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1. Experimental Section

Materials. All chemicals and solvents were purchased as reagent grade and used without further
purification unless otherwise noted. Calcein AM and Lysotracker Yellow HCK-123 were purchased from
Invitrogen. Acridine orange was obtained from Sigma-Aldrich. PSVue643 was purchased from
Molecular Targeting Technologies Incorporated. Fetal bovine serum and penicillin/streptomycin were
obtained from Atlanta Biologicals and Corning, respectively. Kaighn’s Modification of Ham’s F-12
Medium (F-12K; ATCC-30-2004) and Eagle's Minimum Essential Medium (EMEM; ATCC-30-2003)
were purchased from American Tissue Culture Collection.

Instruments. '"H NMR spectra were recorded on Bruker AVANCE II1 HD 400 MHz spectrometer at
25 °C. Chemical shift was presented in ppm and referenced by residual solvent peak. High resolution
mass spectrometry (HR-MS) was performed using a Bruker micro TOP II spectrometer or AB SCIEX
TripleTOF 5600 instrument. Absorption spectra were collected on Evolution 201 UV/Vis Spectrometer
with Thermolnsight software. Fluorescence spectra were acquired using a Horiba Fluoromax-4
Fluorometer with FluorEssence software. The cell imaging was performed by Zeiss Axiovert 100 TV
epifluorescence microscope equipped with UV filter (ex. 387/11 nm, em. 447/60 nm; blue channel),
FITC filter (ex. 450/90 nm, em. 500/50 nm; green channel) and TxRed filter (ex. 562/40 nm, em. 624/40
nm; red channel) and Cy5.5 filter (ex. 655/40 nm, em. 716/40 nm; deep red channel). Fluorescence
images were analyzed using ImagelJ software. The change in solution temperature was monitored in real
time using a USB calibrated thermal video camera (Infrared Cameras Inc, 7320) and confirmed using an
Omega hypodermic thermocouple (HYPO-33-31T-G-60-SMPW-M), under irradiation by a continuous
wave diode laser (L808P1WJ, 808 nm).

Cell culture. Chinese hamster ovary (CHO-K1, purchased from ATCC: CCL-61) cells were cultured
and maintained in F-12K medium (supplemented with 10% fetal bovine serum and 1%
penicillin/streptomycin) at 37 °C and 5% CO: in a humidified incubator. Human mammary
adenocarcinoma (MCF-7, purchased from ATCC: CVCL 0031) were cultured in EMEM medium
supplemented with 10% fetal bovine serum, 1% non-essential amino acids, 2% sodium bicarbonate, 1%
sodium pyruvate, and 1% penicillin/streptomycin.

Fluorescence Colocalization Studies. MCF-7 or CHO-K1 cells were seeded into 8-well chambered
coverglass. For nucleus-targeted probes, on the following day, the cells were incubated with 10 uM
NucCR or NucCR’ in Opti-MEM at 37 °C, 5% COx. After 2 h, the cells were washed three times with
DPBS, fixed with 4% cold paraformaldehyde for 20 min at room temperature, washed once with DPBS,
and co-stained with 3 pM Hoechst 33342 for 10 min. Afterwards, the cells were washed two times and
imaged on Zeiss fluorescence microscope with UV filter (blue channel) and FITC filter (green channel).

For lysosome-targeted dyes, the cells seeded in 8-well chambered coverglass were incubated with 10
uM LysoSQ in Opti-MEM for 2 h at 37 °C, 5% COz. Then, the cells were washed two times with DPBS,
and stained with 5 uM Lysotracker Yellow for 30 min at 37 °C, 5% CO:z. Afterwards, the cells were
washed two times and imaged under Opti-MEM on Zeiss fluorescence microscope with FITC filter
(green channel) and CyS5.5 filter (deep red channel).

Photothermal-Induced Cell Death Monitored by MTT Cell Viability Assay. MCF-7 cells were
seeded into 384-microwell plates and grown to 70% confluency. The cells were incubated with NucCR,
NucCR’ or LysoCR at various concentrations (N =3) in Opti-MEM for 2 h at 37 °C, 5% COa. The
medium was then removed, washed once with DPBS, and replaced with fresh EMEM medium. The
microwell plate was placed in a heating chamber and thermally equilibrated to 37 °C. Laser diode at 808

nm (200 mW, 5 W/cm?, 10 min) was used for cells of the phototherapy group. Then cells were further
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cultured in the dark at 37 °C. After 72 h, the medium was removed and replaced with EMEM medium
containing [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT, 5 pg/mL). The
samples were incubated for 12 h at 37 °C and 5% CO: and an SDS-HCI detergent solution was the added.
The samples were incubated overnight, and the absorbance of each well was measured at 590 nm (N =
3), where the readings were normalized relative to untreated cells.

Imaging Photothermal-Induced Cell Death Using Fluorescent Live and Dead Cell Stains. MCF-
7 cells were seeded into 384-microwell plates and grown to 70% confluency. The cells were incubated
with NucCR or NucCR’ at various concentrations (N =3) in Opti-MEM for 2 h at 37 °C, 5% CO». The
supernatant was removed and the cells were washed once with DPBS and replaced with fresh EMEM
medium. Phototherapy groups were irradiated with an 808 nm laser beam (5 W/cm?) for 10 min. After
48 h, each well was treated with a binary mixture of green fluorescent live-cell stain Calcein AM (3
pg/mL) and red fluorescent dead-cell stain PSVue643 (10 uM) and allowed to stand for 20 min. The cells
were washed two times with DPBS and resuspended in Opti-MEM. Cells were imaged on Zeiss
fluorescence microscope with FITC filter (green channel) and Cy5.5 filter (deep red channel).

Lysosome Membrane Permeabilization Using Fluorescence Imaging Studies. MCF-7 cells were
seeded in the 8-well chambered coverglass and co-incubated with LyseSQ (10 uM), LysoCR (100 uM)
and Hoechst 33342 (3 uM) in Opti-MEM for 2 h. Then, dyes were removed and cells were washed two
times with DPBS. After addition with Opti-MEM, cells were imaged on fluorescence microscope with
UV filter (blue channel) and Cy3.5 filter (deep red channel).

To evaluate the integrity of lysosomes upon light irradiation, the acridine orange staining assay was
carried out. MCF-7 cells, seeded in the 8-well chambered coverglass, were first incubated with LysoCR
(100 uM, in Opti-MEM) for 2 h, and then the medium were replaced by acridine orange solutions (1
pg/mL in Opti-MEM) with further incubation for 10 min, followed by DPBS washing two times and
finally fresh Opti-MEM was added. Laser (808 nm, 5 W/cm?) irradiation for 10 min was followed by

fluorescence microcopy with FITC filter (green channel) and TxRed filter (red channel).

2. Synthesis and Characterization.

PB09 was synthesized according to our previous literature method.S!

EtSQ700 was synthesized according to our previous literature method.S?

Synthesis of NucCR and NucCR’. The peptide (designated as pepl or pep2) was synthesized on a
solid-phase synthesizer by Bankpeptide Biological Technology Co., Ltd., and modified with FITC and
6-azido-norleucine. Copper catalyzed alkyne azide cycloaddition reactions between pepl/pep2 and
PB09 were performed as reported before. 3> Each probe was isolated using preparative HPLC.

HR-MS: pepl, calcd. for C73Hi1aN20015S*, [M+6H]*" 385.7123, found 385.7119; calcd. for
C73Hi13N200158*, [M+5H]*" 513.9472, found 513.9468; caled. for C73Hi12N20015S**, [M+4H]**
770.4169, found 770.4162.

HR-MS: pep2, calcd. for CroHi2sN2016S*, [M+6H]*" 417.7361, found 417.7359; calcd. for
C79H12sN2016S*", [M+5H]*" 556.6455, found 556.6453; calcd. for C79Hi24N2016S*, [M+4H]**
834.4643, found 834.4637.

HR-MS: NucCR, calcd. for Cio0H140N22020S3%", [M+4H]*" 1032.4888, found 1032.4869; calcd. for
Ci00H142N22020S3*", [M+6H]*" 516.7483, found 516.7479; calcd. for CiooH143N22020S3>", [M+7H]>*
413.6002, found 413.5997.

HR-MS: NucCR’, calcd. for CiosH152N24021S3%", [M+4H]*" 1096.5363, found 1097.5366; calcd. for
Cio6H153N24021S3%*, [M+5H]*" 731.3601, found 731.3589; caled. for CiosHis4N24O21S3*", [M+6H]*
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548.7721, found 548.7717; caled. For Cio6H155N24021S57*, [M+7H]** 439.2192, found 439.2189.

Synthesis of LysoCR. The croconaine PB09, 4-(3-azidopropyl)morpholine (16.4 mg), CuTBTABr
(5.2 mg), and triethylamine (22 pL) were combined in 5 mL of chloroform and stirred at room
temperature overnight. The solution was evaporated and the residue purified by silica column (0-20%
MeOH in CHCIs to give the product as a brown solid (31.5 mg, 95%). 6H (400 MHz; CDCls; MeaSi)
1.18 (6 H, br t, 4-H), 1.97 (4H, m, 10-H), 2.24 (4H, m, 11-H), 2.31 (8H, br s, 12-H), 3.60 (4H, br m,5-H,
3-H), 3.70 (8H, br t, 13-H), 3.77 (4H, br t, 6-H), 4.34 (4H, t, Jo10 7.0 Hz, 9-H), 4.58 (4H, s, 7-H), 6.44
(2H, m, 2-H), 7.46 (2H, m, 8-H), 8.66 (2H, m, 1-H); ESI m/z 865.3848 [M+H]" C41Hs57N1007S2 (calcd.
865.3844).

Synthesis of LysoSQ. The squaraine EtSQ700 (16 mg), 4-(3-azidopropyl)morpholine (13.7 mg),
CuTBTABr (4.3 mg), and triethylamine (18 pL) were combined in 5 mL of chloroform and stirred at
room temperature overnight. The solution was evaporated and the residue purified by silica column (0-
20% MeOH in CHCIs) to give the product as a blue solid (11.6 mg, 43%). 8H (400 MHz; CDCls; MesSi)
1.21 (6 H, br t, 4-H), 1.98 (4H, m, 10-H), 2.26 (4H, t, Ji1,10 6.8 Hz, 11-H), 2.32 (8H, br s, 12-H), 3.49
(4H, q, J34 7.2 Hz, 3-H), 3.59 (4H, t, Js6 5.2 Hz,5-H), 3.62 (8H, t, J13,12 4.7 Hz, 13-H), 3.73 (4H, t, Jes
5.2 Hz, 6-H), 4.35 (4H, t, Jo,10 7.1 Hz, 9-H), 4.58 (4H, s, 7-H), 6.19 (2H, d, J21 4.7 Hz, 2-H), 7.44 (2H, s,
8-H), 7.87 (2H, d, J124.7 Hz, 1-H); ESI m/z 837.3898 [M+H]+ Cs0Hs7N1006S: (calcd. 837.3890).
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Figure S1. The HR-MS of pepl.
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Figure S4. HR-MS of NucCR’.
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3. Absorption and Fluorescence Spectra
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Figure S8. Absorption spectra of (a) NucCR, (c) NucCR’ and (e) LysoCR at different concentrations in
PBS solution (1% DMSO, pH 7.2). Linear relationship of absorbance for the maxima peak versus

concentration for (b) NucCR, (d) NucCR’ and (f) LysoCR.
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Figure S9. Fluorescence spectra of 5 uM PB09, NucCR and NucCR’ in PBS solution (1% DMSO, pH

7.2). Aex =460 nm. Slit: 2.5 nm/2.5 nm.
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Figure S10. (a) Absorption and (b) fluorescence spectra of LysoSQ in PBS solution (1% DMSO, pH 7.2).
Aex = 640 nm. Slit: 2.5 nm/2.5 nm.

4. Photothermal Experiments
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Figure S11. Change in temperature within the spot of the laser beam (see Figure S12 for illustration) for
samples of (a) NucCR, (b) NucCR’ and (c) LysoCR in PBS solution (pH 7.2, 4% DMSO) over time,
upon the irradiation at 808 nm with 5.0 W/cm?.
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Table S1. The photothermal behavior of organic dyes reported in the last two years

. Organelle Laser Photothermal
Probe Construction . L. Refs
target irradiation effect
635nm, 0.5
) ) ) Increase by ~27 °C
Micelles loaded with cyanine dye Mitochondria W/em?, 10 S4
. (H20, 500 pM)
min
Nanoparticles encapsulated by 808 nm, 0.3 Increase by ~54 °C <5
BODIPY dye W/cm?, 5 min (H20, 25 uM)
Nanoparticles self-assembled from 808 nm, 1 Increase to 62 °C S6
quaterrylenediimide derivative W/cm?, 5min  (PBS, 150 ug/mL)
Nanoparticles loaded with donor- 808 nm, 0.8 Increase by 54 °C 7
acceptor conjugated small molecule W/cm?, 5 min (PBS, 100 uM)
Increase by ~20 °C
i 730 nm, 1.0
Phthalocyanine dyes (example as (H20/0.1%
- W/em?, 10 S8
PcA1®) . Cremophor EL, 10
min
HM)
) ) 980 nm, 0.1 Increase by 27 °C
IR-1048 dye triggered by hypoxia - ) S9
W/cm?, 2 min  (HEPES, 5 pg/mL)
Nanoparticles assembled with human
serum albumin and phenazine- 808 nm, 1 Increase to 53 °C S10
cyanine dyes (example as PH- W/cm?, 5 min (PBS, 20 uM)
2@HSA'"%)
Nanoparticles assembled from 808 nm, 1
hvrin-diket ) i W/er?. 10 Increase to 50 °C S11
orphyrin-diketopyrrolopyrrole - cm’,
POty . ?y Py . (H20, 80 pg/mL)
derivatives min
Nanoparticles loaded with small
. 808 nm, 2
organic molecule as electron- ) Increase to 66 °C
i o ) - W/cm?, 5 min S12
deficient thiadiazolobenzotriazole (PBS, 50 pg/mL)
core
. 1064 nm, 0.9
Nanoparticles assembled from Increase by 24 °C
. : W/em?, 10 S13
cruciform phthalocyanine pentad dye . (Hz20, 27 ppm)
min
Nanoparticles assembled from 660 nm, 1
Increase by ~35 °C
acceptor—donor—acceptor structured W/ecm?, 10 S14
. (PBS, 40 pg/mL)
small molecule min
Increase by
808 nm, 5 16 °C (NucCR), .
. Nucleus This
Croconaine dyes W/cm?, 10 14 °C (NucCR’),
Lysosome work
min 14 °C (LysoCR),

(PBS, 20 pM)
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5. Croconaine Stability Tests

Before initiating cell studies, it was important to establish that the probes were chemically stable under
conditions that mimic the intracellular environment. The primary concern was possible susceptibility of
the squaraine and croconaine chromophores to chemical bleaching due to nucleophilic attack by
biological thiols, especially glutathione (GSH), cysteine (Cys) or homocysteine (Hcy).5'> '8 Thus, cuvette
studies were conducted that monitored the change in absorption and fluorescence of NucCR and NucCR’
in the presence of 10 mM GSH, the most abundant cellular thiol. As shown in Figure S14 the croconaine
absorbance did not change over 30 minutes. Additional experiments tested the stability of LysoCR and
LysoSQ in the presence of an excess of GSH, Cys or Hcy, and also observed no change in absorption
over 30 min (Figure S15). Also included in the Figure S15 is the result of a control experiment showing
that the thiols quickly attacked and bleached the more reactive squaraine dye ConSQ whose structure
has two 4-aminophenyl rings and thus has a more electrophilic core. This comparison shows that the two
strongly electron donating 2-aminothiophene rings within the structures of LysoCR and LysoSQ are able
to greatly reduce the electrophilicity of the central cyclic core in each chromophore such that they resist
nucleophilic attack when inside cells.5! Taken together, the photothermal heating and stability studies
strongly indicate that NucCR, NucCR’ and LysoCR are all excellent candidates for photothermal
heating inside cells.
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Figure S14. (a, ¢) Absorption and (b, d) fluorescence spectra of 5 uM (a, b) NucCR or (¢, d) NucCR’ in
100 mM potassium phosphate buffer (1%DMSO, pH 7.4) without or with 10 mM GSH for 30 min, Aex =
470 nm. Slit: 2.5 nm/2.5 nm.
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Figure S15. (a, ¢, €) Absorption and (b, d, f) fluorescence spectra of 5 uM (a, b) LysoCR or (c, d) LysoSQ
or (e, f) ConSQ in 100 mM potassium phosphate buffer (1% DMSO, pH 7.4) without/with 10 mM GSH,
Cys or Hey for 30 min. (b, f) dex = 640 nm. Slit: 2.5 nm/2.5 nm. (d) Aex = 750 nm. Slit: 5 nm/5 nm.
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6. Fluorescence Microscopy Data

Green Channel Blue Channel Merge

con

NucCR

NucCR’

Figure S16. Distribution of NucCR or NucCR’” in CHO-K1 cells. Fluorescence images of CHO-K1 cells
sequentially incubated with 10 uM NucCR or NucCR’ for 2 h, followed by 3 uM Hoechst 33342 for 15
min. Cells in con group were treated only with Hoechst. Green channel for NucCR or NucCR’, ex.
450/90 nm, em. 500/50 nm; Blue channel for Hoechst 33342, ex. 387/11 nm, em. 447/60 nm. Scale bar
=20 pm.
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Figure S17. Quantification of average nuclei area of MCF-7 cells after photothermal treatment. Cells
were treated with 50 uM NucCR or NucCR’ for 2 h, replaced by fresh medium and irradiated with an
808 nm laser (5 W/cm?, 10 min), and stained with 3 uM Hoechst 33342 for 15 min. Micrographs (N = 3)
were examined by ImagelJ software to obtain average values for nuclei area. The threshold p-values are:
**% p <0.001.

PCC: 0.93

|
Figure S18. Distribution of LysoSQ in MCF-7 cells. Fluorescence images of MCF-7 cells co-incubated
with 10 uM LysoSQ for 2 h, and Lysotracker Yellow for 30 min. (a) Deep red channel for LysoSQ, ex.
655/40 nm, em. 716/40 nm; (b) Green channel for Lysotracker Yellow, ex. 450/90 nm, em. 500/50 nm;
(c) Merge images of (a) and (b); (d) The correlation of LysoSQ and Lysotracker Yellow intensities.

S17



7. References

S1
S2

S3

S4

S5

S6

S7

S8

S9

S10
S11

S12

S13

S14

S15

S16

S17
S18

G. T. Spence, G. V. Hartland and B. D. Smith, Chem. Sci., 2013, 4, 4240-4244.

E. M. Peck, W. Liu, G. T. Spence, S. K. Shaw, A. P. Davis, H. Destecroix and B. D. Smith, J.
Am. Chem. Soc., 2015, 137, 8668-8671.

Y. Wen, K. Liu, H. Yang, Y. Li, H. Lan, Y. Liu, X. Zhang and T. Yi, Anal. Chem., 2014, 86,
9970-9976.

H. Wang, J. Chang, M. Shi, W. Pan, N. Li and B. Tang, Angew. Chem. Int. Ed., 2019, 58, 1057—
1061.

D. Xi, M. Xiao, J. Cao, L. Zhao, N. Xu, S. Long, J. Fan, K. Shao, W. Sun, X. Yan and X. Peng,
Adv. Mater., 2020, 32, 1-8.

C. Liu, S. Zhang, J. Li, J. Wei, K. Miillen and M. Yin, Angew. Chem.Int. Ed., 2019, 58, 1638—
1642.

S. Liu, X. Zhou, H. Zhang, H. Ou, J. W. Y. Lam, Y. Liu, L. Shi, D. Ding and B. Z. Tang, J. Am.
Chem. Soc., 2019, 141, 5359-5368.

X. Li, X. H. Peng, B. De Zheng, J. Tang, Y. Zhao, B. Y. Zheng, M. R. Ke and J. D. Huang, Chem.
Sci., 2018, 9, 2098-2104.

X. Meng, J. Zhang, Z. Sun, L. Zhou, G. Deng, S. Li, W. Li, P. Gong and L. Cai, Theranostics,
2018, 8, 6025-6034.

Y. Yan, J. Chen, Z. Yang, X. Zhang, Z. Liu and J. Hua, J. Mater. Chem. B, 2018, 6, 7420-7426.
F. Wu, L. Chen, L. Yue, K. Wang, K. Cheng, J. Chen, X. Luo and T. Zhang, ACS Appl. Mater.
Interfaces, 2019, 11, 21408-21416.

B. Guo, Z. Huang, Q. Shi, E. Middha, S. Xu, L. Li, M. Wu, J. Jiang, Q. Hu, Z. Fu and B. Liu,
Adv. Funct. Mater., 2020, 30, 1-11.

H. Pan, S. Li, J. L. Kan, L. Gong, C. Lin, W. Liu, D. Qi, K. Wang, X. Yan and J. Jiang, Chem.
Sci., 2019, 10, 8246-8252.

Y. Cai, Z. Wei, C. Song, C. Tang, X. Huang, Q. Hu, X. Dong and W. Han, Chem. Commun.,
2019, 55, 8967-8970.

G. Saranya, P. Anees, M. M. Joseph, K. K. Maiti and A. Ajayaghosh, Chem- A Eur. J., 2017, 23,
7191-7195.

L. Tang, F. Yu, B. Tang, Z. Yang, W. Fan, M. Zhang, Z. Wang, O. Jacobson, Z. Zhou, L. Li, Y.
Liu, D. O. Kiesewetter, W. Tang, L. He, Y. Ma, G. Niu, X. Zhang and X. Chen, ACS Appl. Mater.
Interfaces, 2019, 11, 27558-27567.

P. Anees, S. Sreejith and A. Ajayaghosh, J. Am. Chem. Soc., 2014, 136, 13233-13239.

K. V. Sudheesh, M. M. Joseph, D. S. Philips, A. Samanta, K. Kumar Maiti and A. Ajayaghosh,
ChemistrySelect, 2018, 3, 2416-2422.

S18



