Fluorogenic iminosydnones: bioorthogonal tools for double turn-on click-and-release reactions.

Margaux Riomet, ${ }^{[a]}$ Karine Porte, ${ }^{[a]}$ Anne Wijkhuisen, ${ }^{[b]}$ Davide Audisio, ${ }^{[a]}$ and Frédéric Taran ${ }^{[a]}{ }^{*}$

[^0]
Table of contents

I. Materials and equipment 2
II. Synthetic Procedure and Analytical Data 3

1) Compound with fluorogenic substituent on the aryl inposition N33
2) Compound with substituent in position N6 7
3) Compound with fluorogenic substituent on the aryl inposition N3 and on N6.12
4) Released products 17
III. Optical properties 18
IV. Cell culture 27
V. NMR Spectra 33

I. Materials and equipment

All reactions sensitive to air and moisture were carried out under argon in oven-dried glassware.
Reactants and solvents: All chemical products commercially available were purchased from SigmaAldrich, Acros and Fluka and used without further purification. Anhydrous solvents: 1,4-dioxane, acetonitrile, DMF, DMSO were purchased in anhydrous form and used without further purification. THF was dried from sodium/benzophenone under nitrogen. Dichloromethane was distilled form calcium hydride under nitrogen. Chloroform was purchased stabilized with amylene.
Purifications: Flash chromatography were performed on silica gel (Merck Kieselgel 60, grading 40-63 $\mu \mathrm{m}$) or on Alumina (RediSep ${ }^{\circledR}$ Rf, Alumina neutral),

Analysis: Reactions were monitored by TLC carried out on silica $0,25 \mathrm{~mm}$ (60 F254, Merck) using UV light as visualizing agent and basic aqueous permanganate as developing agent.
${ }^{1} \mathrm{H}$ NMR (400 MHz), ${ }^{13} \mathrm{C}$ NMR (100 MHz) were measured on a Brucker Avance 400 MHz spectrometer. Chemical shifts are reported in parts per million (ppm) downfield from residual solvents peaks and coupling constants are reported as Hertz (Hz). Splitting patterns are designated as singlet (s), broad singlet (br. s), doublet (d), triplet (t), quartet (q), quintet (quint), multiplet (m). Splitting patterns that could not be interpreted or easily visualized are designated as multiplet (m).
Electrospray mass spectra were obtained using an ESI-Quadripole autopurify, Waters (pump: 2545, mass: ZQ2000) mass Spectrometer.
Infrared spectra (IR) were obtained on a Perkin Elmer system 2000 FT-IR spectrophotometer or a Perkin Elmer UATR TWO FTIR spectrophotometer and are reported as wavelength numbers (cm-1).
Melting points (Mp) were obtained on a BÜCHI Melting Point B-545 and are reported in ${ }^{\circ} \mathrm{C}$.
Absorbances were measured on a Varian Cary ${ }^{\circledR} 50$ UV-Vis spectrophotometer.
Fluorescence spectra were obtained on a HORIBA FluoroMax ${ }^{\circledR}-4$ fluorimeter.
Fluorescence analyses for kinetic studies were recorded on a Molecular Device SpectraMax ${ }^{\circledR}$ M5e.
Cell labeling: Microscopy was performed using a Leica DM 6000 upright microscope using a 63X/1.4 PLAN APO objective. A 50 mW diode (405 nm), a 458 nm argon laser and a 633 nm HeNe laser linked to the microscope microscope by an optical fiber assured shuttering and illumination. Image were acquired in different sequences with the following parameters:
-Excitation 633 nm (HeNe laser), Emission 665-700 nm (GaAsP hybrid detector, Hamamatsu), false-colored in red;

- Excitation 458 nm (Argon laser), Emission 540-650 nm (PMT detector, Hamamatsu), false-colored in green;
-Excitation 405 nm (Diode), Emission 415-470 nm (GaAsP hybrid detector, Hamamatsu), false-colored in blue.
Images were acquired and processed using LAS-X and are shown as a single z-plane.
Fluoromount ${ }^{\text {tm }}$ Aqueous Mounting Medium was used for preparing the cell samples.

II. Synthetic Procedure and Analytical Data

1) Compound with fluorogenic substituent on the aryl in position N3.
methyl 4-formylbenzoate (SI-1)

$$
\begin{gathered}
\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{2} \\
\text { MW: } 162 \mathrm{~g} \cdot \mathrm{~mol}^{-1} \\
\text { White solid } \\
\text { Yield: } 62 \%
\end{gathered}
$$

To an anhydrous solution of $\mathrm{Ph}_{3} \mathrm{PMeBr}(1.19 \mathrm{~g}, 3.34 \mathrm{mmol})$ in THF (10 mL) at $-78{ }^{\circ} \mathrm{C}$ was added a solution of $n B u L i$ in hexanes ($2.5 \mathrm{M}, 1.4 \mathrm{~mL}, 3.34 \mathrm{mmol}$), and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . The mixture was cooled down at $-78^{\circ} \mathrm{C}$ and a solution of methyl 4 -formylbenzoate ($498 \mathrm{mg}, 3.03 \mathrm{mmol}$) in anhydrous THF (3 mL) was added dropwise. The mixture was stirred for 1 hour at room temperature. A saturated solution of ammonium carbonate was added and the mixture was extracted with EtOAc. The organic layers were washed with brine, dried iver MgSO_{4}, filtered and evaporated. The crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, Heptane/EtOAc, 95/5) to afford the desired product as a white solid ($306 \mathrm{mg}, 62 \%$). The spectral data (${ }^{1} \mathrm{H}-\mathrm{NMR}$) was consistent with reported one. ${ }^{1}$ ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.98$ (d, $\left.J=8.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.44(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{dd}, J=17.6 \mathrm{~Hz}$, $J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H})$.

(tert-butoxycarbonyl)(3-(4-iodophenyl)-1,2,3-oxadiazol-3-ium-5-yl)amide (1)

Compound 1 was prepared as described in the literature. ${ }^{2}$

[^1]

(E)-(tert-butoxycarbonyl)(3-(4-styrylphenyl)-1,2,3-oxadiazol-3-ium-5-yl)amide (3)

To a stirred solution of styrene ($115 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ($4.5 \mathrm{mg}, 0.02 \mathrm{mmol}$), dppe (8.0 mg , $0.02 \mathrm{mmol})$ and $\mathrm{NEt}_{3}(56 \mu \mathrm{~L}, 0.40 \mathrm{mmol})$ in DMF (2 mL) at $80^{\circ} \mathrm{C}$ was added $1(78 \mathrm{mg}, 0.20 \mathrm{mmol})$ in DMF (2 mL) over a period of 2 hours. The mixture was stirred overnight. After cooling at room temperature, the mixture was filtered over a celite plug and evaporated. The crude product was purified by flash chromatography (SiO_{2}, heptane/EtOAc, from $80 / 20$ to 70/30) to afford the desired product as a yellow solid ($56 \mathrm{mg}, 77 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{~s}$, 9H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.8,161.1,142.4,136.2,133.0,132.3,129.0$ (2C), 129.0, 128.0 (2C), 127.1 (2C), 126.0, 121.7 (2C), 102.1, 79.1, 28.4 (3C).

IR (cm ${ }^{-1}$): 2976, 1655, 1600, 1450, 1366, 1295, 1221, 1163, 1051, 1009, 966, 881, 814.
HRMS (ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 364.1656$; found: 364.1656 ; calcd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{NaO}_{3}$. [M+Na] ${ }^{+}$: 386.1475; found: 386.1473.
Mp.: 179-180 ${ }^{\circ} \mathrm{C}$.

(E)-(tert-butoxycarbonyl)(3-(4-(4-(methoxycarbonyl)styryl)phenyl)-1,2,3-oxadiazol-3-ium-5-yl)amide (4)

To a stirred solution of $\mathbf{S I - 1}(264 \mathrm{mg}, 1.63 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(18 \mathrm{mg}, 0.08 \mathrm{mmol})$, dppe (32 mg , $0.08 \mathrm{mmol})$ and $\mathrm{NEt}_{3}(230 \mu \mathrm{~L}, 1.63 \mathrm{mmol})$ in DMF $(8 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ was added $1(315 \mathrm{mg}, 0.81 \mathrm{mmol})$ in DMF (8 mL) over a period of 12 hours. The mixture was stirred overnight. After cooling at room temperature, the mixture was filtered over a celite plug and evaporated. The crude product was purified by flash chromatography ($\mathrm{SiO}_{2}, \mathrm{DCM} / \mathrm{EtOAc}$, from $100 / 0$ to $90 / 10$) to afford the desired product as a yellow solid ($140 \mathrm{mg}, 41 \%$).
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) : $\delta 8.12(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.76$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H})$, 1.53 (s, 9H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.8,166.7,161.0,141.8,140.5,132.7,131.8,130.3$ (2C), 130.1, 128.4 (3C), 126.9 (2C), 121.8 (2C), 102.1, 79.1, 52.3, 28.4 (3C).

IR (cm ${ }^{-1}$): 2977, 1709, 1663, 1606, 1439, 1364, 1306, 1222, 1171, 1110, 972.
HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 422.1710$; found: 422.1709 ; calcd. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{NaO}_{5}$. [M+Na] ${ }^{+}$: 444.1530; found: 444.1531.
Mp.: 201-202 ${ }^{\circ} \mathrm{C}$

(E)-(tert-butoxycarbonyl)(3-(4-(4-methoxystyryl)phenyl)-1,2,3-oxadiazol-3-ium-5-yl)amide (5)

$$
\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}
$$

MW: 393 g. mol^{-1}
Light orange solid
Yield: 30\%

To a stirred solution of p-vinylanisole ($133 \mu \mathrm{~L}, 1.0 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(4.5 \mathrm{mg}, 0.02 \mathrm{mmol})$, dppe $(8.0 \mathrm{mg}$, $0.02 \mathrm{mmol})$ and $\mathrm{NEt}_{3}(56 \mu \mathrm{~L}, 0.40 \mathrm{mmol})$ in DMF (2 mL) at $80^{\circ} \mathrm{C}$ was added $1(78 \mathrm{mg}, 0.20 \mathrm{mmol})$ in DMF (2 mL) over a period of 2 hours. The mixture was stirred overnight. After cooling at room temperature, the mixture was filtered over a celite plug and evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, heptane/EtOAc, from $85 / 15$ to $75 / 25$) to afford the desired product as a yellow solid ($24 \mathrm{mg}, 30 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, 1.52 (s, 9H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 174.8,161.0,160.3,142.8,132.5,132.0,129.0,128.4$ (2C), 127.7 (2C), 123.8, 121.6 (2C), 114.4 (2C), 102.0, 79.1, 55.4, 28.4 (3C).

IR (cm ${ }^{-1}$): 2931, 1658, 1579, 1440, 1364, 1289, 1251, 1156, 1049,1006, 963, 833.
HRMS (ESI) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 394.1761; found: 394.1762; calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{NaO}_{4}$. [M+Na] ${ }^{+}$: 416.1581; found: 416.1581.
Mp.: 153-154 ${ }^{\circ} \mathrm{C}$.

Synthetic route to compounds $\mathbf{2}$ and 6:

1,4-dimethylpyridin-1-ium iodide (SI-2)

SI-2
$\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{IN}$
MW: 235 g. mol^{-1}
Light pink solid
Yield: 95\%

Compound SI-2 was synthesized according to a reported procedure. ${ }^{3}$ To a solution of picoline (1.00 g , $10.7 \mathrm{mmol})$ in dichloromethane (4.0 mL) was added iodomethane ($1.0 \mathrm{~mL}, 16.0 \mathrm{mmol}$). The mixture

[^2]was stirred at room temperature during 2 h . Heptane was added and the precipitate formed was filtered. 2.39 g ($10.2 \mathrm{mmol}, 95 \%$) of compound SI-2 were isolated.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 8.81(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~s}$, 3 H).

A solution of 1 ($387 \mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{OAc})_{2}(22 \mathrm{mg}, 0.10 \mathrm{mmol})$, Ethylenebis(diphenylphosphine) $(40 \mathrm{mg}, 0.10 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(415 \mathrm{mg}, 3.0 \mathrm{mmol})$ in $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(1 / 1,5 \mathrm{~mL})$ was stirred during 15 minutes at room temperature. Then (E)-2-(3,3-diethoxyprop-1-en-1-yl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane ($282 \mathrm{mg}, 1.1 \mathrm{mmol}$) was added and the reaction was stirred at $60{ }^{\circ} \mathrm{C}$ overnight. After cooling to room temperature, HCl 1 M was added to reach pH 2 and the mixture was stirred for another 15 minutes. The mixture was extracted with DCM and the organic layers were washed with brine, dried over MgSO_{4}, filtered and evaporated. The crude product was purified by column chromatography ($\mathrm{SiO}_{2}, \mathrm{DCM} / \mathrm{NEt}_{3} 100 / 0$ to $99 / 1$) to afford the desired product as an orange solid ($302 \mathrm{mg}, 96 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.74(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=16.1 \mathrm{~Hz}, 7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 192.9,174.8,160.9,148.7,138.8,135.1,131.6,130.3$ (2C), 122.3 (2C), 102.4, 79.3, 28.3 (3C).

IR (cm^{-1}) 1662, 1593, 1580, 1441, 1364, 1288, 1216, 1153, 1121, 1048, 1005, 963, 728.
HRMS (ESI) \mathbf{m} / \mathbf{z} calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 316.1292; found: 316.1288.
Mp. $74^{\circ} \mathrm{C}$ - decomp.
(tert-butoxycarbonyl)(3-(4-((1E,3E)-4-(1-methylpyridin-1-ium-4-yl)buta-1,3-dien-1-yl)phenyl)-1,2,3-oxadiazol-3-ium-5-yl)amide iodide (6)

3 drops of piperidine were added to a solution of $\mathbf{2}$ ($152 \mathrm{mg}, 0.39 \mathrm{mmol}$) and $\mathbf{~ S I - 2 ~ (~} 82 \mathrm{mg}, 0.35 \mathrm{mmol}$) in $\mathrm{MeOH}(8 \mathrm{~mL})$. The mixture was stirred at $60^{\circ} \mathrm{C}$ for 2 h . Most of the MeOH was evaporated and cold $\mathrm{Et}_{2} \mathrm{O}$ was added. The product was collected by filtration and purified by preparative TLC (Alumina, DCM/MeOH, 90/10), to afford $72 \mathrm{mg}(39 \%)$ of the desired product as a brown solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$): $\delta 8.72(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.38(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.02(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{dd}, J=15.6 \mathrm{~Hz}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=15.6 \mathrm{~Hz}$, $J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, MeOD-d ${ }_{4}$): $\delta 163.2,159.9,153.1,144.7$ (2C), 141.0, 137.8, 133.5, 130.9, 128.6 (2C), 128.1, 123.6 (2C), 122.2 (2C), 78.6, 46.4, 27.1 (3C).

2 quaternary carbons are missing.
IR (cm^{-1}): 1643, 1605, 1293, 1158, 1007.
HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}]^{+}$: 405.1921; found: 405.1922;
Mp. $194-196{ }^{\circ} \mathrm{C}$.

2) Compound with substituent in position N6.

5-amino-3-phenyl-1,2,3-oxadiazol-3-ium chloride 7

Compound 7 was prepared as described in the literature. ${ }^{2}$

Synthetic route to compound 8:

((7-(diethylamino)-2-oxo-2H-chromen-3-yl)carbamoyl)(3-phenyl-1,2,3-oxadiazol-3-ium-5-yl)amide (8)

$\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{4}$
MW: 419 g. mol^{-1}
Orange solid Yield: 68\%

A solution of 7-(Diethylamino)coumarin-3-carbonyl azide ($8.6 \mathrm{mg}, 0.030 \mathrm{mmol}$) in toluene (2 mL) was stirred at $100{ }^{\circ} \mathrm{C}$ for 30 minutes. The solvent was evaporated and the crude isocyanate was used without further purification.
The crude mixture was dissolved in DMF (2.5 mL) and the mixture was stirred at $-20^{\circ} \mathrm{C}$ under argon atmosphere. 7 ($18 \mathrm{mg}, 0.090 \mathrm{mmol}$) was added followed by the slow addition of DIPEA ($16 \mu \mathrm{l}$, 0.090 mmol) during 30 min . After completion, the mixture was evaporated under vacuum. The crude product was purified by column chromatography (Heptane/EtOAc, 60/40) to afford the desired product as an orange solid ($8.6 \mathrm{mg}, 68 \%$).
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$): $\delta 8.40(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.78-7.81(\mathrm{~m}, 3 \mathrm{H}), 7.62-7.72(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{dd}, J=8.8 \mathrm{~Hz}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}) 1.17$ ($\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.3,159.9,159.7,152.4,148.9,134.2,133.2,130.8$ (2C), 128.3, 122.4, 121.7 (2C), 121.0, 109.6, 109.2, 102.4, 97.8, 44.9 (2C), 12.7 (2C).

IR (cm ${ }^{-1}$): 1699, 1649, 1605, 1493, 1354, 1241, 1187, 961, 764.

6-aminobenzo[de]isochromene-1,3-dione (SI-3)

SI-3
The product was synthesized according to a reported procedure. ${ }^{4}$ Erreur! Signet non défini. To a stirred cloudy solution of compound 1,8-naphthalic anhydride ($1.0 \mathrm{~g}, 4.1 \mathrm{mmol}$) in ethanol (2 mL) was added dropwise a solution of $\mathrm{SnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(4.6 \mathrm{mg}, 20.5 \mathrm{mmol})$ in concentrated hydrochloric acid (3.5 mL) at room temperature. The reaction was heated to reflux for 2 h . After cooling down to room temperature, aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(10 \%)$ was added to quench the reaction. The precipitate was collected by filtration, washed with water $(3 \times 10 \mathrm{~mL}), \mathrm{EtOH}$ and $\mathrm{Et}_{2} \mathrm{O}$ and dried in vacuo to afford the product $\mathbf{S I}-3$ as an orange solid ($568 \mathrm{mg}, 65 \%$), which was directly used without further purification. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta .8 .68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.79 (br.s, 2H), 7.68 (dd, $J=7.9 \mathrm{~Hz}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$.

LCMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+} 214$.

6-amino-2-butyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (SI-4)

The product was synthesized according to a reported procedure. ${ }^{4} n$-butylamine ($200 \mu \mathrm{~L}, 2.0 \mathrm{mmol}$) was quickly added to a cloudy solution of SI-3 ($213 \mathrm{mg}, 1.0 \mathrm{mmol}$) in ethanol (20 mL). After refluxing for 16 hours, the reaction was allowed to cool to room temperature. The solvent was removed in vacuo, and the crude product was purified by silica gel column chromatography ($\mathrm{SiO}_{2}, \mathrm{DCM} / \mathrm{MeOH}$, from 100/0 to 95/5) to give 235 mg of compound $\mathbf{S I - 4}$ (88\%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.56(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{~d}, J=8.1 \mathrm{z}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61$ (dd, $J=8.4 \mathrm{~Hz}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{br} . \mathrm{s}, 2 \mathrm{H}), 4.13(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~m}, 2 \mathrm{H}), 1.42$ (m, 2H), $0.94(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
LCMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+} 269$.

[^3]Synthetic route to compound 9:

((2-butyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)carbamoyl)(3-phenyl-1,2,3-oxadiazol-3-ium-5yl)amide (9)

$\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{4}$ MW: 455 g. mol^{-1}

Yellow solid
Yield: 45\%

Triphosgene ($20 \mathrm{mg}, 0.066 \mathrm{mmol}$) was suspended in DCM (2 mL) and $\mathbf{S I}-4(52 \mathrm{mg}, 0.20 \mathrm{mmol})$ was added. The suspension was cooled to $0{ }^{\circ} \mathrm{C}$ and a solution of $\mathrm{NaHCO}_{3}(67 \mathrm{mg}, 0.80 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added dropwise. The mixture was stirred for 30 minutes at $0^{\circ} \mathrm{C}$ and 7 was added. The mixture was stirred from $0^{\circ} \mathrm{C}$ to room temperature overnight. The reaction was quenched with brine and extracted with DCM. The combined organic layers were dried over MgSO_{4}, filtered and evaporated under vacuum. The product was purified preparative $\operatorname{TLC}\left(\mathrm{SiO}_{2}\right.$, Heptane/EtOAc) to afford the product as a yellow solid ($41 \mathrm{mg}, 45 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.56-8.64(\mathrm{~m}, 3 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{br} . \mathrm{s}, 1 \mathrm{H})$, $7.82(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.74(\mathrm{~m}, 4 \mathrm{H}), 4.15(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.8,164.6,164.1,159.3,141.2,134.0,133.5,133.0,131.3,130.8$ (2C), $129.3,126.4,126.4,123.5,122.8,121.7$ (2C), 116.7, 115.8, 103.1, 40.4, 30.5, 20.6, 14.1. IR (cm${ }^{-1}$): 2958, 1650, 1582, 1527, 1494, 1352, 1239, 1191, 1090, 965, 775.
LCMS (ESI) m/z: [M+H]+ 456.

Synthetic route to compounds 10:

((5-(dimethylamino)naphthalen-1-yl)sulfonyl)(3-phenyl-1,2,3-oxadiazol-3-ium-5-yl)amide (10)

$\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$
MW: 394 g. mol^{-1}
Yield: 28\%
White solid

To a solution of $7(198 \mathrm{mg}, 1.0 \mathrm{mmol})$ in DMF $(2 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ was added dansyl chloride ($297 \mathrm{mg}, 0.22$ mmol). DIPEA ($262 \mu \mathrm{~L} ; 1.5 \mathrm{mmol}$) was added for 30 minutes at $-20^{\circ} \mathrm{C}$. The mixture was stirred while warming up to room temperature for 1 hour. Afterward, $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the mixture was extracted with DCM. The combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure. The resulting material was purified through flash chromatography $\left(\mathrm{SiO}_{2}\right.$, heptane/EtOAc, from $100 / 0$ to $90 / 10$) to afford 110 mg ($0.28 \mathrm{mmol}, 28 \%$ yield) of analytically pure white solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.56(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.31$ (dd, J=7.2 Hz, 1.1 Hz, $1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{~m}, 1 \mathrm{H}), 7.61(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{dd}, J=8.6 \mathrm{~Hz}, 7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ (dd, $J=8.6 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.6,151.5,137.9,133.7,133.5,130.8$ (2C), 130.2, 130.1, 129.8, 128.1, 127.3, 123.2, 121.8 (2C), 121.1, 115.3, 101.0, 45.7 (2C).

IR (cm ${ }^{-1}$): 3136, 2943, 1603, 1584, 1471, 1363, 1296, 1135, 904, 791, 728, 677, 630, 586, 571.
LCMS (ESI) m/z [M+H] 395.
Mp. 202-203 ${ }^{\circ} \mathrm{C}$.

((3',6'-dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9'-xanthen]-5-yl)carbamoyl)(3-phenyl-1,2,3-oxadiazol-3-ium-5-yl)amide (SI-5)

$\mathrm{C}_{29} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{7}$
MW: $534 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
Orange solid
Yield: 13\%

6-amino-fluorescein ($69 \mathrm{mg}, 0.20 \mathrm{mmol}$) and triphosgene ($20 \mathrm{mg}, 0.066 \mathrm{mmol}$) were dissolved in freshly distilled acetone (4 mL). $\mathrm{NaHCO}_{3}(50 \mathrm{mg}, 0.60 \mathrm{mmol})$ was added and the resulting suspension was stirred for 30 min at $0^{\circ} \mathrm{C} .7(59 \mathrm{mg}, 0.30 \mathrm{mmol})$ was added and the suspension was stirred for 8 h
from $0^{\circ} \mathrm{C}$ to room temperature. The reaction was degassed through a basic trap ($\mathrm{pH}=14$). The solvent was evaporated under vacuum and the crude was purified by preparative TLC ($\mathrm{SiO}_{2}, \mathrm{MeOH} / \mathrm{DCM}$, $10 / 90$) to afford the desired product as an orange solid ($13 \mathrm{mg}, 13 \%$).
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, ~ M e O D-d_{4}\right): \delta 8.46(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~m}, 2 \mathrm{H}), 7.85(\mathrm{dd}, J=8.3 \mathrm{~Hz}$, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.81(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.57$ (dd, $J=8.8 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H})$.
Product was not soluble enough to perform ${ }^{13} \mathrm{C}$ NMR.
IR (cm^{-1}) 3374, 1580, 1468, 1328, 1111.
HRMS (ESI) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+}$: 535.1248; found: 535.1252;
calcd. for $\mathrm{C}_{29} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{7}$. $[\mathrm{M}+2 \mathrm{H}]^{2+}$: 268.0661; found: 268.0664.
Mp. $>300{ }^{\circ} \mathrm{C}$.
((4-(6-(diethylamino)-3-(diethyliminio)-3H-xanthen-9-yl)-3-sulfonatophenyl)sulfonyl)(3-phenyl-1,2,3-
oxadiazol-3-ium-5-yl)amide (SI-6)

$\mathrm{C}_{35} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{~S}_{2}$
MW: 701 g. mol^{-1} Dark purple solid

Yield: 28\%

To a solution of 7 ($39 \mathrm{mg}, 0.20 \mathrm{mmol}$) and sulforhodamine B sulfonyl chloride ($58 \mathrm{mg}, 0.10 \mathrm{mmol}$) in DMF (2 mL) at $-20^{\circ} \mathrm{C}$ was added dropwise DIPEA ($38 \mu \mathrm{~L}, 0.22 \mathrm{mmol}$) during 30 minutes. The mixture was stirred during 5 h from $-20^{\circ} \mathrm{C}$ to room temperature. The solvent was evaporated under vacuum and the crude product was purified by preparative HPLC to afford the desired product as a dark purple solid ($20 \mathrm{mg}, 28 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ M e O D-\mathrm{d}_{6}$): $\delta 8.75(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{dd}, J=8.0 \mathrm{~Hz}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.02(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.79(\mathrm{~m}, 3 \mathrm{H}), 7.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{dd}, J=9.5 \mathrm{~Hz}$, $J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{q}, J=7.1 \mathrm{~Hz}, 8 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{6}$): $\delta 172.6,159.5$ (2C), 158.0, 157.3 (2C), 147.0, 145.8, 135.4, 135.3, 134.6 (2C), 133.8 (2C), 132.6, 131.7 (2C), 129.0, 127.1, 123.6 (2C), 115.4, 115.2 (2C), 104.0, 97.1 (2C), 46.9 (4C), 13.0 (4C).

HRMS (ESI) m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 702.2051; found: 702.2048; calcd. for $\mathrm{C}_{35} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{~S}_{2}$. $[\mathrm{M}+2 \mathrm{H}]^{2+}: 351.6062$; found: 351.6066; calcd. for $\mathrm{C}_{35} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{NaO}_{7} \mathrm{~S}_{2}$. $[\mathrm{M}+\mathrm{Na}]^{+}$: 724.1870; found: 724.1871

3) Compound with fluorogenic substituent on the aryl in position N3 and on N6.

Synthetic route to compounds $\mathbf{S I - 7}$ and SI-8:

7-(diethylamino)-3-nitro-2H-chromen-2-one (SI-7)

SI-7
The product was synthesized according to a reported procedure. ${ }^{5}$ A mixture containing n-butanol (2.8 mL), 4-diethylamino salicylaldehyde ($193 \mathrm{mg}, 1.0 \mathrm{mmol}$), ethyl nitroacetate ($111 \mu \mathrm{~L}$, $1.0 \mathrm{mmol})$, piperidine ($14 \mu \mathrm{~L}$) and acetic acid ($29 \mu \mathrm{~L}$) was refluxed for a period of 24 hours. The crude product was evaporated and then purified by column chromatography (SiO_{2}, Heptane/EtOAc) to afford the desired product as a yellow solid ($180 \mathrm{mg}, 68 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.71(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=9.1 \mathrm{~Hz}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.47(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H})$.
LCMS (ESI) m/z: [M+H]+263.

3-amino-7-(diethylamino)-2H-chromen-2-one (SI-8)

$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$
MW: 232 g. mol^{-1}
Yellow solid
Yield: 76\%

SI-8

The product was synthesized according to a reported procedure. ${ }^{5}$ In a round bottomed flask equipped with a magnetic stirrer, were placed in order, $37.4 \% \mathrm{HCl}(3 \mathrm{~mL})$, stannous chloride dihydrate (1.03 g , $4.58 \mathrm{mmol})$. To this suspension $\mathbf{S I - 7}(160 \mathrm{mg}, 0.61 \mathrm{mmol})$ was added at room temperature in small portions, over a period of thirty minutes. Stirring was continued for 4 h before the solution was poured onto ice and made alkaline using sodium hydroxide solution (5 M). The resulting suspension was then extracted with diethyl ether ($2 \times 25 \mathrm{~mL}$). The organic layer was washed with water, dried over MgSO_{4} and concentrated to a pasty residue which upon triturating using heptane gave the desired product as a yellow solid ($107 \mathrm{mg}, 68 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.09(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.55(\mathrm{dd}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.50(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{br} . \mathrm{s}, 2 \mathrm{H}), 3.35(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.16(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H})$.
LCMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+} .233$.

[^4]Synthetic route to compound 11:

(E)-((5-(dimethylamino)naphthalen-1-yl)sulfonyl)(3-(4-styrylphenyl)-1,2,3-oxadiazol-3-ium-5-yl)amide (11)

$$
\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}
$$

MW: 496 g. mol^{-1}
Yellow solid
Yield: 19\%

A solution of 3 ($27 \mathrm{mg}, 0.074 \mathrm{mmol}$) in $\mathrm{HCl} /$ Dioxane (4 mL) was stirred at room temperature for 4 hours. The solvent was evaporated under vacuum. The crude product was solubilized in MeOH and evaporated again several times. The residue was dissolved in anhydrous DMF (5 mL) and dansyl chloride ($41 \mathrm{mg}, 0.15 \mathrm{mmol}$) was added. The mixture was stirred at $-20^{\circ} \mathrm{C}$ and DIPEA ($28 \mu \mathrm{~L}, 0.16 \mathrm{mmol}$) was added dropwise during 30 minutes at $-20^{\circ} \mathrm{C}$. The mixture was stirred from $-20^{\circ} \mathrm{C}$ to room temperature overnight. The reaction was quenched with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with DCM. The combined organic layers were dried over MgSO_{4}, filtered and evaporated under vacuum. The product was purified by preparative $\mathrm{TLC}\left(\mathrm{SiO}_{2}, \mathrm{DCM} / \mathrm{MeOH}\right)$ to afford the product as a yellow solid ($7 \mathrm{mg}, 19 \%$).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $_{6}$): $\delta 8.46(\mathrm{~s}, 1 \mathrm{H}), 8.41(\mathrm{~m}, 2 \mathrm{H}), 8.34(\mathrm{dd}, J=7.4 \mathrm{~Hz}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{ddd}, J=8.6 \mathrm{~Hz}, J=7.4 \mathrm{~Hz}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.50$ (d, J=16.5 Hz, 1H), 7.31-7.44 (m, 4H), 7.23 (d, J=7.7 Hz, 1H), $2.81(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ C NMR (100 MHz, DMSO- d_{6}): δ 169.7, 151.1, 141.8, 138.1, 136.4, 132.1, 131.9, 129.4, 129.0, 128.9 (3C), 128.5, 127.7 (2C), 127.5, 127.1, 127.0 (2C), 126.4, 123.5, 122.8 (2C), 120.4, 115.0, 102.1, 45.1 (2C).

HRMS (ESI) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 497.1641; found: 497.1640.

Synthetic route to compounds 12-14:

(E)-((2-butyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)carbamoyl)(3-(4-styrylphenyl)-1,2,3-oxadiazol-3-ium-5-yl)amide (12)

$\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{4}$
MW: 558 g.mol ${ }^{-1}$
Yellow solid
Yield: 7\%

To a solution of $\mathbf{3}(47 \mathrm{mg}, 0.13 \mathrm{mmol})$ in DCM (1 mL) was added TFA (1 mL). The mixture was stirred at room temperature for 3 hours. The solvent was evaporated under vacuum. The crude product was solubilized in MeOH and evaporated again several times in order to get rid of TFA traces.
In another flask triphosgene ($13 \mathrm{mg}, 0.043 \mathrm{mmol}$) was suspended in DCM (1.5 mL) and $\mathbf{S I - 4}(34 \mathrm{mg}$, 0.13 mmol) was added. The suspension was cooled to $0{ }^{\circ} \mathrm{C}$ and a solution of $\mathrm{NaHCO}_{3}(33 \mathrm{mg}$, $0.39 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~mL})$ was added dropwise. The mixture was stirred for 30 minutes at $0^{\circ} \mathrm{C}$ and the crude deprotected styryl-iminosydnone was added. The mixture was stirred from $0^{\circ} \mathrm{C}$ to room temperature overnight. The reaction was quenched with brine and extracted with DCM. The combined organic layers were dried over MgSO_{4}, filtered and evaporated under vacuum. The product was purified by preparative $\mathrm{TLC}\left(\mathrm{SiO}_{2}, \mathrm{MeOH} / \mathrm{DCM}\right)$ to afford the product as a yellow solid ($5 \mathrm{mg}, 7 \%$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.57-8.65(\mathrm{~m}, 3 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}), 8.33(\mathrm{~m}, 1 \mathrm{H}), 8.25(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.82(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~m}, 3 \mathrm{H}), 7.54(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{~d}, \mathrm{~J}=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}$, $J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~m}, 2 \mathrm{H}), 1.70(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
The small quantity of product did not permit to afford a ${ }^{13} \mathrm{C}$ NMR spectra.
HRMS (ESI) m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{~N}_{5} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 558.2136$; found: 558.2136;

To a solution of $6(27 \mathrm{mg}, 0.05 \mathrm{mmol})$ in DCM $(2 \mathrm{~mL})$ was added TFA $(200 \mu \mathrm{~L})$. The mixture was stirred at room temperature for 3 hours. The solvent was evaporated under vacuum. The crude product was solubilized in MeOH and evaporated again several times in order to get rid of TFA traces.
In another flask triphosgene ($5 \mathrm{mg}, 0.017 \mathrm{mmol}$) and $\mathrm{SI}-4(13 \mathrm{mg}, 0.05 \mathrm{mmol})$ were dissolved in freshly distilled acetone (1 mL). $\mathrm{NaHCO}_{3}(14 \mathrm{mg}, 0.17 \mathrm{mmol})$ was added and the resulting suspension was stirred for 30 min at $0{ }^{\circ} \mathrm{C}$. and the crude deprotected pyridinium-iminosydnone was added. The suspension was stirred overnight from $0{ }^{\circ} \mathrm{C}$ to room temperature. The reaction was degassed through a basic trap ($\mathrm{pH}=14$). The solvent was evaporated under vacuum and the crude was purified by preparative HPLC to afford the desired product as an orange oil ($3 \mathrm{mg}, 8 \%$).
${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD-d $): \delta 8.72(\mathrm{~m}, 2 \mathrm{H}), 8.50-8.60(\mathrm{~m}, 6 \mathrm{H}), 8.09(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~m}, 3 \mathrm{H}), 7.75(\mathrm{dd}, J=15.6 \mathrm{~Hz}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=15.6 \mathrm{~Hz}, J=10.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 3 \mathrm{H}), 4.13(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~m}$, $2 \mathrm{H}), 1.00(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
The small quantity of product did not permit to afford a ${ }^{13} \mathrm{C}$ NMR spectra.
HRMS (ESI) m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{31} \mathrm{~N}_{6} \mathrm{O}_{4}[\mathrm{M}]^{+}$: 599.2401; found: 599.2401;
calcd. for $\mathrm{C}_{35} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{O}_{4}$. $[\mathrm{M}+\mathrm{H}]^{2+}$: 300.1237; found: 300.1240

To a solution of $4(81 \mathrm{mg}, 0.19 \mathrm{mmol})$ in DCM (3 mL) was added TFA ($770 \mu \mathrm{~L}, 10 \mathrm{mmol}$). The mixture was stirred at room temperature for 3 hours. The solvent was evaporated under vacuum. The crude product was solubilized in MeOH and evaporated again several times in order to get rid of TFA traces. In another flask triphosgene ($19 \mathrm{mg}, 0.064 \mathrm{mmol}$) was suspended in DCM (2 mL) and SI-8 (44 mg , 0.19 mmol) was added. The suspension was cooled to $0{ }^{\circ} \mathrm{C}$ and a solution of NaHCO_{3} (49 mg , $0.58 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added dropwise. The mixture was stirred for 30 minutes at $0^{\circ} \mathrm{C}$ and the
crude deprotected styryl-iminosydnone was added. The mixture was stirred from $0^{\circ} \mathrm{C}$ to room temperature overnight. The reaction was quenched with brine and extracted with DCM. The combined organic layers were dried over MgSO_{4}, filtered and evaporated under vacuum. The product was purified by column chromatography (SiO_{2}, Heptane/EtOAc) to afford the product as a red solid (62 mg , 56\%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.29(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.70 (br.s, 1H), 7.66 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.10-7.19(\mathrm{~m}, 3 \mathrm{H}), 6.53(\mathrm{dd}, J=8.6 \mathrm{~Hz}$, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.13(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 173.0,166.8,159.5,152.2,148.8,141.7,140.6,132.8,131.5,130.2$ (2C), $130.0,128.4(3 C), 128.1,126.9(2 C), 122.1,121.7(2 \mathrm{C}), 120.8,109.5,109.1$ (2C), 101.8, 97.6, 52.4, 44.8 (2C), 12.6 (2C).

IR (cm ${ }^{-1}$): 3414, 2970, 1703, 1602, 1352, 1180, 1107, 961, 907, 764, 727.
HRMS (ESI) m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{~N}_{5} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+}$: 580.2191; found: 580.2190;
calcd. for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{6}$. $[\mathrm{M}+2 \mathrm{H}]^{2+}$: 290.6132; found: 290.6135 .
Mp.: $140{ }^{\circ} \mathrm{C}$-decomp.

4) Released products

1-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)urea (SI-9)

$8(8.6 \mathrm{mg}, 20.5 \mu \mathrm{~mol})$ and $\mathrm{BCN}(3.4 \mathrm{mg}, 22.6 \mu \mathrm{~mol})$ were solubilized in DMSO- $\mathrm{d}_{6}(1 \mathrm{~mL})$. The mixture was stirred at room temperature and the conversion was followed by NMR. Once completed, the reaction was diluted with DCM and HCl 1 M was added. The aqueous layer was collected and NaOH 1 M was added. The desired product precipitated and was obtained as a yellow solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}-\mathrm{d}_{4}$): $\delta 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=8.8 \mathrm{~Hz}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.53 (d, J= $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$.

LCMS (ESI) m/z: [M+H] ${ }^{+} 276$.

1-(2-butyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)urea (SI-10)
$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$
MW: 311 g. mol^{-1}
Yellow solid
Yield: 40\%

SI-10
$9(16.7 \mathrm{mg}, 37 \mu \mathrm{~mol})$ and $\mathrm{BCN}(8.3 \mathrm{mg}, 55 \mu \mathrm{~mol})$ were solubilized in DMSO (1 mL). The mixture was stirred at room temperature overnight. The reaction was diluted with DCM and $\mathrm{NH}_{4} \mathrm{Cl}_{\text {sat }}$. The organic layer was collected, dried over MgSO_{4} and evaporated. The crude mixture was purified by preparative $\mathrm{TLC}\left(\mathrm{SiO}_{2}, \mathrm{DCM} / \mathrm{MeOH}, 95 / 5\right)$ to afford the desired product as a yellow solid ($4.6 \mathrm{mg}, 40 \%$).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $_{6}$): $\delta 9.30(\mathrm{~s}, 1 \mathrm{H}), 8.63(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.51(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{dd}, J=8.5 \mathrm{~Hz}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{br} . \mathrm{s}, 2 \mathrm{H}), 4.03(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.60(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
LCMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+} 312$.

III. Optical properties

Absorbances were measured on three solutions of compounds in DMSO except for compounds 6 and 14 (water/DMSO, 80/20). The molar extinction coefficients were determined by plotting absorbance values versus the concentrations and analyzing by linear regression (Equation 1). The molar extinction coefficient corresponds to the slope.

$$
A=\varepsilon \times l \times C
$$

Equation 1. Beer-Lambert law (with $A=$ absorbance; $\varepsilon=$ molar extinction coefficient $\left(M^{-1} . \mathrm{cm}^{-1}\right)$;
$I=$ thickness of the cuve (cm) ; $C=$ concentration (M)).
Fluorescences were measured on $1 \mu \mathrm{~m}$ (or $0.1 \mu \mathrm{M}$ when specified) solutions of compounds in DMSO or water/DMSO (8:2) mixtures excited at a wavelength corresponding to the maximum of absorbance of the cycloadduct or released compound.
For products $\mathrm{SI}-5$ and $\mathrm{SI}-6$ fluorescence was measured on the crude mixture after reaction with BCN Absorbance and fluorescence spectra for each combination are reported in Table S4.
A summary of optical properties for all compounds is presented in Tables S1-3
Quantum yields were calculated relatively to a standard according to Equation 2.

$$
\Phi_{x}=\Phi_{s t} \times\left(\frac{A_{s t}}{A_{x}}\right) \times\left(\frac{F_{x}}{F_{s t}}\right) \times\left(\frac{n_{\chi}^{2}}{n_{s t}^{2}}\right) \times\left(\frac{D_{x}}{D_{s t}}\right)
$$

Equation 2. Quantum yield for a compound x comparing to a standard st (with $A=$ absorbance; $F=$ area under the curve of emission; $n=$ refractive index of the solvent; $D=$ factor of dilution between absorbance and fluorescence measurements).

Quinine sulfate and coumarin153 were used as standard for this calculation.
Table S1 : Fluorescence properties of iminosydnone functionalized with fluorophore in position N3 and their associated pyrazole. Solvent: DMSO. * Water/DMSO, 80/20. Brt: Brightness

		Iminosydnone				Pyrazole					
Entry	Probe	$\begin{gathered} \lambda_{\mathrm{ex}} \\ (\mathrm{~nm}) \end{gathered}$	$\begin{gathered} \lambda_{\mathrm{em}} \\ (\mathrm{~nm}) \end{gathered}$	Φ_{f}	$\begin{gathered} \varepsilon \\ \left(\mathrm{M}^{-1} . \mathrm{cm}^{-1}\right) \end{gathered}$	$\begin{gathered} \lambda_{\text {ex }} \\ (\mathrm{nm}) \end{gathered}$	$\begin{gathered} \lambda_{\mathrm{em}} \\ (\mathrm{~nm}) \end{gathered}$	Φ_{f}	$\begin{gathered} \varepsilon \\ \left(\mathrm{M}^{-1} \cdot \mathrm{~cm}^{-1}\right) \end{gathered}$	Brt.	$\begin{array}{\|l\|} \hline \text { Tur } \\ \mathrm{n}- \\ \text { on } \\ \hline \end{array}$
1	3	344	446	0.017	25575	339	374	0.196	33192	6505	33
2	5	361	591	0.327	24806	342	370	0.099	27313	2703	21
3	4	346	419	0.019	22170	354	455	0.232	28227	6548	27
4*	6	378	493	0.019	28128	403	582	0.105	33948	3564	19

Table S2 : Fluorescence properties of iminosydnone functionalized with fluorophore in position N6 and the associated released products. Solvent: DMSO. Brt: Brightness

		Iminosydnone					Released fluorophore				
Entry	Probe	$\begin{gathered} \lambda_{\mathrm{ex}} \\ (\mathrm{~nm}) \end{gathered}$	$\begin{gathered} \lambda_{\mathrm{em}} \\ (\mathrm{~nm}) \\ \hline \end{gathered}$	Фf	$\begin{gathered} \varepsilon \\ \left(\mathrm{M}^{-1} . \mathrm{cm}^{-1}\right) \end{gathered}$	$\begin{gathered} \lambda_{\mathrm{ex}} \\ (\mathrm{~nm}) \end{gathered}$	$\begin{gathered} \lambda_{\mathrm{em}} \\ (\mathrm{~nm}) \end{gathered}$	Фf	$\begin{gathered} \varepsilon \\ \left(\mathrm{M}^{-1} . \mathrm{cm}^{-1}\right) \end{gathered}$	Brt.	Turn-on
1	8	411	466	0.006	10294	387	465	0.510	10516	5363	86
2	10	341	405	0.004	10294	338	510	0.439	4884	2144	282
3	9	411	516	0.033	27929	392	483	0.503	13001	6539	69
4*	SI-5	495	515	n.d.	35199	n.d.	515	n.d.	n.d.	n.d.	1,3
5	SI-6	566	585	n.d.	92177	n.d.	585	n.d.	n.d.	n.d.	1

Table S3 : Fluorescence properties of iminosydnone functionalized with 2 profluorophores and the associated products after reaction with BCN. Solvent: DMSO. * Water/DMSO, 80/20

		Iminosydnone				Pyrazole			Released fluorophore		
Entry	Probe	$\begin{gathered} \hline \lambda_{\text {ex }} \\ (\mathrm{nm}) \end{gathered}$	$\begin{gathered} \hline \lambda_{\mathrm{em}} \\ (\mathrm{~nm}) \\ \hline \end{gathered}$	Фf	$\begin{gathered} \hline \varepsilon \\ \left(\mathrm{M}^{-1} . \mathrm{cm}^{-1}\right) \\ \hline \end{gathered}$	$\begin{gathered} \lambda_{\text {ex }} \\ (\mathrm{nm}) \end{gathered}$	$\begin{gathered} \lambda_{\mathrm{em}} \\ (\mathrm{~nm}) \\ \hline \end{gathered}$	Turn-on	$\begin{array}{\|c} \lambda_{\text {ex }} \\ (\mathrm{nm}) \end{array}$	$\begin{gathered} \lambda_{\mathrm{em}} \\ (\mathrm{~nm}) \\ \hline \end{gathered}$	Turn-on
1	11	345	377	0.003	18654			29	338	510	97
2	12	415	473	0.012	32349	339	374	26	392	483	31
3*	13	396	482	0.015	35561	403	582	18			22
4	14	349	467	0.007	29441	354	455	33	387	465	22

	 Iminosydnone absorption ($50 \mu \mathrm{M}$) Dansyl absorption ($50 \mu \mathrm{M}$) Iminosydnone fluorescence ($1 \mu \mathrm{M}$) —— Dansyl fluorescence ($1 \mu \mathrm{M}$)

IV. Kinetic studies

To $13(40 \mu \mathrm{~L}, 1 \mathrm{mM}$ in water, final concentration $10 \mu \mathrm{M})$ in PBS $1 \mathrm{X}(3920 \mu \mathrm{~L})$ was added a solution of DBCO ($40 \mu \mathrm{~L}, 100 \mathrm{mM}$ in DMSO, final concentration 1 mM). The reaction was followed by fluorescence measurement in a single quartz cuvette at two excitations: 405 nm and 458 nm .

Figure S1: Fluorescence spectra of reaction between 13 and DBCO over time. $T 1=5 \mathrm{~min}, T 2=10 \mathrm{~min}, T 3=20 \mathrm{~min}, T 4=40 \mathrm{~min}, T 5=60 \mathrm{~min}, T 6=100 \mathrm{~min}, T 7=135 \mathrm{~min}$.

Reactions of iminosydnones 13 with DBCO was carried out in PBS 1X/DMSO (9:1), plasma/DMSO (9:1) and glutathione (1mM in PBS 1X)/DMSO (9:1) at $10 \mu \mathrm{M}$ concentration of iminosydnones and 1 mM concentration of DBCO using the following procedure:

To $178 \mu \mathrm{~L}$ of the chosen medium in a 96 -well opaque plate was added $2 \mu \mathrm{~L}$ of the solution of sydnone (1 mM in water) and $20 \mu \mathrm{~L}$ of the solution of DBCO (10 mM in DMSO). This was performed thrice for each medium. The emission was measured every 20 s after excitation at 405 nm .
*Plasma was used as diluted solution (1/1) in PBS 1M to avoid the low signal/noise ratio due to the internal fluorescence of these media and the low fluorescence intensity of the sample at the concentration of the experiment.

Correspondences between fluorescence and conversions were established by plotting the calibration curve obtained by measuring the emission after the excitation at the appropriate wavelength of solutions at 0% and at full conversion of the reaction.

Pseudo-first order reaction rate was obtained by plotting - $\ln (1-x)$ versus time and analyzing by linear regression (Equation 3). The second order rate constant was obtained dividing the slope by DBCO concentration i.e. $10^{-3} \mathrm{M}$.

Equation 3: x : reaction conversion; $k_{\text {app }}$: pseudo-first order reaction rate in s^{-1}, k : reaction rate in $M^{-1} . s^{-1}$

$$
-\ln (1-x)=k_{a p p} t+c t e=k[D B C O]_{0} t+c t e
$$

Linear regression curves in the 3 media are illustrated in Table S5

PBS 1X		
Plasma		

V. Cell culture

Labeling on fixed-cells

CHO cells were grown on Nunc ${ }^{\text {TM }}$ Lab-Tek ${ }^{\text {TM }}$ II slide in media (HAMF12) containing 10\% fetal bovine serum, pyruvate $1 \mathrm{mM}, 1 \%$ non essential aminoacids, glutamine 2 mM , penicillin/streptomycin. The cells were then washed with $500 \mu \mathrm{~L}$ PBS, then incubated with $500 \mu \mathrm{~L}$ of PFA 4% during 8 minutes at room temperature and washed three times with $300 \mu \mathrm{~L}$ of PBS. The cells were incubated with $500 \mu \mathrm{~L}$ of Triton 0.2% for 5 minutes at room temperature then washed 3 times with $500 \mu \mathrm{~L}$ of Triton $0.05 \%-$ Tween 0.1% and twice with $500 \mu \mathrm{~L}$ of PBS. The cells were then incubated with an solution of 13 (5-10 $\mu \mathrm{M}$) in HAMF12 for 30 minutes at room temperature and were washed twice with $300 \mu \mathrm{~L}$ of HAMF12. The cells were then incubated with a cycloalkyne solution ($200 \mu \mathrm{M}$) in HAMF12 during the night at room temperature and were then washed twice with $300 \mu \mathrm{~L}$ of HAMF12. $5 \mu \mathrm{~L}$ of Draq5 solution in 495 $\mu \mathrm{L}$ of HAMF12 were added and the cells were incubated 15 minutes at $37{ }^{\circ} \mathrm{C}$ before being washed twice with $500 \mu \mathrm{~L}$ of PBS.

Figure S2. Cells imaging of the click and release reaction between compound 13 and two DBCO.
On this first experiment, no difference was observed when we use two different cyclooctyne. The turn-on effect for the click product (green) and the release product (blue) was observed.

When a zoom is applied on a cell, we can observe that after the click and release reaction the fluorescence in the two channel (blue and green) are no more at the same localization meaning that the two fluorogenic part of the molecule are no more connected, thanks to the click and release reaction, and the liberated compounds can move inside the cells (Figure S3).

With DBCO-acide

With DBCO-amine

Figure S3. Zoom on some cells from the previous experiment. Different localization of both compound (click product and release prodcut) were observed.

To confirm these results, this experiment was reproduce two times with different batch of CHO cells and the same turn-on effect was observed (Figure S4).

Figure S4. Reproducibility of the experiment.

Labeling on living cells

CHO cells were grown on Nunc ${ }^{\text {TM }}$ Lab-Tek ${ }^{\text {TM }}$ II slide in media (HAMF12) containing 10\% fetal bovine serum, pyruvate $1 \mathrm{mM}, 1 \%$ non essential aminoacids, glutamine 2 mM , penicillin/streptomycin. The cells were then washed twice with $500 \mu \mathrm{~L}$ HAMF12. The cells were then incubated with an solution of
$13(5-10 \mu \mathrm{M})$ in HAMF12 for 30 minutes at $37^{\circ} \mathrm{C}$ and were washed twice with $300 \mu \mathrm{~L}$ of HAMF12. The cells were then incubated with a cycloalkyne solution ($200 \mu \mathrm{M}$) in HAMF12 for 5 hours at $37{ }^{\circ} \mathrm{C}$ and were then washed twice with $300 \mu \mathrm{~L}$ of HAMF12. $5 \mu \mathrm{~L}$ of Draq5 solution in $495 \mu \mathrm{~L}$ of HAMF12 were added and the cells were incubated 15 minutes at $37{ }^{\circ} \mathrm{C}$ before being washed twice with $300 \mu \mathrm{~L}$ of HAMF12. The cells were incubated with $500 \mu \mathrm{~L}$ of PFA 4% during 8 minutes at room temperature and washed three times with $500 \mu \mathrm{~L}$ of PBS.

Figure S5. Click and release experiment on living cells.

For this experiment, the turn-on effect is still observed for both compound (click product and release product) but the localization of the fluorescence inside cells is different from the experiment with fixed and permeabilized cells.

VI. NMR Spectra

${ }^{1} \mathrm{H}$ NMR (400 MHz), $\mathrm{CDCl}_{3}, \mathbf{3}$

${ }^{13} \mathrm{C}$ NMR (100 MHz), $\mathrm{CDCl}_{3}, 3$

${ }^{1} \mathrm{H}$ NMR (400 MHz), $\mathrm{CDCl}_{3}, 4$

${ }^{13} \mathrm{C}$ NMR (100 MHz), $\mathrm{CDCl}_{3}, 4$

${ }^{1} \mathrm{H}$ NMR (400 MHz), $\mathrm{CDCl}_{3}, 5$

${ }^{13} \mathrm{C}$ NMR (100 MHz), $\mathrm{CDCl}_{3}, 5$

,	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR (400 MHz), $\mathrm{CDCl}_{3}, 2$

${ }^{13} \mathrm{C}$ NMR (100 MHz), $\mathrm{CDCl}_{3}, 2$

${ }^{1} \mathrm{H}$ NMR (400 MHz), MeOD- $\mathrm{d}_{4}, 6$

${ }^{13} \mathrm{C}$ NMR (100 MHz), MeOD-d ${ }_{4}, 6$
r,

$\stackrel{1}{1}$

${ }^{1} \mathrm{H}$ NMR (400 MHz), $\mathrm{CDCl}_{3}, 8$

${ }^{13} \mathrm{C}$ NMR (100 MHz), $\mathrm{CDCl}_{3}, 8$

${ }^{1} \mathrm{H}$ NMR (400 MHz), $\mathrm{CDCl}_{3}, 9$
長

${ }^{13} \mathrm{C}$ NMR (100 MHz), $\mathrm{CDCl}_{3}, 9$

${ }^{1} \mathrm{H}$ NMR (400 MHz), $\mathrm{CDCl}_{3}, 10$

${ }^{13} \mathrm{C}$ NMR (100 MHz), $\mathrm{CDCl}_{3}, 10$

[^5]${ }^{1} \mathrm{H}$ NMR (400 MHz), MeOD-d ${ }_{4}$, SI-5
${ }^{1} \mathrm{H}$ NMR (400 MHz), MeOD-d 4, SI-6

${ }^{13} \mathrm{C}$ NMR (100 MHz), MeOD-d 4, SI-6
(
${ }^{1} \mathrm{H}$ NMR (400 MHz), DMSO- $\mathrm{d}_{6}, 11$

${ }^{13} \mathrm{C}$ NMR (100 MHz), DMSO-d ${ }_{6}, 11$
言 \quad 景

${ }^{1} \mathrm{H}$ NMR (400 MHz), $\mathrm{CDCl}_{3}, 12$

${ }^{1} \mathrm{H}$ NMR (400 MHz), MeOD-d ${ }_{4}, 13$

${ }^{1} \mathrm{H}$ NMR (400 MHz), $\mathrm{CDCl}_{3}, 14$

${ }^{13} \mathrm{C}$ NMR (100 MHz), $\mathrm{CDCl}_{3}, 14$

[^0]: [a] Dr. M. Riomet, Dr. K. Porte, Dr. D. Audisio, Dr. F. Taran Service de Chimie Bio-organique et Marquage DRF-JOLIOT-SCBM, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France E-mail: frederic.taran@cea.fr
 [b] Dr. A. Wijkhuisen
 Service de Pharmacologie et d'Immunoanalyse DRF-JOLIOT-SPI, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France

[^1]: ${ }^{1}$ A. Yokoyama, T. Maruyama, K. Tagami, H. Masu, K. Katagiri, I. Azumaya, T. Yokozawa, Org. Lett. 2008, 10, 3207.
 ${ }^{2}$ M. Riomet, E. Decuypere, K. Porte, S. Bernard, L. Plougastel, S. Kolodych, D. Audisio, F. Taran, Chem. Eur. J. 2018, 34, 8535.

[^2]: ${ }^{3}$ M. Busi, B. Cantadori, F. Boccini, R. D. Zorzi, S. Geremia, E. Dalcanale, Eur. J. Org. Chem. 2011, 2011, 2629.

[^3]: ${ }^{4}$ L. Zhang, D. Duan, Y. Liu, C. Ge, X. Cui, J. Sun, J. Fang, J. Am. Chem. Soc. 2014, 136, 226-233.

[^4]: ${ }^{5}$ K. Sivakumar, F. Xie, B. M. Cash, S. Long, H. N. Barnhill, Q. Wang, Org. Lett. 2004, 6, 4603.

[^5]: $\begin{array}{lllllllllllllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

