Supporting Information

All-Thiolate-Stabilized Ag₄₂ Nanocluster with a Tetrahedral Kernel Bi-Tetrahedral Kernel

Tao Chen,[‡] Sha Yang,[‡] Yongbo Song,* Jinsong Chai, Qinzhen Li, Xiangyu Ma, Guang Li, Haizhu Yu,* Manzhou Zhu*

Table of Contents

- Figure S1. UV-vis and ESI-MS spectra of water-soluble precursor in presence of NaSbF₆.
- Figure S2. UV-vis and ESI-MS spectra of water-soluble precursors in the absence of NaSbF₆.
- Figure S3. Digital photographs of products obtained by two phase ligand exchange.
- Figure S4. ¹⁹F-NMR of Ag₄₂ and Ag₆₁.
- **Figure S5.** The total structure comparises three C_2 symmetry axis perpendicular to each other.
- Figure S6. The bond length distributions in the Ag₄₂ nanocluster.
- Figure S7. The triangle growth of the kernel of Ag₄₂, and the two face-fused bi-tetrahedron in Ag₆₁.
- Figure S8. The binding mode of μ_3 -Cl atom with the three neighboring silver atoms.
- Figure S9. The bond length distributions in the Ag₆₁ nanocluster.
- Figure S10. UV-vis-NIR spectra of Ag₄₂ and Ag₆₁.
- Figure S11. Temperature-dependent UV-vis spectra of Ag₄₂ and Ag₆₁.
- Figure S12. XPS spectra of Ag₄₂ and Ag₆₁
- Figure S13. TGA of Ag₄₂ and Ag₆₁.

- Figure S14. ¹H-NMR spectrum of the Ag_{42} nanocluster. Figure S15. ¹H-NMR spectrum of the Ag_{61} nanocluster Figure S16. ²H-NMR spectra of Ag_{42} -D, Ag_{61} -D, and standard samples.
- Figure S17. ESI-MS spectra of Ag₄₂-D and Ag₆₁-D.
- Figure S18. MALDI-MS spectrum of Ag₄₂.
- Figure S19. MALDI-MS spectrum of Ag₆₁.
- Figure S20. Thermostability of Ag₄₂ and Ag₆₁.
- Figure S21. Thermostability of [Ag₂₅(SPhMe₂)₁₈] at room temperature.
- Figure S22. Photoluminescence spectra of Ag₂₅(SR)₁₈, Ag₄₂(SR)₂₄, Ag₄₄(SR)₃₀⁴⁻ and Ag₆₁(SR)₄₀CI.

Experimental Procedures

1. Chemicals:

All reagents and solvents were commercially purchased and used as received without further purification, including silver nitrate (AgNO₃, 99%), *tert*-butyl mercaptan (\geq 99.99%), cyclohexyl mercaptan (\geq 99.99%), 2-methyltetrahydrofuran (\geq 99.99%), glutathione (GSH, \geq 99.99%) tetraoctylammonium chloride (TOACI, \geq 99.99%), Sodium hexafluoro antimonate (NaSbF₆, \geq 99.99%) sodium borohydride (NaBH₄, >98%), methanol (HPLC grade, \geq 99.9%), dichloromethane (HPLC grade, \geq 99.9%) and ethanol (HPLC grade, \geq 99.9%). All glassware was cleaned with aqua regia (HCI: HNO₃ = 3:1 vol%), washed with copious nanopure water, and then dried in an oven prior to use.

Synthesis of nanoclusters Ag₄₂(SBu^t)₂₄.

 $Ag_{42}(SBu^{t})_{24}$ was synthesized by a two-step synthetic method.

- (i) The synthesis of the precursor Ag_m(SG)_n. AgNO₃ (49.4 mg, 0.3 mmol) was first dissolved in 2 mL of water in a 50 mL single-neck round-bottom flask and then mixed with 8 mL of water. Then, GSH (200 mg, 0.65 mmol), NaSbF₆ (77.6 mg, 0.3 mmol) and NaOH (40mg, 1mmol) was added into the mixture. After about 20 min, 2 mL of NaBH₄ aqueous solution (18.0 mg/mL) was quickly added into solution under vigorous stirring. The color of the solution turned to yellow and then to black within about 1 min. The reaction was then continued for 3 hours. After that, the precursors were obtained.
- (ii) Two-Phase Ligand Exchange. The obtained aqueous solution of Ag_m(SG)_n was mixed with 15 mL CH₂Cl₂ and 2 mL tertbutyl mercaptan. The solution was reacted for 12 h at room temperature with vigorous stirring. The Ag_m(SG)_n NCs were found to transfer from the aqueous phase to the organic phase. Then, water was removed, and the organic phase was washed with ethanol for three times to remove excess thiolate. The Ag₄₂(SBu^t)₂₄ NCs were then crystallized in CH₂Cl₂/CH₃OH, and black crystals were obtained after about one week.

Synthesis of nanoclusters Ag₆₁(SC₆H₁₁)₄₀Cl.

The synthetic method of $Ag_{61}(SC_6H_{11})_{40}CI$ was similar to that of $Ag_{42}(SBu^t)_{24}$. The first step (i.e. synthesis of the precursors) was the same, but tert-butyl mercaptan was replaced by cyclohexanethiol in the second step, and additional TOACI was added as CI resources and to promote the phase transfer.

The transformation of Ag₄₂ to Ag₆₁ NCs

10 mg of $Ag_{42}(SBu^{t})_{24}$ NCs was dissolved in 1 mL of dichloromethane (DCM), and 0.5 mL of cyclohexanethiol and 10 mg TOACI were added. After about 6 hours, the Ag_{42} was transformed to crude Ag_{61} , which was further purified by $CH_2Cl_2/MeOH$ solvent to obtain Ag_{61} nanocluster.

2. Characterization:

The UV-Vis-NIR absorption spectra were recorded using an Agilent 8453 diode array spectrometer (in CH_2Cl_2 , and 2methyltetrahydrofuran was used for time-dependent UV-Vis tests), whose background correction was made using a CH_2Cl_2 and 2-methyltetrahydrofuran blank, accordingly. Solid samples were first dissolved in CH_2Cl_2 to make a dilute solution, with a subsequent transformation to a 1 cm path length quartz cuvette, followed by spectral measurements.

Thermogravimetric analysis (TGA) was carried out on a thermogravimetric analyzer (DTG-60H, Shimadzu Instruments, Inc.) with 10.4356 mg of the $Ag_{42}(SBu^{1})_{24}$ and 12.5941 mg of the $Ag_{61}(SC_{6}H_{11})_{40}CI$ NCs in a SiO₂ pan at a heating rate of 10 K/min from 283 K to 1073 K.

X-ray photoelectron spectroscopy (XPS) measurements were performed on a Thermo ESCALAB 250 configured with a monochromated AlK α (1486.8 eV) 150W X-ray source, 0.5 mm circular spot size, a flood gun to counter charging effects, and the analysis chamber base pressure lower than 1 x 10⁻⁹ mbar. Data were collected with FAT=20 eV.

Electrospray ionization mass spectra (ESI-MS) were recorded using a Waters UPLC H-class/Xevo G2-XS Qtof mass spectrometer. The sample was directly infused into the pump at 5 μ L/min. ESI sample was prepared by dissolving in mixed solution of dichloromethane/methanol.

NMR measurements were performed on a JNM-ECZ600R instrument. The data was collected with ~20 mg nanocluster dissolved in $1mL CD_2Cl_2$.

3. X-ray crystallographic determination of Ag₄₂ and Ag₆₁.

The data collection for single crystal X-ray diffraction was carried out on a Bruker Smart APEX II CCD diffractometer at 296 K, using graphite-monochromatized Mo K α radiation (λ = 1.54178 Å). Data reductions and absorption corrections were performed using the SAINT and SADABS programs, respectively. The structure was solved by direct methods and refined with full-matrix least squares on F² using the SHELXTL software package. All non-hydrogen atoms were refined

anisotropically. All hydrogen atoms were set in geometrically calculated positions and refined isotropically using a riding model.

Paragraph.

Results and Discussion

Figure S1. (a) UV-vis and (b) ESI-MS spectra of water-soluble precursor in presence of NaSbF₆, the numbers in parentheses denote the number of metals and ligands in nanoclusters, (c) the magnified view of the highest peak (20, 14), inset: experimental data (black) and the simulated spectra (red) for peak 1 (i.e. $[Ag_{20}(SG)_{14}-3H^+]^3$), peak 2, 3, and 4 attributed to $[Ag_{20}(SG)_{14}+Na^++AH^+]^3$, $[Ag_{20}(SG)_{14}+K^+-4H^+]^3$, and $[Ag_{20}(SG)_{14}+Na^++K^+-5H^+]^3$.

Figure S2. (a)UV-vis and (b) ESI-MS spectra of water-soluble precursors in the absence of NaSbF₆.

Figure S3. Digital photographs of products obtained by two phase ligand exchange (a) after adding NaSbF₆, and (b) NaBPh₄. The lower solution is dichloromethane and the upper solution is water. Under the same conditions, after adding (c) KPF₆ and (d) NaAlF₆, the color of the aqueous solution was light, indicating that the metal complexes were not reduced and cannot be used for ligand exchange.

Figure S4. ¹⁹F-NMR of Ag₄₂ and Ag₆₁.

Figure S5. The total structure comparises three C₂ symmetry axis perpendicular to each other.

Figure S6. The bond length distributions in the Ag₄₂ nanocluster. (Color labels: Ag, turquoise/green/blue; S, red/yellow; Cl, violet. For clarity, all C and H atoms are omitted).

Figure S7. (a) The triangle growth of the kernel of Ag_{42} , and (b, c) the two face-fused bi-tetrahedron in Ag_{61} .

Figure S8. The binding mode of μ_3 -Cl atom with the three neighboring silver atoms.

Position

Figure S9. The bond length distributions in the **Ag**₆₁ nanocluster. (Color labels: Ag, turquoise/green/blue; S, red/yellow; Cl, violet. For clarity, all C and H atoms are omitted).

Figure S10. UV-vis-NIR spectra of (a) Ag₄₂ and (b) Ag₆₁ NCs.

Figure S11. Temperature-dependent UV-vis spectra of (a) Ag₄₂ and (b) Ag₆₁ NCs dissolved in a 2-Methyltetrahydrofuran.

Figure S12. (a) Ag 3d XPS spectra of Ag₄₂ and Ag₆₁ NCs. (b) The Cl 2p spectra of Ag₆₁ NCs.

Figure S13. TGA of Ag₄₂ and Ag₆₁.

Figure S14. ¹H-NMR spectrum of the **Ag**₄₂ nanocluster, **Ag**₄₂ in CD₂Cl₂ showed two resonances (1.26 and 1.72 ppm) in a ratio of 1 : 5, which is consistent with the numbers of the types of ^tBuS- ligands (Type B : Type A+C = 4 : 20), and δ (1.54) is assigned to H₂O.

Figure S15. ¹H-NMR spectrum of the **Ag**₆₁ nanocluster, the peaks at (2.12-2.51 ppm) are assigned to α -CH, the peaks at (0.93-2.05 ppm) mainly correspond to β -CH₂, γ -CH₂ and δ -CH₂ with integrals of 1:10.

Figure S16. ²H-NMR spectra of Ag_{42} -D (purple line), (b) Ag_{61} -D (teal line), CH_2CI_2 (green line), (d) CH_2CI_2 + CD_2CI_2 (maroon line). (The solvent is dichloromethane.)

Figure S17. ESI-MS spectra of (a) Ag_{42} -H and Ag_{42} -D (Ag_{42} -H represents the use of NaBH₄ as reducing agent, and Ag_{42} -D represents the use of NaBD₄ as reducing agent), x = 0, x = 1, x = 2 were assigned to $[Ag_{42}(SC_4H_9)_{24} + CH_3OH + Na^+ + H^+]^{2+}$, $[Ag_{41}(SC_4H_9)_{23} + CH_3OH + Na^+ + H^+]^{2+}$ and $[Ag_{40}(SC_4H_9)_{22} + CH_3OH + Na^+ + H^+]^{2+}$, respectively; (b) Enlarged view of Ag_{42} -H and Ag_{42} -D at x = 0; (c) Ag_{61} -H and Ag_{61} -D, x = 0, x = 1, x = 2, x = 3, x = 4 were assigned to $[Ag_{61}(SC_6H_{11})_{39}CI + H^+]^{2+}$, $[Ag_{60}(SC_6H_{11})_{38}CI + CH_3OH + H^+]^{2+}$, $[Ag_{59}(SC_6H_{11})_{37}CI + CH_3OH + H^+]^{2+}$, $[Ag_{57}(SC_6H_{11})_{35}CI + CH_3OH + H^+]^{2+}$, respectively; (d) Enlarged view of Ag_{61} -H and Ag_{61} -D at x = 2.

Figure S18. MALDI-MS spectrum of Ag_{42} (Ag_{42} crystal soluble in CH₂Cl₂ solvent) in linear positive ionization mode using DCTB as matrix. The peak with the largest molecular weight corresponds to $Ag_{42}(C_4H_9S)_{20}$. And each of two adjacent peaks separated m/z = 198.0 Da, assigned to Ag-SC₄H₉.

Figure S19. MALDI-MS spectrum of **Ag**₆₁ (**Ag**₆₁ crystal soluble in CH₂Cl₂ solvent) in linear positive ionization mode using DCTB as matrix. The peak with the largest molecular weight corresponds to $Ag_{59}(C_6H_{11}S)_{38}CI$. And each of two adjacent peaks separated m/z = 221.9 Da, assigned to Ag-SC₆H₁₁.

Figure S20. Thermostability of (a) Ag_{42} and (b) Ag_{61} at room temperature.

Figure S21. Thermostability of $[Ag_{25}(SPhMe_2)_{18}]^{-}$ at room temperature.

Figure S22. Photoluminescence spectra of $Ag_{25}(SR)_{18}$, $Ag_{42}(SR)_{24}$, $Ag_{44}(SR)_{30}^{4-}$ and $Ag_{61}(SR)_{40}CI$ using dichloromethane as solvent (excited at 365nm).

Table S1 Crystal data and structure refinement for $Ag_{42}(SC_4H_9)_{24}$

Identification code	Ag ₄₂ (SC ₄ H ₉) ₂₄	
Empirical formula	$C_{50.50}H_{113}Ag_{21}C_{15}S_{12}$	
Formula weight	3547.64	
Temperature	173 K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P222	
Unit cell dimensions	a = 19.018(2) Å	α = 90°.
	b = 19.679(2) Å	β = 90°.
	c = 26.250(3) Å	γ = 90°.
Volume	9824.2(18) Å ³	
Z	4	
Density (calculated)	2.399 Mg/m ³	
Absorption coefficient	4.494 mm ⁻¹	
F(000)	6720	
Theta range for data collection	0.776 to 25.999°.	
Index ranges	-24<=h<=24, -25<=k<=19, -33<=l<=32	
Reflections collected	71886	
Independent reflections	19208 [R(int) = 0.0478]	
Completeness to theta = 25.242°	99.9 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7455 and 0.5628	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	19208 / 336 / 875	
Goodness-of-fit on F ²	1.029	
Final R indices [I>2sigma(I)]	R1 = 0.0866, wR2 = 0.2111	
R indices (all data)	R1 = 0.1157, wR2 = 0.2415	
Absolute structure parameter	0.028(15)	
Extinction coefficient	n/a	
Largest diff. peak and hole	3.463 and -4.237 e.Å ⁻³	

Table S2. Crystal data and structure refinement for $Ag_{61}(SC_6H_{11})_{40}CI$			
Identification code	Ag ₆₁ (SC ₆ H ₁₁) ₄₀ Cl		
Empirical formula	$C_{242}H_{444}Ag_{61}CI_5S_{40}$		
Formula weight	11393.67		
Temperature	296.15 K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	P212121		
Unit cell dimensions	a = 22.088(11) Å	α = 90°.	
	b = 39.696(19) Å	$\beta = 90^{\circ}$.	
	c = 39.85(2) Å	$\gamma = 90^{\circ}$.	
Volume	34941(30) Å ³		
Z	4		
Density (calculated)	2.166 Mg/m ³		
Absorption coefficient	3.641 mm ⁻¹		
F(000)	21952		
Crystal size	0.12 x 0.1 x 0.03 mm ³		
Theta range for data collection	2.115 to 29.825°.		
Index ranges	-29<=h<=30, -33<=k<=55, -55<=l<=45		
Reflections collected	229686		
Independent reflections	97131 [R(int) = 0.0802]		
Completeness to theta = 25.242°	98.8 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7552 and 0.258		
Refinement method	Full-matrix-block least-squares on F^2		
Data / restraints / parameters	97131 / 3132 / 3133		
Goodness-of-fit on F ²	1.085		
Final R indices [I>2sigma(I)]	R1 = 0.0897, wR2 = 0.2160		
R indices (all data)	R1 = 0.1429, wR2 = 0.2502		
Absolute structure parameter	0.073(14)		
Extinction coefficient	n/a		
Largest diff. peak and hole	6.451 and -3.765 e.Å ⁻³		

Table S2. Crystal data and structure refinement for $Ag_{61}(SC_6H_{11})_{40}CI$