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1. Catalyst Characterizations

1.1 Material Synthesis

 H-SAPO-34（nSi/(nSi+nAl+nP)=0.06）was synthesized following the procedure described in 

the literature.1 SAPO-34 was synthesized by a hydrothermal method with diethylamine (DEA) 

as a template.

1.2 Powder X-ray Diffraction (XRD)

Powder X-ray diffraction (XRD) pattern of H-SAPO-34 was recorded on a PANalytical 

X'Pert PRO X-ray diffractometer equipped with Cu Kα radiation (λ = 0.15418 nm) from 5 and 

40o with a scan speed of 2θ =5.0 o/min at 40 kV and 40 mA. The powder XRD pattern of 

SAPO-34 catalyst with high crystallinity was presented in Figure S1.

Fig. S1 XRD patterns of H-SAPO-34 catalysts. 

1.3 Scanning Electron Microscopy (SEM)

A HITACHI SU8020 Scanning Electron Microscope was employed to investigate the crystal 

size and morphology of H-SAPO-34 catalyst.



Fig. S2 SEM images of H-SAPO-34 molecular sieves

1.4 1H and 29Si MAS NMR spectra
1H NMR and 29Si NMR experiments were performed on a Bruker Avance III 600 spectrometer 

equipped with 14.1T wide-bore magnet. The resonance frequencies in this field strength were 

119.2 MHz and 600.13 MHz for 29Si, 1H respectively. The 29Si MAS NMR spectrum was 

recorded with a high power proton decoupling sequence with a spinning rate of 8 kHz. Chemical 

shifts of 29Si NMR spectrum was referenced to kaolinite at -91.5 ppm. Prior to 1H MAS NMR 

experiments, catalysts were pretreated at 693 K for 15 h under vacuum to completely remove 

adsorbed water and impurities in pore space. The 1H MAS NMR spectrum was recorded with 

onepulse sequence with a spinning rate of 12 kHz, and chemical shifts were referenced to 

adamantane at 1.74 ppm.



Fig. S3 1H MAS NMR spectra of H-SAPO-34-(Si/Si+Al+P=0.06 in molar ratio).

Fig. S4 29Si MAS NMR spectra of H-SAPO-34 (Si/Si+Al+P=0.06 in molar ratio).

2. Experimental and Theoretical section

2.1 Product Distribution of Methanol to Olefins Conversion

Methanol conversion was performed in a fixed-bed quartz tubular reactor at atmospheric 

pressure. A catalyst sample of 33.3 mg (40-60 mesh) was loaded into the reactor and the 

reactions was carried out at 350 °C. Methanol was fed by passing helium through a saturation 

evaporator with a WHSV of 6.0 h−1. The reaction products were analyzed by an on-line gas 



chromatograph (Agilent GC 7890A) equipped with an HP-PLOT Q capillary column and a FID 

detector. The conversion and selectivity were calculated on a CH2 basis. Dimethyl ether (DME) 

was considered as a reactant in the calculation.

Fig. S5 The gas phase products distribution of MTO reaction with time on stream over H-SAPO-

34 at 350 ℃, WHSV=6 h-1.

2.2 1H-13C CP MAS NMR experiment 

Solid-state NMR spectra were recorded on a Bruker Avance III 600 MHz spectrometer 

equipped with a 14.1 T wide-bore magnet. 13C MAS NMR spectra were collected at 150.9 MHz 

with a 3.2 mm HXY probe using a 1H13C cross polarization (CP) pulse sequence with a 

spinning speed of 8 kHz. The chemical shifts were referenced to adamantane with the up field 

methine peak at 29.5 ppm. The 13C CP/MAS NMR spectra were acquired with a contact time 

of 3 ms and relaxation delay of 2 s.  

Two distinct regions of aliphatic carbon (10-30 ppm) and aromatic carbon (120-137 ppm) 

were observed. Signals at 19-21 ppm accompanied by signals at 128 and 134 ppm confirm the 

formation of polymethyl-substituted benzenes. The occurrence of signals at 125-137 ppm 

reveal the formation of polycyclic aromatics combined with the analysis and identification of 

these retained organics by GC-MS. Moreover, the intensity of naphthalene derivatives and 



polycyclic aromatics increase with time on-stream and these evolving trends virtually coincide 

with the results obtained from GC-MS.

Fig. S6 13C MAS NMR spectra of retained organic species in H-SAPO-34 with time on 

stream over H-SAPO-34 after methanol conversion at 350 oC and WHSV of 6 h-1.  

2.3 TG analysis

The total amount coke was analyzed by thermogravimetric analysis (TGA). 10mg of the spent 

catalyst was heated with 10 oC/min heating rate to 800 oC and was held isothermal for 1 h.

2.4 Theoretical calculation for the conversation of coke precursor 

   For theoretical calculations, a 74 T cluster model (Al37SiP36O119) represents the structure of 

H-SAPO-34 zeolite, which were extracted from the crystallographic data from the structure of 

CHA. In the theoretical calculations for the extended zeolite model, one P atom was then 

replaced by Si atom (see Fig. S7). And the locations of acid sites O(2) were chosen at the 8-

ring window that is easy access by adsorbents and has maximum reaction space2, 3 . 



Fig. S7 Representations of H-SAPO-34 framework structures by 74T cluster models. 

  The combined theoretical ONIOM method 4-6 was applied to predict the geometries of various 

adsorption structures and transition states (TS). During the structure optimizations, ωB97XD 

hybrid density function with 6-31G(d, p) basis sets and semi-empirical AM1 were employed for 

optimizing geometries of the high-level layer and low-level layer. The ωB97XD method is the 

hybrid meta DFT developed by Chai and Head-Gordon, where implicitly accounts for empirical 

dispersion and can describe long-range dispersion interactions well with respect to the 

traditional DFT methods7. To preserve the integrity of the zeolite structure during the structure 

optimizations, the 8-ring window, (SiO)3-Si-OH-Al-(SiO)3 active center and the adsorbed 

species in the high-level layer were relaxed while the rest of atoms were fixed in the low-level 

at their crystallographic locations. To obtain high accurate energies, the single-point energies 

were calculated at the level of ωB97XD /6-31G(d,p). The frequency calculations were 

performed at the same level as geometry optimizations to check whether the saddle points 

exhibit the proper number of imaginary frequencies. Only a single imaginary frequency was 

observed for the transition state. The energies reported here have been corrected for zero-point 

vibration energies. All density functional theory (DFT) calculations were performed with the 

Gaussian 09 package8. The intrinsic free energies (ΔG#) are obtained from the ωB97XD/6-31G 

(d, p) total electronic energies and the thermal correction from the ωB97XD/6-31G(d,p):AM1 

frequency calculations at 623 K. The reaction rate constants were obtained through transition 

state theory (TST) as implemented in the TAMkin program9, which was developed by Van 

Speybroeck’s group. 
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