Supporting Information

A 2-to-2' 18-to18' doubly linked Ni(II) norcorrole dimer: an effectively conjugated antiaromatic dyad

Si-Yu Liu,^a Hiroyuki Kawashima,^a Norihito Fukui,^a

and Hiroshi Shinokubo*a

^aDepartment of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.

E-mail: hshino@chembio.nagoya-u.ac.jp

Table of Contents

Instrumentation and Materials	S2
Synthetic Procedure and Characterizations of Compounds	S 3
¹ H and ¹³ C NMR Spectra of Compounds	S 6
X-ray Diffraction Analysis	S 11
Electrochemical Analysis	S 16
Theoretical Calculations	S17
References	S23

Instrumentation and Materials

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra were recorded on a Bruker AVANCE III HD spectrometer. Chemical shifts were reported as the delta scale in ppm relative to CHCl₃ (δ = 7.260 ppm) for ¹H NMR and CDCl₃ (δ = 77.16 ppm) for ¹³C NMR. UV/vis/NIR absorption spectra were recorded on a Shimadzu UV-2550 or JASCO V670 spectrometer. High-resolution electrospray ionization time-of-flight (ESI-TOF) mass spectra were taken on a Bruker micrOTOF instrument. 3-Bromonorcorrole and 2-bromonorcorrole were synthesized according to the literature.¹ Unless otherwise noted, materials obtained from commercial suppliers were used without further purification.

Synthetic Procedure and Characterizations of Compounds

Synthesis of 3-to-3' singly linked Ni(II) norcorrole dimer 7

A Schlenk flask containing Ni(II) 3-bromo-5,15-dimesitylnorcorrole 6 (12.73 mg, 19.4 µmol), Ni(cod)₂ (10.67 mg, 38.8 µmol), and dry THF (2 mL) was prepared in argon-filled glove box. The solution was stirred at 60 °C for 2 h. The resulting mixture was passed through a short pad of alumina with CHCl₃. The solution concentrated *in vacuo*. The residue was purified by silica-gel column chromatography (hexane/ $CH_2Cl_2 = 2/1$ as an eluent). The solvent was removed in vacuo. The residue was further purified by silica-gel column chromatography (hexane/ $CH_2Cl_2 = 5/1$ as an eluent). The collected brown band was concentrated. Recrystallization from CHCl₃/MeOH afforded 7 (5.44 mg, 4.72 µmol, 49%). ¹H NMR (500 MHz, CDCl₃): δ = 7.05 (s, 4H, Mes), 6.17 (s, 4H, Mes), 3.20 (s, 12H, o-Me), 2.71 (s, 12H, o-Me), 2.27 (s, 6H, p-Me), 1.76 (s, 6H, p-Me), 1.53 (d, J = 4.5 Hz, 2H, β -H), 1.45 (d, J = 4.0 Hz, 2H, β -H), 1.44 (d, J = 4.0 Hz, 2H, β -H), 1.36 (d, J = 4.0 Hz, 2H, β -H), 1.32 (d, J = 4.0 Hz, 2H, β -H), 0.83 (d, J = 4.5 Hz, 2H, β -H), -1.57 (s, 2H, β -H) ppm; ¹³C NMR (500 MHz, CDCl₃): $\delta = 169.1, 167.4, 166.5, 165.6, 158.0, 157.4, 149.7, 148.0, 147.5,$ 145.7, 137.2, 136.7, 136.1, 133.7, 133.3, 129.7, 129.2, 128.2 (overlap), 127.9, 126.5, 125.9, 114.8, 114.4, 113.8 (overlap), 21.0, 20.5, 18.4, 17.4 ppm; UV/vis (CH₂Cl₂): λ_{max} (ϵ [M⁻¹ cm⁻ ¹]) = 438 (59000), 529 (28079) nm; ESI-MS: m/z = 1152.3447, calcd for $(C_{72}H_{58}N_8Ni_2)^+ =$ 1152.3447 [M⁺].

Synthesis of 2-to-2' singly linked Ni(II) norcorrole dimer 9

A Schlenk flask containing Ni(II) 2-bromo-5,15-dimesitylnorcorrole 8 (26.42 mg, 40.2 μmol), Ni(cod)₂ (22.11 mg, 80.4 μmol), and dry THF (5 mL) was prepared in argon-filled glove box. The solution was stirred at 60 °C for 2 h. The resulting mixture was passed through a short pad of alumina with CHCl₃. The solution was concentrated in vacuo. The residue was purified by silica-gel column chromatography (hexane/ $CH_2Cl_2 = 2/1$ as an eluent). The solvent was removed in vacuo. The residue was further purified by silica-gel column chromatography (hexane/ $CH_2Cl_2 = 5/1$ as an eluent). The collected red band was concentrated. Recrystallization from CH₂Cl₂/MeOH afforded **9** (15.98 mg, 13.9 µmol, 69%). ¹H NMR (500 MHz, CDCl₃): $\delta = 6.20$ (s, 4H, Mes), 5.79 (s, 4H, Mes), 2.80 (s, 12H, o-Me), 2.44 (s, 12H, o-Me), 1.79 (s, 6H, p-Me), 1.49 (s, 6H, p-Me), 1.38 (d, J = 4.5 Hz, 2H, β -H), 1.22 (d, J = 4.0 Hz, 4H, β -H), 1.10 (d, J = 4.5 Hz, 2H, β -H), 1.03 (d, J = 4.0 Hz, 2H, β -H), 0.38 (d, J = 4.0 Hz, 2H, β -H), -1.07 (s, 2H, β -H) ppm; ¹³C NMR (500 MHz, CDCl₃): $\delta =$ 169.9, 167.9, 166.1, 165.3, 158.5, 157.3, 148.6, 148.5, 148.2, 146.3, 136.9, 136.6, 133.4, 132.6, 130.4, 128.9, 128.2, 128.1, 127.7, 125.5, 124.7, 120.7, 120.5, 115.3, 115.2, 114.8, 20.6, 20.4, 17.5, 17.1 ppm; UV/vis (CH₂Cl₂): λ_{max} (ϵ [M⁻¹ cm⁻¹]) = 442 (73014), 562 (48675) nm; ESI-MS: m/z = 1152.3439, calcd for $(C_{72}H_{58}N_8Ni_2)^+ = 1152.3447$ [M⁺].

Synthesis of 2-to-2' 18-to-18' doubly linked Ni(II) norcorrole dimer 10

A three-necked flask containing 2-to-2' singly linked norcorrole dimer 9 (20.0 mg, 17.4 µmol) was evacuated and then refilled with N₂. To the flask, CH₂Cl₂ (350 mL) was added. A solution of silver hexafluorophosphate (8.80 mg, 34.8 µmol) in THF (5 mL) was added dropwise. The mixture was stirred at room temperature for 2 h. Aqueous Na₂S₂O₄ solution was added to the mixture. Organic materials were extracted with CH₂Cl₂. The combined organic layers were washed with water and dried over Na₂SO₄. After removing the solvent *in vacuo*, the residue was purified by silica-gel column chromatography (hexane/CH₂Cl₂ = 5/1as an eluent). The collected green band was concentrated. Recrystallization from CHCl₃/MeOH afforded 10 (4.00 mg, 3.48 μ mol, 20%). ¹H NMR (500 MHz, CDCl₃/CS₂ = 1/1): $\delta = 5.76$ (s, 8H, Mes), 2.64 (s, 24H, o-Me), 1.45 (s, 12H, p-Me), 0.09 (d, J = 4.5 Hz, 4H, β -H), 0.05 (d, J = 4.5 Hz, 4H, β -H), -1.85 (s, 4H, β -H) ppm; UV/vis (CH₂Cl₂): λ_{max} (ε $[M^{-1} \text{ cm}^{-1}]$ = 448 (48399), 651 (60055) nm; ESI-MS: m/z = 1150.3316, calcd for $(C_{72}H_{56}N_8Ni_2)^+ = 1150.3316 [M^+]$. (The ¹³C NMR spectrum of **10** was not obtained because of the low solubility.)

¹H and ¹³C NMR Spectra of Compounds

Figure S1. ¹H NMR spectrum of 7 in CDCl₃ at 25 °C. *Solvent peaks.

Figure S2. ¹³C NMR spectrum of **7** in CDCl₃ at 25 °C. *Solvent peaks.

Figure S3. ¹H NMR spectrum of **9** in CDCl₃ at 25 °C. *Solvent peaks.

Figure S4. ¹³C NMR spectrum of **9** in CDCl₃ at 25 °C. *Solvent peaks.

Figure S5. ¹H NMR spectrum of **10** in CDCl₃/CS₂ = 1/1 at 25 °C. *Solvent peaks.

X-ray Diffraction Analysis

X-ray data of **7**, **9**, and **10** were taken on a Rigaku CCD diffractometer (Saturn 724 with MicroMax-007) with Varimax Mo optics using graphite monochromated Mo-K α radiation ($\lambda = 0.71075$ Å). Crystallographic details are given in CIF files. Fine crystals of **7** suitable for the X-ray diffraction analysis were obtained by the vapor diffusion of methanol into its 1,2-dichloroethane solution. Fine crystals of **9** suitable for the X-ray diffraction analysis were obtained by the vapor diffusion analysis were obtained by the vapor diffusion of methanol into its chloroform solution. Fine crystals of **10** suitable for the X-ray diffraction analysis were obtained by the vapor diffusion of methanol into its 1,1,2,2-tetrachloroethane solution. Crystallographic data for **7**, **9**, and **10** have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-1991857, 1991856, and 1991855, respectively.

Figure S6. X-ray crystal structure of **7**. (a) Top view, (b) side view, and (c) packing structure. The hydrogen atoms are omitted for clarity. The thermal ellipsoids are scaled at 50% probability level.

Figure S7. X-ray crystal structure of **9**. (a) Top view, (b) side view, and (c) packing structure. The hydrogen atoms are omitted for clarity. The thermal ellipsoids are scaled at 50% probability level.

Figure S8. X-ray crystal structure of **10**. (a) Top view, (b) side view, and (c) packing structure. The hydrogen atoms are omitted for clarity. The thermal ellipsoids are scaled at 50%

Figure S9. Bond lengths in crystal structure of **10** (left) and **1** (right).² *meso*-Mesityl substituents are omitted.

Compound	7	9	10
Europinio al Esperante	C ₇₂ H ₅₈ N ₈ Ni ₂	0.5(C ₇₂ H ₅₈ N ₈ Ni ₂)	0.5(C ₇₂ H ₅₆ N ₈ Ni ₂)
Empirical Formula	$2(C_2H_4Cl_2)$	$2(CHCl_3)$	$2(C_2H_2Cl_4)$
Mw	1350.58	815.08	911.00
Crystal System	triclinic	monoclinic	monoclinic
Space Group	<i>P</i> –1 (No. 2)	<i>C</i> 2/ <i>c</i> (No. 15)	$P2_1/c$ (No. 14)
a	12.0197(3) Å	35.3376(6) Å	17.4782(4) Å
b	15.4760(7) Å	11.9482(2) Å	12.6007(2) Å
С	18.5471(7) Å	17.8205(3) Å	17.9057(3) Å
α	72.164(4)°		
β	77.709(3)°	102.422(2)°	98.164(2)°
γ	86.387(3)°	—	—
Volume	3209.0(2) Å ³	7348.0(2) Å ³	3903.54(13) Å ³
Ζ	2	8	4
Density (calcd.)	1.398 g/cm ³	1.474 g/cm^3	1.550 g/cm^3
Completeness	0.750	0.991	0.951
Goodness-of-Fit	1.029	1.018	1.005
$R_1 \left[I > 2\sigma \left(I\right)\right]$	0.0638	0.0901	0.0536
wR_2 (all data)	0.1612	0.2828	0.1588
Temperature [K]	93(2)	93(2)	93(2)

Table S1. Crystal data and structure refinements for 7, 9, and 10.

Electrochemical Analysis

Cyclic voltammograms of **1**, **7**, **9**, and **10** were recorded on ALS electrochemical analyzer 612C. Measurements were performed in freshly distilled dichloromethane with tetrabutylammonium hexafluorophosphate as electrolyte. A three electrodes system was used and consisted of a grassy carbon working electrode, a platinum wire and Ag/AgNO₃ as the reference electrode. All potentials are referenced to the potential of ferrocene/ferrocenium cation couple.

Figure S10. Cyclic voltammograms of 1, 7, 9, and 10.

Theoretical Calculations

All calculations were carried out using the *Gaussian 09* program.³ Initial geometries of the model compounds were obtained from their X-ray structures. Full optimizations were performed with Becke's three-parameter hybrid exchange functional and the Lee–Yang–Parr correlation functional (B3LYP)⁴ and a basis set consisting of SDD⁵ for Ni and 6-31G(d) for the rest. The calculated oscillator strengths were obtained with the TD-DFT method at the CAM-B3LYP⁶/6-31G(d)+SDD level.

Figure S11. Calculated energy diagrams and molecular orbitals of 1, 7, 9, and 10.

Figure S12. Simulated absorption spectra of (a) 1 and (b) 10.

Figure S13. Comparison of simulated absorption spectra of 1, 7, 9, and 10.

	Α		E	3
	NICS(0)	NICS(1)	NICS(0)	NICS(1)
а	5.9	5.0	11.3	9.9
b	5.9	5.0	12.6	11.3
с	5.9	5.0	11.3	9.9
d	5.9	5.0	12.6	11.3
е	45.6	38.5	67.4	56.7
f	45.6	38.5	67.4	56.7
g	46.0	40.1	70.6	59.9
h	46.0	40.1	61.2	52.6
i			-17.5	-14.8

Figure S14. NICS(0) and NICS(1) values of monomer **A** and doubly linked dimer **B**. Calculations were carried out at the B3LYP/6-31G(d)+SDD level of theory. Mesityl groups

were replaced with hydrogen atoms to simplify the calculations.

Figure S15. ACID plots of (a) monomer **A** and (b) doubly linked dimer **B**. Calculations were carried out at the B3LYP/6-31G(d)+SDD level of theory. Mesityl groups were replaced with hydrogen atoms to simplify the calculations.

References

- 1) Kawashima, H.; Hiroto, S.; Shinokubo, H. J. Org. Chem. 2017, 82, 10425.
- 2) Ito, T.; Hayashi, Y.; Shimizu, S.; Shin, J. Y.; Kobayashi, N.; Shinokubo, H. *Angew. Chem. Int. Ed.* **2012**, *51*, 8542.
- 3) Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G.

E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.

- A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng,
- G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida,
- M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta,
- J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.;
- Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.;
- Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken,
- V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;
- Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.;
- Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.;
- Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
- 4) (a) Becke, A. D. *Phys. Rev. A* 1988, *38*, 3098. (b) Lee, C.; Yang, W.; Parr, R. G. *Phys. Rev. B* 1988, *37*, 785.
- 5) Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. J. Chem. Phys. 1987, 86, 866.
- 6) Yanai, T.; Tew, D.; Handy, N. Chem. Phys. Lett. 2004, 393, 51.