Electronic supplementary information

Homogeneous DNA-Only Keypad Locks Enable One-Pot Assay of Multi-Inputs

Bing Wei, $\dagger^{\text {a }}$ Xianbao Sun, \dagger^{*} b Dongbao Yao, ${ }^{\text {a }}$ Chengxu Li, ${ }^{\text {a }}$ Shiyan Xiao, ${ }^{\text {a }}$ Yijun Guo, ${ }^{\text {a }}$ and Haojun Liang*a
${ }^{\text {a }}$ Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, i ChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
${ }^{\mathrm{b}}$ State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, P. R. China
\ddagger B. W. and X. S. contributed equally to this work.

* Correspondence should be addressed to xbsun@seu.edu.cn; hjliang@ustc.edu.cn.

S1. Materials and Methods

S1.1. Materials

DNA oligonucleotides and 4 S GelRed used in this study were purchased from Sangon Biotechnology Co., Ltd. (Shanghai, China). The 6-FAM/Dabcyl-modified oligonucleotides were purified through high-performance liquid chromatography (HPLC), while ULTRAPAGE for nonmodified oligonucleotides. All oligonucleotides were dissolved in $1 \times \mathrm{TAE} / \mathrm{Mg}^{2+}$ buffer (40 mM Tris-Acetate, 1 mM EDTA, and $12.5 \mathrm{mM} \mathrm{Mg}^{2+}$) and quantified by measuring the absorbance at 260 nm using NanoDrop 2000 Spectrophotometer (Thermo Fisher, USA) before use, then stored at -20 ${ }^{\circ} \mathrm{C}$. Other chemicals were purchased from Sinopham Chemical Reagent Co., Ltd. (China).

S1.2. Preparation and Purification of the DNA Substrates

The multi-stranded junction substrates used in this study were prepared according to our previous report, ${ }^{1}$ through assembling multiple purified double-stranded DNA motifs in a nominally equal molar ratio at $25^{\circ} \mathrm{C}$ for 2 h . These double-stranded DNA motifs were annealed in a nominally equal ratio, heating up to $95^{\circ} \mathrm{C}$ for 5 min and then slowly cooling down to $25^{\circ} \mathrm{C}$ at a rate of $0.1^{\circ} \mathrm{C} / \mathrm{s}$.

Purification of the double-stranded DNA motifs and eliminators were performed using 12% nondenaturing PAGE (polyacrylamide gel electrophoresis), which was made by mixing $21 \mathrm{~mL} 40 \%$ acrylamide/bis (19:1), 1.4 mL 50XTAE, 420 uL APS, 42 ul TEMED in 47 mL ultrapure water and continuously stirring for 7 min . After loading the sample pre-mixed with 33% glycerol per lane, gel was run at 240 V for 6 hours using Hoefer standard vertical electrophoresis unit (Hoefer, Inc., San Francisco, CA, USA) with a PS300-B power supply at the freezer to prevent the temperature from elevating. Stained by GelRed dye, the desired substrate bands were able to be seen under UV light and cut from the gel into pieces, then soaked in buffer at $4^{\circ} \mathrm{C}$ for two days to ensure sufficient extraction of the DNA. Finally, the supernatants were separated from gel pieces and re-quantified using NanoDrop 2000 Spectrophotometer. The purified DNA substrates were redissolved in $1 \times \mathrm{TAE} / \mathrm{Mg}^{2+}$ buffer and stored at $-20^{\circ} \mathrm{C}$.

S1.3. Fluorescence measurements

All fluorescence experiments were measured by Hitachi F-7000 fluorescence spectrophotometer (Hitachi High-Technologies Corporation, Tokyo, Japan) in $1 \times \mathrm{TAE} / \mathrm{Mg}^{2+}$ buffer at $25^{\circ} \mathrm{C}$. To confirm the performance of multi-input keypad lock security system, every reaction with mixture of 15 nM junction substrate and 30 nM each eliminator was carried out by sequentially adding 30 nM inputs in different permutations every three hours. With the use of 6-FAM fluorophore, the excitation/emission were set at 492/520 nm for kinetic characterization.

S2. Supplementary Table

Table S1. Strand sequences used in the optimization of the junction substrate.

Strand	Sequence
b1-F	```6-FAM-TTGTGTGGTAGTATGAGTTGAGATTGGTTGTTTAGT TTG```
$\mathrm{t1-Q}\left(\mathrm{p}_{5}-15 \mathrm{nt}\right)$	GTGTTGATAGGTAGGATCTCAACTCATACTACCACACAADabcyl
$\mathrm{t} 1-\mathrm{Q}\left(\mathrm{p}_{5}-5 \mathrm{nt}\right)$	GTAGGATCTCAACTCATACTACCACACAA-Dabcyl
b2	CAAACTAAACAACCATTGATAAGTTGGTATGAAGTAAATGTA AGTAGATGG
t2 ($\mathrm{p}_{5}-0 \mathrm{nt}$)	TTACATTTACTTCATACCAACTTTCA
t2 ($\mathrm{p}_{5}-5 \mathrm{nt}$)	TTACATTTACTTCATACCAACTTTCACCTAC
t2 ($\mathrm{p}_{5}-8 \mathrm{nt}$)	TTACATTTACTTCATACCAACTTTCACCTACCTA
t2 ($\mathrm{p}_{5}-12 \mathrm{nt}$)	TTACATTTACTTCATACCAACTTTCACCTACCTATCAA
t2 ($\mathrm{p}_{6}-3 \mathrm{nt}$)	TTACATTTACTTCATACCAACTTTCACCTAC
t2 ($\mathrm{p}_{6}-4 \mathrm{nt}$)	TTACATTTACTTCATACCAACTATCACCTAC
t2 ($\mathrm{p}_{6}-5 \mathrm{nt}$)	TTACATTTACTTCATACCAACCATCACCTAC
t2 ($\mathrm{p}_{6}-6 \mathrm{nt}$)	TTACATTTACTTCATACCAAACATCACCTAC
t2 ($\mathrm{p}_{6}-7 \mathrm{nt}$)	TTACATTTACTTCATACCACACATCACCTAC
t2 ($\mathrm{p}_{6}-8 \mathrm{nt}$)	TTACATTTACTTCATACCTCACATCACCTAC
A	CCATCTACTTACATTTACTTCATACC
B (8/5)	AACTTATCATCTCAACTCATACTACCA
B (8/4)	AACTTATCATCTCAACTCATACTACCAC
B (8/3)	AACTTATCATCTCAACTCATACTACCACA
B (8/2)	AACTTATCATCTCAACTCATACTACCACAC
B (8/1)	AACTTATCATCTCAACTCATACTACCACACA
B (8/0)	AACTTATCATCTCAACTCATACTACCACACAA

Table S2. Strand sequences used in the two-, three-, and four-input keypad lock systems.

circuit	Strand	Sequence
Two- input	b1-F	6-FAM- TTGTGTGGTAGTATGAGTTGAGATTGGTTGTTTAGTTTG
	t1-Q	GTAGGATCTCAACTCATACTACCACACAA-Dabcyl
	b2	CAAACTAAACAACCATTGATAAGTTGGTATGAAGTAAATGTA

		AGTAGATGG
	t2	TTACATTTACTTCATACCACACATCACCTAC
	E_{B}-b	TGGTAGTATGAGTTGAGATGATAA
	$\mathrm{E}_{\mathrm{B}}-\mathrm{t}$	ATCTCAACTCATACTACCA
	$\mathrm{E}_{\mathrm{A}}-\mathrm{b}$	TATGAAGTAAATGTAAGTAGA
	$E_{A}-\mathrm{t}$	TTACATTTACTTCATA
	A	CCATCTACTTACATTTACTTCATACC
	B	AACTTATCATCTCAACTCATACTACCACACA
	b1-F	6-FAM- TTGTGTGGTAGTATGAGTTGAGATTGGTTGTTTAGTTTG
	t1-Q	GTAGGATCTCAACTCATACTACCACACAA-Dabcyl
	b2	CAAACTAAACAACCATTGATAAGTTGGTATGAAGTAAATGTA ATGGAGGTAATGAATG
	t2	GATAGTTACATTTACTTCATACCACACATCACCTAC
Three-	b3	CATTCATTACCTCCATTGTAGATGGGAGGTGTTGTTGAAAGGT GTGTTTGA
input	t3	ACCTTTCAACAACACCTCCACCAACACTATC
	$\mathrm{E}_{\mathrm{C}}-\mathrm{b}$	TGGTAGTATGAGTTGAGATGATAA
	E_{C}-t	ATCTCAACTCATACTACCA
	E_{B}-b	TATGAAGTAAATGTAAGTAGA
	E_{B}-t	TTACATTTACTTCATA
	$\mathrm{E}_{\mathrm{A}}-\mathrm{b}$	GGTGTTGTTGAAAGGTGTGTT
	$E_{A}-\mathrm{t}$	ACCTTTCAACAACACC
	A	TCAAACACACCTTTCAACAACACCTC
	B	CCATCTACTTACATTTACTTCATACC
	C	AACTTATCATCTCAACTCATACTACCACACA
Fourinput	b1-F	
	t1-Q	GTAGGATCTCAACTCATACTACCACACAA-Dabcyl
	b2	CAAACTAAACAACCATTGATAAGTTGGTATGAAGTAAATGTA ATGGAGGTAATGAATG
	t2	GATAGTTACATTTACTTCATACCACACATCACCTAC
	b3	CATTCATTACCTCCATTGTAGATGGGAGGTGTTGTTGAAAGGT TGTTTGAAGTTAGTG
	t3	GTGTTACCTTTCAACAACACCTCCACCAACACTATC

b4	CACTAACTTCAAACATTGTGTTTGAGAGTGGTAGTAATAGGTG TATGAGGT
t4	CACCTATTACTACCACTCTACCCACAAACAC
$\mathrm{E}_{\mathrm{D}}-\mathrm{b}$	TGGTAGTATGAGTTGAGATGATAA
$\mathrm{E}_{\mathrm{D}}-\mathrm{t}$	ATCTCAACTCATACTACCA
$\mathrm{E}_{\mathrm{C}}-\mathrm{b}$	TATGAAGTAAATGTAAGTAGA
$E_{C}-\mathrm{t}$	TTACATTTACTTCATA
$\mathrm{E}_{\mathrm{B}}-\mathrm{b}$	GGTGTTGTTGAAAGGTGTGTT
$\mathrm{E}_{\mathrm{B}}-\mathrm{t}$	ACCTTTCAACAACACC
$\mathrm{E}_{\mathrm{A}}-\mathrm{b}$	GTGGTAGTAATAGGTGTATGA
$\mathrm{E}_{\mathrm{A}}-\mathrm{t}$	CACCTATTACTACCAC
A	ACCTCATACACCTATTACTACCACTC
B	TCAAACACACCTTTCAACAACACCTC
C	CCATCTACTTACATTTACTTCATACC
D	AACTTATCATCTCAACTCATACTACCACACA

S3. Supplementary Figure

Fig. S1 The double-stranded P_{5} of S_{2} was labelled with FAM and Dabcyl on the adjacent terminals to test its initial stability and disassociation efficiency upon the displacement reaction between input A and $\mathrm{S}_{2}{ }^{\prime}$. In these experiments, $\left[\mathrm{S}_{2}{ }^{\prime}\right]=15 \mathrm{nM},[\mathrm{A}]=30 \mathrm{nM}$. Fluorescence signals were normalized to 1.0 , which corresponds to 15 nM of released FAM-labelled strand. Experiments were run at $25^{\circ} \mathrm{C}$ in Tris-acetate-EDTA bu \square er containing $12.5 \mathrm{mM} \mathrm{Mg}{ }^{2+}\left(1 \times \mathrm{TAE} / \mathrm{Mg}^{2+}\right)$.

Fig. S2 FAM- and Dabcyl-labelled $\mathrm{S}_{\mathrm{A}(\mathrm{L})}, \mathrm{S}_{\mathrm{B}(\mathrm{L})}, \mathrm{E}_{\mathrm{A}(\mathrm{L})}$, and $\mathrm{E}_{\mathrm{B}(\mathrm{L})}$.

Fig. S3 Kinetic characterization of the competitive reactions. (a) Schematics of the reactions. (b) Experimental and simulation results of the reactions. The solid curves show the experimental results, while the corresponding dotted lines denote simulations of a second-order displacement reaction with the corresponding experimental best-fit rate constants $\left(\mathrm{k}_{1}=1.85 \times 10^{6} \mathrm{M}^{-1} \mathrm{~s}^{-1}, \mathrm{k}_{2}=1.53 \times 10^{5} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right.$, and $\left.\mathrm{k}_{3}=3.86 \times 10^{4} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$. In the experiment, $\left[\mathrm{S}_{\mathrm{A}}\right]=\left[\mathrm{S}_{\mathrm{B}}\right]=15 \mathrm{nM},\left[\mathrm{E}_{\mathrm{A}}\right]=30 \mathrm{nM},[\mathrm{A}]=[\mathrm{B}]=30 \mathrm{nM}$. The substrates were initially in solution at the indicated concentration, and the inputs were added at 0 h .

References

1 X. B. Sun, B. Wei, Y. J. Guo, S. Y. Xiao, X. Li, D. B. Yao, X. Yin, S. Y. Liu, H. J. Liang, J. Am. Chem. Soc., 2018, 140, 9979-9985.

