B(C₆F₅)₃- and HB(C₆F₅)₂-Mediated Transformations of Isothiocyanates

Dr. Malte Fischer* , Dr. Marc Schmidtmann,

Institute of Chemistry, Faculty of Mathematics and Natural Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany.

E-mail: malte.fischer@uni-oldenburg.de

Table of Contents

General Considerations	S2
Synthesis and Characterization of Compounds	S 3
Starting Materials	S 3
New Compounds	S12
Crystallographic Data	S43
Author Contributions	S52
References	S52

General Considerations

All reactions were carried out under an inert atmosphere of argon or nitrogen with rigorous exclusion of oxygen and moisture using standard glovebox and Schlenk techniques unless stated otherwise. The glass equipment was stored in an oven at 120 °C and evacuated prior to use. Solvents were distilled over Na/K alloy and benzophenone or CaH₂ under nitrogen atmosphere. Solid materials were stored and weighted in a glove box or dried under high vacuum prior to use. The isothiocyanates **1a-c** were commercially available and were stored under inert atmosphere. In this context, solid **1b** has been used as received and liquid **1a,c** have been freeze-pump-thaw degassed three times prior to use. ¹H and ¹³C{¹H} NMR spectra of **1a-c** were recorded in C₆D₆ for reasons of comparison (Figures S4-S9). Piers' borane (HB(C₆F₅)₂) was synthesized according to literature procedures.^{S1-S3} B(C₆F₅)₃ was synthesized by a modified literature procedure.^{S4}

NMR spectra were recorded on a Bruker Avance 300, Bruker Avance 500, and Bruker Avance III 500 spectrometer. ¹H NMR spectra were referenced to the residual solvent resonance as internal standard (benzene- d_6 (C₆D₆): δ^{1} H(C₆D₅H) = 7.16 ppm; toluene- d_8 (C₇D₈): δ^{1} H(C₇D₇H) = 2.08 ppm), and ¹³C{¹H} spectra by using the central line of the solvent signal (benzene- d_6 (C₆D₆): δ^{13} C{¹H}(C₆D₆) = 128.06 ppm; toluene- d_8 : δ^{13} C{¹H}(C₇D₈) = 20.4 ppm). ¹¹B{¹H} and ¹⁹F{¹H} NMR spectra were referenced against external standards [BF₃•OEt₂ (δ^{11} B{¹H}(BF₃•OEt₂) = 0.0 ppm; CFCl₃ (δ^{19} F{¹H}(CFCl₃) = 0.0 ppm)]. The given chemical shifts of the ¹⁵N NMR spectra result out of ¹⁵N/¹H HMQC/HMBC NMR experiments with nitromethane as externals standard (δ = 378.9 ppm vs. NH₃).

Infrared spectra were measured on a Bruker Tensor 27 spectrometer with a MKII Reflection Golden Gate Single Diamond ATR system.

Melting points were determined using a "Mel-Temp" by Laboratory Devices, Cambridge, U.K.. Elemental analyses (C, H, N, S) were carried out on an EuroEA 3000 Elemental Analyzer.

Synthesis and Characterization of Compounds

Starting Materials

B(C₆F₅)₃

An ampoule of condensed boron trichloride (4.416 g, 37.69 mmol) was broken up in air and quickly added to a precooled solution of *n*-hexane (approximately 30 mL). **Caution:** Due to breaking up the ampoule in air, wearing appropriate safety clothing and working in a fume hood is mandatory. Note: The amount of boron trichloride used is determined by previously weighing the Schlenk flask with the *n*-hexane. After transferring the boron trichloride, the flask is weighed again and the amount is determined forming the difference. То а of by stirring solution bromopentafluorobenzene (27.925 g, 113.08 mmol) in *n*-hexane (approximately 300 mL), *n*-butyllithium (45.2 mL, 113.08 mmol, 2.5 M in *n*-hexane) was added dropwise via a dropping funnel at -80 °C so that a temperature of -75 °C was not exceeded. Caution: Maintaining the temperature is extremely important to prevent aryne formation by elimination of LiF! After the addition, the reaction solution was stirred for an additional hour at -80 °C. The prepared boron trichloride / n-hexane solution was added rapidly via cannula and the resulting colourless suspension was stirred for an additional hour at -80 °C, and subsequently slowly warmed to room temperature followed by additional 16 h of stirring at room temperature. All volatile components were removed under vacuum and the colourless solid was transferred to a glove box and grounded in a mortar. The solid was transferred to a round bottom flask equipped with a sublimation apparatus. Sublimation at 80 °C and 1•10⁻³ bar for some hours affords a sticky slightly brown product, being contaminated B(C₆F₅)₃. Subsequent sublimation at 100 °C and $1 \cdot 10^{-3}$ bar yields analytically pure B(C₆F₅)₃ as a colourless crystalline solid (the sublimation was carried out over the course of several days and the product was collected in fractions).

Yield: 16.124 g (31.49 mmol, 84%).

¹³C{¹H} NMR (126 MHz, C₆D₆, 305 K): δ = 121.7 (br, C_{q,Ar}B), 137.4 (dm, ¹J_{C,F} = 253.4 Hz, B(C_qC₅F₅)₃), 144.9 (dm, ¹J_{C,F} = 263.0 Hz, B(C_qC₅F₅)₃), 148.0 (dm, ¹J_{C,F} = 251.5 Hz, B(C_qC₅F₅)₃) ppm.

¹¹B{¹H} NMR (160 MHz, C₆D₆, 305 K): δ = 59.7 ppm

¹⁹**F{**¹**H} NMR** (470 MHz, C₆D₆, 305 K): δ = -160.1 (m, 6F, *m*-F_{Ar}B), -141.9 (m, 6F, *p*-F_{Ar}B), -128.8 (m, 6F, *o*-F_{Ar}B) (Δδ¹⁹F_{*m*,*p*} = 18.2 ppm) ppm.

grease.

__59.72

¹**H NMR** (500 MHz, C₆D₆, 305 K): δ = 6.57-6.60 (m, 2H, CH_{Ph}), 6.70-6.72 (m, 3 H, CH_{Ph}) ppm.

¹³C{¹H} NMR (126 MHz, C₆D₆, 305 K): δ = 125.7 (CH_{Ph}), 127.0 (CH_{Ph}), 127.5-128.5 (N=C=S, C_{q,Ph})*, 149.5 (CH_{Ph}) ppm. * = overlap with C₆D₆ signal

¹**H NMR** (500 MHz, C₆D₆, 305 K): δ = 1.15-1.25 (m, 6H, CH_{2,Ad}), 1.52-1.53 (m, 6H, CH_{2,Ad}) 1.59-1.60 (m, 3H, CH_{Ad}) ppm.

¹³C{¹H} NMR (126 MHz, C₆D₆, 305 K): δ = 29.4 (CH_{Ad}), 35.5 (CH_{2,Ad}), 43.6 (CH_{2,Ad}), 58.4 (C_{q,Ad}), 128.4 (S=C=N)* ppm. * = overlap with C₆D₆ signal

1.59 1.53 1.52 1.52 1.15

¹**H NMR** (500 MHz, C₆D₆, 305 K): δ = 3.63 (s, 2H, CH₂), 6.75-6.77 (m, 2H, CH_{Ph}), 6.95-6.97 (m, 3H, CH_{Ph}) ppm.

¹³C{¹H} NMR (126 MHz, C₆D₆, 305 K): δ = 48.8 (CH₂), 127.5 (CH_{Ph}), 128.9 (CH_{Ph})*, 129.6 (CH_{Ph}), 135.4 (C_{q,Ph}) ppm. * = overlap with C₆D₆ signal

New Compounds

Attempted reaction of 1a with B(6F5)3

In a Young NMR-tube, phenyl isothiocyanate **1a** (0.010 g, 0.074 mmol) was dissolved in 0.6 mL of C₆D₆. B(C₆F₅)₃ (0.038 g, 0.074 mmol) was added to the solution and the sample was subsequently analyzed by multinuclear NMR spectroscopy, which revealed no conversion of both starting materials. Heating of the solution for several days at 80 °C also led to no reaction.

-170 10 -70 -150 30 -10 -30 -50 -90 -110 -130 -190 -210 -230 -250 Figure S12: ¹⁹F{¹H} NMR spectrum of phenyl isothiocyanate 1a and B(C₆F₅)₃ (470 MHz, C₆D₆, rt).

Synthesis of 2b

A) In a Young NMR-tube, 1-adamantyl isothiocyanate **1b** (0.015 g, 0.078 mmol) was dissolved in 0.6 mL of C₆D₆. B(C₆F₅)₃ (0.040 g, 0.078 mmol) was added to the solution and the sample was subsequently analyzed by multinuclear NMR spectroscopy, which revealed complete conversion of both starting materials after some minutes to yield compound **2b**.

B) 1-Adamantyl isothiocyanate **1b** (0.100 g, 0.517 mmol) was dissolved in 10 mL of toluene. B(C₆F₅)₃ (0.265 g, 0.517 mmol) was added and the reaction mixture was stirred for one hour at room temperature. All volatile components were removed under vacuum. The residue was washed with small amounts of *n*-hexane and dried subsequently under vacuum to yield **2b** as a slightly yellow solid.

Crystals suitable for single-crystal X-ray diffraction were obtained by layering the C_6D_6 solution of attempt **A** with *n*-hexane for several days.

Yield: 0.315 g (0.447 mmol, 86%).

Melting point: 182-184 °C.

IR (ATR): $\tilde{\nu} = 2934$, 2915, 2863, 2231 (C=N), 1648, 1519, 1457, 1383, 1345, 1287, 1101, 1084, 1026, 971, 951, 877, 821, 798, 773, 745, 728, 686, 678, 627, 610 cm⁻¹. **¹H NMR** (500 MHz, C₆D₆, 305 K): $\delta = 1.15$ -1.16 (m, 6H, CH_{2,Ad}), 1.53-1.59 (m, 9H,

'H NMR (500 MHz, C₆D₆, 305 K): $\delta = 1.15 \cdot 1.16$ (m, 6H, CH_{2,Ad}), 1.53 \cdot 1.59 (m, 9I CH_{2,Ad}, CH_{Ad}) ppm.

¹³C{¹H} NMR (126 MHz, C₆D₆, 305 K): δ = 31.5 (CH_{Ad}), 34.6 (CH_{2,Ad}), 44.4 (CH_{2,Ad}), 65.6 (C_{q,Ad}), 114.7 (N=CS), 116.0 (br, B(C_qC₅F₅)₃), 137.9 (dm, ¹J_{C,F} = 246.5 Hz, B(C_qC₅F₅)₃), 141.0 (dm, ¹J_{C,F} = 251.4 Hz, B(C_qC₅F₅)₃), 148.6 (dm, ¹J_{C,F} = 242.5 Hz, B(C_qC₅F₅)₃) ppm.

¹¹B{¹H} NMR (160 MHz, C₆D₆, 305 K): δ = -9.7 ppm

¹⁹**F**{¹**H**} **NMR** (470 MHz, C₆D₆, 305 K): δ = -163.3 (m, 6F, *m*-F_{Ar}B), -155.7 (t, ³*J*_{F,F} = 20.1 Hz, 6F, *p*-F_{Ar}B), -134.0 (m, 6F, *o*-F_{Ar}B) (Δδ¹⁹F_{*m,p*} = 7.6 ppm) ppm.

EA: Anal. calcd. for C₂₉H₁₅BF₁₅NS: C, 49.39; H, 2.14; N, 1.99; S, 4.55; Found: C, 49.57; H, 2.36; N, 1.80; S, 4.03.

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 **Figure S15**: ${}^{13}C{}^{1}H$ NMR spectrum of **2b** (126 MHz, C₆D₆, rt).

³⁰ ¹⁰ ⁻¹⁰ ⁻³⁰ ⁻⁵⁰ ⁻⁷⁰ ⁻⁹⁰ ⁻¹¹⁰ ⁻¹³⁰ ⁻¹⁵⁰ ⁻¹⁷⁰ ⁻¹⁹⁰ ⁻²¹⁰ ⁻²³⁰ ⁻²⁵⁰ **Figure S17**: ¹⁹F{¹H} NMR spectrum of **2b** (470 MHz, C₆D₆, rt).

Synthesis of 2c

A) In a Young NMR-tube, benzyl isothiocyanate **1c** (0.010 g, 0.067 mmol) was dissolved in 0.6 mL of C_6D_6 . B(C_6F_5)₃ (0.034 g, 0.067 mmol) was added to the solution and the sample was subsequently analyzed by multinuclear NMR spectroscopy, which revealed complete conversion of both starting materials after several hours to yield compound **2b**.

B) Benzyl isothiocyanate **1c** (0.073 g, 0.488 mmol) was dissolved in 10 mL of toluene. B(C₆F₅)₃ (0.250 g, 0.488 mmol) was added and the reaction mixture was stirred for one hour at room temperature. All volatile components were removed under vacuum. The residue was washed with small amounts of *n*-hexane and dried subsequently under vacuum to yield **2b** as a slightly yellow solid.

Crystals suitable for single-crystal X-ray diffraction were obtained by layering the C_6D_6 solution of attempt **A** with *n*-hexane and subsequent slow evaporation of the solvents at room temperature.

Yield: 0.272 g (0.411 mmol, 84%).

Melting point: 118-120 °C.

IR (ATR): $\tilde{\nu} = 2247$ (C=N), 1649, 1518, 1461, 1383, 1287, 1243, 1100, 970, 864, 820, 773, 739, 696, 682, 661, 630, 618 cm⁻¹.

¹**H NMR** (500 MHz, C₆D₆, 305 K): δ = 2.91 (s, 2H, CH₂), 6.56-6.57 (m, 2H, *m*-C*H*_{Ph}CH₂), 6.80-6.86 (m, 3H, *o*-C*H*_{Ph}CH₂, *p*-C*H*_{Ph}CH₂) ppm.

¹³C{¹H} NMR (126 MHz, C₆D₆, 305 K): δ = 39.3 (CH₂), 114.5 (NCS), 115.6 (br, B(<u>C</u>qC₅F₅)₃), 128.7 (*m*-<u>C</u>H_{Ph}CH₂), 129.2 (*o*-<u>C</u>H_{Ph}CH₂), 129.9 (*p*-<u>C</u>H_{Ph}CH₂), 132.0 (Cq,Ph), 137.7 (dm, ¹J_{C,F} = 247.5 Hz, B(CqC₅F₅)₃), 141.0 (dm, ¹J_{C,F} = 256.2 Hz, B(CqC₅F₅)₃), 148.5 (dm, ¹J_{C,F} = 243.8 Hz, B(CqC₅F₅)₃) ppm.

¹¹B{¹H} NMR (160 MHz, C₆D₆, 305 K): δ = -9.9 ppm

¹⁹**F**{¹**H**} **NMR** (470 MHz, C₆D₆, 305 K): δ = -163.2 (m, 6F, *m*-F_{Ar}B), -155.8 (t, ³*J*_{F,F} = 20.1 Hz, 6F, *p*-F_{Ar}B), -134.3 (m, 6F, *o*-F_{Ar}B) (Δδ¹⁹F_{*m,p*} = 7.4 ppm) ppm.

EA: Anal. calcd. for C₂₆H₇BF₁₅NS: C, 47.23; H, 1.07; N, 2.12; S, 4.85; Found: C, 47.98; H, 1.01; N, 1.90; S, 3.64.

S20

Synthesis of 3a

A) In a Young NMR-tube, phenyl isothiocyanate **1a** (0.010 g, 0.074 mmol) was dissolved in 0.6 mL of C_6D_6 . HB(C_6F_5)₂ (0.026 g, 0.074 mmol) was added to the solution and the sample was subsequently analyzed by multinuclear NMR spectroscopy, which revealed complete conversion of both starting materials after some minutes to yield compound **3a**.

B) Phenyl isothiocyanate **1a** (0.100 g, 0.740 mmol) was dissolved in 10 mL of toluene. HB(C₆F₅)₂ (0.256 g, 0.740 mmol) was added and the reaction mixture was stirred for one hour at room temperature. All volatile components have been removed under vacuum. The residue was washed with small amounts of *n*-hexane and dried subsequently under vacuum to yield **3a** as a yellow solid.

Yield: 0.298 g (0.619 mmol, 83%).

Melting point: 104-106 °C.

IR (ATR): $\tilde{\nu} = 1645$, 1596, 1520, 1489, 1453, 1376, 1319, 1294, 1261, 1170, 1095, 1029, 1005, 972, 867, 784, 744, 690, 651, 620 cm⁻¹.

¹**H NMR** (500 MHz, C₆D₆, 305 K): δ = 6.64-6.66 (m, 2H, CH_{Ph}), 6.85-6.90 (m, 3H, CH_{Ph}), 7.87 (s, 1H, SC(H)=N) ppm.

¹³C{¹H} NMR (126 MHz, C₆D₆, 305 K): δ = 112.3 (br, B(<u>C</u>_qC₅F₅)₂), 118.3 (2×CH_{Ph}), 128.2 (CH_{Ph})*, 129.6 (2×CH_{Ph}), 137.7 (dm, ¹J_{C,F} = 250.1 Hz, B(Cq<u>C</u>₅F₅)₂), 140.2 (C_{q,Ph}), 141.5 (dm, ¹J_{C,F} = 253.4 Hz, B(Cq<u>C</u>₅F₅)₂), 148.5 (dm, ¹J_{C,F} = 244.7 Hz, B(Cq<u>C</u>₅F₅)₂), 183.1 (SC(H)=N) ppm.

¹¹B{¹H} NMR (160 MHz, C₆D₆, 305 K): δ = 3.7 ppm

¹⁹**F{**¹**H} NMR** (470 MHz, C₆D₆, 305 K): δ = -162.6 (m, 4F, *m*-F_{Ar}B), -153.7 (t, ³*J*_{F,F} = 20.1 Hz, 2F, *p*-F_{Ar}B), -132.3 (m, 4F, *o*-F_{Ar}B) (Δδ¹⁹F_{*m*,*p*} = 8.9 ppm) ppm.

EA: Anal. calcd. for C₁₉H₆BF₁₀NS: C, 47.43; H, 1.26; N, 2.91; S, 6.66; Found: C, 47.53; H, 0.77; N, 2.53; S, 4.55.

²⁰ 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 **Figure S23**: ¹³C{¹H} NMR spectrum of **3a** (126 MHz, C₆D₆, rt).

S23

Synthesis of 3b

A) In a Young NMR-tube, 1-adamantyl isothiocyanate **1b** (0.015 g, 0.078 mmol) was dissolved in 0.6 mL of C_6D_6 . HB(C_6F_5)₂ (0.027 g, 0.078 mmol) was added to the solution and the sample was subsequently analyzed by multinuclear NMR spectroscopy, which revealed complete conversion of both starting materials after some minutes to yield compound **3b**.

B) 1-Adamantyl isothiocyanate (0.250 g, 1.293 mmol) was dissolved in 10 mL of toluene. HB(C₆F₅)₂ (0.447 g, 1.293 mmol) was added and the reaction mixture was stirred for one hour at room temperature. The solution was placed at -26 °C which results in the precipitation of colorless crystals after several days. The supernatant was removed and the crystalline material was washed with small amounts of *n*-hexane to yield **3b** as colorless crystals. These crystals were suitable for single-crystal X-ray diffraction.

Yield: 0.380 g (0.705 mmol, 55%).

Melting point: 168-170 °C.

IR (ATR): $\tilde{\nu} = 2920, 2857, 1648, 1538, 1520, 1462, 1385, 1359, 1305, 1291, 1259, 1229, 1116, 1100, 1045, 1025, 985, 961, 935, 924, 881, 817, 806, 783, 769, 739, 721, 681, 663, 643, 628 cm⁻¹.$

¹**H NMR** (500 MHz, C₆D₆, 305 K): δ = 1.18-1.29 (m, 6H, CH_{2,Ad}), 1.51-1.52 (m, 6H, CH_{2,Ad}), 1.65-1.66 (m, 3H, CH_{Ad}), 7.91 (s, 1H, SC(H)=N) ppm.

¹³C{¹H} NMR (126 MHz, C₆D₆, 305 K): δ = 29.4 (CH_{Ad}), 35.6 (CH_{2,Ad}), 41.0 (CH_{2,Ad}), 61.6 (C_{q,Ad}), 114.0 (br, B(<u>C</u>qC₅F₅)₂), 137.8 (dm, ¹J_{C,F} = 248.7 Hz, B(Cq<u>C</u>₅F₅)₂), 141.1 (dm, ¹J_{C,F} = 247.3 Hz, B(Cq<u>C</u>₅F₅)₂), 148.3 (dm, ¹J_{C,F} = 243.0 Hz, B(Cq<u>C</u>₅F₅)₂), 183.6 (SC(H)=N) ppm.

¹¹B{¹H} NMR (160 MHz, C₆D₆, 305 K): δ = 2.3 ppm

¹⁹**F**{¹**H**} **NMR** (470 MHz, C₆D₆, 305 K): δ = -162.9 (m, 4F, *m*-F_{Ar}B), -155.1 (t, ³*J*_{F,F} = 20.1 Hz, 2F, *p*-F_{Ar}B), -131.2 (m, 4F, *o*-F_{Ar}B) (Δδ¹⁹F_{*m*,*p*} = 7.8 ppm) ppm.

EA: Anal. calcd. for C₂₃H₁₆BF₁₀NS: C, 51.23; H, 2.99; N, 2.60; S, 5.95; Found: C, 50.59; H, 1.96; N, 2.34; S, 4.30.

Synthesis of 3c (4)

A) In a Young NMR-tube, benzyl isothiocyanate **1c** (0.010 g, 0.067 mmol) was dissolved in 0.6 mL of C₆D₆. HB(C₆F₅)₂ (0.023 g, 0.074 mmol) was added to the solution and the sample was subsequently analyzed by multinuclear NMR spectroscopy, which revealed complete conversion of both starting materials after some minutes to yield **3c**.

B) Benzyl isothiocyanate (0.065 g, 0.434 mmol) was dissolved in 10 mL of toluene. HB(C₆F₅)₂ (0.150 g, 1.293 mmol) was added and the reaction mixture was stirred for one hour at room temperature. All volatile components were removed under vacuum and the residue was washed several times with *n*-hexane followed by drying of the residue under vacuum to yield **4** as a colorless solid.

Crystals suitable for single crystal X-ray diffraction were obtained by layering the C_6D_6 solution of attempt **A** with *n*-hexane. Two types of differently shaped crystals were obtained (**4** and the other **4**•C₆D₆).

Yield: 0.148 g (0.299 mmol, 69%).

Melting point: 185-187 °C.

IR (ATR): $\tilde{v} = 2963$, 1646, 1561, 1520, 1460, 1383, 1355, 1293, 1260, 1094, 1038, 1028, 980, 931, 866, 799, 779, 762, 744, 722, 692, 675, 647, 633, 613 cm⁻¹.

¹**H NMR** (500 MHz, C₆D₆, 305 K): δ = 4.12 (s, 2H, CH₂), 6.68-6.70 (m, 2H, CH_{Ph}), 6.90-6.95 (m, 3H, CH_{Ph}), 7.25 (s, 1H, SC(H)=N) ppm.

¹³C{¹H} NMR (126 MHz, C₆D₆, 305 K): δ = 57.1 (CH₂), 129.2 (CH_{Ph}), 129.4 (CH_{Ph}), 129.7 (CH_{Ph}), 132.4 (C_{q,Ph}), 113.1 (B(<u>C</u>_qC₅F₅)₂), 137.7 (dm, ¹J_{C,F} = 249.9 Hz, B(C_qC₅F₅)₂), 141.1 (dm, ¹J_{C,F} = 251.5 Hz, B(C_qC₅F₅)₂), 147.8 (dm, ¹J_{C,F} = 240.0 Hz, B(C_qC₅F₅)₂), 186.2 (SC(H)=N) ppm.

¹¹**B**{¹**H**} **NMR** (160 MHz, C₆D₆, 305 K): δ = 3.1 ppm

¹⁹**F**{¹**H**} **NMR** (470 MHz, C₆D₆, 305 K): δ = -162.8 (m, 4F, *m*-F_{Ar}B), -155.0 (t, ³*J*_{F,F} = 20.8 Hz, 2F, *p*-F_{Ar}B), -132.0 (m, 4F, *o*-F_{Ar}B) ($\Delta\delta^{19}F_{m,p}$ = 7.8 ppm) ppm. **EA:** Anal. calcd. for C₂₀H₈BF₁₀NS: C, 48.52; H, 1.63; N, 2.83; S, 6.47; Found: C, 47.86; H, 1.02; N, 2.38; S, 4.75.

-110 -130 30 10 -10 -30 -50 -70 -90 -150 -170 -190 -210 -230 -250 **Figure S33**: ¹⁹F{¹H} NMR spectrum of **3c** (470 MHz, C₆D₆, rt).

Table S1: Selected NMR data of compounds	3a-c and HC(O)(NPh)Bpin ^{S14} . ^a
--	-----------------	--

	δ ¹ H/δ ¹³ C N=C(H)–S	δ ¹¹ B	δ ¹⁹ F (Δδ ¹⁹ F _{<i>m,p</i>^b)}
3а	7.87 / 183.1	3.7	-162.6, -153.7, -132.3 (8.9)
3b	7.91 / 183.6	2.3	-162.9, -155.1, -131.2 (7.8)
3c	7.25 / 186.2	3.1	-162.8, -155.0, -132.0 (7.8)
HC(O)(NPh)Bpin	8.10 / 168.7	5.1	-

^a: Measurements were carried out in C_6D_6 at room temperature and values are given in ppm.

^b: The planar structure of three-coordinate boron atoms effect the resonance between the empty 2p orbital localized at the boron atom and the neighboring perfluorinated aryl π system, leading to distinct deshielding of the *para*-fluorine atoms, which is hampered by coordination of a fourth substituent. As a consequence, the corresponding signal in the ¹⁹F NMR spectrum is shifted to higher field, whereas the *meta*-fluorine atoms remain unaffected by the pyramidalization of the boron atom. Accordingly, the difference in the ¹⁹F NMR chemical shifts $\Delta \delta^{19}F_{m,p}$ becomes smaller. For a more detailed description see S15.

DOSY Experiments

Table S2: Parameters derived from	he ¹ H DOSY NMR ex	periments of 3a-c.
-----------------------------------	-------------------------------	--------------------

	D (cm²/s)	D (m²/s)	log D
3a	1.08•10 ⁻⁵	1.08•10 ⁻⁸	
3b	7.90•10 ⁻⁶	7.90•10 ⁻⁹	-8.10
3c	8.67•10 ⁻⁶	8.67•10 ⁻⁹	-8.06

Exposure of 3a and 3b to air and moisture:

The above mentioned NMR samples of **3a** and **3b** were slowly evaporated without protection from atmospheric moisture (the sample of **3a** was layered with *n*-hexane in advance), which resulted in the formation of two differently types of crystals in the case of **3b**. Single crystal X-ray diffraction and subsequent comparison of the unit cell parameters are in accordance to the formation of the previously reported boron containing compound $B(OH)_2(C_6F_5)_2$ (**6**) and *N*-(1-adamantyl)methanethioamide (**5b**). The product mixture was subsequently solved in C₆D₆ and NMR analyses verified, that also the 1,2,3,4,5-pentafluorobenzene (**7**) was formed during the hydrolysis of **3b**. In the case of the sample of **3a**, colorless needles were formed which were also suitable for single crystal X-ray diffraction analysis. It was shown that the corresponding *N*-phenylmethanethioamide (**5a**) was formed during this reaction. Literature data^{S5-S8}

Unit cell parameters of 6 (measured): Unit cell parameters of 6 (ref. S5)	
T = 100(2) K	T = 240 K
a = 7.33 Å; α = 90°	a = 7.45 Å; α = 90°
b = 4.98 Å; β = 96.08°	b = 5.01 Å; β = 96.78°
$c = 9.86 \text{ Å}; \gamma = 90^{\circ}$ $V = 358 \text{ Å}^3$	$c = 10.06 \text{ Å}; \gamma = 90^{\circ}$ $V = 372 \text{ Å}^3$
	CCDC : 940263

Table S3: Unit cell parameters of 6

NMR data of the product mixture

¹**H NMR** (500 MHz, C₆D₆, 305 K): δ = 1.18-1.30 (m, 12H, CH_{2,Ad}), 1.64-1.65 (m, 3H, CH_{Ad}), 5.04 (m(br), B(OH)₂), 5.84-5.86 (m, 1H, HC₆F₅), 8.12 (s(br), 1H, NH), 9.17 (d, ³J_{H,H} = 15.5 Hz, HC=S) ppm.

¹³C{¹H} NMR (126 MHz, C₆D₆, 305 K): δ = 29.4 (CH_{Ad}), 35.7 (CH_{2,Ad}), 42.5 (CH_{2,Ad}), 55.5 (C_{q,Ad}), 187.1 (HC=S) ppm.

¹¹B{¹H} NMR (160 MHz, C₆D₆, 305 K): δ = 26.8 ppm

¹⁹**F**{¹**H**} **NMR** (470 MHz, C₆D₆, 305 K): δ = -162.1 (m, 2F, *m*-F_{Ar}B), -151.2 (t, ³*J*_{F,F} = 20.3 Hz, 1F, *p*-F_{Ar}B), -132.7 (m, 2F, *o*-F_{Ar}B) (Δδ¹⁹F_{*m,p*} = 10.3 ppm); -162.4 (m, 2F, *m*-F_{Ph}C_{q,ipso}), -154.1 (t, ${}^{3}J_{F,F}$ = 20.7 Hz, 1F, *p*-F_{Ph}C_{q,ipso}), -139.1 (m, 2F, *o*- F_{Ph}C_{q,ipso}) ($\Delta \delta^{19}F_{m,p}$ = 8.3 ppm) ppm.

¹⁵N NMR (202 MHz, C₆D₆, 305 K): δ = 185.9 ppm.

S36

Reaction of 3b with H₂O:

3b (0.032 g, 0.059 mmol) was dissolved in 0.6 mL of C_6D_6 . One drop of water (approx. 5 mg) were added and the sample was subsequently analyzed over time by ¹H NMR analysis. The evaluation of the NMR data and comparison with the literature verified that the compounds **5b** and **6-8** are obtained.^{S5-S8, S13}

NMR data of the product mixture

¹**H NMR** (500 MHz, C₆D₆, 305 K): δ = 1.19-1.31 (m, 12H, CH_{2,Ad}), 1.64-1.65 (m, 3H, CH_{Ad}), 5.04 (m(br), B(OH)₂), 5.84-5.86 (m, 1H, HC₆F₅), 8.12 (s(br), 1H, NH), 9.12 (d, ³J_{H,H} = 15.0 Hz, HC=S) ppm.

¹³C{¹H} NMR (126 MHz, C₆D₆, 305 K): δ = 29.4 (CH_{Ad}), 35.6 (CH_{2,Ad}), 42.4 (CH_{2,Ad}), 55.7 (C_{q,Ad}), 186.9 (HC=S) ppm.

¹¹B{¹H} NMR (160 MHz, C₆D₆, 305 K): δ = 26.8 ((HO)₂B(C₆F₅)), 21.3 ((HO)B(C₆F₅)₂) ppm

¹⁹**F{¹H} NMR** (470 MHz, C₆D₆, 305 K): δ = -162.2 (m, 2F, *m*-F_{Ar}B), -151.4 (t, ³*J*_{F,F} = 20.3 Hz, 1F, *p*-F_{Ar}B), -132.7 (m, 2F, *o*-F_{Ar}B) (Δδ¹⁹F_{*m,p*} = 10.8 ppm); -162.5 (m, 2F, *m*-F_{Ph}C_{q,ipso}), -154.2 (t, ³*J*_{F,F} = 20.7 Hz, 1F, *p*-F_{Ph}C_{q,ipso}), -139.2 (m, 2F, *o*-F_{Ph}C_{q,ipso}) (Δδ¹⁹F_{*m,p*} = 8.3 ppm) ppm.

Figure S45: ${}^{13}C{}^{1}H$ NMR spectrum of the reaction of **3b** with water (126 MHz, C₆D₆, rt).

¹²⁰ -122 -124 -126 -128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 -158 -160 -162 -164 -166 -168 **Figure S47**: ¹⁹F{¹H} NMR spectrum of the reaction of **3b** with water (470 MHz, C₆D₆, rt); +: unidentified byproduct.

Crystallographic Data:

Single crystal X-ray data were measured at 100 K on a Bruker AXS D8 Venture diffractometer (multilayer optics, monochromated Mo-K α radiation with $\lambda = 0.71073$ Å, Kappa 4-circle goniometer, Photon III C14 CPAD detector). Empirical absorption corrections using equivalent reflections were performed with the programs SADABS⁵⁹ and, for **5b**, TWINABS; the structures were solved with the program SHELXS^{S10} and refined with SHELXL^{S11} using the OLEX2^{S12} GUI. The crystallographic data can be obtained free of charge from https://www.ccdc.cam.ac.uk/structures/ quoting the CCDC numbers 1985529-1985534, and 1988662.

	2b	2c	3b	4
CCDC	1985534	1985531	1985530	1985532
empirical formula	C ₂₉ H ₁₅ BF ₁₅ NS	C ₂₉ H7BD ₃ F ₁₅ NS	C ₂₃ H ₁₆ NF ₁₀ NS	$C_{80}H_{32}B_4F_{40}N_4S_4$
fw	705.29	703.27	539.24	1980.57
colour	colorless	colorless	colorless	colorless
Habit	plate	block	block	tetragonal prism
cryst dimens, mm	0.20 x 0.13 x 0.04	0.14 x 0.06 x 0.05	0.12 x 0.08 x 0.05	0.15 x 0.10 x 0.10
cryst syst	triclinic	triclinic	monoclinic	tetragonal
space group	<i>P</i> -1	<i>P</i> -1	<i>P</i> 2 ₁	I4 ₁ /a
a, Å	10.6377(4)	11.0472(6)	10.5637(3)	25.7921(6)
b, Å	11.0835(4)	13.8833(7)	7.3903(2)	25.7921(6)
c, Å	12.3782(4)	18.2965(8)	13.8954(4)	11.5395(4)
α , deg	86.9491(13)	78.3352(18)	90	90
β, deg	70.7503(12)	79.4105(18)	98.8924(11)	90
γ, deg	73.9923(14)	86.855(2)	90	90
V, Å ³	1323.26(8)	2700.9(2)	1071.76(5)	7676.4(5)
z	2	4	2	4
D _{caclcd} , g cm ⁻³	1.770	1.729	1.671	1.714
μ, mm ⁻¹	0.253	0.247	0.251	0.273
Т, К	100(2)	100(2)	100(2)	100(2)
heta range, deg	2.108 – 36.319	1.498 – 33.728	2.261 – 34.968	1.579 – 36.315
no. of rflns collected	145517	221213	67044	283547
no. of indep rflns	12838	21581	9414	9285
(R(int))	(0.0364)	0.0494	(0.0448)	0.0433
no. of rflns with I>2 <i>o</i> (I)	10845	17092	8986	8138
abs cor	semi-empirical	semi-empirical	semi-empirical	semi-empirical
max, min transmission	1.0000 and 0.9499	1.0000 and 0.9437	1.0000 and 0.9404	1.0000 and 0.9417
final R indices	R1 = 0.0333	R1 = 0.0426	R1 = 0.0375	R1 = 0.0321
[l>2 <i>o</i> (l)]	wR2 = 0.0911	wR2 = 0.1051	wR2 = 0.0983	wR2 = 0.0872
R indices (all data)	R1 = 0.0430	R1 = 0.0591	R1 = 0.0399	R1 = 0.0391
	wR2 = 0.1013	wR2 = 0.1144	wR2 = 0.1000	wR2 = 0.0924
GOF on F ²	1.016	1.065	1.091	1.102
largest diff peak / hole	0.623 and -0.688	0.527 and -0.508	0.825 and -0.299	0.605 and -0.307
(e.Å ⁻³)				

Table S4: Crystal Structure Data for Compounds 2b, 2c, 3b, and 4a.

	4•C ₆ D ₆	5a	5b	
CCDC	1985533	1988662	1985529	
empirical formula	$C_{92}H_{32}B_4D_{12}F_{40}N_4S_4$	C7H7NS	C11H17NS	
fw	2148.86	137.20	195.31	
colour	colorless	colorless	colorless	
Habit	oblique block	needles	plate	
cryst dimens, mm	0.13 x 0.09 x 0.04	0.08 x 0.02 x 0.02	0.08 x 0.05 x 0.015	
cryst syst	monoclinic	orthorhombic	monoclinic	
space group	P21/c	Pnma	P21/n	
a, Å	27.803(2)	17.6153(12)	7.4323(8)	
b, Å	16.1663(10)	7.9189(6)	6.7992(8)	
c, Å	19.7323(13)	4.8341(3)	19.910(2)	
α , deg	90	90	90	
β , deg	94.517(3)	90	93.113(4)	
γ, deg	90	90	90	
V, Å ³	8841.5(10)	674.33(8)	1004.65(19)	
Z	4	4	4	
D _{caclcd} , g cm ⁻³	1.614	1.351	1.291	
μ, mm ⁻¹	0.243	3.427	0.274	
Т, К	100(2)	100(2)	100(2)	
heta range, deg	1.458 – 28.699	5.021 – 74.312	2.877 – 30.027	
no. of rflns collected	319725	7400	4178	
no. of indep rflns	22874	729	44.70	
(R(int))	0.0576	0.0469	4178	
no. of rflns with I>2 <i>o</i> (I)	19354	644	3295	
abs cor	semi-empirical	semi-empirical	semi-empirical	
max min transmission	1.0000 and 0.9525	1.0000 and 0.8792	1.000000 and	
max, min transmission			0.848914	
final R indices	R1 = 0.0407	R1 = 0.0244	R1 = 0.0899	
[l>2 <i>o</i> (l)]	wR2 = 0.0843	wR2 = 0.0626	wR2 = 0.1324	
R indices (all data)	R1 = 0.0520	R1 = 0.0301	R1 = 0.1188	
	wR2 = 0.0888	wR2 = 0.0660	wR2 = 0.1406	
GOF on F ²	1.092	1.037	1.194	
largest diff peak / hole	0.435 and -0.366	0.188 and -0.213	0.394 and -0.592	
(e.Å ⁻³)				

Table S5: Crystal Structure Data for Compounds $4 \cdot C_6 D_6$, 5a, and 5b.

Figure S48: Molecular structure of 2b.

Figure S49: View along the *b* axis showing the packing of molecules in the crystal structure of complex **2b**. Hydrogen atoms have been omitted for clarity.

Figure S50: Molecular structure of 2c.

Figure S51: View along the *a* axis showing the packing of molecules in the crystal structure of complex **2c**. Hydrogen atoms have been omitted for clarity.

Figure S52: Molecular structure of 3b.

Figure S53: View along the *c* axis showing the packing of molecules in the crystal structure of complex **3b**. Hydrogen atoms have been omitted for clarity.

Figure S54: Molecular structure of 4.

Figure S55: View along the *c* axis showing the packing of molecules in the crystal structure of complex **4**. Hydrogen atoms have been omitted for clarity.

Figure S56: Molecular structure of 5a.

Figure S57: View along the *c* axis showing the packing of molecules in the crystal structure of complex **5a**. Hydrogen atoms have been omitted for clarity.

Figure S58: Molecular structure of 5b.

c a

Figure S59: View along the *b* axis showing the packing of molecules in the crystal structure of complex **5b**. Hydrogen atoms have been omitted for clarity.

Author Contributions

Marc Schmidtmann: measurement of the single crystals via X-ray diffraction

Malte Fischer: project administration, investigation, data curation, writing of the publication

References

- S1 L. E. Longobardi, T. C. Johnstone, R. L. Falconer, C. A. Russell, D. W. Stephan, *Chem. Eur. J.* **2016**, *22*, 12665-12669.
- S2 L. C. Wilkins, J. R. Lawson, P. Wieneke, F. Rominger, A. S. K. Hashmi, M. M. Hansmann, R. L. Melen, *Chem. Eur. J.* **2016**, *22*, 14618-14624.
- S3 D. J. Parks, W. E. Piers, G. P. A. Yap, *Organometallics* **1998**, *17*, 5492-5503.
- S4 M. Lehmann, A. Schulz, A. Villinger, Angew. Chem. Int. Ed. 2009, 48, 7444-7447.
- S5 T. D. Grayfer, A. Y. Makarov, I. Y. Bagryanskaya, I. G. Irtegova, Y. V. Gatilov, A. V. Zibarev, *Heteroatom. Chem.* **2015**, *26*, 42-50.
- S6 K. de la Vega-Hernández, R. Senatore, M. Miele, E. Urban, W. Holzer, V. Pace, *Org. Biomol. Chem.* **2019**, *17*, 1970-1978.
- S7 C. J. Borths, J. Chan, B. J. Burke, R. D. Larsen, *Synlett* **2009**, *19*, 3139-3142.
- S8 M. Edgar, F. Zeinali, M. Mojally, C. Hughes, S. Riaz, G. W. Weaver, J. Fluor. Chem. 2019, 224, 35-44.
- S9 L. Krause, R. Herbst-Irmer, G. M. Sheldrick, D. Stalke, J. Appl. Cryst. 2015, 48, 3-10.
- S10 G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122.
- S11 G. M. Sheldrick, Acta Cryst. 2015, C71, 3-8.
- S12 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *Appl. Cryst.* **2009**, *42*, 339-341.
- S13 S. P. A. Hinkes, C. D. P. Klein, Org. Lett. 2019, 21, 3048-3052.
- S14 N. L. Lampland, M. Hovey, D. Mukherjee, A. D. Sadow, ACS. Catal. 2015, 5, 4219-4226.
- S15 T. Beringhelli, D. Donghi, D. Maggioni and G. D'Alfonso, *Coord. Chem. Rev.* **2008**, *252*, 2292-2313.