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S1. Dataset Construction 

The dataset to train the ML models consisted of coordinates of beads in CG models as 

input, and the coordinates of atoms in all-atom models as output. The accuracy and robustness of 

ML models rely on the fidelity of the dataset. Specifically, the training dataset should cover a large 

range of molecular structures.1,2 To generate the input data for training and testing of all the ML 

models, 1000 molecules were randomly packed in a simulation box and then equilibrated for 5 ns 

in NPT ensemble. All-atom MD simulations were carried out with CHARMM force-field by using 

the NAMD package.3,4 Periodicity was applied in all the three directions. A real space cutoff of 12 

Å was used to truncate the nonbonded interactions with a switching function applied at 9 Å to 

truncate the van der Waals potential energy smoothly at the cutoff distance. Long-range 

Coulombic interactions were treated using particle mesh Ewald with an accuracy of 1 × 10–6. A 

pair list distance of 15 Å was used to store the neighbors of a given bead. The equations of motion 

were integrated by the velocity Verlet algorithm with a timestep of 1 fs. Langevin thermostat and 

barostat were used to keep the temperature at 300 K and pressure at 1 bar. The positions of atoms 

were saved every 1 ps. We extracted a trajectory of 100 randomly selected molecules in the final 

10 ps (100 frames) of 5 ns (50,000 frames), which contained 10,000 configurations in total for 

generating the dataset. The center of mass of every molecule from these 10,000 configurations was 

placed to the origin, which can be treated as normalizing the coordinates of each atom to a narrow 

range. This resulted in a small dimensional space for the dataset for training, to help improve the 

accuracy of ML models. An example of the dataset for hexane is shown in Figure S1. Two files 

of the dataset: data_benzene.xlsx and data_hexane.xlsx have been attached as supporting 

information for readers who are interested in training/improving the models in the future. 
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Figure S1. The dataset of hexane for building ML models. The coordinates of CG beads are in 

blue and those of atoms are in green. Similar datasets were used for other molecules in the present 

study.  

Several methods such as k-fold, leave-one-out, etc. can be used to generate/split a dataset 

to train the ML models.2,5 As one would expect each method has its own advantage and 

disadvantage so care must be taken while choosing these methods. Each dataset was randomly 

split so that 80 % of the data for training and the remaining 20 % for testing. For training, k-fold 

cross-validation was used to prevent overfitting of the ML models.2 As shown in Figure S2, the 

training data is split k folds (k = 5 in this study), where one fold is used as a validation set and the 

other k-1 folds as training sets. This process is repeated k times with each fold as a validation set 

and thus k ML models were generated. The performance of these k ML models was averaged to 

get the final average R2 score and standard deviation. This method is generally robust and yields 

results with reasonable accuracy, as demonstrated in the present study. 
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Figure S2. The schematic for k-fold (k=5) cross validation. 

 

S2. ML Model development 

ANN is one of the most popular ML models, which has been widely used in information 

technologies such as image classification, and natural language processing.6 Recently, it has also 

been used in computational materials science.7–9 Here, we construct different ANN regression 

models by changing the number of hidden layers (1 to 4) and hidden nodes (5 to 30), to understand 

the effect of the number of hidden layers and hidden nodes on the R2 score of the ANN model. 

Each layer is fully connected to its preceding layer. An example is shown in Figure S3. Each node 

represents a weighted linear summation function and an activation function. The activation 

function is ReLu in each layer. The input is the set of coordinates of CG beads, and transformed 

non-linearly to predict the coordinates of atoms in the all-atom model, as the output. The loss 

function is the mean of squared errors (MSE) between the true values and predicted ones along 

with the L2 penalty (alpha = 0.1). Adam algorithm with an initial learning rate of 0.001 is employed 

to obtain the optimized parameters in decreasing the loss function.2 The effect of the number of 

nodes on its R2 score is shown in Figure S4. It’s found that the R2 score of ANN models with two 

hidden layers increases drastically as the number of hidden nodes increases from 5 to 10. Whereas 

it changes slightly as the number of hidden nodes is further increased to 30. The number of hidden 

layers on ANN models (10 hidden nodes in each layer) has little impact on the R2 score as shown 

in Figure S5. Hence we used the ANN models with two hidden layers and 10 hidden nodes in 
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each layer. The training and testing of ANN models and the following k-NN, gaussian process 

regression, and random forests were achieved by using the Scikit-learn package.10 

 
Figure S3. A representative architecture of the ANN model used in this study. 

 

Figure S4: The R2 scores of ANN models with different number of nodes in each hidden layer 
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for (a) furan, (b) benzene, (c) hexane, (d) naphthalene, (e) graphene, and (f) fullerene. The 

number of hidden layers in each ANN model is two and the sample size is 5000. 

 

 

Figure S5. The R2 scores of ANN models with different number of hidden layers for (a) furan, 

(b) benzene, (c) hexane, (d) naphthalene, (e) graphene, and (f) fullerene. The number of nodes in 

each layer is 10 and the sample size is 5000. 

 

k-NN is a simple ML model that uses the distance between data points to solve 

classification or regression problems.11 The most used distance metric is the Euclidean distance to 

measure the similarity between two points. Based on this, the data points with the k shortest 

distance from the data to be predicted would be selected to assign classes or values of the unknown 

data. Here, we studied the performance of k-NN models with different k values (3, 5, 8). The R2 

score of k-NN models for testing is increased slightly as the k value is increased from 3 to 8 as 

shown in Table S1. As the k value increases, the R2 score for testing is increased slightly from ~ 

0.98 to ~  0.99 for furan, benzene, and naphthalene. For hexane, it’s increased much more from ~ 

0.73 to ~ 0.76, by 0.03. The R2 score for testing is always higher than 0.99 for graphene, while it’s 
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around 0.97 for fullerene regardless of k values. Overall, the k value is set to be 5 in the study 

unless specified. 

 

Table S1. The R2 scores of k-NN models with different k values. The dataset size is 5000. 

 k=3 k=5 k=8 

training testing training testing training testing 

Furan 0.991±0.001 0.986±0.000 0.990±0.001 0.988±0.000 0.992±0.002 0.990±0.000 

Benzene 0.989±0.002 0.987±0.000 0.987±0.001 0.989±0.000 0.991±0.001 0.991±0.000 

Hexane 0.734±0.003 0.728±0.002 0.761±0.002 0.750±0.002 0.771±0.002 0.761±0.001 

Naphthalene 0.990±0.001 0.988±0.000 0.992±0.002 0.990±0.000 0.993±0.001 0.991±0.000 

Graphene 0.992±0.001 0.991±0.000 0.990±0.001 0.993±0.000 0.992±0.001 0.994±0.000 

Fullerene 0.980±0.004 0.973±0.003 0.971±0.002 0.975±0.003 0.970±0.002 0.975±0.002 

 

 

RF is an ensemble model consisting of several decision trees to predict the final 

labels/values by selecting a subset of features for each decision tree.2 The performance of RF 

models is usually better than that of one single decision-tree model. The minimum number of 

samples splitting a node is set to be 2, and the minimum number of samples in a leaf node is 1. 

The number of features to consider for best splitting is the total number of features. The effects of 

max_depth and n_estimators are explored in Figure S6. Specifically, we studied the RF models 

with max depth varying from 5 - 20 and n_estimators from 5 to 20.  In building the RF models, 

MSE is used to split the trees. It can be found that the RF models are more sensitive to the changes 

of max depths. To be specific, as the max depth increases from 5 to 10, the R2 score for testing 

increases from around 0.72 to 0.95 for furan, naphthalene, and fullerene, with a fixed number of 

estimators (5 or 10 or 15). On the other hand, the R2 score for testing is only increased slightly by 

less than 0.1 as the number of estimators increases from 5 to 20. Based on these results, we 

recommend using a max depth of 10 and the number of estimators of 10 for RF models. 
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Figure S6. The heatmap for R2 scores of RF models for testing with various max depths and 

number of estimators. The panels represent RF models for backmapping CG molecules of (a) 

furan, (b) benzene, (c) hexane, (d) naphthalene, (e) graphene, (f) fullerene. 

 

GPR is a nonparametric Bayesian approach to infer the probability distribution over all 

possible values.12 In the Gaussian prior, the collection of training and testing data points are joint 

multivariate Gaussian distributed, which can be described in Equation S1. 

 

         Equation S1 

 

Where y is the output values of training data X, f* is the predicted label/output of testing 

data X*. K is the kernel or covariance. The constant kernel with the radial basis function (RBF)  

is one of the popular kernels, as shown in Equation S2. 

Equation S2 

Where σ is the signal variance, and l is the length scale. These two parameters are optimized 

during training to maximize the marginalized log-likelihood of the training data in Equation S3. 
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log(p(y|X)) = log N(0, K(X,X)) = -½ yK-1(X,X)y - 1/2log|K(X,X)+σn
2I| - N/2log(2π) Equation 

S3 

According to multivariate Gaussian theorem, the predicted values f* are in a normal 

distribution with mean value 𝑓̅∗and covariance Σ*, which are shown below:  

   Equation S4 

Equation S5 

Equation S6 

 

Kernel ridge regression (KRR) is one of the kernel-based regression methods. It converts 

the input data from a low dimensional space into a new high dimensional space by using kernel-

trick.1 In this study, the kernel is a three-degree polynomial kernel. SVR is the regression model 

as an extension of the support vector machine (SVM).2,10 In this study, it’s a multi-output SVR 

model where N ( the dimensionality of the output data) regression models were trained on N 

columns of the output space, respectively. Note, KRR and SVM were used to ensure that the 

predictions from other models are not due to overfitting. Overfitting can be referred as when a 

model performs quite well on the training data but fails to predict “unseen” data.2,5 In general, the 

reason for overfitting is that a model learns all the information containing noise and fluctuations 

in the training data to the extent that it impairs the performance of the model on new data.2 

 

Table S2. The testing and training accuracies of KRR and SVM models for backmapping benzene 

and graphene. The dataset used consists of 5000 samples. 

 Benzene Graphene 

Training accuracy Testing accuracy Training accuracy Testing accuracy 

KRRa 0.998 0.998 0.99 0.99 

SVRb 0.997 0.997 0.98 0.98 

 

a:Parameters for the KRR model:kernel = poly, alpha = 0.1, coef0 = , degree = 3.  

b:Parameters for the SVR model:sklearn.multioutput.MultiRegressor(estimator = SVR(kernel = 

‘rbf’, degree=3, gamma='scale', coef0=0.0, tol=0.001, C=1.0, epsilon=0.1)) 
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S3. Performance of machine-learning models 

 The performance of ML regression models is determined by the root of mean square error 

(RMSE) and R2 score, which are described below.2 

RMSE: The RMSE of predicted values/vectors ypred compared with true values/vectors 

ytrue is calculated by using the following equation. N represents the dimensions in the output space.  

 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝑦𝑖,𝑡𝑟𝑢𝑒 − 𝑦𝑖,𝑝𝑟𝑒𝑑)2𝑁

𝑖=1                                   Equation S7 

 

R2 score: The R2 score defined for the regression models as shown in Equation S8. n is 

the number of samples in the train/test set, and N is the dimension of output. �̅�𝑖,𝑗,𝑡𝑟𝑢𝑒 is the 

average value of the jth element in the true vector yi,true(the true output value of the ith sample). 

𝑅2 =  1 −
∑ ∑ (𝑦𝑖,𝑗,𝑡𝑟𝑢𝑒−𝑦𝑖,𝑗,𝑝𝑟𝑒𝑑)2𝑁

𝑗=1

𝑛

𝑖=1

∑ ∑ (𝑦𝑖,𝑗,𝑡𝑟𝑢𝑒−�̅�𝑖,𝑗,𝑡𝑟𝑢𝑒)2𝑁
𝑗=1

𝑛
𝑖=1

                               Equation S8 

 

 

 

Figure S7. The CG hexane model and its two backmapped all-atom models. 
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S4. Uncertainty Quantification: To test the robustness of ML models, bootstrapping is employed 

to obtain the uncertainty quantifications of these ML models.1,13,14 Bootstrapping is a widely used 

method to resample the dataset.13,15 Here, we resampled the training dataset with replacement for 

500 times, and each resampled dataset was used to build ML models. As a result, 500 ML models 

could be built and were tested against the testing dataset to calculate R2 score. The histograms of 

these R2 scores were plotted with 95% confidence interval and their average values shown in the 

histogram. 
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Figure S8. Uncertainty quantification of the testing R2 scores of the models: (1) ANN, (2) k-NN, 

(3) GPR, and (4) RF models for (a) benzene, (b) hexane, (c) naphthalene, (d) graphene, and (e) 

fullerene.   



 



Figure S9. Uncertainty quantification of the training R2 scores of the models: (1) ANN, (2) k-

NN, (3) GPR, and (4) RF models for (a) furan, (b) benzene, (c) hexane, (d) naphthalene, (e) 

graphene, and (f) fullerene.   
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