101 MHz, CDCl₃) δ 158.1, 156.1, 154.3, 148.5, 147.2, 139.0, 135.5, 135.1, 128.7, 128.6, 128.4, 128.2, 127.9, 119.1, 109.2, 109.1, 106.1, 68.7, 68.6, 68.2, 35.8, 31.9, 22.1. [α]_D²⁵ = -30.80 (c = 0.5, DCM). IR (cm⁻¹): *f* = 3673, 3265, 2969, 2900, 1700, 1609, 1539, 1227, 1056, 733, 694. m/z HRMS (ESI) found [M+H]⁺ 549.2703, C₃₀H₃₇N₄O₆⁺ requires 549.2708. HPLC: Chiralpak IA column, 80:20 hexanes/isopropanol, 1 ml/min; t_R = 12.6 min (major), 14.2 min (minor); 93.5:6.5 er.

(*R*)-dibenzyl-1-(4-amino-2-(tert-butyl)-6-((4-methylphenyl)sulfonamido)phenyl)hydrazine-1,2dicarboxylate (**5**j)

122 mg, 99% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 10.18 (m, 1H), 7.68 (d, *J* = 8.0 Hz, 2H), 7.42 – 7.10 (m, 9H), 7.08 – 6.91 (m, 3H), 6.89 – 6.63 (m, 2H), 6.25 (dd, *J* = 6.9, 2.6 Hz, 1H), 5.34 -4.62 (m, 4H), 3.28 (s, 2H), 2.19 (m, 3H), 1.06 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 159.0, 155.9, 149.4, 147.5, 143.2, 138.3, 137.8, 135.2, 134.9, 129.5, 128.8, 128.6, 128.6, 128.4, 128.1, 127.8, 127.2, 118.0, 109.2, 102.7, 69.1, 68.7, 35.8, 31.8, 21.5. [α]_D²⁵ = 3.60 (c = 0.5, DCM). IR (cm⁻¹): f = 3673, 3379, 2968, 2900, 1705, 1454, 1240, 1056, 797, 695. m/z HRMS (ESI) found [M+H]⁺ 617.2421, C₃₃H₃₇N₄O₆S⁺ requires 617.2428. HPLC: Chiralpak IB column, 60:40 hexanes/isopropanol, 1 ml/min; t_R = 11.7 min (major), 16.3 min (minor); 96:4 er.

(*R*)-dibenzyl-1-(4-amino-2-(tert-butyl)-6-(phenylamino)phenyl)hydrazine-1,2-dicarboxylate (5k)

45 mg, 42% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 8.54 (m, 1H), 7.43 – 6.96 (m, 14H), 6.93 – 6.68 (m, 2H), 6.63 – 6.43 (m, 1H), 6.18 (d, *J* = 2.6 Hz, 1H), 5.46 – 4.81 (m, 4H), 3.51 (s, 2H), 1.21 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 158.2, 156.3, 149.5, 147.1, 144.4, 143.5, 135.8, 135.2, 129.2, 128.8, 128.7, 128.7, 128.3, 127.9, 127.7, 120.7, 120.1, 119.2, 106.3, 101.1, 68.7, 68.5, 35.8, 32.1. [α]_D²⁵ = -35.30 (c = 1, DCM). IR (cm⁻¹): *f* = 3673, 3294, 2966, 2900, 1697, 1590, 1496, 1258, 1065, 1014, 795, 695. m/z HRMS (ESI) found [M+H]⁺ 539.2647, C₃₂H₃₅N₄O₄⁺ requires 539.2653. HPLC: Chiralpak IA column, 80:20 hexanes/isopropanol, 1 ml/min; t_R = 11.3 min (major), 15.1 min (minor); 93.5:6.5 er.

(R)-dibenzyl-1-(4-amino-2-isopropyl-6-pivalamidophenyl)hydrazine-1,2-dicarboxylate (51)

102 mg, 96% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.59 (s, 1H), 7.41 – 7.35 (m, 1H), 7.33 – 7.02 (m, 11H), 6.19 (d, J = 2.7 Hz, 1H), 5.17 – 4.85 (m, 4H), 3.70 (s, 2H), 2.49 (hept, J = 6.9 Hz,

1H), 1.16 (s, 9H), 0.98 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 177.7, 157.8, 156.4, 147.7, 147.1, 137.1, 135.5, 135.1, 128.7, 128.7, 128.6, 128.6, 128.4, 128.2, 119.8, 107.6, 107.6, 68.6, 68.6, 40.0, 29.0, 27.3, 23.8. [α]_D²⁵ = -42.60 (c = 1, DCM). IR (cm⁻¹): *f* = 3673, 3224, 2966, 2900, 1703, 1522, 1453, 1393, 1241, 1057, 797, 693. m/z HRMS (ESI) found [M+H]⁺ 533.2748, C₃₀H₃₇N₄O₅⁺ requires 533.2758. HPLC: Chiralpak IC column, 80:20 hexanes/isopropanol, 1 ml/min; t_R = 9.2 min (major), 13.6 min (minor); 97.5:2.5 er.

(*R*)-dibenzyl1-(4-amino-2-cyclopentyl-6-pivalamidophenyl)hydrazine-1,2-dicarboxylate (**5m**)

110 mg, 99% yield%. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.57 (s, 1H), 7.50 – 7.34 (m, 1H), 7.31 – 6.99 (m, 11H), 6.19 (d, J = 2.6 Hz, 1H), 5.14 – 4.56 (m, 4H), 3.69 (s, 2H), 2.74 – 2.34 (m, 1H), 1.91 – 1.22 (m, 8H), 1.15 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 177.7, 157.7, 156.4, 147.6, 145.1, 137.1, 135.6, 135.1, 128.7, 128.6, 128.5, 128.5, 128.3, 128.1, 120.6, 108.0, 107.4, 68.5, 40.6, 39.9, 34.7, 27.3, 25.8, 25.7. [α]_D²⁵ = -37.20 (c = 1, DCM). IR (cm⁻¹): f = 3673, 3226, 2968, 2900, 1706, 1533, 1452, 1241, 1056, 734, 694. m/z HRMS (ESI) found [M+H]⁺ 559.2909, C₃₂H₃₉N₄O₅⁺ requires 559.2915. HPLC: Chiralpak IC column, 80:20 hexanes/isopropanol, 1 ml/min; t_R = 10.5 min (major), 13.6 min (minor); 97.5:2.5 er.

(*R*)-dibenzyl-1-(4-amino-2-cyclohexyl-6-pivalamidophenyl)hydrazine-1,2-dicarboxylate (**5n**)

113 mg, 99% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.59 (s, 1H), 7.42 – 7.32 (m, 1H), 7.31 – 6.89 (m, 11H), 6.15 (d, J = 2.6 Hz, 1H), 5.28 – 4.71 (m, 4H), 3.68 (s, 2H), 2.00 (t, J = 11.7 Hz,

1H), 1.75 - 1.39 (m, 4H), 1.29 - 1.17 (m, 14H). ¹³C NMR (101 MHz, CDCl₃) δ 177.7, 157.7, 156.4, 147.6, 146.1, 137.0, 135.6, 135.0, 128.7, 128.7, 128.6, 128.5, 128.3, 128.2, 119.8, 108.6, 107.6, 68.6, 68.6, 39.9, 34.2, 33.9, 27.3, 26.9, 26.0. [α]_D²⁵ = -47.50 (c = 1, DCM). IR (cm⁻¹): *f* = 3673, 3227, 2968, 2921, 1715, 1448, 1393, 1241, 1056, 797, 694. m/z HRMS (ESI) found [M+H]⁺ 573.3602, C₃₃H₄₁N₄O₅⁺ requires 573.3071. HPLC: Chiralpak IA column, 75:25 hexanes/isopropanol, 1 ml/min; t_R = 5.8 min (minor), 6.4 min (major); 97:3 er.

(R)-dibenzyl-1-(4-amino-2-pivalamido-6-propylphenyl)hydrazine-1,2-dicarboxylate (50)

105 mg, 99% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.59 (s, 1H), 7.37 (d, *J* = 7.9 Hz, 2H), 7.33 – 6.98 (m, 10H), 6.12 (d, *J* = 2.6 Hz, 1H), 5.34 – 4.68 (m, 4H), 3.71 (s, 2H), 2.14 (t, *J* = 7.8 Hz, 2H), 1.53 – 1.23 (m, 2H), 1.15 (s, 9H), 0.89 – 0.63 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.6, 157.8, 156.3, 147.4, 140.7, 137.2, 135.5, 135.1, 128.6, 128.6, 128.5, 128.5, 128.3, 128.1, 120.7, 110.7, 107.5, 68.6, 68.5, 39.9, 33.5, 27.3, 22.8, 14.1. [α]_D²⁵ = -43.00 (c = 1, DCM). IR (cm⁻¹): *f* = 3673, 3227, 2967, 2900, 1705, 1533, 1453, 1241, 1056, 735, 694. m/z HRMS (ESI) found [M+H]⁺ 533.2753, C₃₀H₃₇N₄O₅⁺ requires 533.2758. HPLC: Chiralpak IC column, 80:20 hexanes/isopropanol, 1 ml/min; t_R = 9.7 min (major), 17.5 min (minor); 96.5:3.5 er.

(S)-dibenzyl-1-(4-amino-2-methyl-6-pivalamidophenyl)hydrazine-1,2-dicarboxylate (5p)

100 mg, 99% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.57 (s, 1H), 7.84 – 7.53 (m, 1H), 7.38 (d, J = 2.6 Hz, 1H), 7.31 – 7.00 (m, 10H), 6.06 (d, J = 2.6 Hz, 1H), 5.30 – 4.82 (m, 4H), 3.35 (s,

2H), 1.87 (s, 3H), 1.13 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 177.6, 157.8, 156.2, 147.4, 137.2, 136.4, 135.6, 135.1, 128.6, 128.6, 128.5, 128.5, 128.2, 127.8, 120.9, 111.8, 107.1, 68.5, 68.4, 39.9, 27.3, 17.9. [α]_D²⁵ = 28.50 (c = 1, DCM). IR (cm⁻¹): *f* = 3673, 3227, 2968, 2900, 1705, 1455, 1393, 1241, 1057, 734, 694. m/z HRMS (ESI) found [M+H]⁺ 505.2438, C₂₈H₃₃N₄O₅⁺ requires 505.2445. HPLC: Chiralpak IA column, 70:30 hexanes/isopropanol, 1 ml/min; t_R = 8.5 min (major), 9.3 min (minor); 96.5:3.5 er.

(*R*)-diethyl-1-(4-amino-2-(tert-butyl)-6-pivalamidophenyl)hydrazine-1,2-dicarboxylate (5q)

84 mg, 99% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 9.92 (s, 1H), 7.13 (d, J = 2.6 Hz, 1H), 6.90 (s, 1H), 6.47 (d, J = 2.7 Hz, 1H), 4.32 – 3.82 (m, 4H), 3.58 (s, 2H), 1.24 (s, 9H), 1.21 (m, 12H), 1.06 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 177.7, 157.9, 156.1, 148.1, 146.7, 138.3, 121.1, 110.7, 109.9, 63.3, 62.9, 39.8, 35.8, 31.8, 27.5, 14.6, 14.4. [α]_D²⁵ = -73.30 (c = 1, DCM). IR (cm⁻¹): f = 3673, 3273, 2968, 2900, 1700, 1522, 1249, 1065, 1026, 795. m/z HRMS (ESI) found [M+H]⁺ 423.2593, C₂₁H₃₅N₄O₅⁺ requires 423.2602. HPLC: Chiralpak IA column, 85:15 hexanes/isopropanol, 1 ml/min; t_R = 7.4 min (minor), 9.1 min (major); 97.5:2.5 er.

(*R*)-Diisopropyl-1-(4-amino-2-(tert-butyl)-6-pivalamidophenyl)hydrazine-1,2-dicarboxylate (**5r**)

89 mg, 99% yield. ¹H NMR (500 MHz, Chloroform-*d*) δ 9.93 (m, 1H), 7.54 – 7.11 (m, 1H), 6.71 (m, 1H), 6.50 (dd, *J* = 8.4, 2.7 Hz, 1H), 4.99 (hept, *J* = 6.2 Hz, 1H), 4.82 (hept, *J* = 6.2 Hz, 1H), 3.74 (s, 2H), 1.29 (s, 9H), 1.27 (d, *J* = 3.3 Hz, 9H), 1.22 (t, *J* = 5.5 Hz, 6H), 1.10 (m, 6H). ¹³C

NMR (126 MHz, CDCl₃) δ 177.6, 157.7, 155.7, 148.0, 146.6, 138.5, 121.0, 110.5, 109.5, 71.4, 71.0, 39.9, 35.8, 31.9, 27.5, 22.0, 21.9. [α]_D²⁵ = -63.40 (c = 1, DCM). IR (cm⁻¹): *f* = 3673, 3281, 2969, 2900, 1699, 1669, 1455, 1372, 1249, 1103, 1052, 797. m/z HRMS (ESI) found [M+H]⁺ 451.2905, C₂₃H₃₉N₄O₅⁺ requires 451.2915. HPLC: Chiralpak IA column, 90:10 hexanes/isopropanol, 1 ml/min; t_R = 7.1 min (minor), 11.6 min (major); 97.5:2.5 er.

(*R*)-diisopropyl-1-(4-amino-2-(((benzyloxy)carbonyl)amino)-6-(tert-butyl)phenyl)hydrazine-1,2dicarboxylate (**5s**)

96 mg, 96% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.85 (m, 1H), 7.40 – 7.29 (m, 2H), 7.30 – 7.10 (m, 4H), 6.59 (m, 1H), 6.39 (dd, J = 6.0, 2.7 Hz, 1H), 5.21 – 5.06 (m, 2H), 5.05 – 4.92 (m, 1H), 4.81 (p, J = 6.3 Hz, 1H), 3.67 (s, 2H), 1.40 – 0.77 (m, 21H). ¹³C NMR (101 MHz, CDCl₃) δ 158.3, 155.6, 154.5, 148.6, 147.0, 138.8, 137.1, 128.4, 128.0, 127.8, 120.1, 109.5, 106.6, 71.3, 66.3, 35.8, 32.1, 32.0, 22.0, 21.7. [α]_D²⁵ = -36.80 (c = 0.5, DCM). IR (cm⁻¹): f = 3673, 3240, 2970, 2900, 1698, 1454, 1373, 1228, 1073, 1050, 795, 696. m/z HRMS (ESI) found [M+H]⁺ 501.2700, C₂₆H₃₇N₄O₆⁺ requires 501.2708. HPLC: Chiralpak IA column, 80:20 hexanes/isopropanol, 1 ml/min; t_R = 10.7 min (minor), 13.9 min (major); 97.5:2.5 er.

Determination of t_{1/2} rac and Rotation Barrier

(*R*)-Dibenzyl-1-(4-amino-2-(tert-butyl)-6-pivalamidophenyl)hydrazine-1,2-dicarboxylate (5a)

Barriers to racemization of 5a at 100°C in toluene

-ln(ee)=2kent+C

Therefore, $k_{ent}=2.605*10^{-7}s^{-1}$ $t_{1/2}^{100}rac=ln(2)/2k_{ent}=369.6 h$

Employing the Eyring equation:

$$\Delta G = -RT \ln\left(\frac{k_{ent} \times h}{k_B \times T}\right) = -8.314 \times 373.15 \times \ln\left(\frac{2.605 \times 10^{-7} \times 6.626 \times 10^{-344}}{1.381 \times 10^{-23} \times 373.15}\right)$$

=139.12 kJ/mol (33.2 kcal/mol)

(S)-dibenzyl-1-(4-amino-2-(tert-butyl)-6-isobutyramidophenyl)hydrazine-1,2-dicarboxylate (5b)

Time/s ee(%) -ln(ee) 0 87.6 -4.47278 85.8 43200 -4.45202 84 86400 -4.43082 172800 80.6 -4.3895 77.1 259200 -4.3451 345600 74.5 -4.3108

Barriers to racemization of **5b** at 100°C in toluene

Therefore, $k_{ent}=2.375*10^{-7}s^{-1}$ $t_{1/2}^{100}rac=ln(2)/2k_{ent}=405.4$ h Employing the Eyring equation:

$$\Delta G = -RT \ln\left(\frac{k_{ent} \times h}{k_B \times T}\right) = -8.314 \times 373.15 \times \ln\left(\frac{2.375 \times 10^{-7} \times 6.626 \times 10^{-34}}{1.381 \times 10^{-23} \times 373.15}\right)$$

=139.41 kJ/mol (33.3 kcal/mol)

(*R*)-dibenzyl-1-(4-amino-2-(tert-butyl)-6-(cyclohexanecarboxamido)phenyl)hydrazine-1,2dicarboxylate (**5c**)

Barriers to racemization of **5c** at 100°C in toluene

Time/s	ee(%)	-ln(ee)
0	85.5	-4.44852
43200	83.6	-4.42604
86400	81.4	-4.39938
172800	78	-4.35671
259200	74.1	-4.30542
345600	70.2	-4.25135

Therefore, k_{ent}=2.83*10-7s-1

 $t_{1/2}^{100}$ rac=ln(2)/2k_{ent}=340.2 h

Employing the Eyring equation:

$$\Delta G = -RT \ln\left(\frac{k_{ent} \times h}{k_B \times T}\right) = -8.314 \times 373.15 \times \ln\left(\frac{2.83 \times 10^{-7} \times 6.626 \times 10^{-34}}{1.381 \times 10^{-23} \times 373.15}\right)$$

=138.86 kJ/mol (33.2 kcal/mol)

(*R*)-dibenzyl-1-(4-amino-2-(tert-butyl)-6-propionamidophenyl)hydrazine-1,2-dicarboxylate (5d)

Barriers to racemization of 5d at 100°C in toluene

Time/s	ee(%)	-ln(ee)
0	82	-4.40672
43200	80	-4.38203

Therefore, $k_{ent}=2.995*10^{-7}s^{-1}$

$$t_{1/2}^{100}$$
 rac = ln(2)/2k_{ent}=321.4 h

Employing the Eyring equation:

$$\Delta G = -RT \ln\left(\frac{k_{ent} \times h}{k_B \times T}\right) = -8.314 \times 373.15 \times \ln\left(\frac{2.995 \times 10^{-7} \times 6.626 \times 10^{-34}}{1.381 \times 10^{-23} \times 373.15}\right)$$

=138.69 kJ/mol (33.1 kcal/mol)

(*R*)-dibenzyl-1-(2-acetamido-4-amino-6-(tert-butyl)phenyl)hydrazine-1,2-dicarboxylate (5e)

Barriers to racemization of 5e at 100°C in toluene

Therefore, $k_{ent}=3.92*10^{-7}s^{-1}$

 $t_{1/2}^{100}$ rac=ln(2)/2k_{ent}=245.6 h

Employing the Eyring equation:

$$\Delta G = -RT \ln\left(\frac{k_{ent} \times h}{k_B \times T}\right) = -8.314 \times 373.15 \times \ln\left(\frac{3.92 \times 10^{-7} \times 6.626 \times 10^{-344}}{1.381 \times 10^{-23} \times 373.15}\right)$$

=137.85 kJ/mol (32.9 kcal/mol)

(S)-dibenzyl-1-(4-amino-2-benzamido-6-(tert-butyl)phenyl)hydrazine-1,2-dicarboxylate (5f)

Barriers to racemization of 5f at 100°C in toluene

Therefore, k_{ent} =4.265*10⁻⁷s⁻¹

 $t_{1/2}^{100}$ rac=ln(2)/2k_{ent}=225.7 h

Employing the Eyring equation:

$$\Delta G = -RT \ln\left(\frac{k_{ent} \times h}{k_B \times T}\right) = -8.314 \times 373.15 \times \ln\left(\frac{4.265 \times 10^{-7} \times 6.626 \times 10^{-34}}{1.381 \times 10^{-23} \times 373.15}\right)$$

=137.59 kJ/mol (32.8 kcal/mol)

(*R*)-dibenzyl-1-(4-amino-2-((tert-butoxycarbonyl)amino)-6-(tert-butyl)phenyl)hydrazine-1,2dicarboxylate (**5g**)

Barriers to racemization of 5g at 100°C in toluene

Time/s	ee(%)	-ln(ee)
0	82	-4.40672
43200	75.3	-4.32148
86400	69	-4.23411
129600	62.7	-4.13836
172800	56	-4.02535
259200	45.5	-3.81771
345600	37.7	-3.62966

Therefore, k_{ent}=1.145*10⁻⁶s⁻¹

 $t_{1/2}^{100}$ rac=ln(2)/2k_{ent}=84.1 h

Employing the Eyring equation:

$$\Delta G = -RT \ln\left(\frac{k_{ent} \times h}{k_B \times T}\right) = -8.314 \times 373.15 \times \ln\left(\frac{1.145 \times 10^{-6} \times 6.626 \times 10^{-34}}{1.381 \times 10^{-23} \times 373.15}\right)$$

=134.53 kJ/mol (32.1 kcal/mol)

(*R*)-dibenzyl-1-(4-amino-2-(((benzyloxy)carbonyl)amino)-6-(tert-butyl)phenyl)hydrazine-1,2dicarboxylate (**5h**)

Barriers to racemization of 5h at 100°C in toluene

Time/s	ee(%)	-ln(ee)
0	88	-4.47734
43200	84.4	-4.43557

Therefore, k_{ent}=0.83*10⁻⁶s⁻¹

 $t_{1/2}^{100}$ rac=ln(2)/2k_{ent}=116 h

Employing the Eyring equation:

$$\Delta G = -RT \ln\left(\frac{k_{ent} \times h}{k_B \times T}\right) = -8.314 \times 373.15 \times \ln\left(\frac{0.83 \times 10^{-6} \times 6.626 \times 10^{-34}}{1.381 \times 10^{-23} \times 373.15}\right)$$

=135.52 kJ/mol (32.3 kcal/mol)

(*R*)-dibenzyl-1-(4-amino-2-(tert-butyl)-6-((isopropoxycarbonyl)amino)phenyl)hydrazine-1,2dicarboxylate (**5i**)

Barriers to racemization of 5i at 100°C in toluene

Therefore, kent=1.14*10-6s-1

Employing the Eyring equation:

$$t_{1/2}^{100}$$
rac=ln(2)/2k_{ent}=84.5 h

$$\Delta G = -RT \ln\left(\frac{k_{ent} \times h}{k_B \times T}\right) = -8.314 \times 373.15 \times \ln\left(\frac{1.14 \times 10^{-6} \times 6.626 \times 10^{-34}}{1.381 \times 10^{-23} \times 373.15}\right)$$

=134.54 kJ/mol (32.1 kcal/mol)

(*R*)-dibenzyl-1-(4-amino-2-(tert-butyl)-6-((4-methylphenyl)sulfonamido)phenyl)hydrazine-1,2dicarboxylate (**5j**)

Barriers to racemization of 5j at 70°C in Dioxane

Therefore, $k_{ent}=3.075*10^{-7}s^{-1}$

$$t_{1/2}^{70}$$
rac=ln(2)/2k_{ent}=313.1 h

Employing the Eyring equation:

$$\Delta G = -RT \ln\left(\frac{k_{ent} \times h}{k_B \times T}\right) = -8.314 \times 343.15 \times \ln\left(\frac{3.075 \times 10^{-7} \times 6.626 \times 10^{-34}}{1.381 \times 10^{-23} \times 343.15}\right)$$

=127.22 kJ/mol (30.4 kcal/mol)

(*R*)-dibenzyl-1-(4-amino-2-(tert-butyl)-6-(phenylamino)phenyl)hydrazine-1,2-dicarboxylate (**5**k)

Barriers to racemization of 5k at 70°C in Dioxane

Therefore, $k_{ent}=7.45*10^{-7}s^{-1}$

$$t_{1/2}^{70}$$
rac=ln(2)/2k_{ent}=129.2 h

Employing the Eyring equation:

$$\Delta G = -RT \ln\left(\frac{k_{ent} \times h}{k_B \times T}\right) = -8.314 \times 343.15 \times \ln\left(\frac{7.45 \times 10^{-7} \times 6.626 \times 10^{-34}}{1.381 \times 10^{-23} \times 343.15}\right)$$

=125.70 kJ/mol (30 kcal/mol)
(*R*)-dibenzyl-1-(4-amino-2-isopropyl-6-pivalamidophenyl)hydrazine-1,2-dicarboxylate (51)

Barriers to racemization of 51 at 50°C in toluene

 $-\ln(ee)=2k_{ent}t+C$

Therefore, $k_{ent}=1.56*10^{-7}s^{-1}$

 $t_{1/2}^{50}$ rac=ln(2)/2k_{ent}=617.1 h

Employing the Eyring equation:

$$\Delta G = -RT \ln\left(\frac{k_{ent} \times h}{k_B \times T}\right) = -8.314 \times 323.15 \times \ln\left(\frac{1.56 \times 10^{-7} \times 6.626 \times 10^{-34}}{1.381 \times 10^{-23} \times 323.15}\right)$$

=121.47 kJ/mol (29 kcal/mol)

(*R*)-dibenzyl1-(4-amino-2-cyclopentyl-6-pivalamidophenyl)hydrazine-1,2-dicarboxylate (**5m**)

Barriers to racemization of 5m at 50°C in toluene

-ln(ee)=2k_{ent}t+C

Therefore, $k_{ent}=2.33*10^{-7}s^{-1}$

 $t_{1/2}^{50}$ rac=ln(2)/2k_{ent}=413.2 h

Employing the Eyring equation:

$$\Delta G = -RT \ln\left(\frac{k_{ent} \times h}{k_B \times T}\right) = -8.314 \times 323.15 \times \ln\left(\frac{2.33 \times 10^{-7} \times 6.626 \times 10^{-34}}{1.381 \times 10^{-23} \times 323.15}\right)$$

=120.39 kJ/mol (28.7 kcal/mol)

(*R*)-dibenzyl-1-(4-amino-2-cyclohexyl-6-pivalamidophenyl)hydrazine-1,2-dicarboxylate (5n)

Barriers to racemization of 5n at 50°C in toluene

Time/s	ee(%)	-ln(ee)
0	94	-4.54329
43200	92	-4.52179
86400	90.1	-4.50092
172800	86.4	-4.45899
259200	83.4	-4.42365
345600	81.2	-4.39692

Therefore, k_{ent}=2.15*10⁻⁷s⁻¹

 $t_{1/2}$ ⁵⁰_{rac}=ln(2)/2k_{ent}=447.8 h

Employing the Eyring equation:

$$\Delta G = -RT \ln\left(\frac{k_{ent} \times h}{k_B \times T}\right) = -8.314 \times 323.15 \times \ln\left(\frac{2.15 \times 10^{-7} \times 6.626 \times 10^{-34}}{1.381 \times 10^{-23} \times 323.15}\right)$$

=120.61 kJ/mol (28.8 kcal/mol)

(*R*)-dibenzyl-1-(4-amino-2-pivalamido-6-propylphenyl)hydrazine-1,2-dicarboxylate (50)

Barriers to racemization of 50 at 50°C in toluene

Time/s	ee(%)	-ln(ee)
0	93.1	-4.53367
43200	84.4	-4.43557
86400	75.3	-4.32148

Therefore, k_{ent} =1.055*10⁻⁶s⁻¹

$$t_{1/2}^{50}$$
rac=ln(2)/2k_{ent}=91.3 h

Employing the Eyring equation:

$$\Delta G = -RT \ln\left(\frac{k_{ent} \times h}{k_B \times T}\right) = -8.314 \times 323.15 \times \ln\left(\frac{1.055 \times 10^{-6} \times 6.626 \times 10^{-34}}{1.381 \times 10^{-23} \times 323.15}\right)$$

=116.33 kJ/mol (27.8 kcal/mol)

(S)-dibenzyl-1-(4-amino-2-methyl-6-pivalamidophenyl)hydrazine-1,2-dicarboxylate (5p)

Barriers to racemization of **5p** at 50°C in toluene

Therefore, k_{ent}=8.45*10⁻⁶s⁻¹

$$t_{1/2}^{50}$$
 rac = ln(2)/2k_{ent} = 11.4 h

Employing the Eyring equation:

$$\Delta G = -RT \ln\left(\frac{k_{ent} \times h}{k_B \times T}\right) = -8.314 \times 323.15 \times \ln\left(\frac{8.45 \times 10^{-6} \times 6.626 \times 10^{-34}}{1.381 \times 10^{-23} \times 323.15}\right)$$

=110.74 kJ/mol (26.4 kcal/mol)

(*R*)-diethyl-1-(4-amino-2-(tert-butyl)-6-pivalamidophenyl)hydrazine-1,2-dicarboxylate (5q)

Barriers to racemization of 5q at 100°C in toluene

Therefore, $k_{ent}=3.00*10^{-7}s^{-1}$

 $t_{1/2}^{100}$ rac=ln(2)/2k_{ent}=320.9 h

Employing the Eyring equation:

$$\Delta G = -RT \ln\left(\frac{k_{ent} \times h}{k_B \times T}\right) = -8.314 \times 373.15 \times \ln\left(\frac{3.00 \times 10^{-7} \times 6.626 \times 10^{-34}}{1.381 \times 10^{-23} \times 373.15}\right)$$

=138.68 kJ/mol (33.1 kcal/mol)

 $(\it R) - Diisopropyl - 1 - (4-amino - 2 - (tert-butyl) - 6 - pivalamidophenyl) hydrazine - 1, 2 - dicarboxylate (5r)$

Barriers to racemization of **5r** at 100°C in toluene

Time/s	ee(%)	-ln(ee)		
0	95.5	-4.55913		
86400	90.8	-4.50866		
176400	86	-4.45435		
259200	82.1	-4.40794		
432000	73.2	-4.2932		
604800	66.4	-4.1957		
777600	60.6	-4.10429		

Therefore, k_{ent}=2.965*10⁻⁷s⁻¹

 $t_{1/2}^{100}$ rac=ln(2)/2k_{ent}=324.7 h

Employing the Eyring equation:

$$\Delta G = -RT \ln\left(\frac{k_{ent} \times h}{k_B \times T}\right) = -8.314 \times 373.15 \times \ln\left(\frac{2.965 \times 10^{-7} \times 6.626 \times 10^{-34}}{1.381 \times 10^{-23} \times 373.15}\right)$$

138.72 kJ/mol (33.1 kcal/mol)

(*R*)-diisopropyl-1-(4-amino-2-(((benzyloxy)carbonyl)amino)-6-(tert-butyl)phenyl)hydrazine-1,2dicarboxylate (**5s**)

Barriers to racemization of 5s at 100°C in toluene

Time/s	ee(%)	-ln(ee)
0	93.752	-4.54065
43200	89.686	-4.49631

Therefore, k_{ent}=5.2*10⁻⁷s⁻¹

 $t_{1/2}^{100}$ rac=ln(2)/2k_{ent}=185.1 h

Employing the Eyring equation:

$$\Delta G = -RT \ln\left(\frac{k_{ent} \times h}{k_B \times T}\right) = -8.314 \times 373.15 \times \ln\left(\frac{5.2 \times 10^{-7} \times 6.626 \times 10^{-344}}{1.381 \times 10^{-23} \times 373.15}\right)$$

=136.97 kJ/mol (32.7 kcal/mol)

Mechanistic studies:

(R)-dibenzyl-1-(2-isopropyl-4-(methylamino)-6-pivalamidophenyl)hydrazine-1,2-dicarboxylate

(**7b**)

95 mg, 87% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.58 (s, 1H), 7.42 – 7.32 (m, 1H), 7.29 – 7.08 (m, 10H), 7.06 (d, *J* = 6.5 Hz, 1H), 6.11 (d, *J* = 2.7 Hz, 1H), 5.23 – 4.78 (m, 4H), 3.81 (s, 1H), 2.75 (s, 3H), 2.61 – 2.30 (m, 1H), 1.17 (s, 9H), 1.00 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 177.8, 157.7, 156.6, 150.2, 146.9, 137.2, 135.6, 135.1, 128.7, 128.7, 128.6, 128.6, 128.4, 128.2, 118.7, 104.8, 104.6, 68.6, 68.6, 40.1, 30.7, 29.1, 27.4, 23.9. [α]_D²⁵ = -14.50 (c = 1, DCM). IR (cm⁻¹): *f* = 3673, 3226, 2968, 2900, 1705, 1613, 1454, 1241, 1055, 734, 694. m/z HRMS (ESI) found [M+H]⁺ 547.2907, C₃₁H₃₉N₄O₅⁺ requires 547.2915. HPLC: Chiralpak IA column, 85:15 hexanes/isopropanol, 1 ml/min; t_R = 10.5 min (major), 11.8 min (minor); 72:28 er.

(*R*)-dibenzyl-1-(4-(dimethylamino)-2-isopropyl-6-pivalamidophenyl)hydrazine-1,2-dicarboxylate (7c)

105 mg, 94% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.56 (s, 1H), 7.63 – 7.37 (m, 1H), 7.33 – 7.07 (m, 10H), 6.99 (s, 1H), 6.21 (d, J = 2.9 Hz, 1H), 5.31 – 4.72 (m, 4H), 2.90 (s, 6H), 2.51 (hept, J = 6.8 Hz, 1H), 1.18 (s, 9H), 1.03 (m, 6H).¹³C NMR (101 MHz, CDCl₃) δ 177.8, 157.7, 156.6, 151.1, 146.4, 136.9, 135.7, 135.1, 128.7, 128.7, 128.6, 128.6, 128.4, 128.3, 118.1, 104.9, 104.8, 68.7, 68.6, 40.6, 40.1, 29.3, 27.4, 24.0, 23.9. [α]_D²⁵ = 21.10 (c = 1, DCM). IR (cm⁻¹): f = 3673, 3224, 2967, 2900, 1716, 1610, 1539, 1393, 1255, 1056, 794, 694. m/z HRMS (ESI) found [M+H]⁺ 561.3064, C₃₂H₄₁N₄O₅⁺ requires 561.3071. HPLC: Chiralpak IA column, 85:15 hexanes/isopropanol, 1 ml/min; t_R = 4.7 min (major), 5.0 min (minor); 81:19 er.

Derivatizations of chiral products:

(*R*)-dibenzyl-1-(2-(tert-butyl)-4-iodo-6-pivalamidophenyl)hydrazine-1,2-dicarboxylate (8a)

5a, 98.5:1.5 er

8a, 79%, 96.5:3.5 er

To a solution of p-TsOH.H₂O (114 mg, 0.6 mmol) in MeCN (3 mL) was added 5a (109 mg, 0.2 mmol). The resulting suspension of amine salt was cooled to 5-10 °C and to this was gradually added a solution of NaNO₂ (28 mg, 0.4 mmol) and NaI (75 mg, 0.5 mmol) in H₂O (0.4 mL). The reaction mixture was stirred for 10 min then allowed to warm to 20 °C. After stirring for 30 min, the reaction mixture was then added $H_2O(2 \text{ mL})$, NaHCO₃ (1 M; until pH = 9-10) and Na₂S₂O₃ (2 M, 1 mL). The mixture was extracted with EtOAc for 3 times. The combined organic layer was dried over Na₂SO₄ and concentrated under vacuum to afford a residue, which was purified by column chromatography (petroleum ether/EtOAc = 10:1) as eluent to give the product **8a** (104 mg, 79% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.85 (m, 1H), 8.27 (m, 1H), 7.46 (dd, J = 4.5, 2.1 Hz, 1H), 7.38 – 7.02 (m, 10H), 6.82 (d, J = 2.5 Hz, 1H), 5.66 – 4.74 (m, 4H), 1.61 – 0.82 (m, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 177.6, 157.9, 155.3, 149.1, 138.7, 134.9, 134.7, 133.4, 132.3, $128.9, 128.8, 128.7, 128.7, 128.6, 128.6, 128.5, 95.6, 69.2, 69.1, 39.9, 35.9, 31.7, 27.3. [\alpha]_{D}^{25} = -$ 31.70 (c = 1, DCM). IR (cm⁻¹): f = 3673, 3281, 2968, 2900, 1717, 1516, 1393, 1256, 1055, 796, 735, 694. m/z HRMS (ESI) found [M+H]⁺ 658.1765, C₃₁H₃₇IN₃O₅⁺ requires 658.1772. HPLC: Chiralpak IA column, 90:10 hexanes/isopropanol, 1 ml/min; t_R = 5.9 min (major), 6.8 min (minor); 96.5:3.5 er.

(*R*)-diisopropyl-1-(2-(((benzyloxy)carbonyl)amino)-6-(tert-butyl)phenyl)hydrazine-1,2dicarboxylate (**9s**)

To a solution of **5s** (100 mg, 0.2 mmol) in THF (8 mL) was added hypophosphorous acid (50% solution in water, 4 mmol) at 0°C. Then sodium nitrite (41.4 mg, 0.6 mmol) was added and the reaction mixture was stirred at 0°C for 4 h and at rt for 12 h. Afterwards saturated NaHCO₃ was added until the pH of aqueous phase was about 8. The mixture was extracted with EtOAc for 3 times. The combined organic layer was dried over Na₂SO₄ and concentrated under vacuum. The crude was purified by column chromatography (petroleum ether/EtOAc = 10:1) as eluent to give the product **9s** (104 mg, 75% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.87 (m, 1H), 8.04 – 7.62 (m, 1H), 7.41 – 7.30 (m, 2H), 7.30 – 7.05 (m, 5H), 6.58 (d, *J* = 9.7 Hz, 1H), 5.14 (q, *J* = 12.6 Hz, 2H), 5.06 – 4.94 (m, 1H), 4.84 (tt, *J* = 12.6, 6.4 Hz, 1H), 1.28 (s, 9H), 1.21 – 0.83 (m, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 158.3, 155.1, 154.6, 147.7, 138.0, 137.0, 129.4, 128.5, 128.2, 127.9, 127.6, 123.2, 121.0, 71.6, 66.4, 36.0, 32.2, 32.1, 21.9, 21.6. [α]_D²⁵ = -64.10 (c = 1, DCM). IR (cm⁻¹): *f* = 3673, 3218, 2970, 2900, 1734, 1700, 1522, 1368, 1240, 1051, 795, 696. m/z HRMS (ESI) found [M+H]⁺ 486.2592, C₂₆H₃₆N₃O₆⁺ requires 486.2599. HPLC: Chiralpak IA column, 90:10 hexanes/isopropanol, 1 ml/min; t_R = 7.1 min (minor), 12.8 min (major); 97:3 er.

(R)-diisopropyl 1-(2-amino-6-(tert-butyl)phenyl)hydrazine-1,2-dicarboxylate (10s)

To a solution of **9s** (50 mg, 0.1 mmol) in MeOH (3 mL) was add Pd/C (5 mg, 10 % Pd, 55% w/w water). After stirring under H₂ atmosphere (1 atm) overnight, the reaction mixture was filtered through celite and concentrated under vacuum to give a residue, which was purified by flash column chromatography (Petroleum ether/EtOAc = 9:1) to give the product **10s** (36.1 mg, 99% yield). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.05 (t, *J* = 7.9 Hz, 1H), 6.77 (dt, *J* = 8.0, 2.5 Hz, 1H), 6.72 – 6.49 (m, 2H), 5.05 (s, 2H), 5.03 – 4.93 (m, 2H), 1.35 (s, 9H), 1.33 – 1.09 (m, 12H). ¹³C NMR (101 MHz, CDCl₃) δ 155.6, 148.4, 147.1, 129.8, 129.5, 116.6, 114.9, 114.5, 71.1, 70.8, S49

35.8, 32.3, 32.2, 22.0. $[\alpha]_D^{25} = 34.80$ (c = 1, DCM). IR (cm⁻¹): f = 3673, 3469, 3375, 3338, 2969, 2900, 1740, 1716, 1623, 1370, 1232, 1103, 1051, 795, 757. m/z HRMS (ESI) found $[M+H]^+$ 352.2223, $C_{18}H_{30}N_3O_4^+$ requires 352.2231. HPLC: Chiralpak IA column, 90:10 hexanes/isopropanol, 1 ml/min; $t_R = 6.6$ min (minor), 10.5 min (major); 97:3 er.

Time/s	ee(%)	-ln(ee)
0	93.092	-4.53359
43200	89.434	-4.4935
86400	85.726	-4.45116
172800	78.504	-4.36315
259200	72.728	-4.28673

Barriers to racemization of 10s at 70 $^\circ$ C in toluene

-ln(ee)=2k_{ent}t+C

Therefore, k_{ent}=4.81*10⁻⁷s⁻¹

 $t_{1/2}^{70}$ rac=ln(2)/2k_{ent}=200.2 h

Employing the Eyring equation:

$$\Delta G = -RT \ln\left(\frac{k_{ent} \times h}{k_B \times T}\right) = -8.314 \times 343.15 \times \ln\left(\frac{4.81 \times 10^{-7} \times 6.626 \times 10^{-34}}{1.381 \times 10^{-23} \times 343.15}\right)$$

=125.95kJ/mol (30.1 kcal/mol)

Application of chiral aniline catalyst 10s:

The catalyst **10s** (7 mg, 0.02 mmol, 97:3 er), DCM (1mL) were added to the a-branched aldehyde **11a** (26.8 mg, 0.2 mmol) in a 4 mL vial. After 30 min stirring at -10° C, NFSI (75.6 mg, 0.24 mmol) was added and the reaction mixture stirred at -10° C overnight. After full conversion was detected by GC-MS, the mixture was diluted with EtOH (1mL) and NaBH₄ (3.0 equiv.) was added. Then the reaction was stirred at 0° C until full conversion was detected by GC-MS. Then NaHSO₄ solution (1M) and CH₂Cl₂ were added and the aqueous phase was extracted with CH₂Cl₂. The organic phase was dried over Na₂SO₄, filtered and the solvent evaporated. The crude product was purified by flash column chromatography (Petroleum ether/EtOAc = 8:1) to give the product **12a** (19 mg, 63% yield).

(S)-2-fluoro-2-phenylpropan-1-ol $(12a)^{[2]}$

¹H NMR (500 MHz, Chloroform-*d*) δ 7.47 – 7.28 (m, 5H), 4.19 – 3.48 (m, 2H), 1.86 (s, 1H), 1.71 (d, J = 22.7 Hz, 3H). [α]_D²⁵ = 9.60 (c = 1, DCM). HPLC: Chiralpak IA column, 95:05 hexanes/isopropanol, 1 ml/min; t_R = 9.9 min (major), 11.5 min (minor); 91:9 er.

References:

- T. M. Baker, M. C. T. Fyre, G. W. Harbottle, V. Hasimbegovic, P. Meghani, A. RigbyI,
 C. Sambrook-Smith, S. M. Thom, US2014296208 (A1) 2014.
- [2] L. Cui, Y. e. You, X. Mi, S. Luo, J. Org. Chem. 2018, 83, 4250-4256.

X-Ray structures:

X-Ray structure of (R)-5a

HPLC traces:

(R)-dibenzyl 1-(4-amino-2-(tert-butyl)-6-pivalamidophenyl)hydrazine-1,2-dicarboxylate (5a)

 Ŧ	Time	Type	Area	пеідпі	width	Area %	Symmetry
1	10.984	BB	6027.9	149.7	0.6218	98.576	0.759
2	13.206	BB	87.1	2.9	0.4555	1.424	0.745

(S)-dibenzyl 1-(4-amino-2-(tert-butyl)-6-isobutyramidophenyl)hydrazine-1,2-dicarboxylate (5b)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	10.054	BB	3976.1	212.2	0.2846	93.789	0.734
2	13.566	BB	263.3	8.1	0.3806	6.211	0.903

(R)-dibenzyl-1-(4-amino-2-(tert-butyl)-6-(cyclohexanecarboxamido)phenyl)hydrazine-1,2-

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	14.594	BB	7726.1	260	0.4512	49.653	0.718
2	18.01	BB	7834	174.9	0.6832	50.347	0.811

(R)-dibenzyl 1-(4-amino-2-(tert-butyl)-6-propionamidophenyl)hydrazine-1,2-dicarboxylate (5d)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	12.569	BB	2298.7	101.4	0.3425	49.445	0.745
2	15.176	BB	2350.3	83.4	0.425	50.555	0.741

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	12.527	BB	241.8	10.6	0.3134	8.808	0.798
2	15.024	BB	2503.8	91.2	0.4143	91.192	0.708

(R)-dibenzyl 1-(2-acetamido-4-amino-6-(tert-butyl)phenyl)hydrazine-1,2-dicarboxylate (5e)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	13.769	BB	380.6	15.2	0.3376	6.328	0.793
2	15.156	BB	5634.9	181.6	0.4669	93.672	0.675

(S)-dibenzyl-1-(4-amino-2-benzamido-6-(tert-butyl)phenyl)hydrazine-1,2-dicarboxylate (5f)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	21.81	BB	5454.8	96.3	0.8651	49.956	0.674
2	25.017	BB	5464.5	76	1.0828	50.044	0.648

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	23.415	BB	4110.4	75.1	0.8426	11.762	0.745
2	26.139	BBA	30834.7	469.9	1.0055	88.238	0.574

(R)-dibenzyl

1-(4-amino-2-((tert-butoxycarbonyl)amino)-6-(tert-butyl)phenyl)hydrazine-1,2-dicarboxylate (5g)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	10.188	BB	4299.3	145.9	0.4519	91.764	0.725
2	12.829	BB	385.9	6.6	0.7687	8.236	0.816

(R)-dibenzyl-1-(4-amino-2-(((benzyloxy)carbonyl)amino)-6-(tert-butyl)phenyl)hydrazine-1,2-

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	22.372	BB	20923.1	379.3	0.8475	50.629	0.794
2	26.782	BBA	20403.5	353	0.8884	49.371	0.795

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	23.074	BB	7066.7	119	0.9145	94.735	0.793
2	27.649	BB	392.7	6.5	0.9278	5.265	0.894

(R)-dibenzyl-1-(4-amino-2-(tert-butyl)-6-((isopropoxycarbonyl)amino)phenyl) hydrazine-1, 2-interval (isopropoxycarbonyl) hydrazine-1, 2-interval (isopropo

dicarboxylate (5i)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	12.758	BV	430	15.1	0.4362	6.421	0.841
2	14.336	VB	6267	153.3	0.631	93.579	0.886

(R)-dibenzyl-1-(4-amino-2-(tert-butyl)-6-((4-methylphenyl)sulfonamido)phenyl)hydrazine-1,2dicarboxylate (**5j**)

ŧ	ŧ	Time	Туре	Area	Height	Width	Area%	Symmetry
1	1	11.839	BB	1301.7	26.3	0.7302	49.231	0.604
2	2	16.258	BB	1342.3	21.3	0.9145	50.769	0.517

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	11.711	BB	7518.5	162.9	0.6805	95.848	0.458
2	16.259	MM	325.7	4	1.3464	4.152	0.689

(R)-dibenzyl 1-(4-amino-2-(tert-butyl)-6-(phenylamino)phenyl)hydrazine-1,2-dicarboxylate (5k)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	11.327	BB	12304.2	605.5	0.2946	93.344	0.767
2	15.135	BB	877.4	32.7	0.3243	6.656	0.845

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	9.204	BB	8438	277.7	0.4015	97.602	0.698
2	13.594	BB	207.3	5.9	0.4143	2.398	0.916

(R)-dibenzyl 1-(4-amino-2-cyclopentyl-6-pivalamidophenyl)hydrazine-1,2-dicarboxylate (5m)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	10.51	BB	2999.3	80.7	0.5008	97.278	0.677
2	13.604	MM	83.9	2.1	0.6757	2.722	0.896

(R)-dibenzyl 1-(4-amino-2-cyclohexyl-6-pivalamidophenyl)hydrazine-1,2-dicarboxylate (5n)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	5.833	BV	1386	146.4	0.1445	49.387	0.791
2	6.307	VB	1420.4	119.6	0.1786	50.613	0.717

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	5.855	BV	164	16.5	0.1532	2.892	0.79
2	6.389	VB	5505.7	447.4	0.1851	97.108	0.651

(R)-dibenzyl 1-(4-amino-2-pivalamido-6-propylphenyl)hydrazine-1,2-dicarboxylate (50)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	9.712	BB	5489.2	168.8	0.4913	96.665	0.677
2	17.537	MM	189.4	3	1.0592	3.335	0.921

(S)-dibenzyl 1-(4-amino-2-methyl-6-pivalamidophenyl)hydrazine-1,2-dicarboxylate (5p)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	8.535	MF	8890.3	520	0.2849	96.477	0
2	9.349	MF	324.6	14.9	0.3626	3.523	0.667

(R)-diethyl 1-(4-amino-2-(tert-butyl)-6-pivalamidophenyl)hydrazine-1,2-dicarboxylate (5q)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	8.535	MF	8890.3	520	0.2849	96.477	0
2	9.349	MF	324.6	14.9	0.3626	3.523	0.667

(R)-diisopropyl 1-(4-amino-2-(tert-butyl)-6-pivalamidophenyl)hydrazine-1,2-dicarboxylate (5r)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	6.889	FM	7104.5	568.7	0.2082	49.757	0.635
2	10.984	BB	7173.8	399.5	0.272	50.243	0.683

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	7.129	BB	157.4	11.2	0.2123	2.325	0.722
2	11.592	BB	6612	347.9	0.2897	97.675	0.697

(R) - diisopropyl - 1 - (4 - amino - 2 - (((benzyloxy) carbonyl) amino) - 6 - (tert - butyl) phenyl) hydrazine - 1, 2 - (benzyloxy) - 2 - ((benzyloxy) - 2 - (benzyloxy) - 2

dicarboxylate (5s)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	11.073	BB	7153.2	338.6	0.3215	49.862	0.73
2	14.718	VB	7192.9	183.2	0.5961	50.138	0.945

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	10.704	BB	219	10.7	0.2718	2.300	0.791
2	13.934	BB	9300.3	264.1	0.5409	97.700	0.935
(R)-dibenzyl-1-(2-isopropyl-4-(methylamino)-6-pivalamidophenyl)hydrazine-1,2-dicarboxylate

(**7b**)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	10.577	BV	8214.3	492.9	0.2549	49.865	0.713
2	11.76	VB	8258.8	423.7	0.2959	50.135	0.641

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	10.536	BV	19779.7	1189.8	0.2539	71.787	0.647
2	11.803	VB	7773.5	401.7	0.2943	28.213	0.649

(R)-dibenzyl-1-(4-(dimethylamino)-2-isopropyl-6-pivalamidophenyl)hydrazine-1,2-dicarboxylate

(7c)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	5.836	BV	6109.1	767.9	0.1203	49.354	0.695
2	6.251	VB	6269.2	687	0.1375	50.646	0.68

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	4.698	BV	13373.9	1827.6	0.1119	81.013	0.648
2	5.009	VB	3134.5	369.7	0.1259	18.987	0.699

(R)-dibenzyl 1-(4-hydroxy-2-isopropyl-6-pivalamidophenyl)hydrazine-1,2-dicarboxylate (7d)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	6.045	BV	4922	351.1	0.2081	49.830	0.472
2	7.021	VB	4955.6	287.2	0.2533	50.170	0.469

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	5.387	BV	1097.1	81.1	0.1967	15.158	0.491
2	6.211	MF	6140.6	390.8	0.2619	84.842	0.461

(R)-dibenzyl 1-(2-isopropyl-4-methoxy-6-pivalamidophenyl)hydrazine-1,2-dicarboxylate

Diisopropyl (7e)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	4.128	BV	4096.5	737.9	0.0848	48.742	0.79
2	4.426	VV R	4308.1	674.1	0.0969	51.258	0.764

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	4.13	MF	1144.1	201.5	0.0946	88.302	0
2	4.425	FM	151.6	23.6	0.1069	11.698	0.758

(*R*)-dibenzyl-1-(2-(tert-butyl)-4-iodo-6-pivalamidophenyl)hydrazine-1,2-dicarboxylate (8a)

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	5.932	BB	1427.7	138.1	0.1591	49.917	0.792
2	6.799	BB	1432.5	144.6	0.1501	50.083	0.802

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	5.906	BB	2785.4	275.3	0.1555	96.718	0.79
2	6.766	BB	94.5	7.9	0.1762	3.282	0.824

(R)-1-(2-(((benzyloxy)carbonyl)amino)-6-(tert-butyl)phenyl)hydrazine-1,2-dicarboxylate (9s)

(R)-diisopropyl 1-(2-amino-6-(tert-butyl)phenyl)hydrazine-1,2-dicarboxylate (10s)

0

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	6.547	VB R	9037.8	640.1	0.1776	49.335	0.901
2	10.274	BB	9281.5	590.5	0.2034	50.665	0.794

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	6.642	BB	136.4	10.2	0.198	2.358	0.925
2	10.495	BB	5647.9	367.2	0.239	97.642	0.889

2-fluoro-2-phenylpropan-1-ol (12a)

	#	Time	Туре	Area	Height	Width	Area%	Symmetry
- [1	9.739	BB	1248.5	116.1	0.1639	49.593	0.821
	2	11.236	BB	1269	102	0.1897	50.407	0.832

#	Time	Туре	Area	Height	Width	Area%	Symmetry
1	9.946	BB	1000.1	90	0.1677	91.122	0.792
2	11.543	BB	97.4	7.6	0.1793	8.878	0.858

NMR spectrums:

N-(3-amino-5-(tert-butyl)phenyl)cyclohexanecarboxamide (3c)

N-(3-amino-5-(tert-butyl)phenyl)propionamide (3d)

100 90 fl (ppm) 80 70 60 50 40 30 20 10 0

00 190 180 170 160 150 140 130 120 110

-200000 --100000 ---0 ---100000

N-(3-amino-5-(tert-butyl)phenyl)benzamide (3f)

benzyl (3-amino-5-(tert-butyl)phenyl)carbamate (3h)

isopropyl (3-amino-5-(tert-butyl)phenyl)carbamate (3i)

N-(3-amino-5-(tert-butyl)phenyl)-4-methylbenzenesulfonamide (3j)

5-(tert-butyl)-N1-phenylbenzene-1,3-diamine (3k)

N-(3-amino-5-isopropylphenyl)pivalamide (31)

N-(3-amino-5-cyclohexylphenyl) pivalamide (3n)

N-(3-amino-5-propylphenyl)pivalamide (30)

N-(3-amino-5-methylphenyl)pivalamide (3p)

N-(3-isopropyl-5-(methylamino)phenyl)pivalamide (6b)

N-(3-(dimethylamino)-5-isopropylphenyl)pivalamide (6c)

(R) - Dibenzyl - 1 - (4 - amino - 2 - (tert - butyl) - 6 - pivalamidophenyl) hydrazine - 1, 2 - dicarboxylate (5a)

(S)-dibenzyl-1-(4-amino-2-(tert-butyl)-6-isobutyramidophenyl)hydrazine-1,2-dicarboxylate (5b)

(R)-dibenzyl-1-(4-amino-2-(tert-butyl)-6-(cyclohexanecarboxamido)phenyl)hydrazine-1,2-

(R)-dibenzyl-1-(4-amino-2-(tert-butyl)-6-propionamidophenyl)hydrazine-1,2-dicarboxylate (5d)

(R) - dibenzyl - 1 - (2 - acetamido - 4 - amino - 6 - (tert - butyl) phenyl) hydrazine - 1, 2 - dicarboxylate (5e)

(S)-dibenzyl-1-(4-amino-2-benzamido-6-(tert-butyl)phenyl)hydrazine-1,2-dicarboxylate (5f)

(R)-dibenzyl-1-(4-amino-2-((tert-butoxycarbonyl)amino)-6-(tert-butyl)phenyl)hydrazine-1,2-

dicarboxylate (5g)

160 150

100 90 fl (ppm)

(R)-dibenzyl-1-(4-amino-2-(((benzyloxy)carbonyl)amino)-6-(tert-butyl)phenyl)hydrazine-1,2-

(R)-dibenzyl-1-(4-amino-2-(tert-butyl)-6-((isopropoxycarbonyl)amino)phenyl)hydrazine-1,2-

(*R*)-dibenzyl-1-(4-amino-2-(tert-butyl)-6-((4-methylphenyl)sulfonamido)phenyl)hydrazine-1,2dicarboxylate (**5j**)

(R)-dibenzyl-1-(4-amino-2-(tert-butyl)-6-(phenylamino)phenyl)hydrazine-1,2-dicarboxylate (5k)

(R)-dibenzyl-1-(4-amino-2-isopropyl-6-pivalamidophenyl)hydrazine-1,2-dicarboxylate (51)

(*R*)-dibenzyl1-(4-amino-2-cyclopentyl-6-pivalamidophenyl)hydrazine-1,2-dicarboxylate (**5m**)

(*R*)-dibenzyl-1-(4-amino-2-cyclohexyl-6-pivalamidophenyl)hydrazine-1,2-dicarboxylate (5n)

(*R*)-dibenzyl-1-(4-amino-2-pivalamido-6-propylphenyl)hydrazine-1,2-dicarboxylate (50)

(S)-dibenzyl-1-(4-amino-2-methyl-6-pivalamidophenyl)hydrazine-1,2-dicarboxylate (5p)

(R)-diethyl-1-(4-amino-2-(tert-butyl)-6-pivalamidophenyl)hydrazine-1,2-dicarboxylate (5q)

 $(\it R) - Diisopropyl - 1 - (4-amino - 2 - (tert-butyl) - 6 - pivalamidophenyl) hydrazine - 1, 2 - dicarboxylate (5r)$

(*R*)-diisopropyl-1-(4-amino-2-(((benzyloxy)carbonyl)amino)-6-(tert-butyl)phenyl)hydrazine-1,2dicarboxylate (**5s**)

80 170

100 90 fl (ppm)

(R)-dibenzyl-1-(2-isopropyl-4-(methylamino)-6-pivalamidophenyl) hydrazine-1, 2-dicarboxylate and the second seco

(**7b**)

(*R*)-dibenzyl-1-(4-(dimethylamino)-2-isopropyl-6-pivalamidophenyl)hydrazine-1,2-dicarboxylate

(*R*)-dibenzyl-1-(2-(tert-butyl)-4-iodo-6-pivalamidophenyl)hydrazine-1,2-dicarboxylate (8a)

(R)-diisopropyl-1-(2-(((benzyloxy)carbonyl)amino)-6-(tert-butyl)phenyl)hydrazine-1,2-

(*R*)-diisopropyl 1-(2-amino-6-(tert-butyl)phenyl)hydrazine-1,2-dicarboxylate (10s)

(*S*)-2-fluoro-2-phenylpropan-1-ol (**12a**)

