Electronic Supplementary Information

Triazole-based, optically-pure metallosupramolecules; highly potent and selective anticancer compounds

Hualong Song, ${ }^{\text {a }}$ Nicola Rogers,*, ${ }^{\text {a }}$ Viktor Brabec,,${ }^{*, c}$ Guy Clarkson, ${ }^{\text {a }}$ James Coverdale, ${ }^{\text {a }}$ Hana Kostrhunova, ${ }^{\text {c }}$ Roger M. Phillips, ${ }^{\text {b }}$ Miles Postings, ${ }^{\text {a }}$ Samantha L. Shepherd ${ }^{\text {b }}$ and Peter Scott*,a

Contents

1. Synthesis.S2
(1-benzyl-1H-1,2,3-triazol-4-yl)methanol. S3
1-benzyl-1H-1,2,3-triazole-4-carbaldehyde (1a) S4
4-((4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl)methyl)benzonitrile S4
4-((4-formyl-1H-1,2,3-triazol-1-yl)methyl)benzonitrile (1b) S5
(1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl)methanol S6
1-(4-methoxybenzyl)-1H-1,2,3-triazole-4-carbaldehyde (1c) S6
(1-(4-fluorobenzyl)-1H-1,2,3-triazol-4-yl)methanol S7
1-(4-fluorobenzyl)-1H-1,2,3-triazole-4-carbaldehyde (1d) S8
4-((4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl)methyl)benzoic acid S8
4-((4-formyl-1H-1,2,3-triazol-1-yl)methyl)benzoic acid (1e) S9
General synthesis of HHT- $\left[\mathrm{Zn}_{2} \mathrm{~L}^{\mathrm{n}_{3}}\right]\left[\mathrm{ClO}_{4}\right]_{4}$ (where $\mathrm{n}=3 \mathrm{a}-\mathrm{d}$). S11
General synthesis of HHT-[$\left.\mathrm{Fe}_{2} \mathrm{~L}_{3}{ }_{3}\right] \mathrm{Cl}_{4}$ (where $\mathrm{n}=3 \mathrm{a}-\mathrm{e}$). S17
2. NMR spectra S25
3. High Resolution ESI mass spectra S37
4. Circular Dichroism Spectra S39
5. Stability studies S40
6. Cytotoxicity screening S41
7. Combined treatment S44
8. Antimicrobial screening S45
9. Haemolysis screening S45
10. Real-time cell growth monitoring S46
11. Fluorescence competition assays S46
12. DNA binding studies using Flow LD spectra S48
References: S50

1. Synthesis

All solvents and chemicals purchased from commercial sources (Sigma-Aldrich, Acros, Fisher Scientific or Alfa Aesar) were used without further purification unless otherwise stated. Sodium hydride dispersions in mineral oil were placed in a Schlenk vessel under an inert atmosphere and washed three times with diethyl ether to remove the oil, then dried and stored under argon in an MBraun dry box. Where appropriate, reactions were carried out under argon using a dual manifold argon/vacuum line and standard Schlenk techniques or in an MBraun dry box. Necessary solvents were dried by heating to reflux for 3 d under dinitrogen over the appropriate drying agents (potassium for tetrahydrofuran, sodium/potassium alloy for diethyl ether, and calcium hydride for acetonitrile and pyridine) and degassed before use. Tetrahydrofuran and diethyl ether were additionally pre-dried over sodium wire. Dried solvents were stored in glass ampoules under argon. All glassware and cannulae were stored in an oven at > 375 K .

Deuterated solvents were purchased from Sigma-Aldrich and Cambridge Isotope Laboratories. NMR spectra were recorded on Bruker Spectrospin 300/400/500 MHz. Routine NMR assignments were confirmed by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ (COSY) and ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ (HSQC) correlation experiments where necessary. The spectra were internally referenced using the residual protio solvent ($\mathrm{CDCl}_{3}, \mathrm{CD}_{3} \mathrm{CN}$ etc.) resonance relative to tetramethylsilane ($\delta=0 \mathrm{ppm}$). ESI mass spectra were recorded on an Agilent Technologies 1260 Infinity spectrometer or a Bruker Daltonics MicroTOF spectrometer. Infra-Red spectra were measured using a Bruker Alpha-P FTIR spectrometer. Elemental analyses were performed by Medac Ltd. Chobham, Surrey GU24, 8JB, UK.

The enantiomers of 2-([2,2'-bipyridin]-5-ylmethoxy)-1-phenylethan-1-amine (2) and aromatic azide derivatives were synthesized by known methods. ${ }^{1}$

(1-benzyl-1H-1,2,3-triazol-4-yl)methanol

(Azidomethyl)benzene ($0.24 \mathrm{~g}, 1.79 \mathrm{mmol}$) and propargyl alcohol ($0.10 \mathrm{~g}, 1.79 \mathrm{mmol}$) were dissolved into methanol, followed by addition of $\mathrm{CuI}(34 \mathrm{mg}, 0.18 \mathrm{mmol})$. The reaction mixture was heated at $60^{\circ} \mathrm{C}$ overnight. After cooling to room temperature, the reaction solution was filtered to remove CuI. The solvent was removed under reduced pressure to afford the final product as white solid.

Yield $0.30 \mathrm{~g}, 90 \%$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}$) $\delta_{\mathrm{H}} 8.01$ ($1 \mathrm{H}, \mathrm{s}$, triazole), 7.40-7.30 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 5.57 (2 H , $\left.\mathrm{s}, \mathrm{Ph}-\underline{\mathrm{H}}_{2}\right), 5.15\left(1 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5.0 \mathrm{~Hz}, \mathrm{OH}\right), 4.50\left(2 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=5.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}$) $\delta_{\mathrm{C}} 136.7$ (q, Ph), 129.2/ 128.6/ 128.4 (Ph), 123.3 (triazole), $55.5\left(\mathrm{Ph}-\mathrm{CH}_{2}\right), 53.2\left(\mathrm{CH}_{2} \mathrm{OH}\right)$.

Elemental Analysis found (Calculated for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}$) \% C 63.56 (63.48), H 5.81 (5.86), N 22.43 (22.20).

LRMS (ESI+) m/z $212.2[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS Calculated for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z} 212.0794$, found m / z 212.0788.

IR $v \mathrm{~cm}^{-1} 3237$ (br, s), 1456 (w), 1220 (m), 1127 (m), 1013 (s), 838 (w), 716 (s), 690 (s), 570 (w).

1-benzyl-1H-1,2,3-triazole-4-carbaldehyde (1a)

(1-Benzyl-1H-1,2,3-triazol-4-yl)methanol ($0.15 \mathrm{~g}, 0.79 \mathrm{mmol}$) was dissolved into 2-propanol, followed by addition of activated manganese dioxide $(0.23 \mathrm{~g}, 2.6 \mathrm{mmol})$. The reaction mixture was heated overnight at $100^{\circ} \mathrm{C}$. After cooling down to room temperature, the suspension was filtered to remove MnO_{2}. The solvent was removed under reduced pressure to get crude product which was further purified by flash chromatography (DCM : $\mathrm{MeOH}=100: 1$) to give the 1 -benzyl-1H-1,2,3-triazole-4-carbaldehyde as a white solid $(0.14 \mathrm{~g}, 0.73 \mathrm{mmol}) . \mathrm{R}_{\mathrm{f}}=0.50(\mathrm{DCM}$: $\mathrm{MeOH}=100: 5)$.

Yield $0.14 \mathrm{~g}, 92 \%$.
${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}\right) \delta_{\mathrm{H}} 10.01(1 \mathrm{H}, \mathrm{s}, \mathrm{O}=\mathrm{CH}), 8.97$ (1 H , s, triazole), 7.42-7.32 (5H, m, Ph), $5.70\left(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}_{-\mathrm{CH}_{2}}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}$) $\delta_{\mathrm{C}} 185.4(\mathrm{O}=\mathrm{CH})$, 147.5 (q , triazole) $135.8(\mathrm{q}, \mathrm{Ph})$, 129.3/ 128.9/ 128.6 (Ph), 53.7 ($\mathrm{Ph}-\underline{\mathrm{C}}_{2}$).

Elemental Analysis found (Calculated for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}$) \% C 64.20 (64.16), H 4.69 (4.85), N 22.29 (22.44).

HRMS Calculated for $[\mathrm{M}+\mathrm{Na}]^{+} m / z 210.0638$, found $m / z 210.0633$.

IR $v \mathrm{~cm}^{-1} 3125$ (w), 1691 (s), 1532 (m), 1447 (w), 1356 (w), 1236 (m), 1163 (m), 1050 (m), 876 (w), 796 (s), 764 (s), 713 (s), 699 (s), 578 (w), 461 (w).

4-((4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl)methyl)benzonitrile

4-((4-(Hydroxymethyl)-1H-1,2,3-triazol-1-yl)methyl)benzonitrile was synthesised using the procedure described for 1-benzyl-1H-1,2,3-triazol-4-yl)methanol, substituting 4(azidomethyl)benzonitrile for (azidomethyl)benzene.

Yield $0.50 \mathrm{~g}, 90 \%$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}$) $\delta_{\mathrm{H}} 8.08\left(1 \mathrm{H}, \mathrm{s}\right.$, triazole), $7.86\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{Ph}\right)$, $7.45\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{Ph}\right), 5.70\left(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}-\mathrm{CH}_{2}\right), 5.18\left(1 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{JHH}_{\mathrm{HH}}=5.0 \mathrm{~Hz}, \mathrm{OH}\right), 4.52$ $\left(2 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=5.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}$) $\delta_{\mathrm{C}} 142.2$ (q, triazole), 133.2/ 129.1 (Ph), 123.7 (triazole), $119.0(\mathrm{CN}), 111.3(\mathrm{q}, \mathrm{Ph}), 55.5\left(\mathrm{Ph}-\mathrm{CH}_{2}\right), 52.5\left(\mathrm{CH}_{2} \mathrm{OH}\right)$.

LRMS (ESI+) m/z $237.2[\mathrm{M}+\mathrm{Na}]^{+}, 451.3[2 \mathrm{M}+\mathrm{Na}]^{+} ;$HRMS Calculated for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z}$ 237.0747, found m / z 237.0746.

4-((4-formyl-1H-1,2,3-triazol-1-yl)methyl)benzonitrile (1b)

1b was synthesised using the procedure described for 1a, substituting 4-((4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl)methyl)benzonitrile for (1-benzyl-1H-1,2,3-triazol-4-yl)methanol.

Yield $0.40 \mathrm{~g}, 88 \%$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}$) $\delta_{\mathrm{H}} 10.03(1 \mathrm{H}, \mathrm{s}, \mathrm{O}=\mathrm{CH}), 9.01$ ($1 \mathrm{H}, \mathrm{s}$, triazole), 7.87 (2H, d, $\left.{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{Ph}\right), 7.51\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{Ph}\right), 5.82\left(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}$) $\delta_{\mathrm{C}} 185.4(\mathrm{O}=\mathrm{CH})$, 141.2 (q, triazole), 133.3/ 129.4 $(\mathrm{Ph}), 129.2$ (triazole), $118.9(\mathrm{CN}), 111.6(\mathrm{q}, \mathrm{Ph}), 53.0\left(\mathrm{Ph}-\mathrm{CH}_{2}\right)$.

Elemental Analysis found (Calculated for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}$) \% C 61.86 (62.26), H 3.93 (3.80), N 25.79 (26.39).

LRMS (ESI+) m/z $235.2[\mathrm{M}+\mathrm{Na}]^{+}$; HRMS Calculated for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z} 235.0590$, found m / z 235.0585 .

IR $v \mathrm{~cm}^{-1} 3103$ (w), 2232 (w), 1697 (s), 1534 (m), 1237 (w), 1163 (w), 1047 (w), 765 (s), 555 (s).

(1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl)methanol

(1-(4-Methoxybenzyl)-1H-1,2,3-triazol-4-yl)methanol was synthesised using the procedure described for 1-benzyl-1H-1,2,3-triazol-4-yl)methanol, substituting 1-(azidomethyl)-4methoxybenzene for (azidomethyl)benzene.

Yield $0.50 \mathrm{~g}, 85 \%$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.43\left(1 \mathrm{H}, \mathrm{s}\right.$, triazole), $7.27\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.0 \mathrm{~Hz}, \mathrm{Ph}\right)$, $6.92\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{JHH}_{\mathrm{HH}}=7.0 \mathrm{~Hz}, \mathrm{Ph}\right), 5.47\left(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}-\mathrm{CH}_{2}\right), 4.78\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 129.7(\mathrm{Ph}), 126.4(\mathrm{q}, \mathrm{Ph}), 114.5(\mathrm{Ph}), 56.7(\mathrm{Ph}-$ $\left.\mathrm{CH}_{2}\right), 55.4\left(\mathrm{OCH}_{3}\right), 53.8\left(\mathrm{CH}_{2} \mathrm{OH}\right)$.

HRMS Calculated for $[\mathrm{M}+\mathrm{Na}]^{+} m / z 242.0900$, found $m / z 242.0898$.

1-(4-methoxybenzyl)-1H-1,2,3-triazole-4-carbaldehyde (1c)

1c was synthesised using the procedure described for 1a, substituting (1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl)methanol for (1-benzyl-1H-1,2,3-triazol-4-yl)methanol.

Yield $0.55 \mathrm{~g}, 87 \%$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}$) $\delta_{\mathrm{H}} 10.00(1 \mathrm{H}, \mathrm{s}, \mathrm{O}=\mathrm{CH}), 8.92(1 \mathrm{H}, \mathrm{s}$, triazole), $7.35(2 \mathrm{H}$, $\left.\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{Ph}\right), 6.94\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{JHH}_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{Ph}\right), 5.61\left(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}-\mathrm{CH}_{2}\right), 3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}$) $\delta_{\mathrm{C}} 185.4(\mathrm{O}=\mathrm{CH}), 159.8(\mathrm{q}, \mathrm{Ph}), 147.5$ (q, triazole), $130.3(\mathrm{Ph}), 128.4$ (triazole), $127.7(\mathrm{q}, \mathrm{Ph}), 114.7(\mathrm{Ph}), 55.6\left(\mathrm{OCH}_{3}\right), 53.2\left(\mathrm{Ph}-\mathrm{CH}_{2}\right)$.

Elemental Analysis found (Calculated for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$) \% C 60.40 (60.82), H 4.99 (5.10), N 19.21 (19.33).

HRMS Calculated for $[\mathrm{M}+\mathrm{Na}]^{+} m / z 240.0743$, found $m / z 240.0739$.

IR $v \mathrm{~cm}^{-1} 3091$ (w), 1696 (s), 1612 (w), 1514 (s), 1438 (w), 1253 (s$), 1168$ (m), 1029 (m), 786 (s), 552 (w).

(1-(4-fluorobenzyl)-1H-1,2,3-triazol-4-yl)methanol

1-(4-Fluorobenzyl)-1H-1,2,3-triazol-4-yl)methanol was synthesised using the procedure described for 1-benzyl-1H-1,2,3-triazol-4-yl)methanol, substituting 1-(azidomethyl)-4fluorobenzen for (azidomethyl)benzene.

Yield $0.60 \mathrm{~g}, 92 \%$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}$) $\delta_{\mathrm{H}} 8.02\left(1 \mathrm{H}, \mathrm{s}\right.$, triazole), $7.39\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.0 \mathrm{~Hz}, \mathrm{Ph}\right)$, $7.21\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.0 \mathrm{~Hz}, \mathrm{Ph}\right), 5.56\left(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}-\mathrm{CH}_{2}\right), 5.16\left(1 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5.5 \mathrm{~Hz}, \mathrm{OH}\right), 4.50$ $\left(2 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=5.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}(75 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}) \delta_{\mathrm{c}} 163.9$ (q, F-Ph), 160.7 (q, triazole), 133.0 (q, F$\mathrm{Ph}), 130.8 / 130.7$ (F-Ph), 123.2 (triazole), 116.2/ 115.9 ($\mathrm{F}-\mathrm{Ph}$), $55.5\left(\mathrm{Ph}-\mathrm{CH}_{2}\right), 52.4\left(\mathrm{CH}_{2} \mathrm{OH}\right)$.

LRMS (ESI+) m/z $230.1[\mathrm{M}+\mathrm{Na}]^{+} ;$HRMS Calculated for $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{m} / \mathrm{z} 230.0700$, found m / z 230.0699 .

1-(4-fluorobenzyl)-1H-1,2,3-triazole-4-carbaldehyde (1d)

1d was synthesised using the procedure described for 1a, substituting ((1-(4-fluorobenzyl)-1H-1,2,3-triazol-4-yl)methanol for (1-benzyl-1H-1,2,3-triazol-4-yl)methanol.

Yield $0.40 \mathrm{~g}, 86 \%$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}$) $\delta_{\mathrm{H}} 10.01(1 \mathrm{H}, \mathrm{s}, \mathrm{O}=\mathrm{CH}), 8.96$ (1 H , s, triazole), 7.45 (2 H , $\left.\mathrm{t},{ }^{3} \mathrm{JHH}_{\mathrm{HH}}=8.0 \mathrm{~Hz}, \mathrm{Ph}\right), 7.23\left(2 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{JHH}_{\mathrm{HH}}=8.0 \mathrm{~Hz}, \mathrm{Ph}\right), 5.69\left(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}$) $\delta_{\mathrm{C}} 185.4(\mathrm{O}=\mathrm{CH}), 164.1$ ($\left.\mathrm{q}, \mathrm{F}-\mathrm{Ph}\right), 147.5(\mathrm{q}$, triazole), 132.0 (q, F-Ph), $131.1 / 131.0$ (F-Ph), 128.7 (triazole)), 116.3/ 116.0 (F-Ph), $52.9\left(\mathrm{Ph}_{\left.-\mathrm{CH}_{2}\right)}\right.$).

Elemental Analysis found (Calculated for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{FN}_{3} \mathrm{O}$) \% C 58.37 (58.54), H 3.78 (3.93), N 20.02 (20.47).

HRMS Calculated for $[\mathrm{M}+\mathrm{Na}]^{+} m / z 228.0544$, found $m / z 228.0541$.

IR $v \mathrm{~cm}^{-1} 3137$ (w), 1695 (s), 1604 (m), 1508 (s), 1431 (w), 1218 (s), 1158 (m), 1045 (m), 1015 (m), 852 (m), 796 (s), $678(\mathrm{w}), 539(\mathrm{~m}), 484(\mathrm{~m})$.

4-((4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl)methyl)benzoic acid

4-((4-(Hydroxymethyl)-1H-1,2,3-triazol-1-yl)methyl)benzoic acid was synthesised using the procedure described for 1-benzyl-1H-1,2,3-triazol-4-yl)methanol, substituting 4-azidomethyl benzoic acid for (azidomethyl)benzene.

Yield $0.50 \mathrm{~g}, 87 \%$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}$) $\delta_{\mathrm{H}} 13.01(1 \mathrm{H}, \mathrm{s}, \mathrm{COOH}), 8.04$ (1 H , s, triazole), 7.94 (2 H , d, $\left.{ }^{3} J_{\mathrm{HH}}=5.0 \mathrm{~Hz}, \mathrm{Ph}\right), 7.40\left(2 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=5.0 \mathrm{~Hz}, \mathrm{Ph}\right), 5.67\left(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}-\mathrm{CH}_{2}\right), 5.19\left(1 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{HH}}\right.$ $=5.0 \mathrm{~Hz}, \mathrm{OH}), 4.52\left(2 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=5.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}$) $\delta_{\mathrm{C}} 141.5$ (q, triazole), 128.6 (triazole), $55.5\left(\mathrm{Ph}^{-} \mathrm{CH}_{2}\right)$, $52.7\left(\mathrm{CH}_{2} \mathrm{OH}\right)$.

LRMS (ESI+) m/z 232.0 [M-H]; HRMS Calculated for [M-H] m / z 232.0728, found m / z 232.0725

4-((4-formyl-1H-1,2,3-triazol-1-yl)methyl)benzoic acid (1e)

1e was synthesised using the procedure described for 1a, substituting 4-((4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl)methyl)benzoic acid for (1-benzyl-1H-1,2,3-triazol-4-yl)methanol.

Yield $0.30 \mathrm{~g}, 50 \%$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}$) $\delta_{\mathrm{H}} 13.09(1 \mathrm{H}, \mathrm{s}, \mathrm{COOH}), 10.03(1 \mathrm{H}, \mathrm{s}, \mathrm{O}=\mathrm{CH}), 9.00(1 \mathrm{H}$, s, triazole $), 7.95\left(2 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{Ph}\right), 7.44\left(2 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{Ph}\right), 5.80(2 \mathrm{H}, \mathrm{s}, \mathrm{Ph}-$ CH_{2}).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.75 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{DMSO}\right) \delta_{\mathrm{C}} 185.4(\mathrm{O}=\mathrm{CH}), 167.3(\mathrm{COOH}), 147.5(\mathrm{q}$, triazole), 140.5/ 131.2 (q, Ph), 130.3 (Ph), 129.1 (triazole), 128.6 (Ph), $53.2\left(\mathrm{Ph}-\mathrm{CH}_{2}\right)$.

Elemental Analysis found (Calculated for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{3}$) \% C 56.57 (57.14), H 3.77 (3.92), N 18.00 (18.17).

HRMS Calculated for $[\mathrm{M}+\mathrm{Na}]^{+} m / z 254.0536$, found $m / z 254.0532$.

IR $v \mathrm{~cm}^{-1} 2978$ (w), 1671 (s), 1543 (m), 1423 (w), 1290 (m), 1167 (w), 1045 (w), 929 (w), 806 (m), 763 (s), 727 (s), 545 (m).

General synthesis of HHT-[Zn2 $\left.\mathrm{L}^{\mathbf{n}_{3}}\right]\left[\mathrm{ClO}_{4}\right] 4$ (where $\mathbf{n}=\mathbf{3 a}-\mathrm{d}$).

$\mathrm{Zn}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (2 equiv.) was added to a stirred solution of the desired substituted triazolyl aldehyde (3 equiv.) and (R)-2-(2,2'-bipyridin-5-ylmethoxy)-1-phenylethanamine (3 equiv.) in acetonitrile (20 ml) at ambient temperature for 4 h . The resulting yellow solution yielded the desired product as a white crystalline solid on the addition of ethyl acetate.
$R_{\mathrm{c}}, \Delta \mathrm{Zn}$, HHT- $\left[\mathrm{Zn}_{2} \mathrm{~L}^{3 \mathrm{a}_{3}}\right]\left[\mathrm{ClO}_{4}\right]_{4}$

Yield $0.29 \mathrm{~g}, 90 \%$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta_{\mathrm{H}} \mathrm{ppm} 9.21(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{N}), 9.17(2 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{N} / \mathrm{bpy})$, $9.14(1 \mathrm{H}, \mathrm{s}, \mathrm{bpy}), 8.83(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{N}), 8.60(1 \mathrm{H}, \mathrm{s}, \mathrm{TRZ}), 8.54(1 \mathrm{H}, \mathrm{s}$, TRZ), $8.48(1 \mathrm{H}, \mathrm{s}, \mathrm{bpy})$, $8.45\left(2 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}\right.$, bpy $), 8.42\left(2 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=8.3 \mathrm{~Hz}\right.$, bpy $), 8.24-7.77(15 \mathrm{H}, \mathrm{m}, \mathrm{bpy} / \mathrm{TRZ})$, 7.66-7.28 (17H, m, bpy/Ph), 7.22-6.94 (10H, m, bpy/Ph), $6.89\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.4 \mathrm{~Hz}, \mathrm{Ph}\right), 6.74$ $\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}, \mathrm{Ph}\right), 6.56\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}, \mathrm{Ph}\right), 6.11\left(2 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{Ph}\right), 5.98$ $\left(2 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, \mathrm{Ph}\right), 5.61-5.46\left(6 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2}\right), 5.43\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J_{\mathrm{HH}}=11.4 \mathrm{~Hz}^{4} J_{\mathrm{HH}}=3.2\right.$, CㅍPh $), 5.26-5.10\left(3 \mathrm{H}, \mathrm{m}, \mathrm{C}_{2}\right.$-bpy $), 4.88\left(1 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=9.0 \mathrm{~Hz}, \mathrm{C} \underline{\mathrm{HPh}}\right), 4.79\left(1 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=8.2\right.$ $\mathrm{Hz}, \mathrm{C} \underline{\mathrm{HPh}}), 4.54-4.43\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$-bpy), $4.18\left(1 \mathrm{H}, \mathrm{t}, J_{\mathrm{HH}}=11.2 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{CHPh}\right), 4.09(1 \mathrm{H}, \mathrm{t}$, $\left.J_{\mathrm{HH}}=10.8 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{CHPh}\right), 4.03\left(1 \mathrm{H}, \mathrm{t}, J_{\mathrm{HH}}=10.9 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{CHPh}\right), 3.66\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J_{\mathrm{HH}}=10.4\right.$ $\left.\mathrm{Hz}^{3} J_{\mathrm{HH}}=3.5, \mathrm{C}_{2}-\mathrm{CHPh}\right), 3.53\left(1 \mathrm{H}, \mathrm{dd}^{2} J_{\mathrm{HH}}=11.2 \mathrm{~Hz}^{3} J_{\mathrm{HH}}=3.1, \mathrm{C}_{2}-\mathrm{CHPh}\right), 3.47(1 \mathrm{H}, \mathrm{dd}$, $\left.{ }^{2} J_{\mathrm{HH}}=11.2 \mathrm{~Hz}^{3} J_{\mathrm{HH}}=3.4, \mathrm{CH}_{2}-\mathrm{CHPh}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.125 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta_{\mathrm{C}} \mathrm{ppm} 157.1,156.6,156.1(\mathrm{HC}=\mathrm{N}), 150.4,150.2$, 149.9 (bpy), 149.4, 149.3, 149.0, 148.7, 148.5 (q, bpy), 148.1 (bpy), 147.6 (q, bpy), 147.5 (bpy), 143.6, 143.0, 142.9, 142.1, 142.1 (bpy), 141.9, 141.8 (q, TRZ), 141.6 (bpy), 141.5 (q, TRZ), 138.0, 137.5, 137.4 (q, bpy), 135.0, 134.5, 134.4, 134.0, 133.8, 133.7 (q, Ph), 130.1, 129.7, 129.7, 129.5, 129.5, 129.5, 129.3, 129.1, 129.0, 128.8, 128.5, 128.4, 128.2 (Ph/TRZ), 127.8, 127.4, 127.3 (bpy), 127.2, 126.5, 126.4 (Ph), 123.6, 123.2, 123.1, 123.1, 122.7 (bpy), 70.0, 69.9 $\left(\underline{C H}_{2}\right.$-bpy), $69.7(\underline{C H P h}), 69.5(\underline{C H P h}), 69.1\left(\underline{C H}_{2}\right.$-bpy $), 69.0,68.9\left(\underline{C H}_{2}-\mathrm{CHPh}\right), 67.8(\underline{\mathrm{C} H P h})$, 55.5, 55.3, $55.1\left(\mathrm{PhCH}_{2}\right)$.

Elemental Analysis found (Calculated for $\mathrm{C}_{87} \mathrm{H}_{78} \mathrm{Cl}_{4} \mathrm{~N}_{18} \mathrm{O}_{19} \mathrm{Zn}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$) \% C 51.61 (51.62), H 4.04 (4.28), N 12.39 (12.45).

LRMS (ESI+) $m / z 475.4[\mathrm{~L}+\mathrm{H}]^{+}, 497.3[\mathrm{~L}+\mathrm{Na}]^{+} ;$HRMS Calculated for $[\mathrm{L}+\mathrm{H}]^{+} m / z 475.2241$, found $m / z 475.2244$.

IR $v \mathrm{~cm}^{-1} 1603(\mathrm{w}), 1440(\mathrm{w}), 1224(\mathrm{w}), 1069(\mathrm{~s}), 843(\mathrm{~m}), 791(\mathrm{~m}), 722(\mathrm{~m}), 700(\mathrm{~m}), 620(\mathrm{~s})$.

$$
R_{\mathrm{c}}, \Delta_{\mathrm{Zn}}, \mathrm{HHT}-\left[\mathrm{Zn}_{2} \mathrm{~L}^{3 \mathrm{~b}} 3\right]\left[\mathrm{ClO}_{4}\right]_{4}
$$

Yield $0.28 \mathrm{~g}, 83$ \%
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta_{\mathrm{H}} \mathrm{ppm} 9.24(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{N}), 9.21(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{N}), 9.18$ (1H, s, bpy), $9.14(1 \mathrm{H}, \mathrm{s}$, bpy), $8.89(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{N}), 8.68$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{TRZ}$), 8.61 ($1 \mathrm{H}, \mathrm{s}$, TRZ), 8.49 $(1 \mathrm{H}, \mathrm{s}, \mathrm{bpy}), 8.44\left(2 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz}\right.$, bpy $), 8.42\left(2 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz}\right.$, bpy $) 8.24-6.98(37 \mathrm{H}$,
$\mathrm{m}, \mathrm{Ph} / \mathrm{bpy} / \mathrm{TRZ}), 6.89\left(2 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}, \mathrm{Ph}\right), 6.75\left(2 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.7 \mathrm{~Hz}, \mathrm{Ph}\right), 6.56(2 \mathrm{H}, \mathrm{t}$, $\left.{ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}, \mathrm{Ph}\right), 6.12\left(2 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, \mathrm{Ph}\right), 6.00\left(2 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, \mathrm{Ph}\right), 5.72-5.55$ $\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CNPhC} \underline{\mathrm{H}}_{2}\right), 5.44\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J_{\mathrm{HH}}=11.3 \mathrm{~Hz}^{4} \mathrm{~J}_{\mathrm{HH}}=3.2, \mathrm{C} \underline{\mathrm{HPh}}\right), 5.27-5.11\left(3 \mathrm{H}, \mathrm{m}, \mathrm{C}_{2}{ }^{-}\right.$ bpy), $4.90\left(1 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=9.2 \mathrm{~Hz}, \mathrm{C} \underline{\mathrm{HPh}}\right), 4.81\left(1 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}, \mathrm{C} \underline{\mathrm{HPh}}\right), 4.57-4.45(3 \mathrm{H}, \mathrm{m}$, CH_{2}-bpy $), 4.20\left(1 \mathrm{H}, \mathrm{t}, J_{\mathrm{HH}}=11.2 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{CHPh}\right), 4.11\left(1 \mathrm{H}, \mathrm{t}, J_{\mathrm{HH}}=10.8 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{CHPh}\right), 4.06$ $\left(1 \mathrm{H}, \mathrm{t}, J_{\mathrm{HH}}=10.9 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{CHPh}\right), 3.68\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J_{\mathrm{HH}}=10.4 \mathrm{~Hz}^{3} J_{\mathrm{HH}}=3.5, \mathrm{CH}_{2}-\mathrm{CHPh}\right), 3.54$ $\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J_{\mathrm{HH}}=11.2 \mathrm{~Hz}^{3} J_{\mathrm{HH}}=3.0, \mathrm{C}_{2}-\mathrm{CHPh}\right), 3.49\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J_{\mathrm{HH}}=11.3 \mathrm{~Hz}^{3} J_{\mathrm{HH}}=3.4, \mathrm{CH}_{2}-\right.$ CHPh).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta_{\mathrm{C}} \mathrm{ppm} 157.2,156.6,156.2(\mathrm{HC}=\mathrm{N}), 150.4,150.3$, 149.9 (bpy), 149.3, 149.3, 149.0, 148.6, 148.5 (q, bpy), 148.1, 147.5 (bpy), 147.5 (q, bpy), 143.6, 143.1, 143.0, 142.1, 142.1 (bpy), 142.0, 142.0 (q, TRZ), 141.6 (bpy), 141.6 (q, TRZ), $139.6,138.9,138.1$ (q, CNPh), 137.5, 137.5, 133.9 (q, bpy), 133.8, 133.5, 133.3, 133.2 (q, Ph), 129.9, 129.2, 129.0 (CNPh), 128.9, 128.9, 128.7 (Ph, TRZ), 127.9, 127.7, 127.4 (bpy), 127.3, $126.5,126.5$ (Ph), 123.6, 123.2, 123.1, 123.0, 122.6 (bpy), 118.6, 118.6, 118.5 (q, CNPh), 113.1, 112.8, 112.7 (CN), 70.0, $70.0\left(\underline{C H}_{2}\right.$-bpy), 69.8, 69.5 ($\left.\mathbf{C H P h}\right), 69.0\left(\underline{C H}_{2}\right.$-bpy), 69.0, 68.9 $\left(\mathrm{CH}_{2}-\mathrm{CHPh}\right), 67.8(\underline{\mathrm{CHPh}}), 54.7,54.5,54.3\left(\mathrm{CNPh}-\mathrm{CH}_{2}\right)$.

Elemental Analysis found (Calculated for $\mathrm{C}_{90} \mathrm{H}_{75} \mathrm{Cl}_{4} \mathrm{~N}_{21} \mathrm{O}_{19} \mathrm{Zn}_{2} \cdot 6 \mathrm{EtOAc}$) \% C 53.67 (53.57), H 4.59 (4.85), N 11.54 (11.51).

LRMS (ESI+) $m / z 500.3[\mathrm{~L}+\mathrm{H}]^{+}, 522.3[\mathrm{~L}+\mathrm{Na}]^{+} ;$HRMS Calculated for $[\mathrm{L}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z} 500.2193$, found $m / z 500.2195$.

IR $v \mathrm{~cm}^{-1} 1602(\mathrm{w}), 1475(\mathrm{w}), 1440(\mathrm{w}), 1073$ (s$), 792(\mathrm{~m}), 752(\mathrm{~m}), 700(\mathrm{~m}), 620(\mathrm{~s}), 546(\mathrm{~m})$.

$R_{\mathrm{c}}, \Delta \mathrm{Zn}$, HHT- $\left[\mathrm{Zn}_{2} \mathrm{~L}^{3 \mathrm{c}} 3\right]\left[\mathrm{ClO}_{4}\right]_{4}$

Yield $0.30 \mathrm{~g}, 88 \%$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta_{\mathrm{H}} \mathrm{ppm} 9.20(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{N}), 9.17(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{N}), 9.16$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{bpy}$), $9.13(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{N}), 8.81(1 \mathrm{H}, \mathrm{s}, \mathrm{bpy}), 8.59-6.85(55 \mathrm{H}, \mathrm{m}, \mathrm{Ph} / \mathrm{bpy} / \mathrm{TRZ}), 6.74$ $\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}, \mathrm{Ph}\right), 6.56\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}, \mathrm{Ph}\right), 6.10\left(2 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, \mathrm{Ph}\right), 5.97$ $\left(2 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.6 \mathrm{~Hz}, \mathrm{Ph}\right), 5.58-5.38\left(7 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2}\right.$ overlapping with CHPh$), 5.23-5.02(3 \mathrm{H}$, $\mathrm{m}, \mathrm{C}_{2}$-bpy $), 4.88\left(1 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=9.1 \mathrm{~Hz} \mathrm{C} \underline{\mathrm{HPh}}\right), 4.78\left(1 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=7.9 \mathrm{~Hz}, \mathrm{C} \underline{\mathrm{HPh}}\right), 4.56-4.41$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$-bpy), $4.18\left(1 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=11.2 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{CHPh}\right), 4.08\left(1 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{HH}}=10.8 \mathrm{~Hz}, \mathrm{CH}_{2}-\right.$ $\mathrm{CHPh}), 4.04\left(1 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=10.9 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{CHPh}\right), 3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.79$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.66\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J_{\mathrm{HH}}=10.4 \mathrm{~Hz}^{3} J_{\mathrm{HH}}=3.5, \mathrm{CH}_{2}-\mathrm{CHPh}\right), 3.52\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J_{\mathrm{HH}}=11.1\right.$ $\left.\mathrm{Hz}^{3} J_{\mathrm{HH}}=3.0, \mathrm{CH}_{2}-\mathrm{CHPh}\right), 3.46\left(1 \mathrm{H}, \mathrm{dd}^{2} J_{\mathrm{HH}}=11.2 \mathrm{~Hz}^{3} J_{\mathrm{HH}}=3.4, \mathrm{C}_{2}-\mathrm{CHPh}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta_{\mathrm{C}} \mathrm{ppm} 160.9,160.6,160.5\left(\mathrm{q}, \mathrm{PhOCH}_{3}\right), 157.1$, 156.6, 156.0 (HC=N), 150.4, 150.2, 149.9 (bpy), 149.4, 149.2, 149.1, 148.7, 148.5 (q, bpy), 148.1, 148.1 (bpy), 147.6 (q, bpy), 147.5 (bpy), 143.6, 143.0, 142.9, 142.3, 142.1, 142.0 (bpy), 141.9, 141.7 (q, TRZ), 141.6 (bpy), 141.5 (q, TRZ), 137.9, 137.5, 137.4 (q, bpy), 135.0, 134.0, 133.8 (q, Ph), 131.2, 130.3, 130.2, $130.1\left(\mathrm{PhOCH}_{3}\right), 129.8,129.4,129.2,129.1,129.0,128.9$, 128.8, 128.2 (Ph/TRZ), 127.8, 127.4, 127.3 (bpy), 127.2, 126.5, 126.4 (Ph), 126.3, 126.2, 125.5 (q, $\left.\underline{\mathrm{PhOCH}}_{3}\right), 123.6,123.3,123.1,123.1,122.7$ (bpy), 114.9, 114.8, $114.7\left(\mathrm{PhOCH}_{3}\right), 70.0$,
$69.9\left(\underline{\mathrm{CH}}_{2}\right.$-bpy), 69.7 ($\underline{\mathrm{C}} \mathrm{HPh}$), $69.4(\underline{\mathrm{C} H P h}), 69.1\left(\underline{\mathrm{C}}_{2}\right.$-bpy $), 69.0,68.9,68.9\left(\underline{\mathrm{CH}}_{2}-\mathrm{CHPh}\right)$, 67.7 (CHPh$), 55.6,55.5,55.5\left(\mathrm{OCH}_{3}\right), 55.0,54.9,54.7\left(\right.$ Anisole- $\left.\mathrm{CH}_{2}\right)$.

Elemental Analysis found (Calculated for $\mathrm{C}_{90} \mathrm{H}_{84} \mathrm{Cl}_{4} \mathrm{~N}_{18} \mathrm{O}_{22} \mathrm{Zn}_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$) \% C 49.38 (49.44), H 4.02 (4.61), N 11.06 (11.53).

LRMS (ESI+) $m / z 505.3[\mathrm{~L}+\mathrm{H}]^{+}, 527.3[\mathrm{~L}+\mathrm{Na}]^{+} ;$HRMS Calculated for $[\mathrm{L}+\mathrm{H}]^{+} m / z$ 505.2347, found $m / z 505.2346$.

IR $v \mathrm{~cm}^{-1} 1604$ (w), 1513 (w), 1440 (w), 1249 (w), 1070 (s), 791 (w), $750(\mathrm{~m}), 700(\mathrm{~m}), 620$ (s).
$R_{\mathrm{c},}, \mathrm{Znn}$, HHT- $\left[\mathrm{Zn}_{2} \mathrm{~L}^{3 \mathrm{3d}_{3}}\right]\left[\mathrm{ClO}_{4}\right]_{4}$

Yield $0.31 \mathrm{~g}, 92$ \%
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta_{\mathrm{H}} \mathrm{ppm} 9.22(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{N}), 9.18(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{N}), 9.17$ ($1 \mathrm{H}, \mathrm{s}$, bpy), $9.13(1 \mathrm{H}, \mathrm{s}$, bpy), $8.85(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{N}), 8.68(1 \mathrm{H}, \mathrm{s}$, TRZ $), 8.61(1 \mathrm{H}, \mathrm{s}$, TRZ $), 8.54$ $(1 \mathrm{H}, \mathrm{s}$, bpy $), 8.50-6.98(36 \mathrm{H}, \mathrm{m}, \mathrm{Ph} / \mathrm{bpy} / \mathrm{TRZ}), 6.89\left(1 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}, \mathrm{Ph}\right), 6.74\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{HH}}\right.$ $=7.7 \mathrm{~Hz}, \mathrm{Ph}), 6.56\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}, \mathrm{Ph}\right), 6.11\left(2 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, \mathrm{Ph}\right), 5.98\left(2 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}\right.$ $=7.6 \mathrm{~Hz}, \mathrm{Ph}), 5.63-5.40\left(7 \mathrm{H}, \mathrm{m}, \mathrm{F}-\mathrm{PhC} \underline{H}_{2}\right.$ overlapping with $\left.\mathrm{C} \underline{\mathrm{HPh}}\right)$, $5.26-5.12\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}{ }^{-}\right.$ bpy), $4.88\left(1 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=9.1 \mathrm{~Hz}, \mathrm{CHPh}\right), 4.79\left(1 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=8.1 \mathrm{~Hz}, \mathrm{CHPh}\right), 4.56-4.43(3 \mathrm{H}, \mathrm{m}$, CH_{2}-bpy $), 4.19\left(1 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{HH}}=11.2 \mathrm{~Hz}, \mathrm{C}_{2}-\mathrm{CHPh}\right), 4.10\left(1 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{HH}}=10.8 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{CHPh}\right)$, $4.04\left(1 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{HH}}=10.9 \mathrm{~Hz}, \mathrm{C}_{2}-\mathrm{CHPh}\right), 3.67\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=10.4 \mathrm{~Hz}^{3} J_{\mathrm{HH}}=3.5, \mathrm{CH}_{2}-\mathrm{CHPh}\right)$,
$3.53\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J_{\mathrm{HH}}=11.2 \mathrm{~Hz}^{3} J_{\mathrm{HH}}=3.1, \mathrm{CH}_{2}-\mathrm{CHPh}\right), 3.47\left(1 \mathrm{H}, \mathrm{dd},{ }^{2} J_{\mathrm{HH}}=11.2 \mathrm{~Hz}^{3} J_{\mathrm{HH}}=3.4\right.$, $\left.\mathrm{CH}_{2}-\mathrm{CHPh}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta_{\mathrm{C}} \mathrm{ppm} 164.5,164.2,164.1,162.5,162.3,162.2$ (q, F-Ph), 157.2, 156.6, $156.1(\mathrm{HC}=\mathrm{N}), 150.4,150.2,149.9$ (bpy), 149.3, 149.3, 149.0, 148.6, 148.5 (q, bpy), 148.1 (bpy), 147.6 (q, bpy), 147.5 (bpy), 143.6, 143.0, 142.9, 142.1, 142.1 (bpy), 141.9, 141.8 (q, TRZ), 141.6 (bpy), 141.5 (q, TRZ), 138.0, 137.5, 137.4 (q, bpy), 135.0, 134.0, 133.8 (q, Ph), 131.8, 131.8, 130.8, 130.7, 130.7 (F-Ph), 130.5, 130.5 (q, F-Ph), 130.1 (TRZ), 129.9 (q, F-Ph), 129.7 (TRZ), 129.3, 129.1, 129.0, 128.9, 128.8 (Ph), 128.5 (TRZ), 127.8, 127.4, 127.3 (bpy), 127.2, 126.5, 126.4 (Ph), 123.6, 123.2, 123.1, 123.1, 122.6 (bpy), 116.5, 116.3, 116.3, 116.3, 116.2, 116.1 (F-Ph), 70.0, $70.0\left(\mathrm{CH}_{2}\right.$-bpy), 69.7 (CHPh$), 69.5$ (CHPh), 69.1 $\left(\underline{C H}_{2}\right.$-bpy $), 69.0,68.9\left(\underline{\mathrm{C}}_{2}-\mathrm{CHPh}\right), 67.8(\underline{\mathrm{CHPh}}), 54.6,54.5,54.3\left(\mathrm{PhF}-\mathrm{CH}_{2}\right)$.

Elemental Analysis found (Calculated for $\mathrm{C}_{87} \mathrm{H}_{75} \mathrm{Cl}_{4} \mathrm{~F}_{3} \mathrm{~N}_{18} \mathrm{O}_{19} \mathrm{Zn}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$) \% C 49.52 (49.42), H 3.61 (4.15), N 11.58 (11.92).

LRMS (ESI+) $\mathrm{m} / \mathrm{z} 493.3[\mathrm{~L}+\mathrm{H}]^{+}, 515.3[\mathrm{~L}+\mathrm{Na}]^{+} ;$HRMS Calculated for $[\mathrm{L}+\mathrm{H}]^{+} \mathrm{m} / \mathrm{z} 493.2147$, found $m / z 493.2146$.

IR $v \mathrm{~cm}^{-1} 1603$ (w), 1510 (w), 1475 (w), 1440 (w), 1224 (w), 1071 (s), 841 (m), 791 (m), 750 (m), $700(\mathrm{~m}), 620(\mathrm{~s})$.

General synthesis of $\mathbf{H H T}-\left[\mathrm{Fe}_{2} \mathrm{~L}^{\mathbf{n}_{3}}\right] \mathrm{Cl}_{4}$ (where $\mathbf{n}=\mathbf{3 a - e}$).

Iron(II) chloride anhydrous (2 equvi.) was added to a stirred solution of the desired substituted triazolyl aldehyde (3 equvi.) and (S)-2-(2,2'-bipyridin-5-ylmethoxy)-1-phenylethanamine (3 equvi.) in methanol (20 ml) at ambient temperature to give an dark orange solution that was then heated to reflux for 48 h . The reaction mixture was cooling to room temperature, filtered through a celite plug prior to the solvents being removed in vacuo to yield the desired product as a dark orange solid.

Yield $0.58 \mathrm{~g}, 81 \%$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta_{\mathrm{H}} \mathrm{ppm} 9.65(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{N}), 9.47(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{N}), 9.39$ ($1 \mathrm{H}, \mathrm{s}$, bpy), $9.30(1 \mathrm{H}, \mathrm{s}$, bpy), $9.20(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{N}), 9.19(1 \mathrm{H}, \mathrm{s}, \mathrm{TRZ}), 9.01(1 \mathrm{H}, \mathrm{s}$, TRZ $)$, 8.75-8.56 ($5 \mathrm{H}, \mathrm{m}, \mathrm{bpy}$), $8.35(1 \mathrm{H}, \mathrm{s}$, TRZ $), 8.26-7.89(13 \mathrm{H}, \mathrm{m}$, bpy $), 7.78-7.74(2 \mathrm{H}, \mathrm{m}$, bpy $)$, $7.50-6.93(42 \mathrm{H}, \mathrm{m}, \mathrm{Ph} / \mathrm{bpy}), 6.78\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, \mathrm{Ph}\right), 6.60\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}, \mathrm{Ph}\right), 5.90$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 5.68\left(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}_{2}\right), 5.64-5.50\left(4 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2}\right), 5.34\left(1 \mathrm{H}, \mathrm{dt},{ }^{3} \mathrm{JHH}_{\mathrm{HH}}=15.1,7.4 \mathrm{~Hz}\right.$, CHPh $), 5.25\left(2 \mathrm{H}, \mathrm{d},{ }^{2} J_{\mathrm{HH}}=13.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$-bpy $), 5.14\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J_{\mathrm{HH}}=18.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$-bpy $), 4.78(1 \mathrm{H}$, d, $\left.{ }^{3} J_{\mathrm{HH}}=11.3 \mathrm{~Hz}, \mathrm{C} \underline{\mathrm{HPh}}\right), 4.60-4.48\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CHPh} / \mathrm{CH}_{2}\right.$-bpy $), 4.28\left(1 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{HH}}=11.0 \mathrm{~Hz}\right), 3.54-$ $3.51\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\mathrm{CHPh}\right), 3.43-3.41\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\mathrm{CHPh}\right), 3.37\left(1 \mathrm{H}, \mathrm{CH}_{2}\right.$ - CHPh overlap with $\mathrm{CD}_{3} \mathrm{OD}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta_{\mathrm{C}} \mathrm{ppm} 163.4,163.1,162.6(\mathrm{HC}=\mathrm{N}), 160.1,159.9$, $159.3,159.2,158.5,158.4$ (q, bpy), 157.9, 157.2, 155.8, 154.3, 154.0, 153.3 (bpy), 149.5, 149.5, 149.4 (q, TRZ), 139.9, 139.8, 139.5, 138.7, 138.5, 138.3, 137.7 (bpy), 137.4, 136.8, 136.8 (q, bpy), 134.4, 134.2, 134.1, 134.0, 133.4, 132.9, 132.5 (q, Ph), 130.2 (TRZ), 129.3, 129.2, 129.0 (Ph), 129.0 (TRZ), 128.9, 128.9, 128.8, 128.7, 128.6 (Ph), 128.3 (TRZ), 127.9, 127.5, 127.3, $127.2,127.2,127.2(\mathrm{Ph}), 126.9,126.3,125.8,125.6,123.5,123.0,122.7,122.5,122.4,121.6$ (bpy), 72.9, 72.6 (CHPh), $71.3\left(\mathrm{CH}_{2}\right.$-bpy), $70.8(\underline{\mathrm{CHPh}}), 69.1,69.1\left(\mathrm{CH}_{2}\right.$-bpy $), 68.7,68.5,68.5$ $\left(\mathrm{CH}_{2}-\mathrm{CHPh}\right), 55.6,55.5,55.2\left(\mathrm{PhCH}_{2}\right)$.

HRMS Calculated for $\left[\mathrm{Fe}_{2} \mathrm{~L}_{3}\right]^{4+} \mathrm{m} / \mathrm{z} 383.8803$, found $\mathrm{m} / \mathrm{z} 383.8799$

Elemental Analysis found (Calculated for $\mathrm{C}_{87} \mathrm{H}_{78} \mathrm{Cl}_{4} \mathrm{Fe}_{2} \mathrm{~N}_{18} \mathrm{O}_{3} \cdot 13 \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{EtOAc}$) \% C 54.44 (54.66), H 5.12 (5.65), N 12.31 (12.61).

IR $v \mathrm{~cm}^{-1} 3371$ (br, s), 3028 (br, s), 1603 (m), 1468 (m), 1359 (w), 1076 (s), 1010 (w), 933 (w), 697 (s).

$\boldsymbol{R}_{\mathrm{c},} \mathrm{\Delta Fe}_{\mathrm{Fe}}, \mathrm{HHT}-\left[\mathrm{Fe}_{2} \mathrm{~L}^{3 \mathrm{an}_{3}}\right] \mathrm{Cl}_{4}$

Data as for S-enantiomer

Yield $0.57 \mathrm{~g}, 79$ \%

Elemental Analysis found (Calculated for $\mathrm{C}_{87} \mathrm{H}_{78} \mathrm{Cl}_{4} \mathrm{Fe}_{2} \mathrm{~N}_{18} \mathrm{O}_{3} \cdot 13 \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{EtOAc}$) \% C 54.20 (54.66), H 5.17 (5.65), N 12.24 (12.61).

$S_{\mathrm{c},} \boldsymbol{\Lambda F e}, \mathbf{H H T}-\left[\mathrm{Fe}_{2} \mathrm{~L}^{\mathbf{3 b}}{ }_{3}\right] \mathrm{Cl}_{4}$

Yield $0.65 \mathrm{~g}, 88$ \%
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta_{\mathrm{H}} 9.69(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{N}), 9.54(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{N}), 9.40(1 \mathrm{H}$, s, bpy), $9.31(1 \mathrm{H}, \mathrm{s}$, bpy), $9.30(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{N}), 9.29(1 \mathrm{H}, \mathrm{s}, \mathrm{TRZ}), 9.12(1 \mathrm{H}, \mathrm{s}$, TRZ $), ~ 8.76-6.93$ $(42 \mathrm{H}, \mathrm{m}, \mathrm{Ph} / \mathrm{TRZ} / \mathrm{bpy}), 6.79\left(2 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.6 \mathrm{~Hz}, \mathrm{Ph}\right), 6.61\left(2 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.6 \mathrm{~Hz}, \mathrm{Ph}\right), 5.93(1 \mathrm{H}$, brs, Ph), $5.82-5.65\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CNPhCH}_{2}\right), 5.42-5.32(1 \mathrm{H}, \mathrm{m}, \mathrm{C} \underline{\mathrm{HPh}}), 5.28\left(2 \mathrm{H}, \mathrm{d},{ }^{2} J_{\mathrm{HH}}=12.7 \mathrm{~Hz}\right.$, CH_{2}-bpy $), 5.18\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J_{\mathrm{HH}}=12.9 \mathrm{~Hz}, \mathrm{C}_{2}\right.$-bpy $), 4.79\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=12.9 \mathrm{~Hz}, \mathrm{C} \underline{\mathrm{HPh}}\right), 4.68-4.35$ ($8 \mathrm{H}, \mathrm{m}, \mathrm{CHPh} / \mathrm{CH}_{2}$-bpy), 3.86-3.61 ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$ - CHPh), 3.57-3.54 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\mathrm{CHPh}$), 3.43 $\left(1 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.6 \mathrm{~Hz}, \underline{\mathrm{H}}_{2}-\mathrm{CHPh}\right), 3.37\left(1 \mathrm{H}, \underline{\mathrm{C}}_{2}\right.$-CHPh overlap with $\left.\mathrm{CD}_{3} \mathrm{OD}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta_{\mathrm{C}} \mathrm{ppm} 163.5,163.3,162.8(\mathrm{HC}=\mathrm{N}), 160.1,159.8$, 159.2, 159.1 (q, bpy), 158.4, 158.4, 158.3, 157.9, 157.3, 155.8, 154.4, 154.1, 153.9, 153.7, 153.3 (bpy), 149.8, 149.6, 149.5 (q, TRZ), 140.0, 139.9, 139.6 (bpy), 139.4, 139.2 (q, bpy), 138.7, 138.7, 138.5 (bpy), 138.4 (q, bpy), 137.8 (bpy), 137.5, 137.0, 136.8 (q, bpy), 134.5, 134.2 (q, Ph), 132.8, 132.8, 132.6, 132.5, 132.4 (CNPh), 130.7 (TRZ), 129.4, 129.3 (Ph), 129.0 (TRZ), 128.9, 128.7, 128.6, 128.4 (Ph), 128.4 (TRZ), 128.3, 127.3, 127.2, 127.2, 127.2, 126.9 (Ph), 126.4, 125.9, 125.6, 123.9, 123.7, 123.6, 123.5, 123.0, 122.7, 122.5, 122.4, 121.5 (bpy), 117.8, 117.7, 117.6 (q, CNPh), 112.8, 112.6, 112.3 (CN), 73.0 ($\underline{C H P h}$), 72.6 (다Ph), 71.4 $\left(\underline{\mathrm{CH}}_{2}\right.$-bpy $), 70.9(\underline{\mathrm{C} H P h}), 69.2,69.0\left(\underline{\mathrm{CH}}_{2}\right.$-bpy $), 68.7,68.6,68.5\left(\underline{\mathrm{C}}_{2}\right.$ - CHPh$), 54.8,54.6,54.4$ (Benzonitrile- CH_{2}).

HRMS Calculated for $\left[\mathrm{Fe}_{2} \mathrm{~L}_{3}\right]^{4+} \mathrm{m} / \mathrm{z} 402.6267$, found $\mathrm{m} / \mathrm{z} 402.6248$

Elemental Analysis found (Calculated for $\left.\mathrm{C}_{90} \mathrm{H}_{75} \mathrm{Cl}_{4} \mathrm{Fe}_{2} \mathrm{~N}_{21} \mathrm{O}_{3} \cdot 12 \mathrm{H}_{2} \mathrm{O} \cdot 3 \mathrm{EtOAc}\right) \% \mathrm{C} 54.81$ (54.87), H 4.79 (5.55), N 13.26 (13.17).

IR $v \mathrm{~cm}^{-1} 3394$ (br, s), 3028 (br, s), 1603 (m), 1467 (m), 1078 (s), 934 (w), 790 (s), 755 (s), 698 (s).

$\boldsymbol{R}_{\mathrm{c},} \mathbf{\Delta ~}_{\mathrm{Fe}}, \mathbf{H H T}-\left[\mathrm{Fe}_{2} \mathbf{L}^{\mathbf{3 b}}{ }_{3}\right] \mathrm{Cl}_{4}$

Data as for S-enantiomer

Yield $0.59 \mathrm{~g}, 80 \%$

Elemental Analysis found (Calculated for $\mathrm{C}_{90} \mathrm{H}_{75} \mathrm{Cl}_{4} \mathrm{Fe}_{2} \mathrm{~N}_{21} \mathrm{O}_{3} \cdot 11 \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{MeOH} \cdot 2 \mathrm{EtOAc}$) \% C 55.44 (55.09), H 4.73 (5.46), N 13.36 (13.63).

$\boldsymbol{S}_{\mathrm{c},} \boldsymbol{\Lambda}_{\mathrm{Fe}}, \mathrm{HHT}-\left[\mathrm{Fe}_{2} \mathrm{~L}^{\mathbf{3 c}}{ }_{3}\right] \mathrm{Cl}_{4}$

Yield $0.42 \mathrm{~g}, 83 \%$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta_{\mathrm{H}} \mathrm{ppm} 9.65(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{N}), 9.47(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{N}), 9.39$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{bpy}$), $9.30(1 \mathrm{H}, \mathrm{s}, \mathrm{bpy}), 9.19(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{N}), 9.12(1 \mathrm{H}, \mathrm{s}, \mathrm{TRZ}), 8.96(1 \mathrm{H}, \mathrm{s}$, TRZ $)$, 8.85-8.51 ($7 \mathrm{H}, \mathrm{m}, \mathrm{bpy}$), 8.26 ($1 \mathrm{H}, \mathrm{s}, \mathrm{TRZ}$), 8.25-7.73 ($18 \mathrm{H}, \mathrm{m}$, TRZ/bpy), 7.57-6.82 ($50 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph} / \mathrm{bpy}), 6.78\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}, \mathrm{Ph}\right), 6.60\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}, \mathrm{Ph}\right), 5.90(1 \mathrm{H}, \mathrm{brs}, \mathrm{Ph}), 5.68-$
$5.42\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{PhOCH}_{3}\right), 5.34\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J_{\mathrm{HH}}=11.3,{ }^{4} J_{\mathrm{HH}}=3.7 \mathrm{~Hz}, \mathrm{C} \underline{\mathrm{HPh}}\right), 5.25(2 \mathrm{H}, \mathrm{d}$, ${ }^{2} J_{\mathrm{HH}}=11.9 \mathrm{~Hz}, \mathrm{C}_{2}$-bpy $), 5.16\left(1 \mathrm{H}, \mathrm{d},{ }^{2} J_{\mathrm{HH}}=13.0 \mathrm{~Hz}, \mathrm{C}_{2}\right.$-bpy $), 4.77\left(1 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=8.6 \mathrm{~Hz}\right.$, CㅍPh $)$, 4.68-4.42 ($6 \mathrm{H}, \mathrm{m}, \mathrm{C} \underline{\mathrm{HPh}} / \mathrm{C}_{2}$-bpy $), 4.29\left(1 \mathrm{H}, \mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=10.9 \mathrm{~Hz} \underline{\mathrm{H}}_{2}\right.$ - CHPh$), 3.90-3.61$ ($\left.9 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{3} / \mathrm{CH}_{2}-\mathrm{CHPh}\right), 3.56-3.49\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\mathrm{CHPh}\right), 3.44-3.39\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-\mathrm{CHPh}\right)$, $3.37\left(1 \mathrm{H}, \mathrm{CH}_{2}\right.$-CHPh overlap with $\left.\mathrm{CD}_{3} \mathrm{OD}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.125 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta_{\mathrm{C}} \mathrm{ppm} 163.4,163.1,162.5(\mathrm{HC}=\mathrm{N}), 160.7,160.4$, $160.3\left(\mathrm{q}, \mathrm{PhOCH}_{3}\right), 160.1,159.9,159.3,159.2,158.5,158.4$ (q, bpy), 157.9, 157.3, 155.7, 154.3, 154.0, 153.3 (bpy), 149.4, 149.4, 149.3 (q, TRZ), 139.9, 139.8, 139.5, 138.7, 138.5, 138.3, 137.7 (bpy), 137.4, 136.8 (q, bpy), 134.4, 132.9, 132.5 (q, Ph), 130.6, 129.6, 129.3, 129.0, 129.0, 128.7, 128.6, 128.3, 128.3, 127.3, 127.2, 127.2, 127.2 (TRZ/ $\left.\mathrm{PhOCH}_{3} / \mathrm{Ph}\right), 126.3$ (bpy), $126.0\left(\mathrm{q}, \mathrm{PhOCH}_{3}\right), 125.8$ (bpy), $125.7\left(\mathrm{q}, \mathrm{PhOCH}_{3}\right), 125.6$ (bpy), $125.2\left(\mathrm{q}, \underline{\mathrm{PhOCH}_{3}}\right)$, 123.9, 123.7, 123.5, 123.0, 122.7, 122.5, 122.4, 121.5 (bpy), 114.2, 114.1, $114.0\left(\mathrm{PhOCH}_{3}\right)$,
 $\left(\underline{\mathrm{CH}}_{2}-\mathrm{CHPh}\right), 55.3,55.1,54.9\left(\right.$ Anisole- $\left.\underline{\mathrm{CH}}_{2}\right), 54.6,54.5,54.4\left(\mathrm{OCH}_{3}\right)$.

HRMS Calculated for $\left[\mathrm{Fe}_{2} \mathrm{~L}_{3}\right]^{4+} \mathrm{m} / \mathrm{z} 406.3882$, found $\mathrm{m} / \mathrm{z} 406.3886$

Elemental Analysis found (Calculated for $\mathrm{C}_{90} \mathrm{H}_{84} \mathrm{Cl}_{4} \mathrm{Fe}_{2} \mathrm{~N}_{18} \mathrm{O}_{6} \cdot 14 \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{EtOAc}$) \% C 53.31 (53.57), H 5.01 (5.74), N 11.75 (11.96).

IR $v \mathrm{~cm}^{-1} 3375$ (br, s), 3026 (br, s), 1604 (m), 1512 (m), 1466 (m), 1246 (m), 1076 (s), 1023 (s), 755 (s), 697 (s).

$\boldsymbol{R}_{\mathrm{c}}, \mathrm{AFe}_{\mathrm{Fe}}, \mathbf{H H T}-\left[\mathrm{Fe}_{2} \mathrm{~L}^{\mathbf{3 c}}{ }_{3}\right] \mathrm{Cl}_{4}$

Data as for S-enantiomer

Yield $0.44 \mathrm{~g}, 87 \%$

Elemental Analysis found (Calculated for $\mathrm{C}_{90} \mathrm{H}_{84} \mathrm{Cl}_{4} \mathrm{Fe}_{2} \mathrm{~N}_{18} \mathrm{O}_{6} \cdot 14 \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{EtOAc}$) \% C 53.46 (53.57), H 5.03 (5.74), N 11.52 (11.96).

$S_{\mathrm{c},} \boldsymbol{\Lambda}_{\mathrm{Fe}}, \mathrm{HHT}-\left[\mathrm{Fe}_{2} \mathrm{~L}^{\mathbf{3 d}}{ }_{3}\right] \mathrm{Cl}_{4}$

Yield $0.38 \mathrm{~g}, 78 \%$
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta_{\mathrm{H}} \mathrm{ppm} 9.67(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{N}), 9.50(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{N}), 9.38$ ($1 \mathrm{H}, \mathrm{s}$, bpy), $9.30(1 \mathrm{H}, \mathrm{s}$, bpy $), 9.23(1 \mathrm{H}, \mathrm{s}, \mathrm{HC}=\mathrm{N}), 9.20(1 \mathrm{H}, \mathrm{s}$, TRZ $), 9.03(1 \mathrm{H}, \mathrm{s}$, TRZ $)$, 8.79-8.52 (7H, m, bpy), 8.34 ($1 \mathrm{H}, \mathrm{s}$, TRZ), 8.29-7.72 ($18 \mathrm{H}, \mathrm{m}, \mathrm{bpy}$), 7.55-6.85 ($50 \mathrm{H}, \mathrm{m}, \mathrm{Ph} / \mathrm{F}-$ $\mathrm{Ph} / \mathrm{bpy}), 6.78\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, \mathrm{Ph}\right), 6.60\left(2 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, \mathrm{Ph}\right), 6.19-5.82(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, 5.73-5.46 ($6 \mathrm{H}, \mathrm{m}, \mathrm{F}-\mathrm{PhCH} 2), 5.35\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=11.4,{ }^{4} J_{\mathrm{HH}}=3.5 \mathrm{~Hz}, \mathrm{CHPh}\right), 5.25(2 \mathrm{H}, \mathrm{d}$, ${ }^{2} J_{\mathrm{HH}}=13.1 \mathrm{~Hz}, \mathrm{C}_{2}$-bpy $), 5.16\left(1 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=13.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$-bpy $), 4.77\left(1 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=8.8 \mathrm{~Hz}\right.$, C $\underline{H P h}$), 4.67-4.43 ($6 \mathrm{H}, \mathrm{m}, \mathrm{C} \underline{\mathrm{HPh}} / \mathrm{C}_{2}$-bpy $), 4.30\left(1 \mathrm{H}, \mathrm{t},{ }^{3} J_{\mathrm{HH}}=11.0 \mathrm{~Hz} \underline{\mathrm{CH}}_{2}\right.$ - CHPh), 3.88-3.63 (3H, m, $\left.\underline{C H}_{2}-\mathrm{CHPh}\right) 3.54\left(1 \mathrm{H}, \mathrm{dd},{ }^{3} J_{\mathrm{HH}}=10.4,3.6 \mathrm{~Hz} \underline{\mathrm{C}}_{2}-\mathrm{CHPh}\right), 3.42\left(1 \mathrm{H}, \mathrm{d},{ }^{3} J_{\mathrm{HH}}=8.4 \mathrm{~Hz}\right.$ $\underline{\mathrm{C}}_{2}$ - CHPh), $3.37\left(1 \mathrm{H}, \mathrm{CH}_{2}\right.$ - CHPh overlap with $\left.\mathrm{CD}_{3} \mathrm{OD}\right)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta_{\mathrm{C}} \mathrm{ppm} 164.3,164.0,163.9(\mathrm{q}, \mathrm{F}-\mathrm{Ph}), 163.4,163.2$, $162.6(\mathrm{HC}=\mathrm{N}), 162.3,162.1,161.9(\mathrm{q}, \mathrm{F}-\mathrm{Ph}), 160.1,159.8,159.3,159.1,158.5,158.4$ (q, bpy), $157.9,157.3,155.7,154.3,154.0,153.3$ (bpy), 149.6, 149.5, 149.4 (q, TRZ), 139.9, 139.8, 139.5, 138.7, 138.5, 138.3, 137.7 (bpy), 137.4, 136.9, 136.8 (q, bpy), 134.4, 132.9, 132.5 (q, Ph), 131.2, 131.1, 130.4, 130.3, 130.0, 129.9 (F-Ph), 129.3, 129.0, 129.0, 128.9, 128.8, 128.7, 128.6, 128.6, 128.3, 127.3, 127.2, 127.2, 127.2, 126.9 (TRZ/ Ph), 126.3, 125.8, 125.6, 123.5, ($\underline{\mathrm{CHPh}}$), 72.6 (CHPh$), 71.3\left(\underline{\mathrm{CH}}_{2}\right.$-bpy), $70.8(\underline{\mathrm{CHPh}}), 69.1,69.0\left(\underline{\mathrm{CH}}_{2}\right.$-bpy $), 68.7,68.5,68.5$ $\left(\mathrm{CH}_{2}-\mathrm{CHPh}\right), 54.8,54.6,54.4\left(\mathrm{PhF}-\mathrm{CH}_{2}\right)$.

HRMS Calculated for $\left[\mathrm{Fe}_{2} \mathrm{~L}_{3}\right]^{4+} \mathrm{m} / \mathrm{z} 397.3732$, found $\mathrm{m} / \mathrm{z} 397.3726$

Elemental Analysis found (Calculated for $\mathrm{C}_{87} \mathrm{H}_{75} \mathrm{Cl}_{4} \mathrm{~F}_{3} \mathrm{Fe}_{2} \mathrm{~N}_{18} \mathrm{O}_{3} \cdot 13 \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{EtOAc}$) \% C 53.23 (53.23), H 4.91 (5.35), N 11.98 (12.28).

IR $v \mathrm{~cm}^{-1} 3374$ (br, s), 3026 (br, s), 1602 (m), 1509 (m), 1468 (m), 1220 (m), 1077 (s), 1009 (m), 753 (s$), 697$ (s).

$\boldsymbol{R}_{\mathrm{c}}, \mathrm{\Delta Fe}_{\mathrm{Fe}}, \mathrm{HHT}-\left[\mathrm{Fe}_{2} \mathrm{~L}^{\mathbf{3 d}}{ }_{3}\right] \mathrm{Cl}_{4}$

Data as for S-enantiomer

Yield $0.36 \mathrm{~g}, 75 \%$

Elemental Analysis found (Calculated for $\mathrm{C}_{87} \mathrm{H}_{75} \mathrm{Cl}_{4} \mathrm{~F}_{3} \mathrm{Fe}_{2} \mathrm{~N}_{18} \mathrm{O}_{3} \cdot 13 \mathrm{H}_{2} \mathrm{O} \cdot 2 \mathrm{EtOAc}$) \% C 53.45 (53.28), H 4.69 (5.51), N 11.75 (11.77).

Yield $0.44 \mathrm{~g}, 86 \%$
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta_{\mathrm{C}} \mathrm{ppm} 163.4,163.2,162.6(\mathrm{HC}=\mathrm{N}), 160.1,159.8$, $159.3,159.2,159.0,158.5,158.4,158.3,158.2,157.9$ (bpy), 157.3 (bpy), 155.8 (bpy), 154.4, $153.9,153.7,153.3,153.1,152.5,151.9,149.6$ (q, TRZ), 149.6 (q, TRZ), 149.5 (q, TRZ), 139.9, $139.8,139.6,138.7,138.5,138.3,138.3,138.0,137.8,137.5,136.9,136.8,134.4,134.0,134.0$, 133.9, 132.8, 132.5, 130.0 (TRZ), 129.3, 129.3, 129.3, 129.0 (TRZ), 129.0, 128.7, 128.6, 128.3 (TRZ), 127.7, 127.6, 127.4, 127.2, 127.2, 127.2, 126.4, 125.9, 125.6, 123.9, 123.7, 123.6, 123.5, $123.0,122.7,122.5,121.5(\mathrm{Ar}), 73.0(\underline{\mathrm{C} H P h}), 72.6(\underline{\mathrm{C} H P h}), 71.3\left(\mathrm{CH}_{2}\right.$-bpy), $70.8(\underline{\mathrm{C} H P h}), 69.2$, $69.1\left(\underline{\mathrm{C}}_{2}\right.$-bpy $), 69.0,68.7,68.5\left(\underline{\mathrm{C}}_{2}-\mathrm{CHPh}\right), 55.0,55.0,54.7\left(\mathrm{Ph}_{2} \underline{\mathrm{C}}_{2}\right)$.

HRMS Calculated for $\left[\mathrm{Fe}_{2} \mathrm{~L}_{3}\right]^{4+} \mathrm{m} / \mathrm{z} 416.8727$, found $\mathrm{m} / \mathrm{z} 416.8725$

Elemental Analysis found (Calculated for $\mathrm{C}_{90} \mathrm{H}_{78} \mathrm{Cl}_{4} \mathrm{Fe}_{2} \mathrm{~N}_{18} \mathrm{O}_{9} \cdot 15 \mathrm{H}_{2} \mathrm{O} \cdot 2 \mathrm{EtOAc}$) \% C 52.05 (52.18), H 4.76 (5.54), N 11.13 (11.18).

IR $v \mathrm{~cm}^{-1} 3371$ (br, s), 2851 (br, s), 1694 (m), 1591 (m), 1525 (m), 1467 (m), 1401 (s), 1077 (s), 753 (s$), 698$ (s$).$

$\boldsymbol{R}_{\mathrm{c},}, \mathrm{AFe}_{\mathrm{Fe}}, \mathrm{HHT}-\left[\mathrm{Fe}_{2} \mathrm{~L}^{\mathbf{3 e}}{ }_{3}\right] \mathrm{Cl}_{4}$

Data as for S-enantiomer

Yield $0.42 \mathrm{~g}, 82$ \%

Elemental Analysis found (Calculated for $\mathrm{C}_{90} \mathrm{H}_{78} \mathrm{Cl}_{4} \mathrm{Fe}_{2} \mathrm{~N}_{18} \mathrm{O}_{9} \cdot 16 \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{EtOAc}$) \% C 51.49 (51.66), H 4.69 (5.44), N 11.35 (11.54).

2. NMR spectra

Figure S1 ${ }^{1} \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$ and ${ }^{13} \mathrm{C}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$ NMR spectra of $R_{\mathrm{c}}, \Delta_{\mathrm{zn}}$, HHT$\left[\mathrm{Zn}_{2} \mathbf{L}^{3 a_{3}}\right]\left[\mathrm{ClO}_{4}\right]_{4}$. Three imine carbon peaks C ${ }^{\text {a }}$ were found at 157.1 -156.1 ppm, and three bpy carbon peaks C^{b} were observed at 150.4-149.9 ppm. The three benzylic carbon peaks $\mathrm{C}^{\mathbf{g}}$ were detected at 69.7, 69.5 and 67.8 ppm . Bipyridine- CH_{2} carbon peaks $\mathrm{C}^{\mathbf{h}}$ were found at $70.0,69.9$ and 69.1 ppm . Benzyl- CH_{2} carbon peaks C^{f} were assigned at $55.5-50.1 \mathrm{ppm}$.

Figure S2 $2 \mathrm{D}{ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC $\left(500 \mathrm{MHz} / 125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right) \mathrm{NMR}$ spectra of $R_{\mathrm{c}}, \Delta_{\mathrm{Zn}}, \mathrm{HHT}-\left[\mathrm{Zn}_{2} \mathbf{L}^{\mathbf{3 a}}{ }_{3}\right]\left[\mathrm{ClO}_{4}\right]_{4}$

Figure S3 ${ }^{1} \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right)$ and ${ }^{13} \mathrm{C}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right)$ NMR spectra of $R_{\mathrm{c}}, \Delta_{\mathrm{Fe}}$, HHT$\left[\mathrm{Fe}_{2} \mathbf{L}^{3 \mathrm{a}_{3}}\right] \mathrm{Cl}_{4}$.

Figure S4 Partial 2D ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ HSQC/HMBC ($500 \mathrm{MHz} / 125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}$) spectra of ($R_{\mathrm{c}}, \Delta_{\mathrm{Fe}}$)-HHT$\left[\mathrm{Fe}_{2} \mathbf{L}^{3 \mathrm{a}_{3}}\right] \mathrm{Cl}_{4}$

Figure S5 ${ }^{1} \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$ and ${ }^{13} \mathrm{C}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$ NMR spectra of $R_{\mathrm{c}}, \Delta_{\mathrm{zn}}$, HHT$\left[\mathrm{Zn}_{2} \mathbf{L}^{\mathbf{3 b}}{ }_{3}\right]\left[\mathrm{ClO}_{4}\right]_{4}$

Figure S6 ${ }^{1} \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right)$ and ${ }^{13} \mathrm{C}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right)$ NMR spectra of $R_{\mathrm{c}}, \Delta_{\mathrm{Fe}}$, HHT$\left[\mathrm{Fe}_{2} \mathbf{L}^{\mathbf{3 b}}{ }_{3}\right] \mathrm{Cl}_{4}$.

$$
\begin{aligned}
& \mathrm{L}^{3 \mathrm{c}}
\end{aligned}
$$

Figure S7 ${ }^{1} \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$ and ${ }^{13} \mathrm{C}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$ NMR spectra of $R_{\mathrm{c}}, \Delta_{\mathrm{zn}}$, HHT$\left[\mathrm{Zn}_{2} \mathbf{L}^{3 \mathrm{c}_{3}}\right]\left[\mathrm{ClO}_{4}\right]_{4}$

Figure S8 ${ }^{1} \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right)$ and ${ }^{13} \mathrm{C}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right) \mathrm{NMR}$ spectra of $R_{\mathrm{c}}, \Delta_{\mathrm{Fe}}$, HHT$\left[\mathrm{Fe}_{2} \mathbf{L}^{\mathbf{3 c}}{ }_{3}\right] \mathrm{Cl}_{4}$.

Figure S9 ${ }^{1} \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$ and ${ }^{13} \mathrm{C}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right) \mathrm{NMR}$ spectra of $R_{\mathrm{c}}, \Delta_{\mathrm{Zn}}, \mathrm{HHT}$ $\left[\mathrm{Zn}_{2} \mathbf{L}^{\mathbf{3 d}}{ }_{3}\right]\left[\mathrm{ClO}_{4}\right]_{4}$

Figure $\mathbf{S 1 0}{ }^{1} \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right)$ and ${ }^{13} \mathrm{C}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right)$ NMR spectra of $R_{\mathrm{c}}, \Delta_{\mathrm{Fe}}$, HHT$\left[\mathrm{Fe}_{2} \mathbf{L}^{3 \mathrm{dd}_{3}}\right] \mathrm{Cl}_{4}$.
HOOC

$\begin{array}{lllllllllllllllllllllllllllllllllllll} \\ 9.6 & 9.4 & 9.2 & 9.0 & 8.8 & 8.6 & 8.4 & 8.2 & 8.0 & 7.8 & 7.6 & 7.4 & 7.2 & 7.0 & 6.8 & 6.6 & 6.4 & 6.2 & 6.0 & 5.8 & 5.6 & 5.4 & 5.2 & 5.0 & 4.8 & 4.6 & 4.4 & 4.2 & 4.0 & 3.8 & 3.6 & 3.4 & 3.2\end{array}$

Figure S11 ${ }^{1} \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right)$ and ${ }^{13} \mathrm{C}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right)$ NMR spectra of $R_{\mathrm{c}}, \Delta_{\mathrm{Fe}}$, HHT-
$\left[\mathrm{Fe}_{2} \mathbf{L}^{3 \mathrm{e}_{3}}\right] \mathrm{Cl}_{4}$.

313K

293K

Figure S12 Variable temperature ${ }^{1} \mathrm{H}$ spectra of $\left(R_{\mathrm{c}}, \Delta_{\mathrm{Fe}}\right)$ - $\mathrm{HHT}-\left[\mathrm{Fe}_{2} \mathbf{L}^{3 \mathrm{an}_{3}}\right] \mathrm{Cl}_{4}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right)$ at 7.2-5.6 ppm. Compared with the $\mathrm{Zn}(\mathrm{II})$ counterparts, the protons ($6.2-5.8 \mathrm{ppm}$) of the π-stacked phenyl rings (H^{e}) were much broader for the Fe (II) metallohelices at 293 K . We attribute this to the shorter expected $\mathrm{N}-\mathrm{Fe}$ (II) bond lengths with respect to $\mathrm{Zn}(\mathrm{II}),{ }^{2}$ resulting in stronger π-stacking between phenyl ring and bipyridine in a more compact structure, slowing the phenyl ring rotation. Variable temperature ${ }^{1} \mathrm{H}$ NMR spectra of $\Delta-\left[\mathrm{Fe}_{2} \mathbf{L}^{3 a_{3}}\right] \mathrm{Cl}_{4}$ reveal spectral sharpening with increasing temperature, consistent with the increased phenyl ring rotation.

3. High Resolution ESI mass spectra

Figure S13 High resolution ESI mass spectrum of $\Lambda_{\mathrm{Fe}}, \mathrm{HHT}-\left[\mathrm{Fe}_{2} \mathbf{L}^{3 \mathrm{a}}{ }_{3}\right] \mathrm{Cl}_{4}$ showing the observed $\mathrm{z}=+4$ charge (top), compared to the theoretical isotope pattern (bottom).

Figure S14 High resolution ESI mass spectrum of $\Lambda_{\mathrm{Fe}}, \mathrm{HHT}-\left[\mathrm{Fe}_{2} \mathbf{L}^{\mathbf{3 b}}{ }_{3}\right] \mathrm{Cl}_{4}$ showing the observed $\mathrm{z}=+4$ charge (top), compared to the theoretical isotope pattern (bottom).

Figure S15 High resolution ESI mass spectrum of $\Lambda_{\mathrm{Fe}}, \mathrm{HHT}-\left[\mathrm{Fe}_{2} \mathbf{L}^{3 \mathrm{c}} 3\right] \mathrm{Cl}_{4}$ showing the observed $\mathrm{z}=+4$ charge (top), compared to the theoretical isotope pattern (bottom).

Figure S16 High resolution ESI mass spectrum of $\Lambda_{\mathrm{Fe}}, \mathrm{HHT}-\left[\mathrm{Fe}_{2} \mathbf{L}^{3 \mathrm{~d}_{3}}\right] \mathrm{Cl}_{4}$ showing the observed $\mathrm{z}=+4$ charge (top), compared to the theoretical isotope pattern (bottom).

Figure S17 High resolution ESI mass spectrum of $\Delta_{\mathrm{Fe}}, \mathrm{HHT}-\left[\mathrm{Fe}_{2} \mathbf{L}^{3 \mathrm{e}_{3}}\right] \mathrm{Cl}_{4}$ showing the observed $\mathrm{z}=+4$ charge (top), compared to the theoretical isotope pattern (bottom).

4. Circular Dichroism Spectra

Circular Dichroism Spectra were measured on a JascoJ-815 spectrometer, calibrated conventionally using 0.060% ACS a holmium filter. Measurements were collected using a 1 cm path-length quartz cuvette. The parameters used were; bandwidth 1 nm , response time 1 sec, wavelength scan range $270-700 \mathrm{~nm}$, data pitch 0.2 nm , scanning speed $100 \mathrm{~nm} / \mathrm{min}$ and accumulation 8.

Figure S18 CD spectra of the pairs of enantiomers $\left[\mathrm{Fe}_{2} \mathrm{~L}^{3{ }_{3}}\right] \mathrm{Cl}_{4}(0.1 \mathrm{mg} / \mathrm{mL}$ in methanol); each enantiomer shows an equal and opposite spectrum to its pair.

5. Stability studies

Figure S19 Time-dependent UV-Vis absorption spectra of $\Lambda-\left[\mathrm{Fe}_{2} \mathrm{~L}^{\mathbf{3 a}}{ }_{3}\right] \mathrm{Cl}_{4}(100 \mu \mathrm{M}$, dissolved in deionised water $)$, from 0-7 d.

Figure S20 Time-dependent UV-Vis absorption measurements at $\lambda=485 \mathrm{~nm}$ of Λ-[$\left.\mathrm{Fe}_{2} \mathrm{~L}^{\mathbf{3 a}}{ }_{3}\right] \mathrm{Cl}_{4}\left(0.02 \mu \mathrm{~g} \mathrm{~mL}{ }^{-1}\right.$, dissolved in aqueous $\mathrm{KCl} / \mathrm{HCl}$ buffer at $\mathrm{pH}=1.5$), from 0-300 min.

6. In vitro antiproliferative activity screening

The human ovarian carcinoma cisplatin-sensitive A2780 cells, cisplatin-resistant A2780cisR (a cisplatin-resistant variant of A2780 cells), human cervical carcinoma HeLa cells, and human breast cancer MCF-7 cells, were kindly supplied by Professor B. Keppler, University of Vienna (Austria). Highly invasive breast carcinoma MDA-MB-231 cells and human MRC-5 pd30 cells derived from normal lung tissue were purchased from the European collection of authenticated cell cultures (ECACC; Salisbury, UK). HCT116 p53 ${ }^{+/+}$colorectal cancer cells and ARPE-19 human retinal epithelial cells (non-cancer) were obtained from ATCC.

The A2780 and A2780cisR cells were grown in RPMI 1640 medium (Biosera, Boussens, France) supplemented with gentamycin ($50 \mathrm{mgmL}^{-1}$, Serva, Heidelberg, Germany) and 10%
heat-inactivated fetal bovine serum (PAA, Pasching, Austria). The acquired resistance of A2780cisR cells was maintained by supplementing the medium with $1 \mu \mathrm{M}$ cisplatin every second passage. The HeLa and MCF-7 were grown in DMEM medium (Dulbecco's Modified Eagle's Medium, high glucose $\left.4.5 \mathrm{gL}^{-1}, \mathrm{PAA}\right)$ supplemented with gentamycin ($50 \mathrm{mgmL}^{-1}$, Serva) and 10% heat-inactivated fetal bovine serum (PAA). The MDA-MB-231 and MRC-5 pd30 cells were grown in DMEM medium (high glucose $4.5 \mathrm{gL}^{-1}$, PAA) supplemented with gentamycin ($50 \mathrm{mgmL}^{-1}$, Serva), 10% heat-inactivated fetal bovine serum (PAA), and 1% nonessential amino acids (Sigma-Aldrich, Prague, Czech Republic). The cells were cultured in a humidified incubator at $37^{\circ} \mathrm{C}$ in a $5 \% \mathrm{CO}_{2}$ atmosphere and subcultured 2-3 times a week with an appropriate plating density. ARPE-19 human retinal epithelial cells (non-cancer) were cultured in DMEM/F12 culture medium containing l-glutamine (2.5 mM), sodium pyruvate $(0.5 \mathrm{mM})$, HEPES buffer $(15 \mathrm{mM})$ and foetal calf serum $(10 \% \mathrm{v} / \mathrm{v})$. HCT116 $\mathrm{p} 53^{+/+}$cells were grown in DMEM containing L-glutamine $(2 \mathrm{mM})$ and foetal calf serum ($10 \% \mathrm{v} / \mathrm{v}$). All cell lines were routinely maintained as monolayer cultures and sub-cultured or harvested for chemosensitivity studies when approximately 70-80\% confluent. Cells were seeded into 96well tissue culture plates at a density of 2×10^{3} cells/well for HCT116 p53 ${ }^{+/+}$and ARPE-19 cell lines, 1×10^{4} cells/well for A2780, A2780cisR, and MRC-5; 5×10^{3} cells/well for MCF-7, HeLa and MDA-MB-231. Plates containing cells were incubated for 24 h at $37^{\circ} \mathrm{C}$ in an atmosphere of $5 \% \mathrm{CO}_{2}$ prior to drug exposure. Cell media ($200 \mu \mathrm{l}$) was added to the control cells and differing concentrations (0 to $50 \mu \mathrm{M}$) of drug solution ($200 \mu \mathrm{l}$) were added to the remaining wells. All complexes were directly dissolved in cell media. The plates were incubated for a further 72 or 96 h at $37^{\circ} \mathrm{C}$ in an atmosphere of $5 \% \mathrm{CO}_{2}$. Due to these compounds being purple in colour, media is removed and replaced with fresh media prior to the assay for all studies. 3-(4,5-Dimethylthiazol-1-yl)-2,5-diphenyltetrazolium bromide (MTT) solution $(0.5 \mathrm{mg} / \mathrm{ml}, 20 \mu \mathrm{l}$ per well) was added to each well and incubated for a further 4 h at $37^{\circ} \mathrm{C}$ in an atmosphere of
$5 \% \mathrm{CO}_{2}$. Upon completion, all solutions were removed from the wells and dimethyl sulfoxide (150 $\mu 1$,) was added to each well to dissolve the purple formazan crystals. A Thermo Scientific Multiskan EX microplate photometer was used to measure the absorbance at 540 nm . Lanes containing 100% cell media and untreated cells were used as a blank and 100% cell survival respectively. Cell survival was determined as the true absorbance of treated cells divided by the true absorbance of untreated controls; this value was expressed as a percentage. The IC_{50} values were determined from a plot of percentage cell survival against drug concentration ($\mu \mathrm{M}$). All assays were conducted in triplicate and the mean $\mathrm{IC}_{50} \pm$ standard deviation was determined.

Table S1 Cytotoxicity and selectivity index of triazole triplex $\left[\mathrm{Fe}_{2} \mathbf{L}^{\mathbf{3 a - e}}{ }_{3}\right] \mathrm{Cl}_{4}$, ligand precursor amines (R / S)-2 and aldehyde 1a against HCT116 p53+/+ and ARPE-19 cell line. Cells were treated for 96 h .

Figure S21 Percentage cell survival as a function of $\left[\mathrm{FeCl}_{2}\right]$. Cell survival measured by standard MTT, by comparison with untreated cells.

Table S2 Cytotoxicity of triazole triplex $\Lambda / \Delta\left[\mathrm{Fe}_{2} \mathbf{L}^{\mathbf{3 a}}{ }_{3}\right] \mathrm{Cl}_{4}$ against HCT116 $\mathrm{p} 53^{+/+}$using stock solutions (dissolved in cell culture medium) pre-incubated at $37^{\circ} \mathrm{C}$ for 24 h , and stock solutions made up immediately before dosing cells. Cells were treated with compound for 24 h and fresh media was replaced for a further $72 \mathrm{~h} . \mathrm{IC}_{50}$ was determined by SRB assay.

		mean IC $_{50}(\boldsymbol{\mu M})$ - $\mathbf{H C T 1 1 6 ~ p 5 3}$	
	24 h pre-incubation	0 h pre-incubation	
[\mathrm{Fe}_{2}\mathbf{L}^{\mathbf{3a}}{}_{3}]Cl_{4}	Λ	0.57 ± 0.06	0.58 ± 0.07
	Δ	8.6 ± 0.7	8.9 ± 0.3

7. Combined treatment

The cells were seeded and processed following the procedure mentioned above and were treated with cisplatin and $\Delta-\left[\mathrm{Fe}_{2} \mathbf{L}^{3 \mathrm{a}_{3}}\right] \mathrm{Cl}_{4}$ at equimolar concentrations (1:1). CompuSyn software (Combo SynInc, City, State, USA) was used to determine the Combination Indexes (CI). $\mathrm{CI}<0.9$ indicated synergism, $\mathrm{CI}>1.1$ indicated antagonism and CI within the range ($0.9-1.1$) indicated additive effect. The experiments were carried out at least in triplicate.

8. Antimicrobial screening

The bacterial strains used in this study are listed in Table S3. For MIC determination the standard broth microdilution method was employed, in agreement with the Clinical and Laboratory Standards Institute (CLSI) guidelines M07-A9 and M100-S24. Cation-adjusted Mueller Hinton Broth (CAMHB) was used as the media and a $512 \mu \mathrm{~g} \mathrm{ml}{ }^{-1}$ stock solution of each metallohelix was prepared in water. Each measurement was performed in triplicate.

Table S3: In vitro antimicrobial activity (MICs) of $\Lambda / \Delta\left[\mathrm{Fe}_{2} \mathbf{L}^{3 \mathrm{a}_{3}}\right] \mathrm{Cl}_{4}$ against Gram-positive strain S. aureus and Gram-negative strain E. coli. Ciprofloxacin is the control.

	MIC $(\mu \mathrm{g} \mathrm{ml}$	
	$)$	
Compound	Staphylococcus aureus ATCC29213	Escherichia coli ATCC25922
$\Lambda-\left[\mathrm{Fe}_{2} \mathbf{L}^{\mathbf{3 a}}{ }_{3}\right] \mathrm{Cl}_{4}$	256	128
$\Delta-\left[\mathrm{Fe}_{2} \mathbf{L}^{3 \mathrm{a}_{3}}\right] \mathrm{Cl}_{4}$	256	128
Ciprofloxacin	0.25	0.008

9. Haemolysis screening

Fresh equine blood was centrifuged at $1,000 \mathrm{xg}$ for 10 min and the supernatant was removed. Harvested erythrocytes were washed three times with PBS and then resuspended to a 5\% erythrocyte concentration in PBS. $\left[\mathrm{Fe}_{2} \mathrm{~L}^{3 \mathrm{a}} 3\right] \mathrm{Cl}_{4}$ compounds were dissolved in PBS in a $0.5-256 \mu \mathrm{~g} \mathrm{ml}^{-1}$ serial dilution range. The $\left[\mathrm{Fe}_{2} \mathrm{~L}^{3 \mathrm{a}_{3}}\right] \mathrm{Cl}_{4}$ solutions $(100 \mu \mathrm{l})$ were added to the suspended erythrocytes $(100 \mu \mathrm{l})$ in 96 -well round bottom plates at $37{ }^{\circ} \mathrm{C}$ for 1 h without agitation. Controls included a PBS and 1% Triton X-100 as 0 and 100% haemolysis, respectively. Each measurement was performed in triplicate.

Table S4: Haemolytic activity of $\Lambda / \Delta\left[\mathrm{Fe}_{2} \mathbf{L}^{\mathbf{3 a}}{ }_{3}\right] \mathrm{Cl}_{4}$ against equine erythocytes.

Compound	Haemolytic concentration $(\mu \mathrm{g} \mathrm{ml}$
$\Lambda-\left[\mathrm{Fe}_{2} \mathbf{L}^{3 \mathrm{a}_{3}}\right] \mathrm{Cl}_{4}$	>256
$\Delta-\left[\mathrm{Fe}_{2} \mathbf{L}^{3 \mathrm{a}_{3}}\right] \mathrm{Cl}_{4}$	>256

10. Real-time cell growth monitoring

Real-time Cell Analyzer (RTCA) (xCELLigence RTCA SP Instrument, ROCHE) was applied for growth monitoring of cells in the absence and the presence of tested compounds. The instrument first read the background of E-plates ($100 \mu \mathrm{~L}$ medium). After that, upon a 24 -hour incubation period, the A2780 cells (5×10^{3} cells/well; $50 \mu \mathrm{~L}$) were treated with tested compounds at varying concentrations. The impedance was monitored for additional 80 h . An arbitrary unit CI (cell index) is a quantitative measure reflecting the status of the cells (number of attached cells and cell status such as morphology) in an electrode-containing well. Normalized CI at a given time point is given by dividing CI at the time point by CI at a reference time point. $\left.\Delta-\left[\mathrm{Fe}_{2} \mathbf{L}^{3{ }_{3}}\right]{ }_{3}\right] \mathrm{Cl}_{4}$ shows a very different profile to that of cisplatin in A280 cells. The complex treatment resulted in a significant increase in Cell index within 20 to 60 hours following the compound addition.

Figure S22 Time-dependent cellular response profiles of A2780 cells treated with increasing concentrations of tested compounds; Cell index in arbitrary units is a measure of cell sensor impedance: (A) Δ - $\left[\mathrm{Fe}_{2} \mathbf{L}^{3{ }^{3}}{ }_{3}\right] \mathrm{Cl}_{4}$ (lines: orange $-0.1 \mu \mathrm{M}$; green $-0.2 \mu \mathrm{M}$; turquoise $-0.4 \mu \mathrm{M}$; blue $-0.8 \mu \mathrm{M}$; magenta $-1.6 \mu \mathrm{M}$); (B) cisPt (lines: orange $-1 \mu \mathrm{M}$; green $-2 \mu \mathrm{M}$; turquoise $-4 \mu \mathrm{M}$; blue $-8 \mu \mathrm{M}$; dark green $-12 \mu \mathrm{M}$; magenta $-20 \mu \mathrm{M}$).

11. Fluorescence competition assays

A solution (10 mM Tris buffer, $\mathrm{pH} 7.4,1 \mathrm{mM}$ EDTA) of $3.9 \mu \mathrm{Mct-DNA}$ with $1.3 \mu \mathrm{M}$ ethidium bromide was titrated by an aliquots of stock $100 \mu \mathrm{M}$ metallohelice. The DNA-EtBr complexes were excited at 520 nm and fluorescence intensity was measured at $550-700 \mathrm{~nm}$ after each
addition of $2 \mu \mathrm{~L}$ complex until the fluorescence was reduced to 50%. The standard parameters used were: response time 1 sec , data pitch 1 nm , scanning speed $100 \mathrm{~nm} / \mathrm{min}$ and accumulation 1. The Hoechst competition assay was similar with ethidium bromide except that the DNAHoechst complexes were excited at 345 nm and the fluorescence intensity was measured at 360-600 nm. The methyl green competition assay was conducted in which the DNA-methyl green complexes were excited at 640 nm and the fluorescence intensity was measured at 650750 nm .

Figure S23 Fluorescence competition assay: The ct-DNA ($3.9 \mu \mathrm{M}$) was firstly incubated with fluorescent binder $(1.3 \mu \mathrm{M})$, then titrated with variable concentration of metallohelices $(0-2.0 \mu \mathrm{M})$. Finally, the fluorescent ratio $\mathrm{F}_{0} / \mathrm{F}$
(F_{0} equals fluorescence of control with no complex, F equals instant fluorescence intensity with the addition of complex) versus concentration of metallohelices was plotted. (a) Ethidium bromide (DNA intercalator binder), $\mathrm{F}_{0} / \mathrm{F}$ measured at 583 nm ; (b) hoechst (DNA minor grove binder), $\mathrm{F}_{0} / \mathrm{F}$ measured at 466 nm and (c) methyl green (DNA major grove binder), $\mathrm{F}_{0} / \mathrm{F}$ measured at 661 nm .

12. DNA binding studies using Flow LD spectra

Flow LD spectra were measured by Jasco J-815 spectrometer equipped with LD spectroscopy kit. The standard parameters used were: bandwidth 1 nm , response time 1 sec , wavelength scan range $180-700 \mathrm{~nm}$, data pitch 0.1 nm , scanning speed $100 \mathrm{~nm} / \mathrm{min}$ and accumulation 4. Calf thymus DNA (ct-DNA) ($600 \mu \mathrm{M}$) was prepared in Trizma Buffer (pH 7.4), followed by addition of various concentration of metallohelices with the ratio to ct-DNA: 3:100, 4:100, $5: 100,6: 100,7: 100,8: 100,9: 100$, and 10:100. The LD spectra were obtained by subtracting the parallel absorption of the molecule from perpendicular absorption $[L D=A \|-\mathrm{A}\rfloor$ in the presence of Laminar flow.

Figure S24 Linear dichroism spectra of ct-DNA $(600 \mu \mathrm{M})$ in the presence of $\Lambda\left[\mathrm{Fe}_{2} \mathbf{L}^{3 a_{3}}\right] \mathrm{Cl}_{4}$ at (a) $180-330 \mathrm{~nm}$ (b) 274-636 nm wavelength; and $\Delta\left[\mathrm{Fe}_{2} \mathbf{L}^{3 a_{3}}\right] \mathrm{Cl}_{4}$ at (c) $180-330 \mathrm{~nm}$ (d) 274-636 nm wavelength; (e) the absorbance ratio $\operatorname{Abs} / \operatorname{Abs}(0)[\operatorname{Abs}(0)$ equals LD signal of control with no complex at 260 nm wavelength], versus concentration of metallohelices was plotted. Error bars show standard deviation for three separate repeats (f) UVvis spectrum of $\Delta\left[\mathrm{Fe}_{2} \mathbf{L}^{3 a_{3}}\right] \mathrm{Cl}_{4}\left(100 \mu \mathrm{M}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$.

References:

1. H. Song, N. J. Rogers, S. J. Allison, V. Brabec, H. Bridgewater, H. Kostrhunova, L. Markova, R. M. Phillips, E. C. Pinder, S. L. Shepherd, L. S. Young, J. Zajac and P. Scott, Chem. Sci., 2019, 10, 8547-8557.
2. S. E. Howson, L. E. Allan, N. P. Chmel, G. J. Clarkson, R. J. Deeth, A. D. Faulkner, D. H. Simpson and P. Scott, Dalton Trans., 2011, 40, 10416-10433.
