Supporting Information

for

Binding selectivity and separation for *p*-functionalized toluene with metallo cavitand in water

Faiz-Ur Rahman,^a Ji-min Yang,^c Yunhui Wan,^a Hui-bin Zhang,^a Ioannis D. Petsalakis,^b Giannoula Theodorakopoulos,^b Julius Rebek Jr.,^{*a,c} Yang Yu^{*a}

Author Affiliations:

^aCenter for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China

^bTheoretical and Physical Chemistry Institute, The National Hellenic Research Foundation, 48 Vassileos Constantinou Ave. Athens 116 35, Greece

^cSkaggs Institute for Chemical Biology and Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA

*Corresponding authors:

Julius Rebek Jr.: jrebek@scripps.edu

Yang Yu: yangyu2017@shu.edu.cn

Keywords: Xylene separation • Water-soluble conteiner • Molecular recognition • Metallo cavitand • Supramolecular host

Contents

General experimental	2
Synthesis of water soluble cavitand 1 with nitrate anions	4
Computational details	4
Optimized (computational) figures	5
¹ H COSY NMR spectra and protons chemical shifts of the free and bound guests	7
¹ H NMR spectra of 1-2Pd in water in the presence of xylenes as binding guests	9
¹ H NMR spectra of 1-2Pd in water in the presence of xylenes (mixture of xylene isomers) as binding gues	sts 11

¹ H NMR spectra of 1-2Pd in water in the presence of xylenes (mixture of xylene isomers) as binding gu while keeping host : guest 1:1	iests 14
Selective capture of <i>p</i> -xylene in real time mixture studied by ¹ H NMR spectroscopy	18
Binding and competition study of functionalized toluene isomers in 1-2Pd	20
Nitrotoluene isomers binding in 1-2Pd	20
Methyltoluate isomers binding in 1-2Pd	23
Tolualdehyde isomers binding in 1-2Pd	26
Acetyl toluene isomers binding in 1-2Pd	28
Binding constant for xylene isomers	31
Separation of <i>p</i> -xylene form xylene mixture and recycling of the host	37
Procedure of Cycle 1	37
Procedure of Cycle 2	40
Procedure for separation of <i>p</i> -xylene from ideal xylene mixture (mixture obtained from crude oil distillar plant) and recycling of the host	tion 43
Separation cycle using ethyl acetate as extracting organic solvent	45
Separation cycle using dichloromethane as extracting organic solvent	47
Separation of <i>p</i> -nitro toluene from 1:1:1 mixture of <i>o</i> -, <i>m</i> - and <i>p</i> -nitro toluene isomers and recycling of host	f the 50
References	53

General experimental

All analytical grade solvents and reagents purchased from commercial sources were used without further purification. Functionalized toluene isomers were purchased from commercial sources and used without further purification. Commercially available Pd(ethylene diamine).2NO₃ was used. D₂O, DMSO-*d*₆, CDCl₃ and CD₃OD were used as NMR analysis solvents. ¹H COSY, ¹H and ¹³C NMR analyses were performed using Bruker AVANCE III HD 600 MHz spectrophotometer.

Table S1, Melting points and boiling points of different functionalized toluene isomers acquired from online sources.

No	Compound	Melting point (°C)	Boiling point (°C)
1		-25	144
2		-47	139
3		13	136
4	NO ₂	-9	225
5	NO ₂	15	230
6	NO ₂	53	238
7	COOCH ₃	-50	207
8	COOCH ₃	-	113
9	COOCH ₃	33	103
10	СНО	-35	200
11	СНО	25	199
12	СНО	-6	204
13	COCH3	107	214

14	COCH3	-9	218
15	COCH3	45	226

Synthesis of water soluble cavitand 1 with nitrate anions

A similar procedure as we previously reported was used¹, 200 mg of **2** was taken in 20 mL 1methylimidazole in a 50 mL round bottom flask, the mixture in the flask was stirred magnetically and heated in an oil bath at 90 °C under nitrogen for 24 h. After cooling the mixture to rt excess of n-butyl ammonium nitrate dissolved in 50 mL of acetone was added with vigorous stirring that resulted in a white solid precipitation. The solid was filtered and washed thoroughly with acetone. The recovered solid was suspended in 50 mL of acetone, vigorously stirred and heated at reflux for 2 h. It was cooled to rt, filtered, washed with excess acetone and dried under high vacuum. **1** was obtained in not less than 90% yield each time. ¹H NMR (600 MHz, DMSO-*d*₆) δ 9·29 (s, 4H), 8.71 (s, 8H), 8.59 (s, 8H), 8.16 (s, 4H), 7.96 (s, 4H), 7.90 (s, 4H), 7.77 (s, 4H), 5.56 (s, br, 4H), 4.40 – 4.30 (m, 8H), 2.67 – 2.57 (m, 8H), 1.83 (s, br, 8H) ppm. ¹³C NMR (150 MHz, DMSO-*d*₆) δ 154.9, 154.1, 145.7, 141.2, 137.1, 135.6, 125.6, 124.1, 123.5, 122.9, 117.0, 49.6, 40.5, 36.3, 34.0, 28.5 ppm. HR-MS (ESI): Calcd. for chemical formula C₈₈H₇₆N₁₆O₈·4NO₃: 1732.5545, found: 1670.5679 [M-NO₃]⁺, 804.2905 [M-2NO₃]²⁺.

Computational details

The M062X functional^{2, 3} was employed along with the and Lanl2dz basis set^{4, 5}, provided in the gaussian 16 suit of programs⁶. The optimized structures for **1-2Pd** and with *p*-xylene in the cavity 4

are displayed in Figure 3. NMR spectra were obtained using the Gauge-Independent Atomic Orbital (GIAO) method⁷.

Optimized (computational) figures

Figure S1 Calculated ¹H NMR chemical shifts of p-xylene in optimized 1-2Pd with one methyl up and other at the bottom of the cavity

Figure S2 Calculated ¹H NMR chemical shifts of *o*-xylene in optimized 1-2Pd with methyls up in the cavity

Figure S3 Calculated ¹H NMR chemical shifts of *o*-xylene in optimized 1-2Pd with methyls down in the cavity

Figure S4 Calculated ¹H NMR chemical shifts of *m*-xylene in optimized 1-2Pd with methyl tumbling in the cavity

¹H COSY NMR spectra and protons chemical shifts of the free and bound guests

Figure S5 ¹H COSY NMR spectra of the complexes formed between 1-2Pd, 1 mM + excess *p*-functionalized toluene in D_2O , analyzed at rt

S/No	Guest/host	Protons	Free (ppm)	Bound (ppm)	-Δδ (ppm)
1	Mer	Me	2.20	-3.31	5.51
	Per Ho Ho	H^{1}	7.07	1.86	5.21
		H^2	7.07	1.47	5.6
		Me ₁	2.20	0.90	3.1
2	H2 NO2 H2	Me	2.40	-3.05	5.45
		H^{1}	7.37	1.7	5.67
		H ²	8.1	2.7	5.4
3	H2 H2	Me	2.40	-3.05	5.45
		H^{1}	7.37	1.57	5.8
	Me	H^2	7.92	2.37	5.55

		COOMe	3.92	-	-
	H ₂ CHD H ₂ H ₂	Me	2.35	-3.19	5.54
4		H^{1}	7.36	1.43	5.93
		H^2	7.76	2.36	5.4
	H ₂ H ₂	Me	2.33	-3.14	5.47
5		H^{1}	7.3	1.61	5.69
		H^2	7.83	2.62	5.21
		CH ₃	2.61	-	-

¹H NMR spectra of 1-2Pd in water in the presence of xylenes as binding guests

General procedure for the binding analyses

1 mM, 0.5 mL solution of **1-2Pd** in D₂O was taken in NMR tube and excess pure xylene isomer or their mixture (~0.25 μ L) was added to the tube, it was shaken well to mix the guest in water. The sample was sonicated for 1 h and analyzed by ¹H NMR spectroscopy.

Figure S6¹H NMR spectra of the complex formed between 1-2Pd, 1 mM + excess o-xylene in D₂O, analyzed at rt

Figure S7¹H NMR spectra of the complex formed between 1-2Pd, 1 mM + excess *m*-xylene in D₂O, analyzed at rt

Figure S8 ¹H NMR spectra of the complex formed between 1-2Pd, 1 mM + excess *p*-xylene in D₂O, analyzed at rt

¹H NMR spectra of 1-2Pd in water in the presence of xylenes (mixture of xylene isomers) as binding guests

General procedure for the binding analyses

1 mM, 0.5 mL solution of **1-2Pd** in D₂O was taken in NMR tube and excess of o + p-xylene (1:1) mixture or m + p-xylene (1:1) mixture or o + m + p-xylene (1:1:1) mixture (~0.25 µL) was added to the tube respectively, it was shaken well to mix the guest in water. The sample was sonicated for 1 h and analyzed by ¹H NMR spectroscopy.

Figure S9 ¹H NMR spectra of the complex formed between 1-2Pd, 1 mM + excess o- + p-xylene (1:1) mixture in D₂O, analyzed at rt; only p-xylene was captured by the 1-2Pd

Figure S10 Comparative ¹H NMR spectra of the complex formed between **1-2Pd**, 1 mM + from bottom to top, excess of *o*-xylene o + p-xylene (1:1) mixture and *p*-xylene in D₂O, analyzed at rt; In the middle spectrum only *p*-xylene was captured by the **1-2Pd**

Figure S11 ¹H NMR spectra of the complex formed between 1-2Pd, 1 mM + excess m- + p-xylene (1:1) mixture in D₂O, analyzed at rt; only p-xylene was captured by the 1-2Pd

Figure S12 Comparative ¹H NMR spectra of the complex formed between **1-2Pd**, 1 mM + from bottom to top, excess of *m*-xylene m-+ *p*-xylene (1:1) mixture and *p*-xylene in D₂O, analyzed at rt; In the middle spectrum only *p*-xylene was captured by the **1-2Pd**

Figure S13 ¹H NMR spectra of the complex formed between 1-2Pd, 1 mM + excess o - + m - + p-xylene (1:1:1) mixture in D₂O, analyzed at rt; only *p*-xylene was captured by the 1-2Pd

¹H NMR spectra of 1-2Pd in water in the presence of xylenes (mixture of xylene isomers) as binding guests while keeping host : guest 1:1

General procedure for the binding analyses

1 mM, 0.5 mL solution of **1-2Pd** in D₂O was taken in NMR tube and 1 equivalent of xylene mixture of single isomers (stock solution in methanol- d_4) was added to the tube, it was shaken well to mix the guest in water. The sample was sonicated for 1 h and analyzed by ¹H NMR spectroscopy.

Figure S14 ¹H NMR spectra of the complex formed between 1 mM of **1-2Pd** in $D_2O + 1$ equivalent of *o*-xylene (added 5 μ L 100 mM stock solution in methanol-*d*₄), analyzed at rt

Figure S15 ¹H NMR spectra of the complex formed between 1 mM of **1-2Pd** in $D_2O + 1$ equivalent of *o*-xylene (added 5 µL 100 mM stock solution in methanol-*d*₄) (bottom) and then added with 1 equivalent of *p*-xylene (added 5 µL 100 mM stock solution in methanol-*d*₄) (top), analyzed at rt

Figure S16 ¹H NMR spectra of the complex formed between 1 mM of **1-2Pd** in $D_2O + 1$ equivalent of *m*-xylene (added 5 μ L 100 mM stock solution in methanol-*d*₄), analyzed at rt

Figure S17 ¹H NMR spectra of the complex formed between 1 mM of **1-2Pd** in $D_2O + 1$ equivalent of *m*-xylene (added 5 µL 100 mM stock solution in methanol-*d*₄) (bottom) and then added with 1 equivalent of *p*-xylene (added 5 µL 100 mM stock solution in methanol-*d*₄) (top), analyzed at rt

Figure S18 ¹H NMR spectra of the complex formed between 1 mM of **1-2Pd** in $D_2O + 1$ equivalent of *p*-xylene (added 5 μ L 100 mM stock solution in methanol-*d*₄), analyzed at rt

Figure S19 ¹H NMR spectra of the complex formed between 1 mM of **1-2Pd** in $D_2O + 1$ equivalent of *o*-, *m*- and *p*-xylene (added each isomer in 5 µL 100 mM stock solution in methanol-*d*₄), analyzed at rt

Selective capture of *p*-xylene in real time mixture studied by ¹H NMR spectroscopy

Fossil fuel xylenes distillate contains *o*-:*m*-:*p*-xylene 1:3:1, so this ideal mixture was prepared by mixing of these isomers in the mentioned ratio.

The binding in 1-2Pd was measured in D₂O using;

- 1. Excess of *o*-:*m*-:*p*-xylene 1:3:1 mixture in **1-2Pd**
- 1-6 equivalents of the mixture was added as 100 mM stock solution in CD₃OD to 1-2Pd solution in D₂O and analysed at rt over 2 and 24 h.

General procedure for the binding analyses

1 mM, 0.5 mL solution of **1-2Pd** in D₂O was taken in NMR tube and excess of the xylene mixture or 1-6 equivalents of xylene mixture stock solution in methanol- d_4 (15 µL) was added to the tube, it was shaken well to mix the guest in water. The sample was sonicated for 2 h and analyzed by ¹H NMR spectroscopy, the analyses of the same samples were repeated after 24 h.

Figure S20 ¹H NMR spectra of the complex formed between 1 mM of 1-2Pd in D_2O + Excess of *o*-, *m*- and *p*-xylene (1:3:1) mixture sonicated for 2 h, analyzed at rt

Figure S21 ¹H NMR spectra of the complex formed between 1 mM of **1-2Pd** in $D_2O + 1$ -6 equivalents of *o*-, *m*- and *p*-xylene (1:3:1) mixture; 15 µL stock solution of the mixture in CD₃OD was added and the mixture sonicated for 2 h, analyzed at rt

Figure S22 ¹H NMR spectra of the complex formed between 1 mM of **1-2Pd** in $D_2O + 1$ -6 equivalents of *o*-, *m*- and *p*-xylene (1:3:1), 15 μ L stock solution (in CD₃OD) was added and mixture sonicated for 2 h, analyzed after 24 h at rt

Binding and competition study of functionalized toluene isomers in 1-2Pd

General procedure for the binding analyses

1 mM, 0.5 mL solution of **1-2Pd** in D_2O was taken in NMR tube and excess pure particular isomer or mixture (~0.25 µL) or equivalent quantity as CD₃OD stock solution was added to the tube, it was shaken well to mix the guest in water. The sample was sonicated for 1 h and analyzed by ¹H NMR spectroscopy.

Nitrotoluene isomers binding in 1-2Pd

Figure S23 Comparative ¹H NMR spectra of the complex formed between **1-2Pd**, 1 mM + excess *o*- (bottom) or *m*- (second from bottom), or *p*- isomer (third from bottom) and excess 1:1:1 mixture of these isomers (top), in D₂O, analyzed at rt

Figure S24 ¹H NMR spectra of the complex formed between 1-2Pd, 1 mM + excess o-nitrotoluene in D₂O, analyzed at rt

Figure S25 ¹H NMR spectra of the complex formed between 1-2Pd, 1 mM + excess *m*-nitrotoluene in D₂O, analyzed at rt

Figure S26¹H NMR spectra of the complex formed between 1-2Pd, 1 mM + excess *p*-nitrotoluene in D₂O, analyzed at rt

Figure S27 ¹H NMR spectra of the complex formed between 1-2Pd, 1 mM + excess *o*-, *m*-, *p*-nitrotoluene (1:1:1) mixture in D_2O , analyzed at rt

Methyltoluate isomers binding in 1-2Pd

Figure S28 Comparative ¹H NMR spectra of the complex formed between **1-2Pd**, 1 mM + excess *o*- (bottom) or *m*- (second from bottom), or *p*- isomer (third from bottom) and excess 1:1:1 mixture of these isomers (top), in D₂O, analyzed at rt

Figure S29 ¹H NMR spectra of the complex formed between 1-2Pd, 1 mM + excess methyl-o-toluate in D₂O, analyzed at rt

Figure S30 ¹H NMR spectra of the complex formed between 1-2Pd, 1 mM + excess methyl-*m*-toluate in D₂O, analyzed at rt

Figure S31 ¹H NMR spectra of the complex formed between 1-2Pd, 1 mM + excess methyl-*p*-toluate in D₂O, analyzed at rt

Figure S32 ¹H NMR spectra of the complex formed between 1-2Pd, 1 mM + excess methyl-*o*-toluate, methyl-*m*-toluate, methyl-*p*-toluate (1:1:1) mixture in D₂O, analyzed at rt, only *p*-tolualdehyde was captured by the 1-2Pd

Figure S33 Comparative ¹H NMR spectra of the complex formed between **1-2Pd**, 1 mM + excess *o*- (bottom) or *m*- (second from bottom), or *p*-tolualdehyde (third from bottom) and excess 1:1:1 mixture of these isomers (top), in D₂O, analyzed at rt

Figure S34 ¹H NMR spectra of the complex formed between 1-2Pd, 1 mM + excess o- tolualdehyde in D₂O, analyzed at rt

Figure S35 ¹H NMR spectra of the complex formed between 1-2Pd, 1 mM + excess *m*-tolualdehyde in D₂O, analyzed at rt

Figure S36 ¹H NMR spectra of the complex formed between 1-2Pd, 1 mM + excess *p*-tolualdehyde in D₂O, analyzed at rt

Figure S37 ¹H NMR spectra of the complex formed between 1-2Pd, 1 mM + excess o - + m - + p-tolualdehyde (1:1:1) mixture in D₂O, analyzed at rt only *p*-tolualdehyde was captured by the 1-2Pd

Acetyl toluene isomers binding in 1-2Pd

Figure S38 Comparative ¹H NMR spectra of the complex formed between 1-2Pd, 1 mM + excess *o*- (bottom) or *m*- (second from bottom), or *p*-acetyltoluene (third from bottom) and excess 1:1:1 mixture of these isomers (top), in D₂O, analyzed at rt

Figure S40¹H NMR spectra of the complex formed between 1-2Pd, 1 mM + excess *m*-acetyltoluene in D₂O, analyzed at rt

Figure S41 ¹H NMR spectra of the complex formed between 1-2Pd, 1 mM + excess *p*-acetyltoluene in D₂O, analyzed at rt

Figure S42 ¹H NMR spectra of the complex formed between 1-2Pd, 1 mM + excess o + m + p-acetyltoluene (1:1:1) mixture in D₂O, analyzed at rt, only p-tolualdehyde was captured by the 1-2Pd

Binding constant for xylene isomers

As xylenes are not soluble in water so it is difficult to perform binding constant experiments in pure water using isothermal titration calorimetry (ITC), but we used a comparative method to deduce binding constant for xylene isomers. The binding constant was calculated for n-butanol (a water-soluble guest) using ITC.

The binding constant and thermodynamic parameters for **1-2Pd** complexation with *n*-butanol as a reference water-soluble guest were obtained through isothermal titration calorimetry (ITC). Increasing amounts of 5 mM aqueous *n*-butanol solution was added to 0.5 mM solution of **1** + 2.2 equivalents of Pd(EDA)·2NO₃ (**1-2Pd**) in water. The trace showed 1:1 complex formation with a binding constant $K = 1.54 \times 10^5$ M⁻¹ (Figure 8). The complex formation was exothermic ($\Delta H = -5942$ cal mol⁻¹) showing favorable binding of the guest in **1-2Pd**. A positive change in entropy ($\Delta S = 3.81$ cal mol⁻¹ deg⁻¹) was observed that may be due to liberation of water from the host.

Figure S43 ITC titration curve of 1-2Pd vs. n-butanol.

We compared *o*-, *m*- and *p*-xylene binding with **1-2Pd** in the presence of 1 equivalent of n-butanol by using ¹H NMR spectroscopy. 1 equivalent of **1-2Pd** 1 mM water solution was added with 2 equivalents of each n-butanol and 2 equivalents of *o*- or *m*- or *p*-xylene as CD₃OD stock solution (10 μ L) and analysed by ¹H NMR spectroscopy at 2 h sonication or 24 h at rt time points.

Figure S44 ¹H NMR spectrum of the complex formed between 1 mM of 1-2Pd in $D_2O + 2$ equivalents *o*-xylene and 2 equivalents of n-butanol, analyzed at rt

Figure S45 ¹H NMR spectrum of the complex formed between 1 mM of 1-2Pd in $D_2O + 2$ equivalents *o*-xylene and 2 equivalents of n-butanol, analyzed at rt after 24 h

Figure S46 Comparative ¹H NMR spectra plot of the complex formed between 1 mM of **1-2Pd** and excess n-butanol (bottom), 1 mM of **1-2Pd** in $D_2O + 2$ equivalents *o*-xylene and 2 equivalents of n-butanol (middle) and 1 mM of **1-2Pd** in $D_2O + 1$ equivalent *o*-xylene (top) in D_2O , analyzed at rt

Figure S47 ¹H NMR spectrum of the complex formed between 1 mM of **1-2Pd** in $D_2O + 2$ equivalents *m*-xylene and 2 equivalents of n-butanol, analyzed at rt

Figure S48 ¹H NMR spectrum of the complex formed between 1 mM of **1-2Pd** in $D_2O + 2$ equivalents *m*-xylene and 2 equivalents of n-butanol, analyzed at rt after 24 h

Figure S49 Comparative ¹H NMR spectra plot of the complex formed between 1 mM of **1-2Pd** and excess n-butanol (bottom), 1 mM of **1-2Pd** in $D_2O + 2$ equivalents *m*-xylene and 2 equivalents of n-butanol (middle) and 1 mM of **1-2Pd** in $D_2O + 1$ equivalents *m*-xylene (top) in D_2O , analyzed at rt

Figure S50 ¹H NMR spectrum of the complex formed between 1 mM of **1-2Pd** in $D_2O + 2$ equivalents *p*-xylene and 2 equivalents of n-butanol, analyzed at rt

Figure S51 ¹H NMR spectrum of the complex formed between 1 mM of **1-2Pd** in $D_2O + 2$ equivalents *p*-xylene and 2 equivalents of n-butanol, analyzed at rt after 24 h

Figure S52 Comparative ¹H NMR spectra plot of the complex formed between 1 mM of **1-2Pd** and excess n-butanol (bottom), 1 mM of **1-2Pd** in $D_2O + 2$ equivalents *p*-xylene and 2 equivalents of n-butanol (middle) and 1 mM of **1-2Pd** in $D_2O + 1$ equivalents *p*-xylene (top) in D_2O , analyzed at rt

Figure S53 ¹H NMR spectra of the complex formed between 1-2Pd, 1 mM + excess n-butanol in D₂O, analyzed at rt

Separation of *p*-xylene form xylene mixture and recycling of the host

A scheme was devised for the selective separation of p-xylene from o- or m-isomers (Figure S54) An aqueous solution of **1-2Pd** was added with a mixture of xylenes and stirred at rt for 2 h. The mixture was allowed to settle down and the layers formed were separated. The water layer was extracted with organic solvent to separate bound p-xylene from **1-2Pd**. The recovered, water portion containing **1-2Pd** was recycled for the next separating cycle.

Figure S54 Liquid-liquid separation chart for *p*-xylene using 1-2Pd

The binding and extraction of *p*-xylene using **1-2Pd** was quantified and the recyclability of this supramolecular host system was confirmed using liquid-liquid extraction method (Figure S36). 25 μ L of *p*-xylene in 0.5 mL of mesitylene (mesitylene is a bad guest (Figure S56) and could not bind in **1-2Pd** in the presence of any xylene) was vigorously stirred with 5 mL, 2 mM solution of **1-2Pd** in D₂O in a 10 mL glass vial. After 2 h of stirring the mixture was allowed to stand for 4 h to separate layers. The organic layer was separated and the water layer was analyzed by ¹H NMR spectroscopy (ESI Figure S57). 500 uL of water portion was extracted with 1 mL of CDCl₃ and both aqueous and organic portions were analyzed by ¹H NMR spectroscopy (ESI Figure S58-S59). The CDCl₃ layer was added with 1 mM DMSO as internal standard to quantify the amount of *p*-xylene in the mixture and we found a quantitative amount of *p*-xylene product extracted to CDCl₃ (ESI Figure S59). The recovered solution of **1-2Pd** in water was used in the second cycle (ESI Figure S60-S62) and the same results were obtained.

Procedure of Cycle 1

5 mL, 2 mM **1-2Pd** solution was prepared in D₂O, 0.5 mL *p*-xylene in mesitylene (50 μ L/mL) was added to water solution and vigorously stirred over 2 h. the mixture was allowed to stand for 4 h to separate layers. The water layer was separated and the mesitylene layer was kept to be used in the 2nd cycle.

- 1. 250 μ L of water portion was diluted to 0.5 mL with D₂O to make 1 mM solution and analyzed by ¹H NMR spectroscopy (Figure S57)
- 2. 0.5 mL of the water portion was added with 1 mL CDCl₃ and shaken well with hands, the layers were settled down for 2 h. 250 μ L of water portion was taken from it and diluted to 0.5 mL with D₂O to make 1 mM solution and analyzed by ¹H NMR spectroscopy (Figure S58)
- 0.5 mL of CDCl₃ portion (theoretically contained 1 mM *p*-xylene) was added with 1 mM DMSO standard (5 μL, 100 mM DMSO solution in CDCl₃) and analyzed by ¹H NMR spectroscopy (Figure S59)

The remaining water portion (4.25 mL) was washed 5x 0.5 mL CDCl₃ and used in cycle 2.

7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1. PPM

Figure S55 ¹H NMR spectra (selected part) of xylene isomers and mesitylene in CDCl₃, analyzed at rt

Figure S56 ¹H NMR spectrum of 1 mM 1-2Pd solution in D₂O + excess of pure mesitylene, analyzed at rt

Figure S57 ¹H NMR spectrum of the aqueous layer (1 mM 1-2Pd solution in D₂O containing bound *p*-xylene), analyzed at rt

Figure S58 ¹H NMR spectrum of the aqueous layer extracted with CDCl₃ to remove the bound *p*-xylene, analyzed at rt

Figure S59 ¹H NMR spectrum p-xylene extracted to CDCl₃, 1 mM of DMSO was added as internal standard and we see the ratio of DMSO and p-xylene methyl protons is almost 1:1 showing 1 mM of p-xylene is present in the mixture, blue circles showed small amount of mesitylene (solvent) suspended in water portion extracted to CDCl₃

Procedure of Cycle 2

1-2Pd solution (2 mM) 4.25 mL recovered from cycle 1 was added with the mesitylene layer separated in cycle 1 and vigorously stirred for 12 h at rt. The mixture was allowed to stand for 4 h to separate layers. The water layer was separated.

- 250 μL of water portion was diluted to 0.5 mL with D₂O to make 1 mM solution and analyzed by ¹H NMR spectroscopy (Figure S60)
- 2. 0.5 mL of the water portion was added with 1 mL CDCl₃ and shaken well with hands, the layers were settled down for 2 h. 250 μ L of water portion was taken from it and diluted to 0.5 mL with D₂O to make 1 mM solution and analyzed by ¹H NMR spectroscopy (Figure S61)
- 0.5 mL of CDCl₃ portion (theoretically contained 1 mM *p*-xylene) was added with 1 mM DMSO standard (5 μL, 100 mM DMSO solution in CDCl₃) and analyzed by ¹H NMR spectroscopy (Figure S62)

Figure S60 ¹H NMR spectrum of **1-2Pd** D2O solution recovered from first cycle and stirred with solution of *p*-xylene 25 μL in 0.5 mL of mesitylene for 12 h, analyzed at rt

Figure S61 ¹H NMR spectrum of the aqueous layer of cycle 2 extracted with CDCl₃ to remove the bound *p*-xylene, analyzed at rt

Figure S62 ¹H NMR spectrum of p-xylene extracted to CDCl₃, 1 mM of DMSO was added as internal standard and we see the ratio of DMSO and p-xylene methyl protons is almost 1:1 showing 1 mM of p-xylene is present in the mixture, blue circle showed small amount of mesitylene (solvent) suspended in water portion extracted to CDCl₃

Procedure for separation of *p*-xylene from ideal xylene mixture (mixture obtained from crude oil distillation plant) and recycling of the host

5 mL, 2 mM **1-2Pd** solution was prepared in D_2O , 0.5 mL *p*-xylene ideal mixture was added to water solution and vigorously stirred over 2 h. the mixture was allowed to stand for 12 h to separate layers. The water layer was separated and analyzed for the constituent.

- 250 μL of water portion was diluted to 0.5 mL with D₂O to make 1 mM solution and analyzed by ¹H NMR spectroscopy (Figure S63)
- 0.5 mL of the water portion was added with 1 mL CDCl₃ and shaken well with hands, the layers were settled down for 4 h. 250 μL of water portion was taken from it and diluted to 0.5 mL with D₂O to make 1 mM solution and analyzed by ¹H NMR spectroscopy (Figure S64)
- 0.5 mL of CDCl₃ portion (theoretically contained 1 mM *p*-xylene) was added with 1 mM DMSO standard (5 μL, 100 mM DMSO solution in CDCl₃) and analyzed by ¹H NMR spectroscopy (Figure S65)

Figure S63 ¹H NMR spectrum of the aqueous layer (1 mM 1-2Pd solution in D₂O containing bound *p*-xylene), analyzed at rt

Figure S64 ¹H NMR spectrum of the aqueous layer of extracted with CDCl₃ to remove the bound *p*-xylene, analyzed at rt

Figure S65 ¹H NMR spectrum of p-xylene extracted to CDCl₃, 1 mM of DMSO was added as internal standard and we see the ratio of DMSO and p-xylene methyl protons is almost 1:1 showing 1 mM of p-xylene is present in the mixture

Separation cycle using ethyl acetate as extracting organic solvent

5 mL, 2 mM **1-2Pd** solution was prepared in D_2O , 0.5 mL *p*-xylene ideal mixture was added to water solution and vigorously stirred over 2 h. the mixture was allowed to stand for 12 h to separate layers. The water layer was separated and analyzed for the constituent.

- 250 μL of water portion was diluted to 0.5 mL with D₂O to make 1 mM solution and analyzed by ¹H NMR spectroscopy (Figure S66)
- 0.5 mL of the water portion was added with 1 mL ethyl acetate and shaken well with hands, the layers were settled down for 4 h. 250 μL of water portion was taken from it and diluted to 0.5 mL with D₂O to make 1 mM solution and analyzed by ¹H NMR spectroscopy (Figure S67)

The recovered **1-2Pd** solution from cycle 1 was added with 0.5 mL xylene ideal mixture and vigorously stirred for 12 h at rt. The mixture was allowed to stand for 4 h to separate layers. The water layer was separated and analyzed by ¹H NMR spectroscopy (Figure S68).

Figure S66 ¹H NMR spectrum of the aqueous layer (1 mM 1-2Pd solution in D₂O containing bound *p*-xylene), analyzed at rt

Figure S67 ¹H NMR spectrum of the aqueous layer extracted with ethyl acetate (mixture 3 extracted with ethyl acetate instead chloroform) to remove the bound *p*-xylene, analyzed at rt

Figure S68 ¹H NMR spectrum of the aqueous layer extracted with ethyl acetate and added with xylene ideal mixture and stirred vigorously for 6 h, analyzed at rt

Separation cycle using dichloromethane as extracting organic solvent

5 mL, 2 mM **1-2Pd** solution was prepared in D_2O , 0.5 mL *p*-xylene ideal mixture was added to water solution and vigorously stirred over 2 h. the mixture was allowed to stand for 12 h to separate layers. The water layer was separated and analyzed for the constituent.

- 1. The water portion was analyzed by ¹H NMR spectroscopy (Figure S69)
- 2. The water portion was extracted with CH₂Cl₂, and analyzed by ¹H NMR spectroscopy (Figure S70).
- 3. The water portion was heated at 50 °C for 4 h and analyzed by ¹H NMR spectroscopy (Figure S71).

The recovered **1-2Pd** solution from cycle step 3 was added with 0.5 mL xylene ideal mixture and vigorously stirred for 2 h at rt. The mixture was allowed to stand for 4 h to separate layers. The water layer was separated and analyzed by ¹H NMR spectroscopy (Figure S72).

Figure S69¹H NMR spectrum of the aqueous layer (1 mM 1-2Pd solution in D₂O containing bound *p*-xylene), analyzed at rt

Figure S70 ¹H NMR spectrum of the aqueous layer extracted with dichloromethane (mixture extracted with dichloromethane instead chloroform) to remove the bound *p*-xylene, analyzed at rt

Figure S71 ¹H NMR spectrum of the aqueous layer extracted with dichloromethane and heated at 50 °C for 4 h to evaporate dichloromethane from the cavity and get free host, analyzed at rt

Figure S72 ¹H NMR spectrum of the aqueous layer extracted with dichloromethane and added with xylene ideal mixture and stirred vigorously for 2 h, analyzed at rt

Separation of *p*-nitro toluene from 1:1:1 mixture of *o*-, *m*- and *p*-nitro toluene isomers and recycling of the host

5 mL, 1 mM **1-2Pd** solution was prepared in D_2O , 0.5 g 1:1:1 mixture of *o*-, *m*- and *p*-nitro toluene was added to water solution and vigorously stirred over 2 h. the mixture was filtered to remove the solid isomers mixture

- 1. 0.5 mL water portion was taken in NMR tube and analyzed by ¹H NMR spectroscopy (Figure S75)
- 1 mL of the water portion was added with 1 mL CDCl₃ and shaken well with hands, the layers were settled down. Both water and organic layers were analyzed by ¹H NMR spectroscopy (Figure S76-S77)
- 3. The CDCl₃ portion 0.5 mL was added with DMSO (1 mM) as internal standard to quantify the amount of p-nitro toluene extracted(Figure S77).

Figure S73 Liquid-liquid separation chart for *p*-nitro toluene of toluene using 1-2Pd

Figure S75 ¹H NMR spectrum of the aqueous layer (1 mM 1-2Pd solution in D₂O containing *p*-nitro toluene), analyzed at rt

rt

Figure S77 ¹H NMR spectrum of p-nitro toluene extracted to CDCl₃, 1 mM of DMSO was added as internal standard and we see the ratio of DMSO and p-nitro toluene methyl protons is almost 1:1 showing 1 mM of p-nitro toluene is present in the mixture

References

- 1. Faiz-Ur Rahman; Yong-sheng Li; Ioannis D. Petsalakis; Giannoula Theodorakopoulos; Jr., J. R.; Yu, Y., *Proc Natl Acad Sci USA* **2019**.
- 2. Zhao, Y.; Truhlar, D. G., Theor. Chem. Acc. 2007, 120 (1-3), 215-241.
- 3. Zhao, Y.; Truhlar, D. G., Acc. Chem. Res. 2008, 41 (2), 157-67.
- 4. T. H. Dunning Jr. and P. J. Hay, in Modern Theoretical Chemistry, Ed. H. F. Schaefer III, Vol. 3 (Plenum, New York, 1977) 1-28.
- 5. Wadt, W. R.; Hay, P. J., J. Chem. Phys. 1985, 82 (1), 284-298.
- Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.4.
- 7. Wolinski, K.; Hinton, J. F.; Pulay, P., J. Am. Chem. Soc. 1990, 112 (23), 8251-8260.