### **Supporting Information**

# Catalytic Enantioselective Synthesis of α-Aryl α-Hydrazino Esters and Amides

Marta Velázquez,<sup>*a*</sup> Saúl Alberca,<sup>*a*</sup> Javier Iglesias-Sigüenza,<sup>*a*</sup> Rosario Fernández \*.<sup>*a*</sup> José M. Lassaletta<sup>\*,*b*</sup> and David Monge<sup>\*,*a*</sup>

<sup>*a*</sup>Departamento de Química Orgánica, Universidad de Sevilla, C/Prof. García González, 1, 41012 Sevilla, Spain; Fax: +34 954624960; Tel: +34 954551518; E-mail: <u>dmonge@us.es</u>, <u>ffernaan@us.es</u>

<sup>b</sup>Instituto de Investigaciones Químicas (CSIC-US, Américo Vespucio 49, E-41092 Sevilla, Spain; Fax: +34 954460565; Tel: +34 954489563; E-mail: <u>jmlassa@iiq.csic.es</u>

### CONTENTS

- 1. General information
- 2. Synthesis of hydrazone 1a
- 3. General procedure for the synthesis of hydrazones 1b
- 4. General procedure for the synthesis of hydrazones (*E*)-1c, (*E*)-1e and (*E*)-1f
- 5. Synthesis of hydrazone (*E*)-1d
- 6. Synthesis of hydrazone (*E*)-1g
- 7. Synthesis of hydrazone (*E*)-1i
- 8. Synthesis of hydrazone S6
- 9. General procedure for the synthesis of hydrazones (*E*)-1k, (*E*)-1l and (*E*)-1m
- 10. Optimization of Pd(II) source for 1,2-addition of phenyl boronic acid (2a) to hydrazone 1a
- 11. Screening of chiral ligands for 1,2-addition of phenyl boronic acid (2a) to hydrazone 1a
- 12. Optimization of the structure of pyridine-hydrazone ligands for 1,2-addition of phenyl boronic acid (2a) to hydrazone 1a
- 13. General procedure for optimization of 1,2-addition of phenyl boronic acid (2a) to hydrazones 1a and 1b
- 14. Screening for optimal hydrazone structure
- 15. Study of the influence of water in the 1,2-addition of phenyl boronic acid (2a) to hydrazone (E)-1b
- 16. General procedure for Pd(II)-catalyzed asymmetric 1,2-addition of arylboronic acids 2 to hydrazones (*E*)-1b, (*E*)-1g and (*E*)-1k-m
- 17. Characterization data
- 18. Deprotection of (S)-3ab
- **19.** Deprotection of (S)-3ag
- 20. Hydrolysis of ester (S)-3cb
- 21. Peptide coupling reaction with (S)-6a
- 22. NMR spectra of new compounds
- 23. References

### 1. General information

<sup>1</sup>H NMR spectra were recorded at 300 MHz, 500 MHz or 700 MHz (internal reference;  $CDCl_3 =$ 7.26;  $CD_2Cl_2 = 5.32$ ; Acetone-d<sup>6</sup> = 2.05; DMSO-d<sup>6</sup> = 2.50); <sup>13</sup>C NMR spectra were recorded at 75.5 MHz, 126 MHz or 176 MHz (internal reference;  $CDCl_3 = 77.16$ ;  $CD_2Cl_2 = 54.00$ ; Acetone $d^6 = 29.84$ ; DMSO- $d^6 = 39.52$ ). Column chromatography was performed on silica gel (Merck Kieselgel 40-60). Analytical TLC was performed on aluminum backed plates  $(1.5 \times 5 \text{ cm})$  precoated (0.25 mm) with silica gel (Merck, Silica Gel 60 F<sub>254</sub>). Semipreparative TLC was performed on glass backed plates (5 x 10 cm) pre-coated (0.25 mm) with silica gel (Merck, Silica Gel 60  $F_{254}$ ). Compounds were visualized by exposure to UV light or/and by dipping the plates in solutions of ninhydrin, vainilline or phosphomolibdic acid stains following by heating. Melting points were recorded in a metal block and are uncorrected. Optical rotations were measured on a Perkin-Elmer 341 MC polarimeter. The enantiomeric excess (ee) of the products was determined by chiral stationary phase HPLC (Daicel Chiralpack IA, IB, IE). Dichloroethane was purchased from Acros Organics (99.5% Extra Dry, Over Molecular Sieves, <0.005% H<sub>2</sub>O). Unless otherwise noted, commercially available reagents were used without further purification. Pyridine bis-hydrazone IIa,<sup>1</sup> Bis-hydrazone IIb,<sup>2</sup> Bis-hydrazone IIc,<sup>3</sup> Phosphino-hydrazone IId,<sup>4</sup> Pyridine-hydrazones (L2-5; L7-9),<sup>5</sup> Pyridine-hydrazone L6,<sup>6</sup> hydrazone (E)-1h,<sup>7</sup> hydrazone (E)-1j,<sup>8</sup> were synthesized according to literature procedures.

### 2. Synthesis of ethyl 2-[(1,3-dioxoisoindolin-2-yl)imino]acetate 1a



To a stirred solution of *N*-aminophthalimide (**PG1**) (0.72 g, 4 mmol) and ethyl glyoxalate (50% in toluene) (**S1**) (2.5 mL, 12 mmol) in 1,4-dioxane (64 mL) was added concentrated hydrochloric acid (2 drops) at room temperature. After the mixture was stirred for 18 hours, the solvent was evaporated under reduced pressure and the residue purified by flash chromatography on silica gel (*n*-hexane/EtOAc 3/2) to give **1a** as a white solid (0.73 g, 74%). **Mp**: 119-121 °C, <sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>):  $\delta$  9.06 (s, 1H), 7.98 – 7.94 (m, 2H), 7.86 – 7.81 (m, 2H), 4.40 (q, *J* = 7.1 Hz, 2H), 1.39 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>**C-NMR** (126 MHz, CDCl<sub>3</sub>):  $\delta$  164.1, 162.9, 145.8, 135.3, 129.9, 124.4, 62.1, 14.1. **HRMS** (ESI): *m/z* calcd for C<sub>12</sub>H<sub>10</sub>O<sub>4</sub>N<sub>2</sub>Na [M<sup>+</sup>+Na] 269.0533, found 269.0535.

### 3. General procedure for the synthesis of hydrazones 1b



Ethyl glyoxalate (50% in toluene) (S1) (2.5 mL, 12 mmol) was added to a stirred solution of benzyl carbazate (PG2) (0.68 g, 4 mmol) in dry toluene (8 mL). The reaction mixture was stirred under Ar at room temperature for 16 hours. The solvent was removed under reduced pressure and the residue purified by flash chromatography on silica gel (*n*-hexane/EtOAc 3/2) to afford the products.

Benzyl (E)-2-(2-ethoxy-2-oxoethylidene)hydrazine-1-carboxylate (E)-1b: white solid (0.71



g, 71%). **Mp**: 63-65 °C, <sup>1</sup>**H-NMR** (500 MHz, Acetone-d<sup>6</sup>):  $\delta$  10.62 (br s, 1H), 7.54 (s, 1H), 7.43 – 7.32 (m, 5H), 5.24 (s, 2H), 4.24 (q, J = 7.1 Hz, 2H), 1.28 (t, J = 7.1 Hz, 3H). <sup>13</sup>**C-NMR** (126 MHz, Acetone-d<sup>6</sup>):  $\delta$  163.7, 153.7, 137.2, 135.5,

129.3, 129.08, 129.06, 67.9, 61.5, 14.5. **HRMS** (ESI): m/z calcd for C<sub>12</sub>H<sub>14</sub>O<sub>4</sub>N<sub>2</sub>Na [M<sup>+</sup>+Na] 273.0846, found 273.0849.

Benzyl (Z)-2-(2-ethoxy-2-oxoethylidene)hydrazine-1-carboxylate (Z)-1b: colourless oil



(0.17 g, 17%).<sup>1</sup>**H-NMR** (500 MHz, Acetone-d<sup>6</sup>):  $\delta$ 11.99 (br s, 1H), 7.49 – 7.33 (m, 5H), 6.86 (s, 1H), 5.27 (s, 2H), 4.28 (q, J = 7.1 Hz, 2H), 1.31 (t, J = 7.1 Hz, 3H). <sup>13</sup>**C-NMR** (126 MHz, Acetone-d<sup>6</sup>):  $\delta$  162.9, 153.4, 137.0, 129.4, 129.17, 129.15, 128.3, 68.2, 62.2, 14.2. **HRMS** (ESI): m/z calcd for

C<sub>12</sub>H<sub>14</sub>O<sub>4</sub>N<sub>2</sub>Na [M<sup>+</sup>+Na] 273.0846, found 273.0846.

### 4. General procedure for the synthesis of hydrazones (*E*)-1c, (*E*)-1e and (*E*)-1f



To a solution of the corresponding acrylate (S2-4) (2 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (3 mL) was bubbled ozone at -78 °C for 20 min. After this time, Me<sub>2</sub>S (176  $\mu$ L, 2.4 mmol) was added and the reaction mixture was stirred for 1 hour at room temperature. The solvent was removed under reduced pressure and the residue was dissolved in EtOH (5 mL). Benzyl carbazate (PG2) (0.27 g, 1.6 mmol) was added and the resulting mixture was stirred under Ar at 50 °C for 2 hours. The solvent was removed under reduced pressure and the resulting products (*E*)-1c, (*E*)-1e and (*E*)-1f.

Benzyl (E)-2-(2-methoxy-2-oxoethylidene)hydrazine-1-carboxylate (E)-1c: Following the



general procedure **4**, starting from methyl acrylate **S2** (184  $\mu$ L, 2 mmol), (*E*)-1c was obtained after purification by flash chromatography (*n*-hexane/EtOAc 3/2) as a white solid (0.3 g, 79%). Mp: 127-129 °C, <sup>1</sup>H-NMR (300 MHz, Acetone-d<sup>6</sup>):  $\delta$  10.67 (br s, 1H), 7.53 (s, 1H), 7.44 – 7.32 (m, 5H), 5.24 (s, 2H),

3.76 (s, 3H). <sup>13</sup>C-NMR (75.5 MHz, Acetone-d<sup>6</sup>):  $\delta$  164.6, 164.2, 153.7, 137.1, 135.1, 129.3, 129.1, 67.9, 52.2. HRMS (ESI): *m*/*z* calcd for C<sub>11</sub>H<sub>12</sub>O<sub>4</sub>N<sub>2</sub>Na [M<sup>+</sup>+Na] 259.0689, found 259.0691.

Benzyl (E)-2-(2-isopropoxy-2-oxoethylidene)hydrazine-1-carboxylate (E)-1e: Following the



general procedure **4**, starting from isopropyl acrylate **S3** (256  $\mu$ L, 2 mmol), (*E*)-1e was obtained after purification by flash chromatography (*n*-hexane/EtOAc 4/1) as a white solid (0.27 g, 65%). Mp: 85-87 °C, <sup>1</sup>H-NMR (300 MHz, Acetone-d<sup>6</sup>):  $\delta$  10.64 (br s, 1H), 7.52 (s, 1H), 7.44 – 7.30 (m, 5H), 5.23 (s, 2H),

5.13 – 5.05 (m, 1H), 1.27 (d, J = 6.3 Hz, 6H). <sup>13</sup>C-NMR (75.5 MHz, Acetone-d<sup>6</sup>):  $\delta$  163.2, 153.7, 137.1, 135.9, 129.3, 129.0, 69.2, 67.8, 21.9. HRMS (ESI): m/z calcd for C<sub>13</sub>H<sub>16</sub>O<sub>4</sub>N<sub>2</sub>Na [M<sup>+</sup>+Na] 287.1002, found 287.1004.

Benzyl (E)-2-(2-(tert-butoxy)-2-oxoethylidene)hydrazine-1-carboxylate (E)-1f: Following



the general procedure **4**, starting from *tert*-butyl acrylate **S4** (290 µL, 2 mmol), (*E*)-**1f** was obtained after purification by flash chromatography (*n*-hexane/EtOAc 4/1) as a white solid (0.27 g, 61%). **Mp**: 89-91 °C, <sup>1</sup>**H-NMR** (300 MHz, Acetoned<sup>6</sup>):  $\delta$  10.57 (br s, 1H), 7.46 – 7.30 (m, 6H), 5.22 (s, 2H), 1.5 (s,

9H). <sup>13</sup>C-NMR (75.5 MHz, Acetone-d<sup>6</sup>): δ 162.8, 153.7, 137.2, 136.9, 129.3, 129.0, 82.0, 67.7, 28.2. HRMS (ESI): *m*/*z* calcd for C<sub>14</sub>H<sub>18</sub>O<sub>4</sub>N<sub>2</sub>Na [M<sup>+</sup>+Na] 301.1159, found 301.1159.

### 5. Synthesis of benzyl (E)-2-[2-(benzyloxy)-2-oxoethylidene]hydrazine-1-carboxylate (E)-1d



Benzyl alcohol (3.4 mL, 32.8 mmol) was added to a stirred solution of glyoxylic acid (50% in H<sub>2</sub>O) (**S5**) (1.4 mL, 12.9 mmol) and HCl (37%) (0.1 mL, 1.3 mmol). The reaction mixture was stirred at 50 °C for 30 minutes. After this time, the reaction crude was neutralized with K<sub>2</sub>CO<sub>3</sub> and extracted with Et<sub>2</sub>O (3 x 10 mL). The combined organic layers were dried over MgSO<sub>4</sub> and concentrated under reduced pressure. The resulting residue was dissolved in toluene (8 mL) and was added benzyl carbazate (**PG2**) (0.68 g, 4 mmol). The reaction mixture was stirred at room temperature for 16 hours. Then, the solvent was removed under reduced pressure and the residue purified by flash chromatography (*n*-hexane/EtOAc 3/1) to give (*E*)-1d as a white solid (0.88 g, 71%). Mp: 102-104 °C, <sup>1</sup>H-NMR (700 MHz, Acetone-d<sup>6</sup>):  $\delta$  10.72 (br s, 1H), 7.59 (s, 1H), 7.46 – 7.32 (m, 10 H), 5.27 (s, 2H), 5.23 (s, 2H). <sup>13</sup>C-NMR (176 MHz, Acetone-d<sup>6</sup>):  $\delta$  163.6, 153.6, 137.1, 136.9, 135.1, 129.30, 129.29, 129.2, 129.05, 129.03, 67.9, 67.1. HRMS (ESI): *m/z* calcd for C<sub>17</sub>H<sub>16</sub>O<sub>4</sub>N<sub>2</sub>Na [M<sup>+</sup>+Na] 335.1002, found 335.1002.

### 6. Synthesis of (9*H*-Fluoren-9-yl)methyl (*E*)-2-(2-ethoxy-2-oxoethylidene)hydrazine-1carboxylate (*E*)-1g



Ethyl glyoxalate (50% in toluene) (S1) (0.5 mL, 2.4 mmol) was added to a stirred solution of fluorenyl carbazate (PG3) (0.62 g, 2.4 mmol) in dry toluene (15 mL). The reaction mixture was stirred under Ar at room temperature for 16 hours. The solvent was removed under reduced pressure and the residue washed with Et<sub>2</sub>O (3 x 5 mL) and dried in *vacuo* to give (*E*)-1g as a white solid (0.82 g, 99%). Mp: 144-146 °C, <sup>1</sup>H-NMR (300 MHz, DMSO-d<sup>6</sup>): δ 11.72 (s, 1H), 7.90 (d, J = 7.4 Hz, 2H), 7.73 (d, J = 7.3 Hz, 2H), 7.45 – 7.31 (m, 5H), 4.57 (d, J = 5.1 Hz, 2H), 4.32 (t, J = 6.4 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 1.25 (s, 3H). <sup>13</sup>C-NMR (75.5 MHz, DMSO-d<sup>6</sup>): δ 162.8, 152.9, 143.5, 140.8, 134.5, 127.7, 127.1, 125.1, 120.2, 66.2, 60.7, 46.5, 14.1. HRMS (ESI): m/z calcd for C<sub>1</sub>9H<sub>18</sub>O<sub>4</sub>N<sub>2</sub>Na [M<sup>+</sup>+Na] 361.1159, found 361.1155.

### 7. Synthesis of benzyl (*E*)-1-benzyl-2-(2-ethoxy-2-oxoethylidene)hydrazine-1-carboxylate (*E*)-1i



Sodium hydride (0.96 g, 4 mmol) was added to a stirred solution of (*E*)-1b (0.4 g, 1.6 mmol) in dry THF (15 mL). The reaction mixture was stirred under Ar at room temperature for 1 hour. After this time, benzyl bromide (0.36 mL, 3 mmol) was slowly added at 0 °C. The mixture was allowed to warm to room temperature and stirred overnight. Then, was diluted with H<sub>2</sub>O (25 mL) and extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 x 50 mL). The combined organic layers were washed with brine (2 x 20 mL), dried over MgSO<sub>4</sub> and concentrated under reduced pressure. The resulting residue was purified by flash chromatography (Toluene/EtOAc 20/1) to give (*E*)-1i as a white solid (0.12 g, 22%). Mp: 116-118 °C, <sup>1</sup>H-NMR (300 MHz, Acetone-d<sup>6</sup>):  $\delta$  7.51 – 7.47 (m, 2H), 7.43 – 7.24 (m, 8H), 7.13 (s, 1H), 5.39 (s, 2H), 5.27 (s, 2H), 4.18 (q, *J* = 7.1 Hz, 2H), 1.23 (t, *J* = 7.1 Hz, 3H).<sup>13</sup>C-NMR (75.5 MHz, Acetone-d<sup>6</sup>):  $\delta$  163.4, 155.1, 137.2, 135.4, 131.9, 129.8, 129.3, 129.0, 128.8, 128.4, 127.3, 69.3, 61.5, 14.4. HRMS (ESI): *m/z* calcd for C<sub>19</sub>H<sub>20</sub>O<sub>4</sub>N<sub>2</sub>Na [M<sup>+</sup>+Na] 363.1315, found 363.1311.

#### 8. Synthesis of hydrazone S6



Glyoxylic acid (50% in H<sub>2</sub>O) (**S5**) (1.1 mL, 10 mmol) was added to a stirred solution of benzyl carbazate (**PG2**) (1.7 g, 10 mmol) in EtOH (14 mL). The reaction mixture was stirred at 80 °C for 4 hours. The solvent was removed under reduced pressure and the residue washed with Et<sub>2</sub>O (3 x 5 mL) and dried in *vacuo* to give **S6** as a white solid (2.2 g, 98%). **Mp**: 196-198 °C, <sup>1</sup>**H**-**NMR** (500 MHz, DMSO-d<sup>6</sup>):  $\delta$  12.98 (br s, 1H), 11.67 (br s, 1H), 7.42 – 7.33 (m, 6H), 5.20 (s, 2H). <sup>13</sup>C-NMR (126 MHz, DMSO-d<sup>6</sup>):  $\delta$  164.4, 153.0, 136.0, 135.5, 128.5, 128.24, 128.19, 66.6. **HRMS** (ESI): *m/z* calcd for C<sub>10</sub>H<sub>10</sub>O<sub>4</sub>N<sub>2</sub>Na [M<sup>+</sup>+Na] 245.0533, found 245.0532.

#### 9. General procedure for the synthesis of hydrazones (E)-1k, (E)-1l and (E)-1m



Primary or secondary amine (3.3 mmol) was added to a solution of HBTU (1.28 g, 3.3 mmol), hydrazone **S6** (0.66 g, 3 mmol) and diisopropylethylamine (1.3 mL, 7.2 mmol) in dry  $CH_2Cl_2$  (45 mL). The resulting mixture was stirred under Ar at room temperature for 16 hours. The reaction was diluted with EtOAc (65 mL) and washed with HCl (0.5 M, 2 x 55 mL), saturated aqueous NaHCO<sub>3</sub> (2 x 55 mL) and brine (2 x 55 mL), dried over MgSO<sub>4</sub> and concentrated under reduced pressure. The resulting residue was purified by flash chromatography on silica gel to afford the corresponding products (*E*)-1k, (*E*)-1l and (*E*)-1m.

Benzyl (E)-2-[2-(benzylamino)-2-oxoethylidene]hydrazine-1-carboxylate (E)-1k: Following



the general procedure **9**, starting from benzylamine (0.4 mL, 3.3 mmol), (*E*)-1k was obtained after purification by flash chromatography (*n*-hexane/EtOAc 1/1) as a white solid (0.50 g, 54%). Mp: 154-156 °C, <sup>1</sup>H-NMR (500 MHz, DMSO-d<sup>6</sup>):  $\delta$  11.58 (br s, 1H), 8.67 (t, *J* = 6.2 Hz,

1H), 7.44 – 7.22 (m, 11H), 5.20 (s, 2H), 4.36 (d, J = 6.2 Hz, 2H). <sup>13</sup>C-NMR (126 MHz, DMSO-d<sup>6</sup>):  $\delta$  162.5, 153.1, 139.2, 138.5, 136.1, 128.4, 128.21, 128.15, 128.1, 127.3, 126.8, 66.4, 42.1. HRMS (ESI): m/z calcd for C<sub>17</sub>H<sub>17</sub>O<sub>3</sub>N<sub>3</sub>Na [M<sup>+</sup>+Na] 334.1162 found 334.1161.

### Benzyl (E)-2-[2-(benzyl(methyl)amino]-2-oxoethylidene)hydrazine-1-carboxylate (E)-11:



Following the general procedure 9, starting from *N*-benzylmethylamine (0.45 mL, 3.3 mmol), (*E*)-11 was obtained after purification by flash chromatography (*n*-hexane/EtOAc 1/2) as a white solid (0.52 g, 53%). Mp: 102-104 °C, <sup>1</sup>H-NMR (500 MHz, DMSO-d<sup>6</sup>; the

compound exists as 1,3:1 mixture of amide rotamers). Signals corresponding to the major rotamer:  $\delta$  13.02 (br s, 1H), 7.48 (d, J = 9.2 Hz, 1H), 7.42 – 7.13 (m, 10H), 5.21 (d, J = 4.0 Hz, 2H), 4.56 (s, 2H), 3.12 (s, 3H). Representative signals to the corresponding minor rotamer:  $\delta$  4.81 (s, 2H), 2.90 (s, 3H). <sup>13</sup>C-NMR (126 MHz, DMSO-d<sup>6</sup>):  $\delta$  162.6, 162.1, 152.7, 136.6, 136.4, 135.9, 128.7, 128.5, 128.4, 128.1, 128.04, 128.02, 127.7, 127.5, 127.3, 126.7, 66.7, 52.4, 50.0, 35.0, 33.5. HRMS (ESI): m/z calcd for C<sub>18</sub>H<sub>19</sub>O<sub>3</sub>N<sub>3</sub>Na [M<sup>+</sup>+Na] 348.1317 found 348.1319.

### Benzyl (E)-2-{2-[(2-methoxy-2-oxoethyl)amino]-2-oxoethylidene}hydrazine-1-carboxylate



(*E*)-1m: Following the general procedure 9, starting from glycine methyl ester hydrochloride (0.42 g, 3.3 mmol), (*E*)-1l was obtained after purification by flash chromatography (*n*-hexane/EtOAc 1/1) as a white solid (0.59 g, 67%). Mp: 152-154 °C. <sup>1</sup>H-NMR (500 MHz,

DMSO-d<sup>6</sup>; the compound exists as 16:1 mixture of amide rotamers). *Signals corresponding to the major rotamer*:  $\delta$  11.62 (br s, 1H), 8.43 (t, J = 6.0 Hz, 1H), 7.35 – 7.32 (m, 6H), 5.21 (s, 2H), 3.94 (d, J = 6.1 Hz, 2H), 3.64 (s, 3H). *Representative signals to the corresponding minor rotamer*:  $\delta$  12.98 (br s, 1H), 9.40 (t, J = 5.8 Hz, 1H), 7.03 (s, 1H), 5.20 (s, 2H), 4.00 (d, J = 5.9 Hz, 2H), 3.66 (s, 3H). <sup>13</sup>C-NMR (126 MHz, DMSO-d<sup>6</sup>; *signals corresponding to both rotamers*):  $\delta$  170.0, 169.4, 163.1, 163.0, 153.0, 152.6, 137.7, 136.1, 135.9, 128.5, 128.2, 128.1, 66.8, 66.5, 51.9, 51.7, 40.6. **HRMS** (ESI): m/z calcd for C<sub>13</sub>H<sub>15</sub>O<sub>5</sub>N<sub>3</sub>Na [M<sup>+</sup>+Na] 316.0904, found 316.0904.

## 10. Optimization of Pd(II) source for 1,2-addition of phenyl boronic acid (2a) to hydrazone 1a



A test tube was charged with Pd(II) source (0.02 mmol), bipyridine (3 mg, 0.022 mmol), hydrazone **1a** (49 mg, 0.2 mmol), phenylboronic acid **2a** (37 mg, 0.3 mmol) and TFE (0.5 mL). The mixture was stirred at 60 °C for 24 h. Yields were determined by the <sup>1</sup>H-NMR analysis of the crude reaction mixture using 1,3,5-trimethoxybenzene as an internal standard.

| Entry | Pd(II) source        | Yield (%) |
|-------|----------------------|-----------|
| 1     | PdCl <sub>2</sub>    | 24        |
| 2     | Pd(OAc) <sub>2</sub> | 19        |
| 3     | Pd(TFA) <sub>2</sub> | 87        |

#### Table S1

11. Screening of chiral ligands for 1,2-addition of phenyl boronic acid (2a) to hydrazone 1a



A test tube was charged with  $Pd(TFA)_2$  (7 mg, 0.02 mmol), L\* (0.022 mmol), hydrazone **1a** (49 mg, 0.2 mmol), phenylboronic acid **2a** (37 mg, 0.3 mmol) and TFE (0.5 mL). The mixture was stirred at 60 °C for 24 h. Yields were determined by the <sup>1</sup>H-NMR analysis of the crude reaction mixture using 1,3,5-trimethoxybenzene as an internal standard. Enantiomeric excess (ee) was determined by HPLC analysis.

| Table | <b>S2</b> |
|-------|-----------|
|-------|-----------|

| Entry | Ligand | Yield (%) | ee (%) |
|-------|--------|-----------|--------|
| 1     | Ia     | n.r       | -      |
| 2     | Ib     | n.r       | -      |
| 3     | Ic     | n.r       | -      |
| 4     | IIa    | <10       | -      |
| 5     | IIb    | 17        | -      |
| 6     | IIc    | 12        | -      |
| 7     | IId    | <10       | -      |
| 8     | L1     | 52        | 55     |
| 9     | L2     | 82        | 58     |

12. Optimization of the structure of pyridine-hydrazone ligands for 1,2-addition of phenyl boronic acid (2a) to hydrazone 1a



A test tube was charged with  $Pd(TFA)_2$  (7 mg, 0.02 mmol), L\* (0.022 mmol), hydrazone **1a** (49 mg, 0.2 mmol), phenylboronic acid **2a** (37 mg, 0.3 mmol) and TFE (0.5 mL). The mixture was stirred at 60 °C for 24 h. Yields were determined by the <sup>1</sup>H-NMR analysis of the crude reaction mixture using 1,3,5-trimethoxybenzene as an internal standard. Enantiomeric excess (ee) was determined by HPLC analysis.

| Table | <b>S</b> 3 |
|-------|------------|
|-------|------------|

| Entry | Ligand | Yield (%) | ee (%) |
|-------|--------|-----------|--------|
| 1     | L2     | 82        | 58     |
| 2     | L3     | 86        | 62     |
| 3     | L4     | 73        | 50     |
| 4     | L5     | 33        | 38     |
| 5     | L6     | n.r       | -      |
| 6     | L7     | 17        | Rac    |
| 7     | L8     | <10       | -      |
| 8     | L9     | 75        | 25     |

### 13. General procedure for optimization of 1,2-addition of phenyl boronic acid (2a) to hydrazones 1a and 1b



A test tube was charged with  $Pd(TFA)_2$  (7 mg, 0.02 mmol), L2 (7 mg, 0.022 mmol), hydrazone **1a,b** (0.2 mmol), phenylboronic acid **2a** (37 mg, 0.3 mmol) and the corresponding solvent (0.5 mL). The mixture was stirred at 60 °C for 24 h. Yields were determined by the <sup>1</sup>H-NMR analysis of the crude reaction mixture using 1,3,5-trimethoxybenzene as an internal standard. Enantiomeric excess (ee) was determined by HPLC analysis.

Racemic products were synthesized in an analogous manner using  $Pd(TFA)_2$  (10 mol%) and bipyridine (11 mol%) at 60 °C.

| Entry | 1               | Solvent          | Yield (%) | ee (%) |
|-------|-----------------|------------------|-----------|--------|
| 1     | <b>1</b> a      | TFE              | 82        | 58     |
| 2     | 1a              | DCE              | 49        | 48     |
| 3     | 1a              | Toluene          | 29        | 56     |
| 4     | 1a              | Trifluorotoluene | 44        | 55     |
| 5     | 1a              | Dioxane          | n.r       | -      |
| 6     | ( <i>E</i> )-1b | TFE              | 56        | 75     |
| 7     | (E)-1b          | DCE              | 83        | 93     |

Table S4

### 14. Screening for optimal hydrazone structure



A test tube was charged with  $Pd(TFA)_2$  (7 mg, 0.02 mmol), L2 (7 mg, 0.022 mmol), hydrazone **1b-j** (0.2 mmol), phenylboronic acid **2a** (37 mg, 0.3 mmol) and DCE (0.5 mL). The mixture was stirred at 60 °C for 24 h. Then, the solvent was removed under reduced pressure and the residue purified by flash chromatography to afford the corresponding products (*S*)-3.

Racemic products were synthesized in an analogous manner using  $Pd(TFA)_2$  (10 mol%) and bipyridine (11 mol%) at 60 °C.

### 15. Study of the influence of water in the 1,2-addition of phenyl boronic acid (2a) to hydrazone (E)-1b



A test tube was charged with  $Pd(TFA)_2$  (13 mg, 0.04 mmol), L2 (14 mg, 0.044 mmol), hydrazone (*E*)-1b (100 mg, 0.4 mmol), phenylboronic acid 2a (73 mg, 0.6 mmol) and dry DCE (1 mL). The mixture was stirred at 60 °C for 24 h. Yields were determined by the <sup>1</sup>H-NMR analysis of the crude reaction mixture using 1,3,5-trimethoxybenzene as an internal standard. Enantiomeric excess (ee) was determined by HPLC analysis.

| Entry | Additive                            | Yield (%) | ee (%) |
|-------|-------------------------------------|-----------|--------|
| 1     | -                                   | 84        | 88     |
| 2     | 2 μl H2O                            | 83        | 89     |
| 3     | 4 μl H2O                            | 75        | 93     |
| 4     | 10 µl H2O                           | 73        | 90     |
| 5     | $4 \ \mu l \ H_2 O$ with $O_2 a tm$ | 80        | 87     |
| 6     | <sup><i>i</i></sup> PrOH (0.5 eq)   | 77        | 88     |
| 7     | TFE (0.5 eq)                        | 92        | 87     |

Table S5

16. General procedure for Pd(II)-catalyzed asymmetric 1,2-addition of arylboronic acids 2 to hydrazones (*E*)-1b, (*E*)-1g and (*E*)-1k-m.



A test tube was charged with Pd(TFA)<sub>2</sub> (13 mg, 0.04 mmol), L2 or L3 (0.044 mmol), hydrazone (*E*)-1b, g, k-m (0.4 mmol), arylboronic acid 2 (0.6 mmol), dry DCE (1 mL) and H<sub>2</sub>O (4  $\mu$ L, 0.22 mmol). The mixture was stirred at 60 °C for 24 h. The solvent was removed under reduced pressure and the residue purified by flash chromatography. Enantiomeric excess (ee) was determined by HPLC analysis.

Racemic products were synthesized in an analogous manner using  $Pd(TFA)_2$  (10 mol%) and bipyridine (11 mol%) at 60 °C.

### 17. Characterization data





procedure 13, a solution of Pd(TFA)<sub>2</sub> (7 mg, 0.02 mmol), L3 (9 mg, 0.022 mmol), 1a (49 mg, 0.2 mmol) and phenylboronic acid 2a (37 mg, 0.3 mmol) in TFE (0.5 mL) was stirred 24 h at 60 °C. Then, the solvent was removed under reduced pressure and the residue purified by flash chromatography (*n*-pentane/Et<sub>2</sub>O 1/2) to give 3aa as a yellow solid (52 mg, 80%, 62% ee).  $[\alpha]_D^{20} = +153.8$ 

(*c* 0.5, CHCl<sub>3</sub>). **Mp**: 95-97 °C, <sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.6 (dd, J = 5.4, 3.1 Hz, 2H), 7.59 (dd, J = 5.4, 3.1 Hz, 2H), 7.40 (dd, J = 7.7, 1.6 Hz, 2H), 7.25 –7.19 (m, 3H), 5.04 (s, 1H), 4.19 – 4.07 (m, 2H), 1.13 (t, J = 7.1 Hz, 3H). <sup>13</sup>**C-NMR** (126 MHz, CDCl<sub>3</sub>):  $\delta$  170.2, 166.0, 134.9, 134.3, 130.1, 129.0, 128.7, 128.6, 123.5, 65.6, 61.8, 14.1. **HRMS** (ESI): *m/z* calcd for C<sub>18</sub>H<sub>16</sub>O<sub>4</sub>N<sub>2</sub>Na [M<sup>+</sup>+Na] 347.1002, found 347.0000. **HPLC** (Chiralpak IB, *n*-hexane/2-propanol 93:7, flow 1 mL/min) *t<sub>R</sub>* 16.3 min (minor) and 17.1 min (major).



**Benzyl** (*S*)-2-(2-ethoxy-2-oxo-1-phenylethyl)hydrazine-1-carboxylate (*S*)-3ab:



**0.4 mmol scale:** Following the general procedure **16**, employing **L3** (17 mg, 0.044 mmol) and starting from (*E*)-**1b** (100 mg, 0.4 mmol) and phenylboronic acid **2a** (73 mg, 0.6 mmol), (*S*)-**3ab** was obtained after purification by flash chromatography (*n*-hexane/EtOAc 3/1) as a white solid (91 mg, 69%, 94% ee).

**1 mmol scale:** A 10 mL round-bottom flask was charged with Pd(TFA)<sub>2</sub> (33 mg, 0.1 mmol), **L3** (42 mg, 0.11 mmol), (*E*)-1b (250 mg, 1 mmol), phenylboronic acid 2a (183 mg, 1.5 mmol), dry DCE (2.5 mL) and H<sub>2</sub>O (5  $\mu$ L, 0.27 mmol). Subsequently, addition of 2a (0.75 mmol/12 h) was performed. The mixture was stirred at 60 °C for 24 h and the solvent was removed under reduced pressure. Flash chromatography (*n*-hexane/EtOAc 3/1) afforded (*S*)-3ab as a white solid (270 mg, 82%, 92% ee). [ $\alpha$ ]<sub>D</sub><sup>20</sup> = +72.4 (*c* 0.5, CHCl<sub>3</sub>). Mp: 56-58 °C. <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.38 – 7.33 (m, 10H), 6.61 (br s, 1H), 5.16 – 5.11 (m, 2H), 4.83 (br s, 1H), 4.24 – 4.11 (m, 3H), 1.19 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C-NMR (126 MHz, CDCl<sub>3</sub>):  $\delta$  171.3, 157.0, 136.1, 135.4, 128.9, 128.8, 128.7, 128.45, 128.42, 128.3, 67.4, 67.1, 61.5, 14.1. HRMS (ESI): *m*/*z* calcd for C<sub>18</sub>H<sub>20</sub>O<sub>4</sub>N<sub>2</sub>Na [M<sup>+</sup>+Na] 351.1314, found 351.1313. HPLC (Chiralpak IA, *n*-hexane/2-propanol 90:10, flow 1 mL/min) *t<sub>R</sub>* 13.4 min (major) and 16.0 min (minor).

Crystallization of (S)-3ab by slow diffusion of *n*-pentane in a solution of (S)-3ab in DCM afforded crystals which are suitable of X-ray.



Benzyl (S)-2-(2-methoxy-2-oxo-1-phenylethyl)hydrazine-1-carboxylate (S)-3ac: Following



the general procedure **14**, starting from (*E*)-**1c** (47 mg, 0.2 mmol), (*S*)-**3ac** was obtained after purification by flash chromatography (*n*-hexane/EtOAc 3/2) as a colourless oil (47 mg, 74%, 74% ee).  $[\alpha]_{D}^{20} = +71.2$  (*c* 1, CHCl<sub>3</sub>). <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.44 – 7.30 (m, 10 H), 6.56 (br s, 1H), 5.14 (s, 2H), 4.84 (br s, 1H), 4.52 (br s, 1H), 3.70 (s, 3H). <sup>13</sup>C-NMR

(75.5 MHz, CDCl<sub>3</sub>):  $\delta$  171.9, 157.1, 136.0, 135.2, 129.0, 128.7, 128.47, 128.45, 128.3, 67.4, 67.1, 52.5. **HRMS** (ESI): *m*/*z* calcd for C<sub>17</sub>H<sub>18</sub>O<sub>4</sub>N<sub>2</sub>Na [M<sup>+</sup>+Na] 337.1159, found 337.1161. **HPLC** (Chiralpak IA, *n*-hexane/2-propanol 90:10, flow 1 mL/min) *t*<sub>*R*</sub> 14.5 min (major) and 17.3 min (minor).



### Benzyl (S)-2-[2-(benzyloxy)-2-oxo-1-phenylethyl]hydrazine-1-carboxylate (S)-3ad:



Following the general procedure 14, starting from (*E*)-1d (63 mg, 0.2 mmol), (*S*)-3ad was obtained after purification by flash chromatography (Toluene/EtOAc 10/1) as a yellow oil (53 mg, 67%, 83% ee).  $[\alpha]_{D}^{20}$  = +42.5 (*c* 1, CHCl<sub>3</sub>). <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.45 – 7.38 (m, 2H), 7.37 – 7.33 (m, 8H), 7.30 – 7.28 (m, 3H),

7.21 – 7.18 (m, 2H), 6.72 (br s, 1H), 5.19 – 5.11 (m, 4H), 4.93 (br s, 1H), 4.57 (br s, 1H). <sup>13</sup>C-NMR (126 MHz, CDCl<sub>3</sub>):  $\delta$  171.2, 157.1, 136.0, 135.5, 135.2, 128.8, 128.6, 128.5, 128.4, 128.35, 128.26, 128.2, 127.9, 67.3, 67.1, 66.9. **HRMS** (ESI): *m*/*z* calcd for C<sub>23</sub>H<sub>22</sub>O<sub>4</sub>N<sub>2</sub>Na [M<sup>+</sup>+Na] 413.1472, found 413.1466. **HPLC** (Chiralpak IA, *n*-hexane/2-propanol 90:10, flow 1 mL/min) *t*<sub>R</sub> 18.5 min (major) and 23.3 min (minor).







Following the general procedure **14**, starting from (*E*)-**1e** (51 mg, 0.2 mmol), (*S*)-**3ae** was obtained after purification by flash chromatography (*n*-hexane/EtOAc 3/1) as a colourless oil (28 mg, 44%, 94% ee).  $[\alpha]_D^{20} = +61.8$  (*c* 1, CHCl<sub>3</sub>). <sup>1</sup>H-**NMR** (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.38 – 7.29 (m, 10 H), 6.58 (br s, 1H), 5.14 (s, 2H), 5.09 – 4.99 (m, 1H), 4.78 (br s, 1H), 4.51

(br s, 1H), 1.23 (d, J = 6.3 Hz, 3H), 1.09 (d, J = 6.2 Hz, 3H).<sup>13</sup>C-NMR (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  170.9, 157.0, 136.1, 135.4, 128.8, 128.72, 128.67, 128.41, 128.38, 128.2, 69.1, 67.3, 67.2, 21.8, 21.5. HRMS (ESI): m/z calcd for C<sub>19</sub>H<sub>22</sub>O<sub>4</sub>N<sub>2</sub>Na [M<sup>+</sup>+Na] 365.1472, found 365.1467. HPLC (Chiralpak IE, *n*-hexane/2-propanol 80:20, flow 1 mL/min)  $t_R$  14.4 min (minor) and 15.7 min (major).



Benzyl (S)-2-[2-(*tert*-butoxy)-2-oxo-1-phenylethyl]hydrazine-1-carboxylate (S)-3af:



Following the general procedure **14**, starting from (*E*)-**1f** (56 mg, 0.2 mmol), (*S*)-**3af** was obtained after purification by flash chromatography (*n*-hexane/EtOAc 3/1) as a colourless oil (28 mg, 38%, 86% ee).  $[\alpha]_D^{20} = +73.3$  (*c* 1, CHCl<sub>3</sub>). <sup>1</sup>H-**NMR** (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.44 – 7.28 (m, 10 H), 6.67 (br s, 1H), 5.13 (s, 2H), 4.71 (br s, 1H), 4.08 (br s, 1H), 1.38 (s, 9H).

<sup>13</sup>**C-NMR** (75.5 MHz, CDCl<sub>3</sub>): 170.5, 157.0, 136.1, 135.9, 128.7, 128.6, 128.5, 128.30, 128.29, 128.2, 82.1, 67.5, 67.2, 27.9. **HRMS** (ESI): m/z calcd for C<sub>20</sub>H<sub>24</sub>O<sub>4</sub>N<sub>2</sub>Na [M<sup>+</sup>+Na] 379.1628, found 379.1625. **HPLC** (Chiralpak IE, *n*-hexane/2-propanol 90:10, flow 1 mL/min)  $t_R$  20.9 min (minor) and 23.7 min (major).



## (9*H*-Fluoren-9-yl)methyl (S)-2-(2-ethoxy-2-oxo-1-phenylethyl)hydrazine-1-carboxylate (S)-3ag:



**0.4 mmol scale:** Following the general procedure **16**, employing **L3** (17 mg, 0.044 mmol) and starting from (*E*)-**1g** (135 mg, 0.4 mmol) and phenylboronic acid **2a** (73 mg, 0.6 mmol), (*S*)-**3ag** was obtained after purification by flash chromatography (Toluene/EtOAc 4/1) as a white solid (130 mg, 81%, 92% ee).

**1 mmol scale:** A 10 mL round-bottom flask was charged with Pd(TFA)<sub>2</sub> (33 mg, 0.1 mmol), **L3** (42 mg, 0.11 mmol), (*E*)-1g (339 mg, 1 mmol), phenylboronic acid 2a (183 mg, 1.5 mmol), dry DCE (2.5 mL) and H<sub>2</sub>O (5  $\mu$ L, 0.27 mmol). Subsequently, addition of 2a (0.5 mmol/12 h) was performed. The mixture was stirred at 60 °C for 36 h and the solvent was removed under reduced pressure. Flash chromatography (Toluene/EtOAc 4/1) afforded (*S*)-3ag as a white solid (354 mg, 85%, 92% ee).  $[\alpha]_{D}^{25} = +72.4$  (*c* 1, CHCl<sub>3</sub>). Mp: 69-71 °C. <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.68 (d, *J* = 7.5 Hz, 2H), 7.46 (s, 2H), 7.34 – 7.17 (m, 9H), 6.49 (br s, 1H), 4.72 (br s, 1H), 4.37 (br s, 2H), 4.19 – 4.02 (m, 3H), 3.58 (br s, 1H), 1.12 (t, *J* = 7.1 Hz, 3H).<sup>13</sup>C-NMR (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  171.4, 157.0, 143.74, 143.72, 141.4, 135.4, 128.92, 128.88, 128.5, 127.9, 127.2, 125.1, 120.2, 67.3, 67.1, 61.5, 47.3, 14.2. HRMS (ESI): *m/z* calcd for C<sub>25</sub>H<sub>24</sub>O<sub>4</sub>N<sub>2</sub>Na [M<sup>+</sup>+Na] 439.1628, found 439.1622. HPLC (Chiralpak IA, *n*-hexane/2-propanol 80:20, flow 1 mL/min) *t<sub>R</sub>* 8.0 min (major) and 10.6 min (minor).



tert-Butyl (S)-2-(2-ethoxy-2-oxo-1-phenylethyl)hydrazine-1-carboxylate (S)-3ah: Following



the general procedure **14**, starting from (*E*)-**1h** (43 mg, 0.2 mmol), (*S*)-**3ah** was obtained after purification by flash chromatography (*n*-hexane/EtOAc 3/1) as a colourless oil (15 mg, 26%, 92% ee).  $[\alpha]_D^{25} = +74.1$  (*c* 1, CHCl<sub>3</sub>). <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.42 – 7.32 (m, 5H), 6.32 (br s, 1H), 4.79 (s, 1H), 4.26 – 4.08 (m, 2H), 3.38 (br s, 1H), 1.44 (s, 9H), 1.19 (t, *J* = 7.1 Hz,

3H). <sup>13</sup>C-NMR (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  171.5, 156.5, 135.6, 128.84, 128.75, 128.5, 81.0, 67.2, 61.4, 28.4, 14.2. **HRMS** (ESI): *m*/*z* calcd for C<sub>15</sub>H<sub>22</sub>O<sub>4</sub>N<sub>2</sub>Na [M<sup>+</sup>+Na] 317.1472, found 317.1471. **HPLC** (Chiralpak IA, *n*-hexane/2-propanol 93:7, flow 1 mL/min) *t*<sub>R</sub> 8.2 min (major) and 9.3 min (minor).



Ethyl (E)-2-[2-(4-methoxyphenyl)hydrazineylidene]-2-phenylacetate 3aj': Following the



general procedure **14**, starting from (*E*)-**1**j (45 mg, 0.2 mmol), **3aj**' was obtained after purification by flash chromatography (*n*-hexane/EtOAc 4/1) as a yellow oil (20 mg, 33%). <sup>1</sup>**H-NMR** (300 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  12.41 (br s, 1H), 7.67 –7.63 (m, 2H), 7.40 – 7.28 (m, 3H), 7.23 (d, *J* = 15.8 Hz, 2H), 6.89 (d, *J* = 15.8 Hz, 2H), 4.34 (q, *J* = 7.1 Hz, 2H), 3.79 (s, 3H), 1.35 (t, *J* = 7.1 Hz, 2H), 3.79 (s, 3H), 1.35 (t, *J* = 7.1 Hz, 2H), 4.34 (g, *J* = 7.1 Hz, 2H), 3.79 (s, 3H), 1.35 (t, *J* = 7.1 Hz, 2H), 3.79 (s, 3H), 1.35 (t, *J* = 7.1 Hz, 2H), 3.79 (s, 3H), 1.35 (t, *J* = 7.1 Hz, 2H), 3.79 (s, 3H), 1.35 (t, *J* = 7.1 Hz, 2H), 3.79 (s, 3H), 1.35 (t, *J* = 7.1 Hz, 2H), 3.79 (s, 3H), 1.35 (t, *J* = 7.1 Hz), 3.79 (s, 3H), 3.

3H). <sup>13</sup>C-NMR (75.5 MHz, CD<sub>2</sub>Cl<sub>2</sub>):  $\delta$  164.3, 156.2, 137.7, 137.5, 129.1, 128.3, 127.8, 127.5, 115.8, 115.2, 61.5, 56.1, 14.5. **HRMS** (ESI): *m*/*z* calcd for C<sub>17</sub>H<sub>18</sub>O<sub>3</sub>N<sub>2</sub>Na [M<sup>+</sup>+Na] 321.1210, found 321.1208.

Benzyl (S)-2-[2-ethoxy-1-(4-methoxyphenyl)-2-oxoethyl]hydrazine-1-carboxylate (S)-3bb:



Following the general procedure **16**, employing **L3** (17 mg, 0.044 mmol) and starting from (*E*)-**1b** (100 mg, 0.4 mmol) and boronic acid **2b** (91 mg, 0.6 mmol), (*S*)-**3bb** was obtained after purification by flash chromatography (Toluene/EtOAc 5/1) as a yellow oil (132 mg, 92%, 94% ee).  $[\alpha]_{D}^{25} = +68.6$  (*c* 1, CHCl<sub>3</sub>).<sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>):  $\delta$  7.36 – 7.27 (m, 7H), 6.85 (d, *J* = 8.6 Hz, 2H), 6.70 (br s, 1H), 5.13 (q, *J* = 12.2 Hz,

2H), 4.79 (br s, 1H), 4.22 – 4.10 (m, 2H), 4.03 (br s, 1H), 3.78 (s, 3H), 1.19 (t, J = 7.1 Hz, 3H).<sup>13</sup>C-NMR (126 MHz, CDCl<sub>3</sub>):  $\delta$  171.6, 160.0, 157.0, 136.1, 129.7, 128.6, 128.4, 128.2, 127.3, 114.3, 67.3, 66.5, 61.4, 55.3, 14.1. HRMS (ESI): m/z calcd for C<sub>19</sub>H<sub>22</sub>O<sub>5</sub>N<sub>2</sub>Na [M<sup>+</sup>+Na] 381.1421, found 381.1417. HPLC (Chiralpak IA, *n*-hexane/2-propanol 90:10, flow 1 mL/min)  $t_R$  19.9 min (major) and 22.7 min (minor).



Benzyl (S)-2-[2-ethoxy-2-oxo-1-(p-tolyl)ethyl]hydrazine-1-carboxylate (S)-3cb: Following



the general procedure **16**, employing **L2** (14 mg, 0.044 mmol) and starting from (*E*)-1b (100 mg, 0.4 mmol) and boronic acid **2c** (82 mg, 0.6 mmol), (*S*)-**3cb** was obtained after purification by flash chromatography (*n*-hexane /EtOAc 3/1) as a white solid (119 mg, 87%, 94% ee).  $[\alpha]_{D}^{20} = +79.8$  (*c* 0.5, CHCl<sub>3</sub>). **Mp**: 55-57 °C. <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.27 - 7.16 (m, 7H), 7.04 (d, J = 7.9 Hz, 2H), 6.60 (br s,

1H), 5.07 – 5.01 (m, 2H), 4.70 (br s, 1H), 4.12 – 3.99 (m, 3H), 2.23 (s, 3H), 1.09 (t, J = 7.1 Hz, 3H). <sup>13</sup>C-NMR (126 MHz, CDCl<sub>3</sub>):  $\delta$  171.5, 157.0, 138.6, 136.1, 132.4, 128.6, 128.33, 128.29, 128.2, 67.3, 66.8, 61.4, 21.2, 14.1. HRMS (ESI): m/z calcd for C<sub>19</sub>H<sub>22</sub>O<sub>4</sub>N<sub>2</sub>Na [M<sup>+</sup>+Na] 365.1472, found 365.1468. HPLC (Chiralpak IA, *n*-hexane/2-propanol 90:10, flow 1 mL/min)  $t_R$  13.9 min (major) and 16.2 min (minor).



Benzyl (S)-2-[2-ethoxy-2-oxo-1-(o-tolyl)ethyl]hydrazine-1-carboxylate (S)-3db: Following



the general procedure **16**, employing **L2** (14 mg, 0.044 mmol) and starting from (*E*)-**1b** (100 mg, 0.4 mmol) and boronic acid **2d** (82 mg, 0.6 mmol), (*S*)-**3db** was obtained after purification by flash chromatography (*n*-hexane /EtOAc 3/1) as a colourless oil (95 mg, 69%, 93% ee).  $[\alpha]_D^{25} = +68.7$  (*c* 1, CHCl<sub>3</sub>). <sup>1</sup>**H-NMR** (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.39 – 7.11 (m,

9H), 6.76 (br s, 1H), 5.20 – 5.05 (m, 3H), 4.26 – 4.09 (m, 2H), 3.88 (br s, 1H), 2.47 (br s, 3H), 1.19 (t, J = 7.1 Hz, 3H).<sup>13</sup>C-NMR (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  172.0, 157.0, 137.7, 136.0, 133.6, 130.9, 128.64, 128.60, 128.4, 128.3, 127.6, 126.3, 67.2, 63.7, 61.4, 19.4, 14.1. HRMS (ESI): m/z calcd for C<sub>19</sub>H<sub>22</sub>O<sub>4</sub>N<sub>2</sub>Na [M<sup>+</sup>+Na] 365.1472, found 365.1468. HPLC (Chiralpak IA, *n*-hexane/2-propanol 90:10, flow 1 mL/min)  $t_R$  11.0 min (major) and 13.9 min (minor).



Benzyl (S)-2-[1-(4-chlorophenyl)-2-ethoxy-2-oxoethyl]hydrazine-1-carboxylate (S)-3eb:



Following the general procedure **16**, employing **L2** (14 mg, 0.044 mmol) and starting from (*E*)-**1b** (100 mg, 0.4 mmol) and boronic acid **2e** (97 mg, 0.6 mmol), (*S*)-**3eb** was obtained after purification by flash chromatography (Toluene/EtOAc 5/1) as a yellow oil. Subsequently, addition of **2e** (0.3 mmol/12 h) was performed. <u>Reaction run for 24 h</u>: (37 mg, 25%, 94% ee). <u>Reaction run for 48 h</u>: (70 mg, 48%, 82% ee).

 $[α]_{D}^{25}$  = +84.2 (*c* 1, CHCl<sub>3</sub>, 94 % ee). <sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>) δ 7.48 – 7.29 (m, 9H), 6.54 (br s, 1H), 5.15 – 5.10 (m, 2H), 4.80 (br s, 1H), 4.22 – 4.10 (m, 2H), 3.91 (br s, 1H), 1.19 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>**C-NMR** (126 MHz, CDCl<sub>3</sub>): δ 170.9, 157.1, 136.0, 134.8, 134.1, 129.8, 129.1, 128.7, 128.5, 128.3, 67.5, 66.3, 61.7, 14.7. **HRMS** (ESI): *m/z* calcd for C<sub>18</sub>H<sub>19</sub>O<sub>4</sub>N<sub>2</sub>ClNa [M<sup>+</sup>+Na] 385.0926, found 385.0921. **HPLC** (Chiralpak IA, *n*-hexane/2-propanol 90:10, flow 1 mL/min) *t*<sub>R</sub> 16.0 min (major) and 17.8 min (minor).



### Benzyl (S)-2-[1-(3,5-dimethylphenyl)-2-ethoxy-2-oxoethyl]hydrazine-1-carboxylate (S)-



**3fb:** Following the general procedure **16**, employing **L2** (14 mg, 0.044 mmol) and starting from (*E*)-**1b** (100 mg, 0.4 mmol) and boronic acid **2f** (90 mg, 0.6 mmol), (*S*)-**3fb** was obtained after purification by flash chromatography (*n*-hexane/EtOAc 3/1) as a yellow oil (110 mg, 77%, 87% ee).  $[\alpha]_D^{20} = +73.5$  (*c* 0.5, CHCl<sub>3</sub>). <sup>1</sup>**H-NMR** (300 MHz, CDCl<sub>3</sub>)  $\delta$ 

7.40 – 7.30 (m, 5H), 6.97 (d, J = 5.8 Hz, 3H), 6.50 (br s, 1H), 5.15 – 5.14 (m, 2H), 4.74 (br s, 1H), 4.28 – 4.08 (m, 2H), 3.53 (br s, 1H), 2.29 (s, 6H), 1.21 (t, J = 7.1 Hz, 3H). <sup>13</sup>C-NMR (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  171.5, 157.1, 138.6, 136.1, 135.0, 130.6, 128.7, 128.5, 128.3, 126.2, 67.4, 67.2, 61.5, 21.3, 14.2. **HRMS** (ESI): m/z calcd for C<sub>20</sub>H<sub>24</sub>O<sub>4</sub>N<sub>2</sub>Na [M<sup>+</sup>+Na] 379.1628, found 379.1629. **HPLC** (Chiralpak IA, *n*-hexane/2-propanol 90:10, flow 1 mL/min)  $t_R$  9.5 min (major) and 10.2 min (minor).







(*S*)-3gb: Following the general procedure 16, employing L3 (17 mg, 0.044 mmol) and starting from (*E*)-1b (100 mg, 0.4 mmol) and boronic acid 2g (100 mg, 0.6 mmol), (*S*)-3gb was obtained after purification by flash chromatography (*n*-hexane/EtOAc 3/1) as a white solid (105 mg, 70%, 91% ee).  $[\alpha]_{D}^{25} = +87.9$  (*c* 1, CHCl<sub>3</sub>). Mp: 74-76 °C. <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.39 – 7.29 (m, 5H), 6.88 – 6.83 (m, 2H),

6.75 (d, J = 7.9 Hz, 1H), 6.57 (br s, 1H), 5.94 (s, 2H), 5.13 (s, 2H), 4.73 (br s, 1H), 4.25 – 4.07 (m, 2H), 3.69 (br s, 1H), 1.20 (t, J = 7.1 Hz, 3H). <sup>13</sup>**C-NMR** (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  171.3, 157.0, 148.07, 148.05, 136.0, 129.0, 128.7, 128.4, 128.3, 122.3, 108.6, 108.5, 101.4, 67.4, 66.7, 61.5, 14.2. **HRMS** (ESI): m/z calcd for C<sub>19</sub>H<sub>20</sub>O<sub>6</sub>N<sub>2</sub>Na [M<sup>+</sup>+Na] 395.1214, found 395.1212. **HPLC** (Chiralpak IA, *n*-hexane/2-propanol 80:20, flow 1 mL/min)  $t_R$  12.3 min (major) and 14.4 min (minor).



Benzyl (S)-2-[2-ethoxy-1-(4-methylnaphthalen-1-yl)-2-oxoethyl]hydrazine-1-carboxylate



13 143

113,168

(S)-3hb: Following the general procedure 16, employing L2 (14 mg, 0.044 mmol) and starting from (E)-1b (100 mg, 0.4 mmol) and boronic acid 2h (112 mg, 0.6 mmol), (S)-3hb was obtained after purification by flash chromatography (Toluene/EtOAc 8/1) as a colourless oil (99 mg, 63%, 92% ee).  $[\alpha]_{D}^{25} = +76.5$  (c 1, CHCl<sub>3</sub>). <sup>1</sup>H-NMR (500 MHz,

CDCl<sub>3</sub>)  $\delta$  8.32 (s, 1H), 7.89 (d, J = 9.4 Hz, 1H), 7.43 – 7.40 (m, 2H), 7.22 (s, 6H), 7.13 – 7.11 (m, 1H), 6.66 (br s, 1H), 5.42 (br s, 1H), 5.09 – 4.99 (m, 2H), 4.18 (br s, 1H), 4.41 – 3.99 (m, 2H), 2.55 (s, 3H), 1.02 (t, J = 7.1 Hz, 3H). <sup>13</sup>**C-NMR** (126 MHz, CDCl<sub>3</sub>):  $\delta$  172.2, 157.1, 136.1, 135.8, 133.2, 131.8, 129.5, 128.6, 128.3, 128.2, 126.6, 126.4, 126.1, 125.9, 124.7, 124.5, 67.2, 64.4, 61.4, 19.7, 14.0. **HRMS** (ESI): m/z calcd for C<sub>23</sub>H<sub>24</sub>O<sub>4</sub>N<sub>2</sub>Na [M<sup>+</sup>+Na] 415.1628, found 415.1625. **HPLC** (Chiralpak IB, *n*-hexane/2-propanol 85:15, flow 1 mL/min)  $t_R$  11.7 min (major) and 13.2 min (minor).



2

13.210

3.84

11.292

49.96

### (9H-Fluoren-9-yl)methyl



carboxylate (*S*)-3bg: Following the general procedure 16, employing L2 (14 mg, 0.044 mmol) and starting from (*E*)-1g (135 mg, 0.4 mmol) and boronic acid 2b (91 mg, 0.6 mmol), (*S*)-3bg was obtained after purification by flash chromatography (Toluene/EtOAc 4/1) as a yellow oil (139 mg, 78%, 92% ee).  $[\alpha]_D^{25} = +54.1$  (*c* 1, CHCl<sub>3</sub>). <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.76 (d, *J* = 7.5 Hz, 2H), 7.58 – 7.56

(S)-2-[2-ethoxy-1-(4-methoxyphenyl)-2-oxoethyl]hydrazine-1-

(m, 2H), 7.43 – 7.28 (m, 6H), 6.87 (d, J = 8.7 Hz, 2H), 4.80 (br s, 1H), 4.45 (br s, 2H), 4.28 – 4.10 (m, 3H), 3.96 (br s, 1H), 3.78 (s, 3H), 1.21 (t, J = 7.1 Hz, 3H). <sup>13</sup>**C-NMR** (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  171.6, 159.9, 157.0, 143.7, 141.4, 129.6, 127.8, 127.3, 127.1, 125.11, 125.09, 120.1, 114.2, 67.2, 66.4, 61.4, 55.3, 47.2, 14.1. **HRMS** (ESI): m/z calcd for C<sub>26</sub>H<sub>26</sub>O<sub>5</sub>N<sub>2</sub>Na [M<sup>+</sup>+Na] 469.1734, found 469.1725. **HPLC** (Chiralpak IA, *n*-hexane/2-propanol 85:15, flow 1 mL/min)  $t_R$  14.8 min (major) and 20.0 min (minor).



(9H-Fluoren-9-yl)methyl



(S)-2-[2-ethoxy-2-oxo-1-(*p*-tolyl)ethyl]hydrazine-1-carboxylate (S)-3cg: Following the general procedure 16, employing L3 (17 mg, 0.044 mmol) and starting from (*E*)-1g (135 mg, 0.4 mmol) and boronic acid 2c (82 mg, 0.6 mmol), (S)-3cg was obtained after purification by flash chromatography (Toluene/EtOAc 5/1) as a yellow oil (157 mg, 91%, 94% ee).  $[\alpha]_D^{25} = +54.4$  (*c* 1, CHCl<sub>3</sub>). <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  7.78 (d, J = 7.5 Hz, 2H), 7.58 (s, 2H), 7.44 –

7.26 (m, 6H), 7.17 (d, J = 7.8 Hz, 2H), 6.88 (br s, 1H), 4.84 (br s, 1H), 4.46 (br s, 2H), 4.29 – 4.11 (m, 4H), 2.35 (s, 3H), 1.22 (t, J = 7.1 Hz, 3H). <sup>13</sup>C-NMR (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  171.5, 157.0, 143.7, 141.3, 138.6, 132.3, 129.5, 128.3, 127.8, 127.1, 125.1, 120.0, 67.2, 66.7, 61.4, 47.2, 21.2, 14.1. HRMS (ESI): m/z calcd for C<sub>26</sub>H<sub>26</sub>O<sub>4</sub>N<sub>2</sub>Na [M<sup>+</sup>+Na] 453.1785, found 453.1778. HPLC (Chiralpak IB, *n*-hexane/2-propanol 85:15, flow 1 mL/min)  $t_R$  10.9 min (major) and 14.1 min (minor).



(9H-Fluoren-9-yl)methyl



(S)-2-[2-ethoxy-2-oxo-1-(*o*-tolyl)ethyl]hydrazine-1-carboxylate (S)-3dg: Following the general procedure 16, employing L3 (17 mg, 0.044 mmol) and starting from (*E*)-1g (135 mg, 0.4 mmol) and boronic acid 2d (82 mg, 0.6 mmol), (S)-3cg was obtained after purification by flash chromatography (Toluene/EtOAc 5/1) as a white solid (133 mg, 77%, 96% ee).  $[\alpha]_{D}^{25} = +43.8$  (*c* 1, CHCl<sub>3</sub>). Mp: 45-47 °C. <sup>1</sup>H-NMR

(300 MHz, CDCl<sub>3</sub>):  $\delta$  7.77 (d, J = 7.5 Hz, 2H), 7.64 – 7.49 (m, 2H), 7.41 (t, J = 7.3 Hz, 2H), 7.33 – 7.15 (m, 6H), 6.72 (br s, 1H), 5.05 (br s, 1H), 4.52 – 4.38 (m, 2H), 4.30 – 4.11 (m, 3H), 3.81 (br s, 1H), 2.49 (s, 3H), 1.22 (t, J = 7.1 Hz, 3H). <sup>13</sup>C-NMR (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  172.1, 157.0, 143.8, 143.7, 141.4, 137.7, 133.6, 131.0, 128.7, 127.9, 127.7, 127.2, 126.4, 125.2, 125.1, 120.1, 67.3, 63.8, 61.5, 47.2, 19.5, 14.2. **HRMS** (ESI): m/z calcd for C<sub>26</sub>H<sub>26</sub>O<sub>4</sub>N<sub>2</sub>Na [M<sup>+</sup>+Na] 453.1785, found 453.1776. **HPLC** (Chiralpak IA, *n*-hexane/2-propanol 85:15, flow 1 mL/min)  $t_R$  9.3 min (major) and 12.8 min (minor).



### (9H-fluoren-9-yl)methyl



(S)-2-[1-(4-chlorophenyl)-2-ethoxy-2-oxoethyl]hydrazine-1-carboxylate (S)-3eg: Following the general procedure 16, employing L2 (14 mg, 0.044 mmol) and starting from (E)-1g (135 mg, 0.4 mmol) and boronic acid 2e (94 mg, 0.6 mmol), (S)-3eg was obtained after purification by flash chromatography (Toluene/EtOAc 6/1) as a yellow solid. Subsequently, addition of 2e (0.2 mmol/12 h) was performed. Reaction run for 36 h: (84 mg, 47%, 87% ee).

[*α*]<sub>D</sub><sup>25</sup> = +45.8 (*c* 1, CHCl<sub>3</sub>). **Mp**: 84-86 °C. <sup>1</sup>**H-NMR** (300 MHz, CDCl<sub>3</sub>): δ 7.67 (d, *J* = 7.5 Hz, 2H), 7.51 – 7.39 (m, 2H), 7.34 – 7.17 (m, 8H), 6.48 (br s, 1H), 4.71 (br s, 1H), 4.38 (br s, 3H), 4.17 – 4.00 (m, 3H), 1.11 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>**C-NMR** (75.5 MHz, CDCl<sub>3</sub>): δ 170.9, 157.1, 143.6, 141.4, 134.8, 134.0, 129.9, 129.1, 127.9, 127.2, 125.0, 120.2, 67.2, 66.2, 61.7, 47.2, 14.1. **HRMS** (ESI): *m/z* calcd for C<sub>25</sub>H<sub>23</sub>O<sub>4</sub>N<sub>2</sub>ClNa [M<sup>+</sup>+Na] 473.1239, found 473.1230. **HPLC** (Chiralpak IA, *n*-hexane/2-propanol 85:15, flow 1 mL/min) *t<sub>R</sub>* 12.8 min (major) and 15.4 min (minor).



(9H-Fluoren-9-yl)methyl (S)-2-[1-(3,5-dimethylphenyl)-2-ethoxy-2-oxoethyl]hydrazine-1-



carboxylate (S)-3fg: Following the general procedure 16, employing L2 (14 mg, 0.044 mmol) and starting from (*E*)-1g (135 mg, 0.4 mmol) and boronic acid 2f (90 mg, 0.6 mmol), (S)-3fg was obtained after purification by flash chromatography (Toluene/EtOAc 5/1) as a yellow oil (158 mg, 89%, 85% ee).  $[\alpha]_D^{25} = +48.3$  (*c* 1, CHCl<sub>3</sub>). <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.77 (d, J = 7.5 Hz, 2H), 7.59 – 7.55

(m, 2H), 7.41 (t, J = 7.5 Hz, 2H), 7.31 (tdd, J = 7.5, 2.4, 1.1 Hz, 2H), 6.99 (d, J = 7.4 Hz, 3H), 6.60 (br s, 1H), 4.73 (br s, 1H), 4.51 – 4.37 (m, 2H), 4.31 – 4.10 (m, 3H), 3.76 (br s, 1H), 2.31 (s, 6H), 1.23 (t, J = 7.1 Hz, 3H). <sup>13</sup>**C-NMR** (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  171.6, 157.0, 143.7, 141.4, 138.6, 135.0, 130.6, 127.9, 127.2, 126.1, 125.2, 120.1, 67.3, 67.2, 61.5, 47.3, 21.3, 14.2. **HRMS** (ESI): m/z calcd for C<sub>27</sub>H<sub>29</sub>O<sub>4</sub>N<sub>2</sub> [M<sup>+</sup>+H] 445.2122, found 445.2114. **HPLC** (Chiralpak IA, *n*-hexane/2-propanol 85:15, flow 1 mL/min)  $t_R$  7.6 min (major) and 9.3 min (minor).



(9H-Fluoren-9-yl)methyl



(S)-2-[1-(benzo[d]][1,3]dioxol-5-yl)-2-ethoxy-2oxoethyl]hydrazine-1-carboxylate (S)-3gg: Following the general procedure 16, employing L3 (17 mg, 0.044 mmol) and starting from (E)-1g (135 mg, 0.4 mmol) and boronic acid 2g (100 mg, 0.6 mmol), (S)-3fg was obtained after purification by flash chromatography (Toluene/EtOAc 4/1) as a white solid (129 mg, 70%, 93% ee).  $[\alpha]_{D}^{25} = +57.6$  (*c* 1, CHCl<sub>3</sub>). Mp: 53-55 °C. <sup>1</sup>H-NMR

(300 MHz, CDCl<sub>3</sub>):  $\delta$  7.76 (d, J = 7.5 Hz, 2H), 7.57 (d, J = 7.2 Hz, 2H), 7.40 (t, J = 7.3 Hz, 2H), 7.32 – 7.27 (m, 2H), 6.93 (s, 2H), 6.76 (d, J = 7.9 Hz, 1H), 5.91 (s, 2H), 4.77 (br s, 1H), 4.45 (br s, 2H), 4.29 – 4.10 (m, 4H), 1.22 (t, J = 7.1 Hz, 3H). <sup>13</sup>**C-NMR** (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  171.3, 157.1, 148.0, 143.7, 141.3, 129.0, 127.8, 127.1, 125.1, 125.0, 122.2, 120.0, 108.5, 108.4, 101.3, 67.1, 66.5, 61.4, 47.2, 14.1. **HRMS** (ESI): m/z calcd for C<sub>26</sub>H<sub>24</sub>O<sub>6</sub>N<sub>2</sub>Na [M<sup>+</sup>+Na] 483.1527, found 483.1523. **HPLC** (Chiralpak IB, *n*-hexane/2-propanol 80:20, flow 1 mL/min)  $t_R$  16.9 min (minor) and 20.5 min (major).



### (9H-Fluoren-9-yl)methyl



(S)-2-[2-ethoxy-1-(4-methylnaphthalen-1-yl)-2oxoethyl]hydrazine-1-carboxylate (S)-3hg: Following the general procedure 16, employing L2 (14 mg, 0.044 mmol) and starting from (E)-1g (135 mg, 0.4 mmol) and boronic acid 2h (112 mg, 0.6 mmol), (S)-3fg was obtained after purification by flash chromatography (Toluene/EtOAc 9/1) as a white solid (116 mg, 52%, 96% ee).  $[\alpha]_{D}^{25} = +62.0$  (c 1, CHCl<sub>3</sub>). Mp: 96-98 °C. <sup>1</sup>H-NMR

(300 MHz, CDCl<sub>3</sub>)  $\delta$  8.44 (d, J = 7.2 Hz, 1H), 8.04 (d, J = 9.6 Hz, 1H), 7.77 (d, J = 7.5 Hz, 2H), 7.61 – 7.53 (m, 4H), 7.43 – 7.27 (m, 6H), 6.72 (br s, 1H), 5.52 (br s, 1H), 4.54 – 4.39 (m, 2H), 4.30 – 4.13 (m, 4H), 2.70 (s, 3H), 1.17 (t, J = 7.1 Hz, 3H). <sup>13</sup>**C-NMR** (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  172.2, 157.1, 148.3, 143.7, 141.43, 141.40, 136.0, 133.3, 131.8, 129.4, 127.89, 127.87, 127.20, 127.17, 126.8, 126.6, 126.2, 126.0, 125.22, 125.16, 124.9, 124.6, 120.1, 67.4, 64.5, 61.6, 47.2, 19.8, 14.2. **HRMS** (ESI): m/z calcd for C<sub>30</sub>H<sub>29</sub>O<sub>4</sub>N<sub>2</sub> [M<sup>+</sup>+H] 481.2122, found 481.2118. **HPLC** (Chiralpak IA, *n*-hexane/2-propanol 85:15, flow 1 mL/min)  $t_R$  9.9 min (major) and 12.1 min (minor).



Benzyl (S)-2-[2-(benzylamino)-2-oxo-1-(p-tolyl)ethyl]hydrazine-1-carboxylate (S)-3ck:



Following the general procedure **16**, employing **L3** (17 mg, 0.044 mmol) and starting from (*E*)-**1k** (124 mg, 0.4 mmol) and boronic acid **2c** (86 mg, 0.6 mmol), (*S*)-**3ck** was obtained after purification by flash chromatography (*n*-hexane/EtOAc 1/1) as a light yellow solid (83 mg, 52%, 95% ee).  $[\alpha]_{\rm D}^{25} = +37.6$  (*c* 1, CHCl<sub>3</sub>). **Mp**: 114-116

°C. <sup>1</sup>**H-NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.36 (br s, 1H), 7.27 – 7.10 (m, 12H), 7.02 (d, J = 7.8 Hz, 2H), 6.61 (br s, 1H), 4.96 (s, 2H), 4.56 (br s, 1H), 4.32 (ddd, J = 35.5, 14.9, 5.9 Hz, 2H), 3.94 (br s, 1H), 2.23 (s, 3H). <sup>13</sup>**C-NMR** (126 MHz, CDCl<sub>3</sub>):  $\delta$  170.7, 157.0, 138.8, 138.4, 136.0, 133.0, 129.7, 128.71, 128.69, 128.5, 128.3, 128.1, 127.8, 127.5, 69.0, 67.5, 43.4, 21.3. **HRMS** (ESI): m/z calcd for C<sub>24</sub>H<sub>25</sub>O<sub>3</sub>N<sub>3</sub>Na [M<sup>+</sup>+Na] 426.1785, found 426.1788. **HPLC** (Chiralpak IA, *n*-hexane/2-propanol 80:20, flow 1 mL/min)  $t_R$  14.3 min (minor) and 20.3 min (major).



Benzyl (S)-2-{2-[benzyl(methyl)amino]-2-oxo-1-(p-tolyl)ethyl}hydrazine-1-carboxylate (S)-



**3cl:** Following the general procedure **16**, employing **L3** (17 mg, 0.044 mmol) and starting from (*E*)-**11** (130 mg, 0.4 mmol) and boronic acid **2c** (86 mg, 0.6 mmol), (*S*)-**3cl** was obtained after purification by flash chromatography (Toluene/EtOAc 3/1) as a yellow oil (143 mg, 86%, 93% ee).  $[\alpha]_D^{25} = +25.4$  (*c* 1, CHCl<sub>3</sub>). <sup>1</sup>H-

**NMR** (500 MHz, CDCl<sub>3</sub>; the compound exists as 1,8:1 mixture of amide rotamers). *Signals corresponding to the major rotamer*:  $\delta$  7.30 – 7.12 (m, 11H), 7.08 – 7.04 (m, 3H), 6.86 (br s, 1H), 5.08 – 5.04 (m, 2H), 4.83 (br s, 1H), 4.66 – 4.39 (m, 2H), 3.82 (br s, 1H), 2.59 (s, 3H), 2.24 (s, 3H). *Representative signals to the corresponding minor rotamer*:  $\delta$  5.01 – 4.97 (m, 2H), 4.41 – 4.03 (m, 2H), 2.84 (s, 3H). <sup>13</sup>C-NMR (126 MHz, CDCl<sub>3</sub>):  $\delta$  171.2, 171.0, 156.7, 156.6, 138.9, 138.8, 136.8, 136.42, 136.39, 135.8, 131.8, 131.4, 129.91, 129.85, 129.0, 128.74, 128.71, 128.6, 128.3, 128.2, 128.1, 127.8, 127.6, 126.5, 67.0, 65.8, 52.5, 51.5, 34.3, 34.0, 21.3. **HRMS** (ESI): *m/z* calcd for C<sub>25</sub>H<sub>28</sub>O<sub>3</sub>N<sub>3</sub> [M<sup>+</sup>+H] 418.2122, found 418.2125. **HPLC** (Chiralpak IA, *n*-hexane/2-propanol 80:20, flow 1 mL/min) *t<sub>R</sub>* 16.6 min (major) and 19.1 min (minor).



Benzyl

(S)-2-{2-[(2-methoxy-2-oxoethyl)amino]-2-oxo-1-(p-tolyl)ethyl}hydrazine-1-



**carboxylate** (*S*)-3cm: Following the general procedure **16**, employing **L3** (17 mg, 0.044 mmol) and starting from (*E*)-1m (117 mg, 0.4 mmol) and boronic acid 2c (86 mg, 0.6 mmol), (*S*)-3cm was obtained after purification by flash chromatography (*n*-hexane /EtOAc 1/2) as a colorless oil (112 mg, 73%, 84% ee).  $[\alpha]_D^{25} = +7.3$  (*c* 1, CHCl<sub>3</sub>). <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.70

(br s, 1H), 7.37 – 7.23 (m, 7H), 7.11 (d, J = 7.7 Hz, 2H), 6.96 (br s, 1H), 5.11 (s, 2H), 4.61 (br s, 1H), 4.34 (br s, 1H), 3.99 (br s, 2H), 3.69 (s, 3H), 2.30 (s, 3H). <sup>13</sup>**C-NMR** (126 MHz, CDCl<sub>3</sub>):  $\delta$  171.6, 170.4, 157.3, 138.7, 136.0, 132.8, 129.6, 128.6, 128.4, 128.2, 128.1, 69.0, 67.3, 52.3, 40.8, 21.2. **HRMS** (ESI): m/z calcd for C<sub>20</sub>H<sub>23</sub>O<sub>5</sub>N<sub>3</sub>Na [M<sup>+</sup>+Na] 408.1530, found 408.1525. **HPLC** (Chiralpak IB, *n*-hexane/2-propanol 85:15, flow 1 mL/min)  $t_R$  20.3 min (major) and 23.7 min (minor).



### **18.** Deprotection of (S)-3ab



A 25-mL round bottomed flask was charged with Pd/C (10% w/w) (33 mg, 0.031 mmol), methanol (10 mL), (*S*)-3ab (328 mg, 1 mmol, 94% ee) and sealed with a rubber septum. The head-space was evacuated and back-filled with hydrogen three times and then stirred under a ballon of hydrogen for 4 h at room temperature. After this time, the mixture was filtered through a celite pad and the solvent was concentrated under reduced pressure. The crude was dissolved in dry Et<sub>2</sub>O (1 mL) and cooled at 0 °C. Then 1.0 M HCl (in Et<sub>2</sub>O, 1 mL, 1 mmol) was added drop-wise. After the mixture was stirred at 0 °C for 30 min, the solid was filtrated and washed with Et<sub>2</sub>O (5 mL) and dried under vacuum to obtain the pure hydrochloride salt (*S*)-4a as a white solid (163 mg, 71%, 93% ee).  $[\alpha]_D^{25} = +68.2 (c 1, H_2O)$ . Mp: 140-142 °C. <sup>1</sup>H-NMR (300 MHz, DMSO-d<sup>6</sup>)  $\delta$  9.44 (br s, 3H), 7.46 – 7.35 (m, 5H), 6.17 (br s, 1H), 4.91 (s, 1H), 4.21 – 4.04 (m, 2H), 1.13 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C-NMR (75.5 MHz, DMSO-d<sup>6</sup>):  $\delta$  170.1, 134.8, 128.8, 128.1, 64.3, 61.2, 13.9. HRMS (ESI): *m*/*z* calcd for C<sub>10</sub>H<sub>15</sub>O<sub>2</sub>N<sub>2</sub> [M<sup>+</sup>] 195.1128, found 195.1128.

\*The enantiomeric excess was determined after protection of the hydrochloride salt (S)-4a (12 mg, 0.05 mmol, 93% ee), with benzyl chloroformate (8  $\mu$ L, 0.055 mmol), diisopropylethylamine (17  $\mu$ L, 0.1 mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (750  $\mu$ L). The product (S)-3ab was purified by preparative TLC (n-hexane/EtOAc 1/2) and the enantiomeric excess (ee) was determined by HPLC analysis (Chiralpak IA, *n*-hexane/2-propanol 90:10, flow 1 mL/min) *t<sub>R</sub>* 13.4 min (major) and 16.0 min (minor).

### **19.** Deprotection of (*S*)-3ag



A 25-mL round bottomed flask was charged with (*S*)-**3ag** (416 mg, 1 mmol, 93% ee), dry CH<sub>2</sub>Cl<sub>2</sub> (10 mL) and di-*tert*-butyl dicarbonate (337 mg, 1.5 mmol) and the resulting solution was cooled to 0 °C. 4-Dimethylaminopyridine (24 mg, 0.2 mmol) was added and the resulting mixture was stirred at 0 °C for 3 hours. After this time, diethylamine (525 µL, 5 mmol) was added and the reaction mixture was stirred for 1 hour at 0 °C. The solvent was removed under reduced pressure and the residue purified by flash chromatography (*n*-hexane/EtOAc 3/1) to give (*S*)-**5a** as a colourless oil (229 mg, 78%, 93% ee).  $[\alpha]_D^{25} = +73.5$  (*c* 1, CHCl<sub>3</sub>). <sup>1</sup>H-NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.44 – 7.29 (m, 5H), 6.31 (br s, 1H), 4.79 (s, 1H), 4.44 (br s, 1H), 4.25 – 4.07 (m, 2H), 1.44 (s, 9H), 1.19 (t, *J* = 7.1 Hz, 3H).<sup>13</sup>C-NMR (75.5 MHz, CDCl<sub>3</sub>):  $\delta$  171.5, 156.5, 135.7, 128.8, 128.7, 128.5, 80.9, 67.2, 61.4, 28.4, 14.1. HRMS (ESI): *m*/*z* calcd for C<sub>15</sub>H<sub>23</sub>O<sub>4</sub>N<sub>2</sub> [M<sup>+</sup>+H] 295.1652, found 295.1651. HPLC (Chiralpak IA, *n*-hexane/2-propanol 90:10, flow 1 mL/min) *t<sub>R</sub>* 6.8 min (major) and 7.6 min (minor).



\*The absolute configuration of the products (S)-3ag and (S)-5a were determine by the deprotection of (S)-5a (44 mg, 0.15 mmol) with 4 M HCl (in dioxane, 0.5 mL, 2 mmol) at 0 °C for 4 hours. After this time, the solvent was removed under reduced pressure and the residue dried under vacuum to obtain the pure hydrochloride salt (S)-4a (33 mg, 95%, 93% ee).

The enantiomeric excess was determined after protection of the hydrochloride salt (S)-4a (12 mg, 0.05 mmol, 93% ee), with benzyl chloroformate (8  $\mu$ L, 0.055 mmol), diisopropylethylamine (17  $\mu$ L, 0.1 mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (750  $\mu$ L). The product (S)-3ab was purified by preparative TLC (n-hexane /EtOAc 1/2) and the enantiomeric excess (ee) was determined by HPLC analysis (Chiralpak IA, *n*-hexane/2-propanol 90:10, flow 1 mL/min)  $t_R$  13.4 min (major) and 16.0 min (minor).

#### 20. Hydrolysis of ester (S)-3cb



A 50-mL round bottomed flask was charged with LiOH (245 mg, 10 mmol) and distilled H<sub>2</sub>O (10 mL) and the resulting solution was cooled to 0 °C. A solution of (*S*)-3cb (342 mg, 1 mmol, 94% ee) in THF (10 mL) was added and the reaction mixture was stirred for 3 hour at 0 °C. The reaction mixture was then concentrated to remove the THF and the residue was diluted with H<sub>2</sub>O (15 mL) and Et<sub>2</sub>O (15 mL). The aqueous layer was separated and neutralized with saturated NaHSO<sub>4</sub> solution to pH ~2. The acidic aqueous layer was extracted with Et<sub>2</sub>O (3 x 15 mL), and the combined organic layers were washed with brine (3 x 15 mL), dried over MgSO<sub>4</sub>, concentrated under reduced pressure and dried under vacuum to obtain the pure acid (*S*)-6a as a white solid (267 mg, 85%, 93% ee).  $[\alpha]_{p}^{25} = +96.3$  (*c* 1, CHCl<sub>3</sub>). Mp: 58-60 °C. <sup>1</sup>H-NMR (500 MHz, DMSO-d<sup>6</sup>)  $\delta$  8.63 (br s, 1H), 7.42 – 7.27 (m, 7H), 7.15 (d, *J* = 7.4 Hz, 2H), 5.05 (s, 2H), 4.65 (br s, 1H), 2.29 (s, 3H). <sup>13</sup>C-NMR (126 MHz, DMSO-d<sup>6</sup>):  $\delta$ 172.4, 156.9, 137.1, 136.9, 134.1, 128.8, 128.3, 128.1, 127.8, 127.6, 65.8, 66.5, 20.7. HRMS (ESI): *m/z* calcd for C<sub>17</sub>H<sub>18</sub>O<sub>4</sub>N<sub>2</sub>Na [M<sup>+</sup>+Na] 337.1159, found 337.1157.

### 21. Peptide coupling reaction with (S)-6a



Glycine methyl ester hydrochloride (117 mg, 0.94 mmol) was added to a solution of HBTU (362 mg, 0.94 mmol), acid (*S*)-6a (267 mg, 0.85 mmol, 93% ee) and diisopropylethylamine (350  $\mu$ L, 2.0 mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (12 mL). The resulting mixture was stirred under Ar at room temperature for 16 hours. The reaction was diluted with EtOAc (30 mL) and washed with HCl (0.5 M, 2 x 15 mL), saturated aqueous NaHCO<sub>3</sub> (2 x 15 mL) and brine (2 x 15 mL), dried over MgSO<sub>4</sub> and concentrated under reduced pressure. The resulting residue was purified by flash chromatography on silica gel (*n*-hexane/EtOAc 3/1) to give (*S*)-3cm as a colourless oil (266 mg, 81%, 93% ee). [ $\alpha$ ]<sub>D</sub><sup>25</sup> = +14.0 (*c* 1, CHCl<sub>3</sub>). HPLC (Chiralpak IB, *n*-hexane/2-propanol 85:15, flow 1 mL/min) *t<sub>R</sub>* 20.1 min (major) and 23.7 min (minor).


#### 22. NMR spectra of new compounds

#### $^{1}H$ NMR (CDCl<sub>3</sub>, 500 MHz) of 1a





<sup>1</sup>**H NMR** (Acetone- $d^6$ , 500 MHz) of (*E*)-1b



<sup>13</sup>C NMR (Acetone-d<sup>6</sup>, 126 MHz) of (*E*)-1b



NOESY (Acetone-d<sup>6</sup>, 500 MHz) of (E)-1b



<sup>1</sup>**H NMR** (Acetone-d<sup>6</sup>, 500 MHz) of (Z)-1b



<sup>13</sup>C NMR (Acetone-d<sup>6</sup>, 126 MHz) of (Z)-1b





**NOESY** (Acetone- $d^6$ , 500 MHz) of (Z)-1b



<sup>1</sup>**H NMR** (Acetone-d<sup>6</sup>, 300 MHz) of (*E*)-1c



<sup>13</sup>C NMR (Acetone-d<sup>6</sup>, 75.5 MHz) of (*E*)-1c





<sup>13</sup>C NMR (Acetone-d<sup>6</sup>, 75.5 MHz) of (*E*)-1e





<sup>13</sup>C NMR (Acetone-d<sup>6</sup>, 75.5 MHz) of (*E*)-1f



<sup>1</sup>**H NMR** (Acetone- $d^6$ , 700 MHz) of (*E*)-1d



<sup>13</sup>C NMR (Acetone-d<sup>6</sup>, 176 MHz) of (*E*)-1d





### <sup>13</sup>C NMR (DMSO-d<sup>6</sup>, 75.5 MHz) of (*E*)-1g



### <sup>1</sup>H NMR (Acetone-d<sup>6</sup>, 300 MHz) of (*E*)-1i



<sup>13</sup>C NMR (Acetone-d<sup>6</sup>, 75.5 MHz) of (*E*)-1i



 $^1\text{H}$  NMR (DMSO-d<sup>6</sup>, 500 MHz) of S6



<sup>13</sup>C NMR (DMSO-d<sup>6</sup>, 126 MHz) of S6



<sup>1</sup>**H NMR** (DMSO-d<sup>6</sup>, 500 MHz) of (*E*)-1k



<sup>13</sup>C NMR (DMSO-d<sup>6</sup>, 126 MHz) of (*E*)-1k



<sup>1</sup>H NMR (DMSO-d<sup>6</sup>, 500 MHz) of (*E*)-11



<sup>13</sup>C NMR (DMSO-d<sup>6</sup>, 126 MHz) of (*E*)-1m



### <sup>1</sup>H NMR (DMSO-d<sup>6</sup>, 500 MHz) of (*E*)-1m



<sup>13</sup>C NMR (DMSO-d<sup>6</sup>, 126 MHz) of (*E*)-1m



<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) of 3aa



f1 (ppm) -10 

## <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) of (S)-3ab



### <sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz) of (S)-3ab



<sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 300 MHz) of (*S*)-3ac



<sup>13</sup>C NMR (CDCl<sub>3</sub>, 75.5 MHz) of (*S*)-3ac



## <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) of (S)-3ad



### <sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz) of (S)-3ad



## <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 300 MHz) of (*S*)-3ae



### <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75.5 MHz) of (S)-3ae



## <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz) of (S)-3af





## <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz) of (S)-3ag



## <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz) of (S)-3ah



 $^1H$  NMR (CD<sub>2</sub>Cl<sub>2</sub>, 300 MHz) of  $3aj^\prime$ 



### $^{13}C$ NMR (CD\_2Cl\_2, 75.5 MHz) of $3aj^{\prime}$





## <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) of (*S*)-3bb





## <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 500 MHz) of (*S*)-3cb





<sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz) of (*S*)-3db



<sup>13</sup>C NMR (CDCl<sub>3</sub>, 75.5 MHz) of (S)-3db



## <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 500 MHz) of (*S*)-3eb



### <sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz) of (S)-3eb



## <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 300 MHz) of (*S*)-3fb



## <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz) of (S)-3gb



# <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75.5 MHz) of (S)-3fb





## <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 500 MHz) of (*S*)-3hb



### <sup>13</sup>C NMR (CDCl<sub>3</sub>, 126 MHz) of (S)-3hb

| 172.2 | 157.1<br>136.1<br>135.8<br>133.2<br>128.6<br>128.3<br>128.3<br>128.3<br>128.3<br>128.3<br>128.4<br>126.4<br>126.4<br>126.4<br>124.7<br>124.5 | 67.2<br>64.4<br>61.4 | 19.7 |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------|
| 1     |                                                                                                                                              | S. L. Z.             |      |









## <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz) of (S)-3dg





## <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 300 MHz) of (*S*)-3eg



### <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75.5 MHz) of (S)-3eg



<sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz) of (*S*)-3fg



S72
<sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 300 MHz) of (*S*)-3gg



#### <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75.5 MHz) of (S)-3gg





## <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz) of (*S*)-3hg



## <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) of (S)-3ck





#### <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) of (S)-3cl



#### <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz) of (S)-3cm





### <sup>1</sup>H NMR (DMSO-d<sup>6</sup>, 300 MHz) of (S)-4a



<sup>13</sup>C NMR (DMSO-d<sup>6</sup>, 75.5 MHz) of (S)-4a



# <sup>1</sup>**H NMR** (CDCl<sub>3</sub>, 300 MHz) of (*S*)-5a



## <sup>1</sup>**H NMR** (DMSO-d<sup>6</sup>, 500 MHz) of (S)-6a







#### 23. References

- (1) D. Monge, A. Bermejo, J. Vázquez, R. Fernández, J.M. Lassaletta. ARKIVOC 2013, 2, 33-45.
- (2) A. Bermejo, A. Ros, R. Fernández, J. M. Lassaletta. J. Am. Chem. Soc. 2008, 130, 15798-15799.
- (3) J.M. Lassaletta, M. Alcarazo, R. Fernández. Chem. Commun. 2004, 298-299.
- (4) A. Ros, B. Estepa, A. Bermejo, E. Álvarez, R. Fernández, J. M. Lassaletta. J. Org. Chem. 2012, **77**, 4740-4750.
- (5) Y. Álvarez-Casao, D. Monge, E. Álvarez, R. Fernández, J. M. Fernández, Org. Lett. 2015, 17, 5104-5107.
- (6) Y. Álvarez-Casao, B. Estepa, D. Monge, A. Ros, J. Iglesias-Sigüenza, E. Álvarez, R. Fernández, J. M. Fernández, *Tetrahedron* 2016, **72**, 5184-5190.
- (7) P. S. Dragovich, J. K. Blazel, K. Dao, D. A. Ellis, L-S. Li, D. E. Murphy, F. Ruebsam, C. V. Tran, Y. Zhou, *Synthesis* 2008, 4, 610-660.
- (8) M. Fernández, U. Uria, J.L. Vicario, E. Reyes, L. Carrillo, J. Am. Chem. Soc. 2012, 134, 11875-11875.