Electronic Supplementary Information

Efficient formation of [3]pseudorotaxane based on cooperative complexation of dibenzo-24-crown-8 with diphenylviologen axle

Yoko Sakata,* Takaya Ogura and Shigehisa Akine*

* To whom correspondence should be addressed. E-mail: sakata@se.kanazawa-u.ac.jp akine@se.kanazawa-u.ac.jp

Experimental

Materials and methods

Reagents and solvents were purchased from commercial sources and used without further purification. ¹H NMR spectra were recorded on a Bruker Avance Neo 400 (400 MHz) or a Bruker Avance Neo 600 (600 MHz). ¹³C NMR spectra were recorded on a Bruker Avance Neo 600 (150 MHz). Chemical shifts were referenced with respect to tetramethylsilane (0 ppm) as an internal standard or the solvent residual peak (¹H, 3.31 ppm for CD₂HOD and 1.94 ppm for CD₂HCN; ¹³C, 1.32 ppm for CD₃CN). ESI-TOF mass spectra were recorded on a Bruker Daltonics micrOTOF II.

The synthetic precursors (1,1'-bis(4-carboxyphenyl)-(4,4'-bipyridinium) dichloride¹ and 1,1'-bis(4-carboxybenzyl)-4,4'-bipyridinium dibromide²) and sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate³ were prepared according to the literatures.

X-ray Crystallography

Intensity data were collected on a Bruker SMART APEX II (with Cu K α radiation, $\lambda = 1.54178$ Å). The data were corrected for Lorentz and polarization factors and for absorption by semiempirical methods based on symmetry-equivalent and repeated reflections. The structure was solved by direct methods (SHELXT⁴) and refined by full-matrix least squares on F^2 using SHELXL 2014.⁵ Crystallographic data for A1•(DB24C8)₂•3CHCl₃•MeOH•H₂O has been deposited with the Cambridge Crystallographic Data Centre under reference number CCDC 1998063. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK).

Synthesis of A1

A solution of sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (1.31 g, 1.48 mmol) in methanol (10 mL) was added to a solution of 1,1'-bis(4-carboxyphenyl)-(4,4'-bipyridinium) dichloride (202 mg, 0.43 mmol) in methanol (50 mL). Water (65 mL) was further added to the mixture and the resulting pale green precipitates were collected by filtration (552 mg, 0.26 mmol, 60%).

¹H NMR (600 MHz, CD₃CN) δ 9.23 (d, *J* = 6.6 Hz, 4H), 8.67 (d, *J* = 6.6 Hz, 4H), 8.38 (d, *J* = 8.4 Hz, 4H), 7.90 (d, *J* = 8.4 Hz, 4H), 7.70–7.67 (m, 24H); ¹³C {¹H} NMR (150 MHz, CD₃CN) δ 166.18, 162.60 (q, ¹*J*_{B-C} = 49.8 Hz), 151.65, 146.81, 146.14, 135.65, 134.76, 132.79, 129.93 (q, ²*J*_{F-C} = 32.2 Hz), 128.48, 126.08, 125.46 (q, ¹*J*_{F-C} = 270.1 Hz), 118.69; Anal. Calcd for C₈₈H₄₂B₂F₄₈N₂O₄•5H₂O: C, 47.72; H, 2.37; N, 1.26. Found: C, 47.73; H, 2.25; N, 1.53.

Synthesis of A2

A solution of sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (1.00 g, 1.13 mmol) in methanol (20 mL) was added to a solution of 1,1'-bis(4-carboxybenzyl)-4,4'-bipyridinium dibromide (205 mg, 0.35

mmol) in 50% aqueous methanol (40 mL). After the solution was concentrated to reduce the amount of methanol, water (70 mL) was added to the mixture. The resulting pale yellow precipitates were isolated by centrifugation and the remaining solvent was removed in vacuo (665 mg, 0.31 mmol, 89%).

¹H NMR (600 MHz, CD₃CN) δ 8.95 (d, *J* = 6.9 Hz, 4H), 8.36 (d, *J* = 6.9 Hz, 4H), 8.10 (d, *J* = 8.4 Hz, 4H), 7.70–7.67 (m, 24H), 7.57 (d, *J* = 8.4 Hz, 4H), 5.88 (s, 4H); ¹³C {¹H} NMR (150 MHz, CD₃CN) δ 166.95, 162.60 (q, ¹*J*_{B-C} = 49.5 Hz), 151.44, 146.84, 138.21, 135.65, 132.64, 131.61, 130.37, 129.93 (q, ²*J*_{F-C} = 31.4 Hz), 128.62, 125.46 (q, ¹*J*_{F-C} = 270.1 Hz), 118.69, 65.12; Anal. Calcd for C₉₀H₄₆B₂F₄₈N₂O₄•2H₂O: C, 49.38; H, 2.30; N, 1.28. Found: C, 49.64; H, 2.57; N, 1.30.

Fig. S1 ESI-TOF mass spectra of A1 in the presence of 24C8 (a, 3 equiv; b, 5 equiv).

Crystallographic analysis of A1•(DB24C8)₂

_

	$A1 \cdot (DB24C8)_2 \cdot 3CHCl_3 \cdot MeOH \cdot H_2O$
Formula	$C_{141}H_{119}B_2Cl_9F_{48}N_2O_{23}$
Formula weight	3462.05
Temperature (K)	90
Crystal size (mm ³)	$0.50\times0.25\times0.10$
Crystal system	triclinic
Space group	$P\overline{1}$
<i>a</i> (Å)	20.1230(11)
<i>b</i> (Å)	20.4221(10)
<i>c</i> (Å)	21.1299(11)
α (deg)	81.209(2)
β (deg)	76.368(2)
γ (deg)	72.895(2)
$V(Å^3)$	8032.9(7)
Ζ	2
$D_{\text{calcd}} (\mathrm{g} \mathrm{cm}^{-3})$	1.431
Collected reflections	159701
Unique reflections	28315
R _{int}	0.0547
$2\theta_{\max}$	134.138
F_{000}	3516
μ (CuK α) (mm ⁻¹)	2.496
Limiting indices	$-20 \le h \le 23$
	$-24 \le k \le 24$
	$-25 \le l \le 25$
Restraints/parameters	585/2444
Goodness of fit (F^2)	1.045
$R1 \ (I > 2\sigma(I))$	0.0757
$wR2 \ (I > 2\sigma(I))$	0.2182
R1 (all data)	0.0810
wR2 (all data)	0.2238

Table S1	Crystallographic	c data for $A1 \cdot (DB24C8)_2 \cdot 3CHCl_3 \cdot MeOH \cdot H_2O$.	

C-H•••PhX	$d(\mathrm{H}^{\bullet\bullet\bullet}\mathrm{Ph}\mathbf{X})^1$
C9–H7•••PhA (C61–C66)	2.663
C11–H8•••Ph B (C49–C54)	2.930
C14–H10•••PhC (C25–C30)	2.739
C17–H13••••Ph D (C37–C42)	2.832

Table S2 Selected C–H••• π distances in the crystal structure of A1•(DB24C8)₂(Å).

¹The distance between the mean plane of phenylene ring \mathbf{X} and hydrogen atom.

Table S3 Selected hydrogen bond distances in the crystal structure of A1•(DB24C8)₂ (Å).

С–Н••••О	<i>d</i> (H•••O)			
Phenyl C–H•••O				
С4–Н3•••О5	2.924			
С4–Н3•••О12	2.594			
С6-Н4•••О8	2.514			
С6-Н4•••О9	2.708			
С19-Н14•••О13	2.631			
С19-Н14•••О20	2.701			
С23-Н17•••О16	2.679			
C23–H17•••O17	2.539			
Pyridinium C–H•••O				
С8–Н6••••О10	2.581			
С8–Н6••••О11	2.112			
С12-Н9•••О6	2.485			
С12–Н9•••О7	2.135			
C15–H11•••O14	2.437			
C15–H11•••O15	2.138			
C16-H12•••O18	2.468			
С16-Н12•••О19	2.180			

Fig. S2 Crystal structure of A1•(DB24C8)₂ (capped stick models). Hydrogen atoms, solvent molecules and TFPB anions are omitted for clarity. Hydrogen atoms participating in the C–H••• π and C–H•••O interactions are shown in (a) and (b), respectively. The green dotted lines indicate the C–H•••O hydrogen bonds (for the C–H••• π and C–H•••O distances, see Table S2 and S3, respectively).

Fig. S3 (a) ¹H NMR spectral changes of A1 upon the addition of 24C8 (400 MHz, 25 °C, CDCl₃/CD₃CN (4:1), [A1] = 5 mM), (b) Nonlinear curve fitting of the changes of the mole fractions obtained from the titration study.

Fig. S4 (a) ¹H NMR spectral changes of A1 upon the addition of DB24C8 (400 MHz, 25 °C, CDCl₃/CD₃CN (4:1), [A1] = 5 mM), (b) Nonlinear curve fitting of the changes of the mole fractions obtained from the titration study.

Fig. S5 (a) ¹H NMR spectral changes of **A1** upon the addition of DN24C8 (400 MHz, 25 °C, CDCl₃/CD₃CN (4:1), [A1] = 5 mM), (b) Nonlinear curve fitting of the changes of the mole fractions and chemical shift obtained from the titration study.[#]

While the equilibrium between free axle A1 and [2]pseudorotaxane (DN24C8)•A1 is fast on the NMR time scale, the signals for [3]pseudorotaxane (DN24C8)₂•A1 were independently observed. Thus, the binding constants were determined based on both the chemical shift change of A1 and the change of the mole fraction of the [3]pseudorotaxane.

1.5 eq

1.0 eq

¹H NMR spectral changes of A1 upon the addition of DB30C10 in CDCl₃/CD₃CN (4:1)

Fig. S6 (a) ¹H NMR spectral changes of **A1** upon the addition of DB30C10 (400 MHz, 25 °C, $CDCl_3/CD_3CN$ (4:1), [**A1**] = 5 mM), (b) Nonlinear curve fitting of the chemical shift changes obtained from the titration study.

Fig. S7 (a) ¹H NMR spectral changes of A2 upon the addition of DB24C8 (400 MHz, 25 °C, CDCl₃/CD₃CN (4:1), [A2] = 5 mM), (b) Nonlinear curve fitting of the changes of the mole fractions obtained from the titration study.

Fig. S8 (a) ¹H NMR spectral changes of **A2** upon the addition of DN24C8 (400 MHz, 25 °C, CDCl₃/CD₃CN (4:1), [A2] = 5 mM), (b) Nonlinear curve fitting of the changes of the mole fractions obtained from the titration study.

Fig. S9 (a) ¹H NMR spectral changes of A1 upon the addition of DB24C8 (400 MHz, 25 °C, CD₃CN, [A1] = 5 mM), (b) Nonlinear curve fitting of the changes of the mole fractions obtained from the titration study.

¹H NMR spectral changes of A1 upon the addition of DB24C8 in CDCl₃/CD₃OD (4:1)

Fig. S10 (a) ¹H NMR spectral changes of A1 upon the addition of DB24C8 (400 MHz, 25 °C, $CDCl_3/CD_3OD$ (4:1), [A1] = 5 mM), (b) Nonlinear curve fitting of the changes of the mole fractions obtained from the titration study.

Fig. S11 (a) ¹H NMR spectral changes of **A1** upon the addition of DB24C8 (400 MHz, 25 °C, CD₃OD, [**A1**] = 5 mM), (b) Nonlinear curve fitting of the changes of the mole fractions obtained from the titration study.

¹H NMR spectral changes of A1 upon the addition of DB24C8 in CDCl₃/DMSO-d₆ (4:1)

Fig. S12 (a) ¹H NMR spectral changes of A1 upon the addition of DB24C8 (400 MHz, 25 °C, CDCl₃/DMSO- d_6 (4:1), [A1] = 5 mM), (b) Nonlinear curve fitting of the changes of the mole fractions obtained from the titration study.

¹H NMR spectral changes of A1 upon the addition of DB24C8 in DMSO-*d*₆

Fig. S13 ¹H NMR spectral changes of A1 upon the addition of DB24C8 (400 MHz, 25 °C, DMSO- d_6 , [A1] = 5 mM).

¹H NOESY spectrum of a 1:5 mixture of A1 and DB24C8

Fig. S14 ¹H NOESY spectrum of a 1:5 mixture of A1 and DB24C8 (400 MHz, 25 °C, $CDCl_3/CD_3CN$ (4:1), [A1] = 5 mM).

ESI-TOF mass spectrum of [3]rotaxane R1•(DB24C8)₂

Fig. S15 ESI-TOF mass spectrum of R1•(DB24C8)₂.

References

[1] J.-J. Liu, Y.-F. Guan, M.-J. Lin, C.-C. Huang and W.-X. Dai, *Cryst. Growth Des.*, 2015, 15, 5040–5046.
[2] M. R. Geraskina, A. S. Dutton, M. J. Juetten, S. A. Wood and A. H. Winter, *Angew. Chem., Int. Ed.*, 2017, 56, 9435–9439.

[3] H. Nishida, N. Takada, M. Yoshimura, T. Sonoda and H. Kobayashi, *Bull. Chem. Soc. Jpn.*, 1984, **57**, 2600–2604.

[4] G. M. Sheldrick, SHELXT – Integrated space-group and crystal-structure determination. *Acta Crystallogr.* 2015, A71, 3–8.

[5] G. M. Sheldrick, Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3-8.