Supporting Information

A directing group assisted ruthenium catalyzed approach to access *meta*nitrated phenol

Sheuli Sasmal,^{†a} Soumya Kumar Sinha,^{†a} Goutam Kumar Lahiri* and Debabrata Maiti*

Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India

E-mail: <u>lahiri@chem.iitb.ac.in</u>, <u>dmaiti@chem.iitb.ac.in</u>

1. General information.	S2
2. Optimization details	S2-S9
3.1. General procedures for the synthesis of 2-phenoxypyridines	S9
3.2. General procedures for Ru-catalyzed <i>meta</i> -C _{Ar} -H nitration of phenol derivative	S9
3.3. General procedure for the synthesis of <i>meta</i> -nitrophenol through DG removal	S9
4. Crystal data	S10-S11
5. Characterization data	S12-S17
6. References	S17
7. Data and spectra of NMR	

<u>1. General Consideration</u>

Reagent Information:

Unless otherwise stated, all the reactions were carried out in screw cap reaction tubes. All the solvents were bought from Aldrich/Alfa Aesar (India)/TCI (India)/Merck in a sure-seal bottle and were used as received.

Triruthenium dodecacarbonyl, $Ru_3(CO)_{12}$ was bought from Sigma Aldrich. Copper nitrate trihydrate, Silver trifluoroacetate were obtained from Sigma Aldrich. (Bis(trifluoroacetoxy)iodo)benzene was purchased from Ark Pharma. For column chromatography, silica gel (100–200 mesh) from SRL Co. was used. A gradient elution using pet ether and ethyl acetate was performed based on Merck aluminium TLC sheets (silica gel 60F254).

Analytical Information:

All isolated compounds are characterized by ¹H NMR, ¹³C NMR spectroscopy. NMR spectra were recorded either on a Bruker 500 or 400 MHz instrument. All ¹H NMR experiments are reported in units, parts per million (ppm), and were measured relative to the signals for residual chloroform (7.26 ppm) in the deuterated solvent, unless otherwise stated. All ¹³C NMR spectra were reported in ppm relative to CDCl₃ (77.23 ppm), All coupling constants were reported in Hertz (Hz) and all were obtained with ¹H decoupling. High-resolution mass spectra (HRMS) were recorded on a micro-mass ESI TOF (time of flight) mass spectrometer. Single crystals were diffracted in Rigaku X-ray single crystal diffractometer.

2. Optimization Details for meta-C-H Nitration of 2-Phenoxypyridine

$\begin{array}{c c} & Ru_{3}(CO)_{12} (10 \text{ mol}\%) \\ \hline & \text{nitrating reagent (1.5 equiv)} \\ PIFA (1 equiv) \\ DCE, 100 ^{\circ}C, 28 \text{ h} \end{array} \xrightarrow[NO_{2}]{O}$			
Entry	Nitrating reagent	GC yield (%)	Selectivity (meta:others)
1	AgNO ₃	12	2:1
2	NaNO ₃	10	1:1
3	NaNO ₂	14	1:1
4	AgNO ₂	10	ortho
5	['] BuONO	12	2:1

Table 1: Optimization of Nitrating Reagent

6	$\operatorname{Bi}(\operatorname{NO}_3)_3.5\operatorname{H}_2O$	14	2:1
7	Ni(NO ₃) ₂ .6H ₂ O	18	3:1
8	KNO3	-	-
9	La(NO ₃) ₃ .H ₂ O	14	2:1
10	Cu(NO ₃) ₂ .3H ₂ O	27	3:1

Table 2. Optimization of Solvent

	Ru ₃ (CO) ₁₂ (10 mol%)	
N N	Cu(NO ₃) ₂ .3H ₂ O (1.5 equiv) PIFA (1 equiv), solvent 100 °C, 28 h	NO ₂

Entry	Solvent	GC Yield (%)	Selectivity (meta:others)
1	DCM	18	3:1
2	THF	10	1:1
3	1,4 dioxane	-	-
4	Toluene	8	1:2
5	DMF	24	1:1
6	<i>m</i> -xylene	21	3:1
7	Acetonitrile	23	1:1
8	DMA	12	3:1
9	DCE	27	3:1
10	Benzene	8	2:1
11	Chlorobenzene	14	1:3
13	DMSO	24	1:1
14	TBME	-	-

15	2-Me-THF	-	-
16	MeOH	10	1:1
17	HFIP	-	-
18	TFT	26	1:1

Table 3. Optimization of Ru-catalyst

	Ru-catalyst (N N PIFA (1 e DCE, 100 °	10 mol%) O (3 equiv) equiv) C, 28 h	
Sr. No.	Ru-catalyst	GC yield (%)	Selectivity (meta:others)
1	RuCl ₃	18	2:1
2	Ru ₃ (CO) ₁₂	64	3:1
3	$Ru[(p-cymene)Cl_2]_2$	20	2:1
4	Ru(acac) ₃	-	-

Table 4. Optimization of Oxidant

Sr. No.	Oxidant	GC yield (%)	Selectivity (meta:others)
1	PIFA	64	3:1
2	PhI(OAc) ₂	6	1:2
3	K ₂ S ₂ O ₈	54	1:2
4	Oxone	37	1:2
5	Cu(OAc) ₂	28	1:1
6	BQ	13	1:2

7	ТВНР	-	-
8	Selectfluor	30	1:2
9	Ag ₂ CO ₃	20	ortho
10	AgTFA	10	1:1
11	CuO	10	1:1

Table 5. Optimization of Base

	Ru ₃ (CO) Cu(NO ₃) ₂ .3	₁₂ (10 mol%) 3H ₂ O (3 equiv)	
N N	PIFA (1 equiv DCE, 10), Base (2 equiv) 00 °C, 28 h	
Sr. No.	Base	GC yield (%)	Selectivity (meta:others)
1	Na ₂ CO ₃	10	ortho
2	K ₂ CO ₃	13	ortho
3	Li ₂ CO ₃	8	ortho
4	NaHCO ₃	20	2:1
5	KHCO ₃	18	2:1
6	NaOAc	20	1:1
7	Cs ₂ CO ₃	13	ortho
8	NaTFA	20	ortho
9	NaOTf	16	ortho
10	KO ^t Bu	10	ortho
11	K ₃ PO ₄	14	ortho
12	NaOH	25	ortho
13	Na ₂ HPO ₄	20	1:1
14	K ₂ HPO ₄	24	1:1

15	NaOPiv	65	2:1
16	KOAc	45	2:1
17	NaH ₂ PO ₄	55	2:1
18	KH ₂ PO ₄	60	2:1
19	DABCO	-	-
20	DBU	-	-
21	Et ₃ N	25	2:1

Table 6. Optimization of Ligand

C	Ru ₃ (CO) ₁₂ (Cu(NO ₃) ₂ .3H ₂	10 mol%) <u>0 (3 equiv)</u>	
	N PIFA (1 e Ligand (20 DCE, 100 °	equiv) mol%) C, 28 h	NO ₂
Sr. No.	Ligand	GC yield (%)	Selectivity (meta:others)
1	DMAP	39	1:1
2	L-proline	44	1:1
3	L-alanine	37	2:1
4	L-valine	40	3:1
5	Boc-Leucine-OH	52	3:1
6	FMOC-L-alanine	24	2:1
7	N-Acetyl L-valine	42	2:1
8	2–L-alanine	40	2:1
9	N-Formyl glycine	56	2:1
10	N-Boc-glycine	40	2:1
11	N–Acetyl glycine	50	3:1
12	(S) – Xyl Phos	50	3:1

13	7-Chloro quinaldine	11	meta
14	Tris[2-(diphenyl phosphino)ethyl]phosphine	60	2:1
15	Cyclohexyl JohnPhos	30	3:1
16	DPE Phos	10	ortho
17	Me Phos	22	2:1
18	Tris(2,4,6-trimethoxy phenyl) phosphine	42	2:1
19	S-Phos	20	3.5:1

Table 7. Optimization of Additive

Sr. No.	Addidives	GC yield (%)	Selectivity (meta: others)
1	Piv-OH	48	2:1
2	Ad-COOH	60	2:1
3	Mes-COOH	40	1:1
4	Benzoic acid	37	1:1
5	Acetic acid	70	3:1
6	Trifluoromethyl acetic acid	60	2:1
7	2-Methylbutanoic acid	24	1:2
8	Cyclohexane carboxylic acid	50	2:1
9	2-Ethyl butyric acid	26	1:1
10	2,2-Dimethyl butyric acid	66	2:1
11	Cyclohexane acetic acid	68	2:1

12	Ferrocene	-	-
13	TBACl	26	1:1
14	TBABr	26	1:1
15	TBAF	28	1:1

Table 8. Optimization of Silver Salts

0	Ru ₃ (CO) Cu(NO ₃) ₂ . PIFA (1 equiv), C Ag-sal DCE, 10	1 ₁₂ (10 mol%) <u>3H₂O (3 equiv)</u> H ₃ COOH (30 mol%) t (2 equiv) 00 °C, 28 h	
Sr. No.	Silver salt	GC yield (%)	Selectivity (meta:others)
1	Ag ₂ CO ₃	43	1:2
2	AgTFA	85	6:1
3	AgF	13	1:2
4	AgBr	12	1:3
5	Ag ₂ O	24	1:3
6	AgI	4	1:1

Table 9. Optimization of Alkyl Iodide

C	Ru ₃ (CO) ₁₂ Cu(NO ₃) ₂ .3H	(10 mol%) ₂ O (3 equiv)	
	N PIFA (1 equiv), CH ₃ alkyl iodide DCE, 100	COOH (30 mol%) (1 equiv) °C, 28 h	NO ₂
Sr. No.	Alkyl Iodide	GC yield (%)	Selectivity (meta:others)
1	Iodoethane	72	2:1
2	1-Iodo-3-methyl butane	40	1:1
3	1-Iodobutane	30	1:2

This nitration reaction undergoes a radical process and alkyl iodides are known to be radical initiators.¹ Therefore, we thought to examine the presence of various alkyl iodides.

20

3. Experimental procedures

3.1 General Procedure A to Prepare 2-Phenoxypyridines²

An oven-dried screw-cap test tube containing a stirring bar was charged with CuI (0.31 mmol, 60mg, 10 mol%), 2 picolinic acid (0.62 mol, 77.4 mg, 20 mol%), K_3PO_4 (6.2 mmol, 1.335 g, 2 equiv). Then to this mixture 2-bromo pyridine (3.1 mmol, 1equiv) and phenol derivatives (3.7 mmol, 1.2 equiv) were added, 6 mL DMSO was used as solvent. Then this reaction was put to a pre-heated oil bath at 90 °C for 24 h. After cooling this reaction mixture to room temperature it was diluted with ethyl acetate and extracted with water three times. Then organic layer was collected dried with Na₂SO₄ and concentrated. Product was purified on column chromatography with petroleum ether/ethyl acetate as the eluent.

3. 2 General Procedures B for Ru-Catalyzed meta-CAr-H Nitration of Phenol Derivative

An oven-dried screw-cap test tube containing a stirring bar was charged with phenol derivative, $Ru_3(CO)_{12}$ (10 mol%), $PhI(TFA)_2$ (1 equiv), AgTFA (2 equiv). To this reaction tube $Cu(NO_3)_2.3H_2O$ (3 equiv) was added inside the glove box then CH_3COOH (30 mol%) and DCE was added using syringe. The mixture was stirred at 100 °C for 28 h. After cooled to room temperature, the reaction mixture was filtered and the filtrate was concentrated. The residue was purified on column chromatography with petroleum ether/ethyl acetate as the eluent to afford the nitrated products.

3.3 General Procedure C for the Synthesis of meta-Nitrophenol through DG Removal³

Under an argon atmosphere, to a well-stirred solution of nitrated compound 2 (0.2 mmol) dry toluene (5 mL) was added MeOTf (39.8 μ L, 0.36 mmol) at 100 °C for 2 h. After cooling to room temperature, the solution was evaporated under vacuum. Without purification, the crude product was subsequently added into a Na (110.4 mg, 4.8 mmol)/MeOH (5 mL) solution, heated to reflux, and stirred for a further 15 min. After cooling to room temperature, the solvent was evaporated under vacuum and water (15 mL) was added to the residue. The aqueous solution was extracted by ethyl acetate (10 mL × 3), and the organic layers were combined, dried over MgSO₄, filtered, and evaporated under vacuum. The residue was further purified by silica gel chromatography using petroleum/ethyl acetate (6/1, V/V) as the eluent to give pure.

4. Crystal data

4.1 Crystal data and structure refinement for C_{12} H_{10} N_2O_4 (ORTEP diagram of 2f) CCDC Number: 1996668

Bond precision:	C-C = 0.0020 A	Wavelength=0.71073
Cell:	a=8.5310(4)	alpha=90
	b=11.1285(5)	beta=110.333(5)
	c=12.0481(6)	gamma=90
Temperature:	150 K	-
Volume	1072.55(9)	
Space group	P 1 21/c 1	
Hall group	-P 2ybc	
Moiety formula	0.444(C12 H10 N2 O4)	
Sum formula.	C5 33 H4.44 N0.89 O1.	78
Mr	109.4	
Dx,g cm-3	1.525	
Ζ	9	
Mu (mm-1)	0.117	
F(000)	512.0	
h,k,lmax	10,13,13	
Nref	1797	
Tmin,Tmax	0.416,1.000	
Data completeness	0.950	
Theta(max)	25.000	
R(reflections)	0.0414(1633)	
wR2(reflections)	0.1143(1797)	
S = 1.065	Npar= 164	

4.2 Crystal data and structure refinement for C₁₂H₉FN₂O₃ (ORTEP diagram of 2m) CCDC Number: 1996667

Bond precision:	C-C = 0.0094 A	Wavelength=0.71073
Cell:	a=13.7895(17)	alpha=90
	b=20.620(2)	beta=90
	c=3.8818(7)	gamma=90
Temperature:	150 K	
Volume	1103.8(3)	
Space group	P n a 21	
Hall group	P 2c -2n	
Moiety formula	0.8(C12 H9 F N2 O3)	
Sum formula.	C9.60 H7.20 F0.80 N1.6	0 O2.40
Mr	198.57	
Dx,g cm-3	1.494	
Ζ	5	
Mu (mm-1)	0.120	
F(000)	512.0	
h,k,l _{max}	16,24,4	
N _{ref}	1909	
T _{min} ,T _{max}	0.532,1.000	
Data completeness	1.68/0.98	
Theta(max)	24.991	
R(reflections)	0.0710(1140)	
wR2(reflections)	0.1654(1909)	
S = 1.069	Npar = 164	

5. Characterization data

2-(3-nitrophenoxy)pyridine (Table 2, 2a): Following the general procedure B, Compound 2a was obtained from 2-phenoxypyridine 1a, isolated by column chromatography (85%, 31.5 mg), Eluent: ethyl acetate/ petroleum ether (2:98 v/v); Rf : 0.4 (10% EA-PE); Appearance: Yellow solid.

IR (thin film, CHCl₃): v (cm⁻¹) = 3091, 2925, 2855, 1589, 1527, 1428, 1466, 1345, 1241. ¹**H NMR** (500 MHz, CDCl₃) δ 8.18 (dd, J = 4.9, 1.4 Hz, 1H), 8.05 (d, J = 8.1 Hz, 1H), 8.02 (t, J = 2.1 Hz, 1H), 7.76 (td, J = 8.3, 1.9 Hz, 1H), 7.55 (t, J = 8.1 Hz, 1H), 7.52 – 7.47 (m, 1H), 7.08 (dd, J = 6.8, 5.3 Hz, 1H), 7.02 (d, J = 8.3 Hz, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 162.7, 154.8, 149.2, 147.8, 140.2, 130.3, 127.7, 119.7, 119.6, 116.7, 112.4. **LRMS** [ESI, (+) ve]: 217.0629.

2-(4-methyl-3-nitrophenoxy)pyridine (Table 2, 2b): Following the general procedure B, Compound 2b was obtained from 2-(4-methyl-phenoxy)pyridine 1b, isolated by column chromatography (80%, 33.5 mg), Eluent: ethyl acetate/ petroleum ether (2:98 v/v); Rf: 0.4 (10% EA-PE); Appearance: yellow solid.

IR (thin film, CHCl₃): v (cm⁻¹) = 3064, 2926, 2855, 1594, 1573, 1526, 1466, 1428, 1348, 1243, 1143. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (ddd, J = 5.0, 2.0, 0.7 Hz, 1H), 7.82 (d, J = 2.3 Hz, 1H), 7.74 (ddd, J = 8.3, 7.2, 2.0 Hz, 1H), 7.36 (d, J = 8.4 Hz, 1H), 7.32 (dd, J = 8.4, 2.4 Hz, 1H), 7.05 (ddd, J = 7.2, 5.0, 0.9 Hz, 1H), 6.99 (dt, J = 8.3, 0.8 Hz, 1H), 2.60 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 163.0, 152.6, 147.8, 140.0, 133.8, 130.0, 126.5, 119.5, 118.0, 112.2, 77.2, 20.4. HRMS [ESI, (+) ve]: calcd. for (C₁₂H₁₁N₂O₃) 231.0764, found 231.0765.

2-(4-iodo-3-nitrophenoxy)pyridine (Table 2, 2c): Following the general procedure B, Compound 2c was obtained from 2-(4-iodo-phenoxy)pyridine 1c, isolated by column chromatography (70%, 47 mg), Eluent: ethyl acetate/ petroleum ether (2:98 v/v); R_f : 0.4 (10% EA-PE); Appearance: Brownish solid.

IR (thin film, CHCl₃): v (cm⁻¹) = 3091, 2924, 2853, 1590, 1534, 1464, 1429, 1343, 1268, 1238, 777. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 4.8 Hz, 1H), 8.02 (d, J = 8.6 Hz, 1H), 7.76 (ddd, J = 10.7, 8.5, 2.1 Hz, 2H), 7.14 (dd, J = 8.6, 2.7 Hz, 1H), 7.09 (dd, J = 6.8, 5.4 Hz, 1H), 7.02 (d, J = 8.3 Hz, 1H).¹³C NMR (126 MHz, CDCl₃) δ 162.3, 154.8, 147.7, 142.6, 140.3, 135.9, 126.9, 126.6, 120.0, 119.0, 112.5, 112.4. **LRMS** [ESI, (+) ve]: 342.089.

2-(4-fluoro-3-nitrophenoxy)pyridine (Table 2, 2d): Following the general procedure B, Compound 2d was obtained from 2-(4-fluoro-phenoxy)pyridine 1d, isolated by column chromatography (78%, 36.5 mg), Eluent: ethyl acetate/ petroleum ether (2:98 v/v); Rf: 0.4 (10% EA-PE); Appearance: white solid.

IR (thin film, CHCl₃): v (cm⁻¹) = 3068, 2921, 2852, 1602, 1535, 1474, 1378, 1345, 1198, 1128, 1023. ¹H NMR (500 MHz, CDCl₃) δ 8.16 (ddd, J = 5.0, 2.0, 0.7 Hz, 1H), 7.90 (dd, J = 6.2, 2.9 Hz, 1H), 7.76 (ddd, J = 8.3, 7.2, 2.0 Hz, 1H), 7.45 (ddd, J = 9.0, 3.6, 3.0 Hz, 1H), 7.31 (dd, J = 10.2, 9.1 Hz, 1H), 7.08 (ddd, J = 7.2, 5.0, 0.9 Hz, 1H), 7.02 (dt, J = 8.3, 0.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 162.7, 147.6, 140.2, 129.0 (d, J = 8.2 Hz), 119.8, 119.4, 119.6, 112.2. HRMS [ESI, (+) ve]: calcd. for (C₁₁H₇FN₂O₃) 235.0442, found 235.0440.

2-(4-chloro-3-nitrophenoxy)pyridine (Table 2, 2e): Following the general procedure B, Compound 2e was obtained from 2-(4-chlorophenoxy)pyridine 1e, isolated by column chromatography isolated by column chromatography (72%, 36 mg), Eluent: ethyl acetate/ petroleum ether (2:98 v/v); Rf: 0.4 (10% EA-PE); Appearance: white solid.

IR (thin film, CHCl₃): v (cm⁻¹) = 3084, 2925, 2853, 1591, 1534, 1464, 1428, 1347, 1267, 1236, 1069, 1142, 851. ¹H NMR (500 MHz, CDCl₃) δ 8.17 (ddd, J = 5.0, 2.0, 0.7 Hz, 1H), 7.79 – 7.76 (m, 1H), 7.75 (dd, J = 3.3, 2.4 Hz, 1H), 7.55 (d, J = 8.8 Hz, 1H), 7.35 (dd, J = 8.8, 2.8 Hz, 1H), 7.09 (ddd, J = 7.2, 5.0, 0.9 Hz, 1H), 7.02 (dt, J = 8.3, 0.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 162.4, 153.0, 147.7, 140.3, 132.7, 126.5, 122.6, 119.9, 118.9, 112.3.

2-(4-methoxy-3-nitrophenoxy)pyridine (Table 2, 2f): Following the general procedure B, Compound 2f was obtained from 2-phenoxypyridine 1f, isolated by column chromatography (60%, 29.5 mg), Eluent: ethyl acetate/ petroleum ether (4:96 v/v); R_f : 0.5 (10% EA-PE); Appearance: Yellow solid.

IR (thin film, CHCl₃): v (cm⁻¹) = 3078, 2930, 2852, 1590, 1518, 1528, 1462, 1431, 1345, 1280, 1140, 1080. ¹H NMR (500 MHz, CDCl₃) δ 8.16 (dd, J = 5.0, 1.5 Hz, 1H), 7.74– 7.71(m, 2H), 7.39 (dd, J = 8.8, 2.8 Hz, 1H), 7.12 (d, J = 7.8 Hz, 1H), 7.04 (ddd, J = 7.2, 5.0, 0.9 Hz, 1H), 6.97

(dt, J = 8.3, 0.8 Hz, 1H), 3.97 (s, 3H). **HRMS** [ESI, (+) ve]: calcd. for (C₁₂H₁₀N₂O₄) 247.0641, found 247.0646.

2-(4-phenyl-3-nitrophenoxy)pyridine (Table 2, 2g): Following the general procedure B, Compound 2g was obtained from 2-(4-phenyl-phenoxy)pyridine 1g, isolated by column chromatography (76%, 44 mg), Eluent: ethyl acetate/ petroleum ether (2:98 v/v); Rf: 0.4 (10% EA-PE); Appearance: pale yellow solid.

IR (thin film, CHCl₃): v (cm⁻¹) = 3063, 3011, 2928, 2852, 1592, 1531, 1462, 1429, 1350, 1242, 1168. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, J = 3.8 Hz, 1H), 7.82 – 7.75 (m, 1H), 7.70 (d, J = 2.0 Hz, 1H), 7.48 – 7.39 (m, 5H), 7.36 – 7.31 (m, 2H), 7.13 – 7.08 (m, 1H), 7.05 (d, J = 8.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 162.7, 153.7, 149.6, 147.8, 140.3, 137.3, 133.1, 132.6, 128.9, 128.3, 128.2, 125.3, 119.8, 117.2, 112.5. **HRMS** [ESI, (+) ve]: calcd. for (C₁₁H₇ClN₂O₃) 293.0921, found 293.0917.

1-(2'-nitro-4'-(pyridine-2-yloxy)-[1,1'-biphenyl]-4-yl)ethane-1-one (Table 2, 2h): Following the general procedure B, Compound 2h was obtained from 1-(4'-(pyridine-2-yloxy)-[1,1'-biphenyl]-4-yl)ethane-1-one 1h, isolated by column chromatography (75%, 46 mg) Eluent: ethyl acetate/ petroleum ether (6:94 v/v); Rf: 0.4 (20% EA-PE); Appearance: white solid.

IR (thin film, CHCl₃): v (cm⁻¹) = 3060, 3020, 2925, 2854, 1683, 1595, 1532, 1466, 1429, 1357, 1267, 1238, 829. ¹H NMR (500 MHz, CDCl₃) δ 8.22 (dd, J = 4.9, 1.4 Hz, 1H), 8.04 – 8.00 (m, 2H), 7.81 – 7.79 (m, 1H), 7.78 (d, J = 2.2 Hz, 1H), 7.44 (ddd, J = 8.4, 7.4, 2.0 Hz, 4H), 7.11 (ddd, J = 7.2, 5.0, 0.8 Hz, 1H), 7.06 (t, J = 6.0 Hz, 1H), 2.64 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 154.4, 147.8, 142.3, 140.3, 136.8, 132.9, 131.5, 128.9, 128.6, 125.6, 120.0, 117.6, 112.5. HRMS [ESI, (+) ve]: calcd. for (C₁₁H₇ClN₂O₃) 335.1026, found 335.1030.

2-(2-methyl-3-nitrophenoxy)pyridine (Table 2, 2i): Following the general procedure B, Compound 2i was obtained from 2-(2-methyl-phenoxy)pyridine 1i, isolated by column chromatography (77%, 31mg), Eluent: ethyl acetate/ petroleum ether (2:98 v/v); R_f : 0.4 (10% EA-PE); Appearance: yellow solid.

IR (thin film, CHCl₃): v (cm⁻¹) = 3060, 2928, 2855, 1574, 1574, 1527, 1467, 1428, 1348, 1230, 1244, 1181, 776. ¹H NMR (400 MHz, CDCl₃) δ 8.15 – 8.11 (m, 1H), 7.78 (dd, J = 7.7, 1.7 Hz, 1H), 7.76 – 7.71 (m, 1H), 7.35 (d, J = 7.8 Hz, 1H), 7.32 (dd, J = 8.1, 1.7 Hz, 1H), 7.03 (ddd, J = 7.2, 5.0, 0.8 Hz, 1H), 6.99 (d, J = 8.3 Hz, 1H), 2.37 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 163.2, 153.5, 147.86, 140.1, 131.8, 127.2, 127.0, 126.9, 121.3, 119.1, 111.4, 12.9. HRMS [ESI, (+) ve]: calcd. for (C₁₁H₇ClN₂O₃) 231.0764, found 231.0763.

2-(2-bromo-3-nitrophenoxy)pyridine (Table 2, 2j): Following the general procedure B, Compound 2j was obtained from 2-(2-methyl-phenoxy)pyridine 1j, isolated by column chromatography (65%, 21 mg), Eluent: ethyl acetate/ petroleum ether (2:98 v/v); Rf : 0.4 (10% EA-PE); Appearance: yellow solid.

IR (thin film, CHCl₃): v (cm⁻¹) = 3082, 2918, 2850, 1596, 1574, 1535, 1453, 1428, 1359, 1266, 1142, 852, 712. ¹H NMR (400 MHz, CDCl₃) δ 8.14 – 8.10 (m, 1H), 7.77 (ddd, J = 8.3, 7.2, 2.0 Hz, 1H), 7.67 (dd, J = 8.0, 1.6 Hz, 1H), 7.49 (t, J = 8.1 Hz, 1H), 7.42 (dd, J = 8.2, 1.6 Hz, 1H), 7.07 (ddd, J = 7.2, 4.6, 1.6 Hz, 2H).

2-(2-methoxy-3-nitrophenoxy)pyridine (Table 2, 2k): Following the general procedure B, Compound 2k was obtained from 2-(2-methyl-phenoxy)pyridine 1k, isolated by column chromatography Eluent (57%, 28 mg) ethyl acetate/ petroleum ether (2:98 v/v); R_f : 0.4 (10% EA-PE); Appearance: yellow solid.

IR (thin film, CHCl₃): v (cm⁻¹) = 3088, 2925, 2851, 1593, 1515, 1528, 1468, 1430, 1344, 1205, 1281, 1237, 1081. ¹H NMR (400 MHz, CDCl₃) δ 8.18 – 8.14 (m, J = 9.1, 2.7 Hz, 1H), 8.11 (d, J = 3.0 Hz, 1H), 8.06 (d, J = 2.7 Hz, 1H), 7.78 – 7.71 (m, J = 7.5 Hz, 1H), 7.07 – 7.02 (m, J = 12.0, 8.7 Hz, 3H), 3.88 (s, 3H).¹³C NMR (126 MHz, CDCl₃) δ 162.9, 157.6, 147.5, 142.4, 141.5, 140.0, 122.5, 119.4, 119.1, 111.8, 111.4, 56.7.

2-(2,4-dichloro-3-nitrophenoxy)pyridine (Table 2, 2I): Following the general procedure B, Compound 2I was obtained from 2-(2,4-dichloro-phenoxy)pyridine 1I, isolated by column chromatography (56%, 32 mg), Eluent: ethyl acetate/ petroleum ether (3:98 v/v); Rf: 0.35 (10% EA-PE); Appearance: white solid.

IR (thin film, CHCl₃): v (cm⁻¹) = 3082, 2930, 2856, 1592, 1534, 1464, 1428, 1346, 1236, 1069, 1143, 851, 776. ¹H NMR (500 MHz, CDCl3) δ 8.13 – 8.10 (m, 1H), 7.80 – 7.74 (m, 1H), 7.46 (d, J = 8.9 Hz, 1H), 7.33 (d, J = 8.9 Hz, 1H), 7.07 (td, J = 5.8, 0.8 Hz, 2H).

2-(4-fluoro-3-nitrophenoxy)-5-methylpyridine (Table 2, 2m): Following the general procedure B, Compound 2m was obtained from 2-(4-fluoro-phenoxy)-5-methylpyridine 1m, isolated by column chromatography (80%, 40 mg), Eluent: ethyl acetate/ petroleum ether (3:97 v/v); Rf: 0.4 (10% EA-PE); Appearance: white solid.

IR (thin film, CHCl₃): v (cm⁻¹) = 3062, 2926, 2858, 1602, 1536, 1474, 1378, 1345, 1210, 1234, 1198, 1127. ¹H NMR (500 MHz, CDCl3) δ 7.97 (dd, J = 1.6, 0.7 Hz, 1H), 7.85 (dd, J = 6.2, 3.0 Hz, 1H), 7.57 (ddd, J = 8.3, 2.4, 0.5 Hz, 1H), 7.42 (ddd, J = 9.0, 3.6, 3.0 Hz, 1H), 7.29 (dd, J = 10.2, 9.1 Hz, 1H), 6.91 (d, J = 8.3 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 160.8, 153.3, 151.3, 150.2 (d, J = 3.6 Hz), 147.3, 141.1, 129.3, 128.5 (d, J = 8.2 Hz), 119.3, 119.1, 118.6 (d, J = 2.5 Hz), 17.7. HRMS [ESI, (+) ve]: calcd. for (C₁₁H₇ClN₂O₃) 249.0670, found 249.0667.

5-methyl-2-(4-methyl-3nitrophenoxy)pyridine (Table 2, 2n): Following the general procedure B, Compound 2n was obtained from 5-methyl-2-(4-methyl-phenoxy)pyridine 1n, isolated by column chromatography (70%, 34 mg), Eluent: ethyl acetate/ petroleum ether (3:97 v/v); Rf: 0.4 (10% EA-PE); Appearance: white solid.

IR (thin film, CHCl₃): v (cm⁻¹) = 3964, 2926, 2855, 1733, 1594, 1573, 1466, 1428, 1348, 1263, 1242, 1190. ¹**H NMR** (400 MHz, CDCl₃) δ 7.99 (s, 1H), 7.78 (d, J = 2.4 Hz, 1H), 7.55 (dd, J = 8.3, 2.0 Hz, 1H), 7.34 (d, J = 8.4 Hz, 1H), 7.29 (dd, J = 8.4, 2.4 Hz, 1H), 6.89 (d, J = 8.3 Hz, 1H), 2.59 (s, 3H), 2.30 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 161.1, 153.1, 147.5, 140.9, 133.8, 130.4, 129.6, 129.0, 126.1, 121.3, 117.4, 111.8, 20.3, 17.7. **HRMS** [ESI, (+) ve]: calcd. for (C₁₁H₇ClN₂O₃) 245.0921, found 245.0918.

*2-(3-nitrophenoxy)pyrimidine*⁴ (Table 2, 20): Following the general procedure B, Compound 20 was obtained from 2-phenoxy pyrimidine 10, isolated by column chromatography (60%, 24.5

mg),Eluent: ethyl acetate/ petroleum ether (4:96 v/v); Rf: 0.35 (10% EA-PE); Appearance: white solid.

IR (thin film, CHCl₃): v (cm⁻¹) = 3095, 2924, 2853, 2078, 2016, 1692, 1571, 1528, 1433, 1403, 1349, 1289, 1218, 1193. ¹**H NMR** (400 MHz, CDCl₃) δ 8.60 (d, J = 4.8 Hz, 2H), 8.16 – 8.10 (m, 2H), 7.64 – 7.54 (m, 2H), 7.13 (dd, J = 7.9, 3.1 Hz, 1H).

2-(4-methyl-3-nitrophenoxy)pyrimidine (Table 2, 2p): Following the general procedure B, Compound 2p was obtained from 2-(4-methyl-phenoxy)pyrimidine 1p, isolated by column chromatography (65%, 28.5 mg), Eluent: ethyl acetate/ petroleum ether (4:96 v/v); Rf : 0.35 (10% EA-PE); Appearance: white solid.

IR (thin film, CHCl₃): v (cm⁻¹) = 3015, 2929, 2855, 1966, 1574, 1528, 1443, 1403, 1354, 1304, 1218, 1026. ¹H NMR (500 MHz, CDCl₃) δ 8.58 (d, J = 4.8 Hz, 2H), 7.90 (d, J = 2.3 Hz, 1H), 7.43 – 7.36 (m, 2H), 7.11 (t, J = 4.8 Hz, 1H), 2.63 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 162.4, 152.4, 147.6, 140.3, 134.1, 130.3, 127.6, 121.0, 111.0, 20.9. **HRMS** [ESI, (+) ve]: calcd. for (C₁₁H₁₀N₃O₃) 232.0717, found 232.0717.

*3-nitrophenol*⁵ (Scheme 3, 3a): Following the general procedure C Compound 3a was obtained from 2-(3-nitrophenoxy)pyridine 2a, isolated by column chromatography (65%, 21 mg)Eluent: ethyl acetate/ petroleum ether (2:96 v/v); R_f: 0. 5 (10% EA-PE); Appearance: white solid. IR (thin film, CHCl₃): v (cm⁻¹) = 3481, 3387, 2992, 2953, 2852, 1624, 1519, 1351, 1078, 935. ¹H NMR (500 MHz, CDCl₃) δ 7.83 (dd, J = 8.2, 1.3 Hz, 1H), 7.72 (t, J = 2.2 Hz, 1H), 7.43 (t, J = 8.2 Hz, 1H), 7.20 (dd, J = 8.1, 2.4 Hz, 1H), 5.94 (s, 1H).

*4-chloro-3nitrophenol*⁶ (Scheme 3, 3b): Following the general procedure C Compound 3b was obtained from 4-chloro-(3-nitrophenoxy)pyridine 2e, isolated by column chromatography Eluent: ethyl acetate/ petroleum ether (2:96 v/v); R_f : 0. 5 (10% EA-PE); Appearance: yellow solid.

6. References

 (a) A. Isse, A. Gennaro, C. Y. Lin, J. L. Hodgson, M. L. Coote and T. Gullashvill J. Am. Chem. Soc., 2011, 133, 6254; (b) B. Li, S. -L. Fang, D. -Y. Huang and B. -F. Shi Org. Lett. 2017, 19, 3950. 2. D. Maiti and S. L. Buchwald J. Org. Chem. 2010, 75, 5, 1791.

3. S.-J. Lou, Q. Chen, Y.-F. Wang, D.-Q. Xu, X.-H. Du, J.-Q. He, Y.-J. Mao and Z.-Y. Xu, ACS Catal. 2015, 5, 2846.

4. S. Sengupta, S. Rajagopalan, N. Belavagi and M. Ramachandra, PCT Int. Appl. (2012), WO 2012059932 A1 20120510.

5. Y.-T. Xu, C.-Y. Li, X.-B. Huang, W.-X. Gao, Y.-B. Zhou, M.-C. Liu and H.-Y. Wu *Green Chem.* 2019, **21**, 4971.

6. R. Calvo, K. Zhang, A. Passera, and D. Katayev Nat Commun 2019, 10, 3410.

Table 2, 2e

S29

