Supporting Information

Practical and Regioselective Halo-Trifluoromethylthiolation of Sulfur Ylides

Hongmei Qin, Yimin Jia, Na Wang, Zhong-xing Jiang, and Zhigang Yang*

E-mail: zgyang@whu.edu.cn

Hubei Province Engineering and Technology Research Center for Fluorinated

Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University,

Wuhan 430071, China

Table of Contents

I. General	. S-1
II. Synthesis of substrates	. S-2
III. Typical Procedure for condition optimization	S-22
IV. Isolation of products	S-25
V. Transformation of the product	S-51
VI. References	S-53
VII. Copies of the NMR spectra	S-54

I. General

¹H NMR, ¹⁹F NMR and ¹³C NMR spectra were recorded on Bruker 400 MHz. ¹H NMR spectra were referenced to tetramethylsilane (s, 0.00 ppm) using CDCl₃ , (CD₃)₂SO and CD₃OD as solvent. ¹³C NMR spectra were referenced to solvent carbons (77.16 ppm for CDCl₃, 39.52 ppm for (CD₃)₂SO and 49.00 ppm for CD₃OD). ¹⁹F NMR spectra were referenced to 2% perfluorobenzene (s, -164.90 ppm) in CDCl₃. Glassware was dried at 120 °C for at least 3 hours and cooled under an argon atmosphere before used. Unless otherwise indicated, all reagents were obtained from commercial suppliers and used without prior purification. THF, CHCl₃, PhMe, EtOAc, DMF, and MeCN were dried and freshly distilled prior to use. SOCl₂ and (COCl)₂ was distilled prior to use. Flash chromatography was performed on silica gel (200 - 300 mesh) with either EtOAc/petroleum ether (PE, 60-90 °C). High-resolution mass spectrometry (HRMS) were recorded on a Waters Micromass GCT Premier or Thermo Fisher Scientific LTQ FT Ultra, or a Asilent LCMS-1100 spectrometer. HPLC purification were performed on SHIMADZU SIL-20A.

Trifluoromethylthiolation reagents $2a^{[1-2]}$ were prepared according to reported procedures.

II. Synthesis of substrates

Dimethyl(2-oxo-2-phenylethyl)sulfonium bromide (1aa)^[3]

Dimethyl sulfide (0.31 g, 5.0 mmol) was added to a solution of 2-bromoacetophenone (1.0 g, 5.0 mmol) in acetone (1.0 mL). After the mixture had been stirred for 5 h, the residue was filtered and washed with Et_2O . The desired product **1aa** was obtained as a white solid in 90% yield (1.17 g, 4.5 mmol).

Melting point: 150-152 °C

¹H NMR (400 MHz, CD₃OD) δ 8.08 (d, *J* = 7.5 Hz, 2H), 7.76 (t, *J* = 7.4 Hz, 1H), 7.61 (t, *J* = 7.8 Hz, 2H), 4.90 (s, 2H), 3.01 (d, *J* = 22.8 Hz, 6H).

Methyl(2-oxo-2-phenylethyl)(p-tolyl)sulfonium (1ab)^[4]

4-Methylbenzenethiol **S2** (1.0 equiv, 20.0 mmol, 2.48 g) was charged into a dry 100 mL flask along with EtOH (20.0 mL), magnetic stir bar and K₂CO₃ (1.0 equiv, 20.0 mmol, 2.76 g). The α -bromo ketone **S1** (1.0 equiv, 20.0 mmol) was added in one portion. The resulting suspension was stirred for 2 h at room temperature. The crude reaction mixture was filtered through a pad of celite and washed with EtOH. The solvent was removed in vacuo. The residue was purified by flash silica gel chromatography. The resulting sulfide was transferred into 25 mL vial. In an argon-filled glovebox, Me₂SO₄ (1.0 equiv) was added and the vial was sealed. The vial was then stirred for 1 h at 100 °C and allowed to cool to room temperature. The resulting gel was purified by flash silica gel column chromatography (CH₂Cl₂/ MeOH= 20:1) to afford the title compound (recrystallization from MeOH / Et₂O if necessary). Melting point: 98-102 °C

¹H NMR (400 MHz, CDCl₃) δ 8.06 (dd, J = 11.3, 8.2 Hz, 4H), 7.56 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 8.0 Hz, 4H), 6.03 (dd, J = 49.4, 17.6 Hz, 2H), 3.63 (s, 3H), 3.51 (s, 3H), 2.41 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 190.4, 145.5, 134.9, 133.6, 131.7, 130.9, 129.1 (d, J = 18.2Hz), 121.2, 56.4, 54.5, 26.4, 21.6.

IR (neat): v = 3414, 3011, 2961, 2919, 1675, 1596, 1581, 1497, 1453, 1426, 1406, 1392, 1332, 1303, 1205, 1183, 1085, 1053, 992, 895, 867, 810, 753, 700, 680 cm⁻¹

HRMS-ESI m/z : $[M-MeSO_4]^+$ calcd for $C_{16}H_{17}OS^+$ 257.0995, found 257.0994.

General Procedure A: (1ac as an example)^[5-6]

A solution of diphenyl sulfide (0.93 g, 5.0 mmol) and 2-bromo-1-phenylethanone (1.19 g, 6.0 mmol) in dry DCM (10.0 mL) was added to $AgBF_4$ (0.97 g, 5 mmol) under inert atmosphere (argon). The reaction mixture was stirred at room temperature for 4-5 days. The reaction mixture was filtered, the precipitate washed with DCM. The solvent was removed in vacuo. The residue was washed with diethyl ether (3 x 4 mL). Crystallization twice from DCM and Et₂O afforded the pure compound.

(2-Oxo-2-phenylethyl)diphenylsulfonium tetrafluoroborate (1ac)^[6]

The titled compound was obtainted as white solid in 72% yield (1.41 g, 3.6 mmol). Melting point: 160-162 °C ¹H NMR (400 MHz, CDCl₃) δ 8.18 – 8.07 (m, 6H), 7.76 – 7.63 (m, 7H), 7.52 (t, *J* = 7.7 Hz, 2H), 6.12 (s, 2H). ¹⁹F NMR (376 MHz, DMSO-d₆) δ -148.0.

(2-Oxo-2-(p-tolyl)ethyl)diphenylsulfonium tetrafluoroborate (1b)

The titled compound was obtained as white solid in 66% yield (1.34 g, 3.3 mmol).

Melting point: 165-167 °C

¹H NMR (400 MHz, DMSO-d₆) δ 8.20 (d, J = 7.2 Hz, 4H), 8.03 (d, J = 8.0 Hz, 2H), 7.82 –

7.70 (m, 6H), 7.44 (d, *J* = 7.9 Hz, 2H), 6.57 (s, 2H), 2.40 (s, 3H).

¹⁹F NMR (376 MHz, DMSO-d₆) δ -148.0.

¹³C NMR (101 MHz, DMSO-d₆) δ 189.9, 146.6, 134.2, 131.2, 131.0, 130.6, 129.8, 129.3,

126.1, 54.6, 21.5.

IR (neat): *v* = 2927, 1679, 1603, 1581, 1482, 1446, 1411, 1383, 1327, 1305, 1221, 1206, 1184,

1164, 1052, 1015, 1002, 980, 931, 902, 853, 812, 748, 684 cm⁻¹

HRMS-ESI m/z: $[M-BF_4]^+$ calcd for $C_{21}H_{19}OS^+$ 319.1151, found 319.1153.

(2-(4-Methoxyphenyl)-2-oxoethyl)diphenylsulfonium tetrafluoroborate (1c)

The titled compound was obtained as white solid in 66% yield (1.39 g, 3.3 mmol).

Melting point: 129-130 °C

¹H NMR (400 MHz, DMSO-d₆) δ 8.15 (d, J = 7.3 Hz, 4H), 8.07 (d, J = 8.9 Hz, 2H), 7.81 –

7.69 (m, 6H), 7.13 (d, *J* = 8.9 Hz, 2H), 6.50 (s, 2H), 3.88 (s, 3H).

¹⁹F NMR (376 MHz, DMSO-d₆) δ -148.2.

¹³C NMR (101 MHz, DMSO-d₆) δ 188.5, 165.1, 134.2, 131.9, 131.2, 130.7, 126.4, 126.2,

114.6, 56.1, 54.5.

IR (neat): *v* = 2927, 1679, 1603, 1581, 1482, 1446, 1411, 1383, 1327, 1305, 1221, 1206, 1184,

1164, 1052, 1015, 1002, 980, 931, 902, 853, 812, 748, 685 cm⁻¹

HRMS-ESI m/z : $[M-BF_4]^+$ calcd for $C_{21}H_{19}O_2S^+$ 335.1100, found 335.1099.

(2-(4-Chlorophenyl)-2-oxoethyl)diphenylsulfonium tetrafluoroborate (1d)

The titled compound was obtained as white solid in 57% yield (1.22 g, 2.9 mmol).

Melting point: 115-116 °C

¹H NMR (400 MHz, DMSO-d₆) δ 8.16 (dd, *J* = 14.4, 8.0 Hz, 6H), 7.83 – 7.69 (m, 8H), 6.55 (s, 2H).

¹⁹F NMR (376 MHz, DMSO- d_6) δ -148.1.

¹³C NMR (101 MHz, DMSO-d₆) δ 189.6, 140.6, 134.2, 132.2, 131.2, 131.1, 130.7, 129.4,

125.9, 54.6.

IR (neat): v = 1686, 1592, 1575, 1448, 1404, 1317, 1300, 1207, 1182, 1032, 997, 985, 903, 817, 756, 749, 704, 685 cm⁻¹

HRMS-ESI m/z : $[M-BF_4]^+$ calcd for $C_{20}H_{16}ClOS^+$ 339.0605, found 339.0609.

(2-(4-Bromophenyl)-2-oxoethyl)diphenylsulfonium tetrafluoroborate (1e)

The titled compound was obtained as white solid in 58% yield (1.37 g, 2.9 mmol).

¹H NMR (400 MHz, DMSO-d₆) δ 8.19 (d, J = 7.2 Hz, 4H), 8.06 (d, J = 8.5 Hz, 2H), 7.84 (d, J

= 8.4 Hz, 2H), 7.80 – 7.69 (m, 6H), 6.56 (s, 2H).

¹⁹F NMR (376 MHz, DMSO-d₆) δ -148.0.

¹³C NMR (101 MHz, DMSO-d₆) δ 189.9, 134.2, 132.5, 132.4, 131.2, 131.1, 130.7, 129.9,

125.9, 54.5.

HRMS-ESI m/z: $[M-BF_4]^+$ calcd for $C_{20}H_{16}BrOS^+$ 383.0100, found 383.0102.

. ŠPh₂

The titled compound was obtained as light yellow solid in 62% yield (1.36 g, 3.1 mmol).

Melting point: 107-109 °C

¹H NMR (400 MHz, DMSO-d₆) δ 8.40 (dd, J = 20.8, 7.7 Hz, 4H), 8.20 (d, J = 6.4 Hz, 4H),

7.77 (d, *J* = 7.6 Hz, 6H), 6.62 (s, 2H).

¹⁹F NMR (376 MHz, DMSO-d₆) δ -148.1.

(2-Oxo-2-(4-(trifluoromethyl)phenyl)ethyl)diphenylsulfonium tetrafluoroborate (1g)

The titled compound was obtained as white solid in 80% yield (1.84 g, 4.0 mmol).

Melting point: 196-198 °C

¹H NMR (400 MHz, DMSO-d₆) δ 8.33 (d, *J* = 8.2 Hz, 2H), 8.18 (d, *J* = 7.4 Hz, 4H), 8.03 (d, *J* = 8.3 Hz, 2H), 7.83 – 7.71 (m, 6H), 6.59 (s, 2H).

¹⁹F NMR (376 MHz, CDCl₃) δ -57.0, -143.4.

¹³C NMR (101 MHz, DMSO-d₆) δ 190.2, 136.6, 134.2, 131.1, 130.7, 130.0, 126.1, 126.1,

125.8, 123.6 (q, *J* = 272.8 Hz), 54.6.

IR (neat): *v* = 2999, 2929, 1688, 1584, 1481, 1449, 1413, 1313, 1301, 1210, 1171, 1129, 1063, 1029, 1014, 987, 934, 857, 834, 753, 745, 682 cm⁻¹

HRMS-ESI m/z: $[M-BF_4]^+$ calcd for $C_{21}H_{16}F_3OS^+$ 373.0868, found 373.0864.

(2-(3-Chlorophenyl)-2-oxoethyl)diphenylsulfonium tetrafluoroborate (1h)

The titled compound was obtained as white solid in 62% yield (1.32 g, 3.1 mmol).

Melting point: 186-190 °C

¹H NMR (400 MHz, DMSO-d₆) δ 8.26 (s, 1H), 8.16 (d, *J* = 7.2 Hz, 4H), 8.03 (d, *J* = 8.0 Hz,

1H), 7.88 (d, *J* = 9.1 Hz, 1H), 7.84 – 7.71 (m, 6H), 7.66 (t, *J* = 7.9 Hz, 1H), 6.55 (s, 2H).

¹⁹F NMR (376 MHz, CDCl₃) δ -143.4.

¹³C NMR (101 MHz, DMSO-d₆) δ 189.7, 135.2, 135.0, 134.1, 134.1, 131.1, 130.6, 129.1, 127.5, 125.9, 54.5.

IR (neat): *v* = 1689, 1575, 1477, 1448, 1427, 1375, 1304, 1206, 1033, 997, 928, 882, 822, 781, 768, 752, 685, 674 cm⁻¹

HRMS-ESI m/z: $[M-BF_4]^+$ calcd for $C_{20}H_{16}ClOS^+$ 339.0605, found 339.0603.

(2-(3-Nitrophenyl)-2-oxoethyl)diphenylsulfonium tetrafluoroborate (1i)

The titled compound was obtained as white solid in 65% yield (1.42 g, 3.3 mmol).

Melting point: 184-188 °C

¹H NMR (400 MHz, DMSO-d₆) δ 8.89 (s, 1H), 8.61 (d, *J* = 8.3 Hz, 1H), 8.51 (d, *J* = 7.8 Hz,

1H), 8.19 (d, *J* = 7.5 Hz, 4H), 7.93 (t, *J* = 8.0 Hz, 1H), 7.84 – 7.71 (m, 6H), 6.65 (s, 2H).

¹⁹F NMR (376 MHz, DMSO-d₆) δ -148.2.

¹³C NMR (101 MHz, DMSO-d₆) δ 189.4, 148.2, 135.0, 134.7, 134.2, 131.1, 131.0, 130.7,

129.4, 125.8, 123.7, 54.6.

IR (neat): *v* = 3103, 3015, 2947, 1693, 1612, 1581, 1535, 1475, 1443, 1350, 1304, 1289, 1212, 1194, 1099, 1029, 1012, 923, 879, 797, 747, 729, 668 cm⁻¹

HRMS-ESI m/z : $[M-BF_4]^+$ calcd for $C_{20}H_{16}NO_3S^+$ 350.0845, found 350.0842.

(2-(2-Fluorophenyl)-2-oxoethyl)diphenylsulfonium tetrafluoroborate (1j)

The titled compound was obtained as white solid in 67% yield (1.37 g, 3.4 mmol).

¹H NMR (400 MHz, DMSO-d₆) δ 8.18 (d, *J* = 7.5 Hz, 4H), 8.01 (t, *J* = 7.2 Hz, 1H), 7.89 -

7.72 (m, 7H), 7.53 – 7.40 (m, 2H), 6.43 (s, 2H).

¹⁹F NMR (376 MHz, DMSO-d₆) δ -107.4, -148.1.

¹³C NMR (101 MHz, DMSO-d₆) δ 187.7, 161.9 (d, *J* = 257.8 Hz), 138.0, 134.3, 131.3, 131.0, 130.7, 125.7, 125.5, 121.9, 117.4 (d, *J* = 22.3 Hz), 57.1.

HRMS-ESI m/z : $[M-BF_4]^+$ calcd for $C_{20}H_{16}FOS^+$ 323.0900, found 323.0900.

(2-(3,4-Dimethoxyphenyl)-2-oxoethyl)diphenylsulfonium tetrafluoroborate (1k)

The titled compound was obtained as white solid in 68% yield (1.54 g, 3.4 mmol).

Melting point: 161-164 °C

¹H NMR (400 MHz, DMSO-d₆) δ 8.20 (d, J = 7.5 Hz, 4H), 7.88 (d, J = 8.4 Hz, 1H), 7.80 – 7.71 (m, 6H), 7.52 (s, 1H), 7.19 (d, J = 8.6 Hz, 1H), 6.57 (s, 2H), 3.89 (s, 3H), 3.83 (s, 3H). ¹⁹F NMR (376 MHz, DMSO-d₆) δ -148.0.

¹³C NMR (101 MHz, DMSO-d₆) δ 188.5, 155.1, 149.0, 134.1, 131.2, 130.6, 126.1, 125.0,

111.3, 110.7, 56.2, 55.8, 54.5.

IR (neat): *v* = 1670, 1584, 1516, 1467, 1449, 1442, 1422, 1304, 1288, 1262, 1246, 1198, 1185,

1160, 1036, 1016, 997, 924, 872, 865, 809, 798, 769, 746, 681 cm⁻¹

HRMS-ESI m/z : $[M-BF_4]^+$ calcd for $C_{22}H_{21}O_3S^+$ 365.1206, found 365.1208.

(2-(3,4-Dichlorophenyl)-2-oxoethyl)diphenylsulfonium tetrafluoroborate (11)

The titled compound was obtained as white solid in 76% yield (1.75 g, 3.8 mmol).

Melting point: 174-177 °C

¹H NMR (400 MHz, DMSO-d₆) δ 8.47 (d, J = 1.7 Hz, 1H), 8.16 (d, J = 7.5 Hz, 4H), 8.03 (dd,

J = 8.4, 1.8 Hz, 1H), 7.92 (d, *J* = 8.4 Hz, 1H), 7.83 – 7.70 (m, 6H), 6.53 (s, 2H).

¹⁹F NMR (376 MHz, DMSO- d_6) δ -143.4.

¹³C NMR (101 MHz, DMSO-d₆) δ 188.9, 138.2, 134.1, 133.6, 132.2, 131.5, 131.3, 131.1,

130.7, 128.7, 125.8, 54.4.

IR (neat): v = 2987, 1694, 1587, 1477, 1447, 1396, 1371, 1304, 1285, 1200, 1127, 1051, 1032, 1020, 995, 974, 884, 832, 816, 759, 750, 685 cm⁻¹

HRMS-ESI m/z : $[M-BF_4]^+$ calcd for $C_{20}H_{15}Cl_2OS^+$ 373.0215, found 373.0213.

(2-(2-Fluoro-4-methoxyphenyl)-2-oxoethyl)diphenylsulfonium tetrafluoroborate (1m) The titled compound was obtained as white solid in 70% yield (1.54 g, 3.5 mmol).

Melting point: 134-138 °C

¹H NMR (400 MHz, DMSO-d₆) δ 8.17 (d, *J* = 7.3 Hz, 4H), 7.95 (t, *J* = 8.8 Hz, 1H), 7.82 – 7.70 (m, 6H), 7.10 (dd, *J* = 13.7, 2.1 Hz, 1H), 6.99 (dd, *J* = 9.0, 2.2 Hz, 1H), 6.37 (d, *J* = 1.8 Hz, 2H), 3.90 (s, 3H).

¹⁹F NMR (376 MHz, DMSO-d₆) δ -103.4, -148.1.

¹³C NMR (101 MHz, DMSO-d₆) δ 185.9, 166.8 (d, J = 12.5 Hz), 163.9 (d, J = 257.9 Hz),

134.2, 132.6, 131.2, 130.6, 125.9, 114.7 (d, *J* = 10.6 Hz), 112.1, 102.4 (d, *J* = 26.3 Hz), 57.0, 56.7.

IR (neat): v = 1664, 1608, 1570, 1497, 1480, 1465, 1444, 1378, 1350, 1322, 1278, 1236, 1211, 1160, 1051, 1012, 991, 950, 899, 860, 825, 756, 743, 684 cm⁻¹

HRMS-ESI m/z : $[M-BF_4]^+$ calcd for $C_{21}H_{18}FO_2S^+$ 353.1006, found 353.1007.

(2-(Naphthalen-1-yl)-2-oxoethyl) diphenyl sulfonium (2-oxo-2-phenylethyl)

diphenylsulfonium tetrafluoroborate (1n)

The titled compound was obtained as white solid in 58% yield (1.37 g, 2.9 mmol).

Melting point: 141-143 °C

¹H NMR (400 MHz, DMSO-d₆) δ 8.67 (d, *J* = 8.4 Hz, 1H), 8.61 (d, *J* = 7.2 Hz, 1H), 8.35 (d, *J* = 8.1 Hz, 1H), 8.25 (d, *J* = 7.1 Hz, 4H), 8.07 (d, *J* = 7.8 Hz, 1H), 7.82 – 7.72 (m, 7H), 7.65 (dt, *J* = 14.5, 6.9 Hz, 2H), 6.75 (s, 2H).

¹⁹F NMR (376 MHz, DMSO-d₆) δ -148.0.

¹³C NMR (101 MHz, DMSO-d₆) δ 192.6, 136.1, 134.2, 133.6, 133.0, 131.2, 130.7, 129.6,

129.5, 129.4, 129.2, 127.1, 126.0, 124.9, 124.8, 56.6.

IR (neat): v = 3006, 1669, 1595, 1572, 1507, 1481, 1445, 1390, 1297, 1262, 1236, 1217, 1173, 1145, 1037, 998, 942, 902, 798, 777, 755, 744, 683 cm⁻¹

HRMS-ESI m/z : $[M-BF_4]^+$ calcd for $C_{24}H_{19}OS^+$ 355.1151, found 355.1150.

(2-(Naphthalen-2-yl)-2-oxoethyl)diphenylsulfonium (2-oxo-2-phenylethyl)

diphenylsulfonium tetrafluoroborate (10)

The titled compound was obtained as white solid in 65% yield (1.44 g, 3.3 mmol).

Melting point: 196-199 °C

¹H NMR (400 MHz, DMSO-d₆) δ 8.96 (s, 1H), 8.21 (dd, J = 17.3, 7.5 Hz, 5H), 8.05 (ddd, J = 17.3, 7.5 Hz, 8.05 (ddd, J = 17.3, 7.5 (ddd), J = 17.3, 7.5 (ddd), J = 17.3, 7.5 (dd), J = 17.3, 7.5 (dd), J = 17.3, 7.5 (dd),

13.9, 9.9, 5.0 Hz, 3H), 7.76 (ddd, *J* = 15.6, 11.3, 7.5 Hz, 8H), 6.72 (s, 2H).

¹⁹F NMR (376 MHz, DMSO-d₆) δ -148.0.

¹³C NMR (101 MHz, DMSO-d₆) δ 190.4, 136.0, 134.2, 132.6, 132.0, 131.2, 130.8, 130.7,

130.0, 129.9, 129.0, 128.1, 127.8, 126.1, 123.2, 54.8.

IR (neat): *v* = 2978, 2926, 1672, 1625, 1596, 1483, 1473, 1446, 1374, 1360, 1309, 1284, 1211,

1190, 1158, 1128, 1044, 1032, 992, 976, 941, 892, 796, 824, 751, 743, 680 cm⁻¹

HRMS-ESI m/z : $[M-BF_4]^+$ calcd for $C_{24}H_{19}OS^+$ 355.1151, found 355.1154.

(2-(Furan-2-yl)-2-oxoethyl)diphenylsulfonium tetrafluoroborate (1p)

The titled compound was obtained as white solid in 82% yield (1.57 g, 4.1 mmol).

Melting point: 113-115 °C

¹H NMR (400 MHz, DMSO-d₆) δ 8.19 (s, 1H), 8.14 (d, J = 7.7 Hz, 4H), 7.87 (d, J = 3.5 Hz,

1H), 7.82 – 7.71 (m, 6H), 6.88 (d, *J* = 3.5 Hz, 1H), 6.28 (s, 2H).

¹⁹F NMR (376 MHz, DMSO- d_6) δ -148.2.

¹³C NMR (101 MHz, DMSO-d₆) δ 177.2, 150.4, 148.9, 134.2, 131.1, 130.6, 129.6, 125.8,

113.5, 52.7.

IR (neat): v = 3632, 1668, 1588, 1571, 1478, 1448, 1402, 1317, 1299, 1207, 1183, 1069, 1031, 997, 984, 902, 841, 814, 760, 749, 684 cm⁻¹

HRMS-ESI m/z : $[M-BF_4]^+$ calcd for $C_{18}H_{15}O_2S^+$ 295.0787, found 295.0788.

(2-oxo-2-(Thiophen-2-yl)ethyl)diphenylsulfonium tetrafluoroborate (1q)

The titled compound was obtained as white solid in 60% yield (1.19 g, 3.0 mmol).

Melting point: 114-116 °C

¹H NMR (400 MHz, DMSO-d₆) δ 8.36 (s, 1H), 8.28 – 8.10 (m, 5H), 7.75 (d, *J* = 6.3 Hz, 6H),

7.40 (s, 1H), 6.49 (s, 2H).

¹⁹F NMR (376 MHz, DMSO-d₆) δ -148.0.

¹³C NMR (101 MHz, DMSO-d₆) δ 182.8, 139.5, 138.5, 137.6, 134.3, 131.2, 130.7, 129.7,

125.9, 53.6.

IR (neat): *v* = 1655, 1582, 1517, 1478, 1448, 1411, 1357, 1306, 1288, 1247, 1170, 1063, 1019,

932, 974, 895, 864, 848, 760, 748, 733, 708, 682 cm⁻¹

HRMS-ESI m/z: $[M-BF_4]^+$ calcd for $C_{18}H_{15}OS_2^+$ 311.0559, found 311.0558.

(3,3-Dimethyl-2-oxobutyl)diphenylsulfonium tetrafluoroborate (1r)

The titled compound was obtained as white solid in 66% yield (1.23 g, 3.3 mmol).

Melting point: 156-159 °C

¹H NMR (400 MHz, DMSO-d₆) δ 8.12 (d, *J* = 7.3 Hz, 4H), 7.81 – 7.69 (m, 6H), 6.09 (s, 2H), 1.15 (s, 9H).

¹⁹F NMR (376 MHz, DMSO-d₆) δ -148.1.

¹³C NMR (101 MHz, DMSO-d₆) δ 206.9, 134.3, 131.2, 130.6, 125.7, 53.7, 44.2, 25.6.

IR (neat): v = 3102, 2951, 1706, 1581, 1480, 1464, 1453, 1385, 1372, 1322, 1291, 1247, 1225,

1188, 1055, 996, 939, 887, 840, 796, 761, 744, 690, 683 cm⁻¹

HRMS-ESI m/z : $[M-BF_4]^+$ calcd for $C_{18}H_{21}OS^+$ 285.1308, found 285.1308.

(2-(Benzyloxy)-2-oxoethyl)diphenylsulfonium tetrafluoroborate (1s)

The titled compound was obtained as white solid in 55% yield (1.16 g, 2.8 mmol).

Melting point: 119-121 °C

¹H NMR (400 MHz, DMSO-d₆) δ 8.10 (d, J = 8.0 Hz, 4H), 7.79 (t, J = 7.3 Hz, 2H), 7.72 (t, J

= 7.7 Hz, 4H), 7.37 – 7.33 (m, 3H), 7.24 (d, *J* = 3.4 Hz, 2H), 5.77 (s, 2H), 5.21 (s, 2H).

¹⁹F NMR (376 MHz, DMSO-d₆) δ -148.2.

¹³C NMR (101 MHz, DMSO-d₆) δ 163.9, 134.6, 134.6, 131.3, 130.6, 128.8, 128.7, 128.5,

125.6, 68.5, 46.3.

IR (neat): *v* = 3003, 1733, 1479, 1450, 1387, 1306, 1217, 1177, 1030, 997, 943, 904, 826, 780, 742, 699, 680 cm⁻¹

HRMS-ESI m/z : $[M-BF_4]^+$ calcd for $C_{21}H_{19}O_2S^+$ 335.1100, found 335.1097.

(12-Oxo-2,5,8,11-tetraoxatridecan-13-yl)diphenylsulfonium tetrafluoroborate (1t)

The titled compound was obtained as white solid in 53% yield (1.24 g, 2.6 mmol).

¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 7.4 Hz, 4H), 7.67 – 7.53 (m, 6H), 5.21 (s, 2H), 4.23 – 4.17 (m, 2H), 3.71 – 3.42 (m, 10H), 3.23 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -153.8.

(2-(((1R,2S,4S)-2-Isopropyl-4-methylcyclohexyl)oxy)-2-oxoethyl) diphenyl sulfonium (2-(((1R,2S,4S)-2-Isopropyl-4-methylcyclohexyl)oxy)-2-(((1R,2S,4S)-2-Isopropyl-4-methylcyclohexyl)oxy)-2-(((1R,2S,4S)-2-Isopropyl-2-methylcyclohexyl)oxy)-2-(((1R,2S,4S)-2-Isopropyl-2-methylcyclohexyl)oxyl) diphenyl sulfonium (2-(((1R,2S,4S)-2-1sopropyl-2-methylcyclohexyl)oxyl)oxyl) diphenyl sulfonium (2-(((1R,2S,4S)-2-methylcyclohexyl)oxyl)oxyl) diphenyl sulfonium (2-(((1R,2S,4S)-2-methylcyclohexyl)oxyl)oxyl)oxyl) diphenyl sulfonium (2-(((1R,2S)-2-methylcyclohexy

tetrafluoroborate (1u)

The titled compound was obtained as white solid in 75% yield (1.76 g, 3.8 mmol).

¹H NMR (400 MHz, CDCl₃) δ 8.09 – 7.92 (m, 4H), 7.76 – 7.57 (m, 6H), 5.17 (dd, J = 59.4,

16.3 Hz, 2H), 4.69 (td, J = 11.0, 4.4 Hz, 1H), 1.84 (d, J = 12.1 Hz, 1H), 1.62 (d, J = 10.6 Hz,

2H), 1.48 (dq, *J* = 6.6, 4.3 Hz, 1H), 1.40 – 1.25 (m, 2H), 0.93 (ddd, *J* = 15.7, 9.7, 7.3 Hz, 3H),

0.85 (d, *J* = 6.5 Hz, 3H), 0.76 (d, *J* = 6.9 Hz, 3H), 0.56 (d, *J* = 6.9 Hz, 3H).

¹⁹F NMR (376 MHz, CDCl₃) δ -153.9 (d, *J* = 2.3 Hz).

¹³C NMR (101 MHz, CDCl₃) δ 162.3, 134.8, 134.8, 131.7, 131.6, 130.7, 130.6, 124.1, 124.0,

79.0, 47.2, 46.6, 40.0, 33.8, 31.5, 25.8, 22.9, 21.9, 20.8, 15.8.

IR (neat): *v* = 2955, 2870, 1729, 1580, 1477, 1447, 1389, 1369, 1311, 1267, 1201, 1051, 997, 939, 907, 845, 741, 685 cm⁻¹

HRMS-ESI m/z: $[M-BF_4]^+$ calcd for $C_{24}H_{31}O_2S^+$ 383.2039, found 383.2040.

General Procedure B: (3a as an example)^[5]

Tetrahydrothiophene (0.44 g, 5.0 mmol) was added to a solution of 2-bromoacetophenone (1.00 g, 5.0 mmol) in acetone (1.0 mL). After the mixture had been stirred for 5 h, the residue was filtered and washed with acetone or Et_2O .

1-(2-Oxo-2-phenylethyl)tetrahydro-1H-thiophen-1-ium bromide (3a)^[5]

The titled compound was obtained as white solid in 80% yield (1.15 g, 4.0 mmol). ¹H NMR (400 MHz, CD₃OD) δ 8.08 (d, *J* = 7.3 Hz, 2H), 7.74 (t, *J* = 7.4 Hz, 1H), 7.59 (t, *J* = 7.7 Hz, 2H), 4.89 (s, 2H), 3.71 (dt, *J* = 13.4, 6.6 Hz, 2H), 3.65 – 3.57 (m, 2H), 2.50 – 2.39 (m,

2H), 2.34 (dd, *J* = 12.3, 5.7 Hz, 2H).

1-(2-Oxo-2-(*p*-tolyl)ethyl)tetrahydro-1H-thiophen-1-ium bromide (3b)^[5]

The titled compound was obtained as white solid in 78% yield (1.17 g, 3.9 mmol). ¹H NMR (400 MHz, CD₃OD) δ 7.96 (d, *J* = 8.2 Hz, 2H), 7.41 (d, *J* = 8.1 Hz, 2H), 4.91 (s, 2H), 3.63 (ddt, *J* = 25.3, 12.8, 6.5 Hz, 4H), 2.45 (s, 3H), 2.44 - 2.25 (m, 4H).

1-(2-(4-Methoxyphenyl)-2-oxoethyl)tetrahydro-1H-thiophen-1-ium bromide (**3c**)^[7] The titled compound was obtained as white solid in 78% yield (1.24 g, 3.9 mmol). ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 8.9 Hz, 2H), 7.09 (d, *J* = 8.9 Hz, 2H), 4.92 (s, 2H), 3.91 (s, 3H), 3.63 (dtd, *J* = 25.4, 12.9, 6.6 Hz, 4H), 2.39 (ddd, *J* = 31.5, 10.7, 5.0 Hz, 4H).

1-(2-(4-Chlorophenyl)-2-oxoethyl)tetrahydro-1H-thiophen-1-ium bromide (3d)^[7] The titled compound was obtained as white solid in 73% yield (1.17 g, 3.7 mmol). ¹H NMR (400 MHz, CD₃OD) δ 8.07 (d, *J* = 8.6 Hz, 2H), 7.60 (d, *J* = 8.6 Hz, 2H), 4.85 (s, 2H), 3.80 – 3.61 (m, 4H), 2.54 – 2.29 (m, 4H).

1-(2-(4-Bromophenyl)-2-oxoethyl)tetrahydro-1H-thiophen-1-ium bromide (3e)^[7] The titled compound was obtained as white solid in 90% yield (1.65 g, 4.5 mmol). ¹H NMR (400 MHz, CD₃OD) δ 7.98 (d, *J* = 8.6 Hz, 2H), 7.77 (d, *J* = 8.6 Hz, 2H), 4.87 (s, 2H), 3.68 (ddt, *J* = 36.1, 12.3, 6.3 Hz, 4H), 2.53 – 2.26 (m, 4H).

1-(2-Oxo-2-(4-(trifluoromethyl)phenyl)ethyl)tetrahydro-1H-thiophen-1-ium bromide (3f)

The titled compound was obtained as white solid in 83% yield (1.47 g, 4.2 mmol).

Melting point: 129-131 °C

¹H NMR (400 MHz, CD₃OD) δ 8.27 (d, J = 8.2 Hz, 2H), 7.90 (d, J = 8.3 Hz, 2H), 4.84 (s,

2H), 3.74 (dtd, *J* = 19.0, 12.9, 6.4 Hz, 4H), 2.44 (ddt, *J* = 15.7, 9.0, 4.0 Hz, 4H).

¹⁹F NMR (376 MHz, CD₃OD) δ -64.4.

¹³C NMR (101 MHz, CD₃OD) δ 192.2, 138.3, 136.5 (q, *J* = 33.1 Hz), 130.7, 127.1 (q, *J* = 3.7 Hz), 125.0 (q, *J* = 272.1 Hz), 44.3, 29.8.

IR (neat): v = 3007, 2976, 2947, 2920, 2896, 2162, 1685, 1581, 1516, 1414, 1360, 1314, 1205, 1173, 1133, 1112, 1063, 1017, 992, 953, 921, 882, 861, 829, 793, 774, 742, 732, 672 cm⁻¹ $HRMS-ESI m/z : [M-Br]⁺ calcd for <math>C_{13}H_{14}F_3OS^+$ 275.0712, found 275.0713.

1-(2-Oxo-2-(m-tolyl)ethyl)tetrahydro-1H-thiophen-1-ium bromide (3g)

The titled compound was obtained as white solid in 90% yield (1.36 g, 4.5 mmol).

Melting point: 124-126 °C

¹H NMR (400 MHz, CD₃OD) δ 7.98 – 7.78 (m, 2H), 7.57 (d, *J* = 7.6 Hz, 1H), 7.47 (t, *J* = 7.7 Hz, 1H), 4.91 (s, 2H), 3.64 (ddt, *J* = 25.5, 12.9, 6.6 Hz, 4H), 2.45 (s, 3H), 2.44 – 2.25 (m, 4H).

¹³C NMR (101 MHz, CD₃OD) δ 192.7, 140.4, 136.9, 135.4, 130.3, 130.1, 127.2, 44.1, 29.7, 21.3.

HRMS-ESI m/z : $[M-Br]^+$ calcd for $C_{13}H_{17}OS^+$ 221.0995, found 221.0995.

1-(2-(3-Chlorophenyl)-2-oxoethyl)tetrahydro-1H-thiophen-1-ium bromide (3h)

The titled compound was obtained as white solid in 87% yield (1.40 g, 4.4 mmol). Melting point: 147-150 °C ¹H NMR (400 MHz, CD₃OD) δ 8.06 (t, *J* = 1.7 Hz, 1H), 8.01 (d, *J* = 7.8 Hz, 1H), 7.80 – 7.69 (m, 1H), 7.60 (t, *J* = 7.9 Hz, 1H), 4.91 (s, 2H), 3.77 – 3.56 (m, 4H), 2.50 – 2.27 (m, 4H). ¹³C NMR (101 MHz, CD₃OD) δ 191.7, 137.0, 136.3, 135.8, 131.9, 129.6, 128.3, 44.2, 29.7. IR (neat): *v* = 2987, 2967, 2930, 2872, 1979, 1672, 1590, 1567, 1477, 1459, 1444, 1413, 1350, 1320, 1264, 1204, 1160, 1100, 1074, 1005, 995, 954, 896, 872, 835, 792, 700, 676, 663 cm⁻¹ HRMS-ESI m/z : [M-Br]⁺ calcd for C₁₂H₁₄ClOS ⁺ 241.0448, found 241.0449.

1-(2-Oxo-2-(o-tolyl)ethyl)tetrahydro-1H-thiophen-1-ium bromide (3i)

The titled compound was obtained as white solid in 93% yield (1.40 g, 4.7 mmol). Melting point: 148-150 °C ¹H NMR (400 MHz, CD₃OD) δ 7.99 (d, *J* = 7.5 Hz, 1H), 7.66 – 7.52 (m, 1H), 7.41 (dd, *J* = 15.4, 7.7 Hz, 2H), 4.91 (s, 2H), 3.76 – 3.53 (m, 4H), 2.59 (s, 3H), 2.49 – 2.25 (m, 4H). ¹³C NMR (101 MHz, CD₃OD) δ 194.6, 141.8, 135.0, 134.1, 133.6, 132.4, 127.4, 44.0, 29.7, 22.2. IR (neat): v = 2972, 2907, 2859, 2162, 1671, 1601, 1567, 1493, 1456, 1433, 1386, 1312, 1199, 1169, 1140, 1040, 982, 957, 920, 886, 873, 819, 760, 725, 714 cm^{-1,} HRMS-ESI m/z : [M-Br]⁺ calcd for C₁₃H₁₇OS ⁺ 221.0995, found 221.0995.

1-(2-(2-Chlorophenyl)-2-oxoethyl)tetrahydro-1H-thiophen-1-ium bromide (3j) The titled compound was obtained as white solid in 78% yield (1.25 g, 3.9 mmol). Melting point: 128-129 °C ¹H NMR (400 MHz, CD₃OD) δ 8.04 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.68 – 7.56 (m, 2H), 7.56 – 7.48 (m, 1H), 4.84 (s, 2H), 3.79 – 3.61 (m, 4H), 2.52 – 2.41 (m, 2H), 2.39 – 2.28 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 192.9, 135.8, 134.6, 134.1, 132.8, 132.7, 128.6, 44.3, 29.8. IR (neat): *v* = 3062, 3008, 2980, 2932, 2869, 2162, 1965, 1686, 1588, 1565, 1471, 1428, 1362, 1303, 1272, 1259, 1197, 1159, 1066, 1043, 984, 913, 880, 860, 814, 748, 712, 685, 666 cm⁻¹ HRMS-ESI m/z : [M-Br]⁺ calcd for C₁₂H₁₄ClOS ⁺ 241.0448, found 241.0447.

1-(2-(2-Fluorophenyl)-2-oxoethyl)tetrahydro-1H-thiophen-1-ium bromide (3k) The titled compound was obtained as white solid in 88% yield (1.34 g, 4.4 mmol). Melting point: 120-122 °C ¹H NMR (400 MHz, CD₃OD) δ 8.05 (td, *J* = 7.7, 1.8 Hz, 1H), 7.78 (tdd, *J* = 7.2, 5.2, 1.8 Hz, 1H), 7.44 – 7.32 (m, 2H), 4.90 (s, 2H), 3.65 (ddt, *J* = 39.2, 12.8, 6.4 Hz, 4H), 2.46 – 2.28 (m,

4H).

¹⁹F NMR (376 MHz, CD₃OD) δ -108.5.

¹³C NMR (101 MHz, CDCl₃) δ 189.9, 164.0 (d, *J* = 256.7 Hz), 138.5 (d, *J* = 9.6 Hz), 131.8, 126.2 (d, *J* = 3.3 Hz), 123.5 (d, *J* = 11.4 Hz), 118.1 (d, *J* = 23.1 Hz), 44.1, 29.7.

IR (neat): v = 3000, 2945, 1675, 1608, 1576, 1480, 1456, 1448, 1382, 1321, 1287, 1269, 1211, 1158, 1050, 1038, 997, 909, 841, 780, 771, 747, 683 cm⁻¹ $HRMS-ESI m/z : [M-Br]⁺ calcd for <math>C_{12}H_{14}FOS$ ⁺ 225.0744, found 225.0745.

1-(2-(3,4-Dimethoxyphenyl)-2-oxoethyl)tetrahydro-1H-thiophen-1-ium bromide (3l) The titled compound was obtained as white solid in 89% yield (1.55 g, 4.5 mmol). Melting point: 139-141 °C

¹H NMR (400 MHz, CD₃OD) δ 7.74 (dd, *J* = 8.5, 1.8 Hz, 1H), 7.52 (s, 1H), 7.08 (t, *J* = 8.6 Hz, 1H), 4.85 (s, 2H), 3.94 (s, 3H), 3.90 (s, 3H), 3.67 (ddt, *J* = 40.1, 12.7, 6.4 Hz, 4H), 2.54 – 2.25 (m, 4H).

¹³C NMR (101 MHz, CD₃OD) δ 190.9, 156.4, 150.5, 128.1, 125.7, 112.0, 111.6, 56.8, 56.7,
44.1, 29.7.

IR (neat): v = 3486, 2943, 2030, 1660, 1585, 1516, 1452, 1420, 1353, 1311, 1291, 1261, 1244, 1189, 1152, 1043, 1013, 876, 853, 831, 770, 722 cm⁻¹

HRMS-ESI m/z : $[M-Br]^+$ calcd for $C_{14}H_{19}O_3S^+$ 267.1049, found 267.1048.

1-(2-(3,4-Dichlorophenyl)-2-oxoethyl)tetrahydro-1H-thiophen-1-ium bromide (3m) The titled compound was obtained as white solid in 76% yield (1.35 g, 3.8 mmol). Melting point: 127-129 °C

¹H NMR (400 MHz, CD₃OD) δ 8.21 (d, *J* = 2.0 Hz, 1H), 7.98 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.78 (d, *J* = 8.4 Hz, 1H), 4.91 (s, 2H), 3.64 (ddd, *J* = 19.0, 13.0, 6.5 Hz, 4H), 2.47 – 2.29 (m, 4H). ¹³C NMR (126 MHz, CD₃OD) δ 190.7, 140.3, 135.1, 134.5, 132.4, 131.6, 129.2, 44.1, 29.6. IR (neat): *v* = 3335, 3093, 3011, 2866, 2161, 1678, 1583, 1557, 1466, 1392, 1363, 1310, 1286, 1255, 1205, 1167, 1132, 1030, 951, 923, 886, 839, 818, 779, 699, 674 cm⁻¹ HRMS-ESI m/z : $[M-Br]^+$ calcd for $C_{12}H_{13}Cl_2OS^+$ 275.0059, found 275.0059.

$1-(2-(2-Fluoro-4-methoxy phenyl)-2-oxoethyl) tetrahydro-1H-thiophen-1-ium\ bromide$

(**3n**)

The titled compound was obtained as white solid in 87% yield (1.46 g, 4.4 mmol).

Melting point: 139-143 °C

¹H NMR (400 MHz, CD₃OD) δ 7.99 (t, *J* = 8.8 Hz, 1H), 6.91 (ddd, *J* = 15.9, 11.3, 2.3 Hz,

2H), 4.84 (s, 2H), 3.93 (s, 3H), 3.73 (dt, *J* = 13.3, 6.7 Hz, 2H), 3.61 (dt, *J* = 12.8, 6.2 Hz, 2H), 2.49 – 2.29 (m, 4H).

¹⁹F NMR (376 MHz, CD₃OD) δ -105.0.

¹³C NMR (101 MHz, CD₃OD) δ 188.3 (d, J = 3.4 Hz), 168.5 (d, J = 12.5 Hz), 165.9 (d, J = 256.8 Hz), 133.3 (d, J = 3.6 Hz), 116.3 (d, J = 12.0 Hz), 112.9 (d, J = 2.1 Hz), 102.9 (d, J = 26.9 Hz), 57.1, 44.0, 29.7.

IR (neat): *v* = 3365, 3029, 2925, 2867, 2162, 1673, 1651, 1614, 1573, 1505, 1471, 1460, 1425, 1382, 1342, 1277, 1261, 1237, 1210, 1177, 1124, 1113, 1022, 994, 950, 908, 874, 855, 811, 751, 660 cm⁻¹

HRMS-ESI m/z : $[M-Br]^+$ calcd for $C_{13}H_{16}FO_2S^+$ 255.0850, found 255.0849.

1-(2-(Naphthalen-1-yl)-2-oxoethyl)tetrahydro-1H-thiophen-1-ium bromide (30)

The titled compound was obtained as white solid in 87% yield (1.47 g, 4.4 mmol).

Melting point: 125-127 °C

¹H NMR (400 MHz, CD₃OD) δ 9.00 (d, *J* = 8.6 Hz, 1H), 8.29 (dd, *J* = 22.8, 7.8 Hz, 2H), 8.01 (d, *J* = 8.0 Hz, 1H), 7.73 – 7.60 (m, 3H), 4.92 (s, 2H), 3.77 – 3.61 (m, 4H), 2.51 – 2.30 (m, 4H).

¹³C NMR (101 MHz, CD₃OD) δ 194.8, 137.0, 135.4, 133.6, 131.6, 131.1, 130.1, 130.0, 128.0, 126.6, 125.7, 44.1, 29.7.

IR (neat): *v* = 3481, 2926, 2870, 2162, 2036, 1673, 1616, 1592, 1574, 1508, 1463, 1437, 1417, 1387, 1338, 1307, 1239, 1216, 1172, 1093, 1075, 1021, 982, 948, 912, 861, 802, 790, 771, 732, 710 cm⁻¹

HRMS-ESI m/z : $[M-Br]^+$ calcd for $C_{16}H_{17}OS^+$ 257.0995, found 257.0994.

1-(2-(Naphthalen-2-yl)-2-oxoethyl)tetrahydro-1H-thiophen-1-ium bromide (3p) The titled compound was obtained as white solid in 80% yield (1.35 g, 3.9 mmol). Melting point: 123-126 °C ¹H NMR (400 MHz, CD₃OD) δ 8.72 (s, 1H), 8.27 – 7.93 (m, 4H), 7.68 (dt, *J* = 25.4, 7.0 Hz, 2H), 4.91 (s, 2H), 3.81 – 3.59 (m, 4H), 2.55 – 2.26 (m, 4H). ¹³C NMR (101 MHz, CD₃OD) δ 192.5, 137.7, 133.7, 133.1, 132.6, 131.0, 130.7, 130.0, 129.0, 128.4, 124.2, 54.0, 44.3, 29.7. IR (neat): ν = 3492, 2934, 2877, 2161, 1980, 1665, 1626, 1596, 1578, 1505, 1470, 1440, 1405, 1353, 1307, 1291, 1243, 1205, 1183, 1139, 1124, 1103, 997, 955, 942, 901, 873, 817, 789, 752, 727, 685 cm⁻¹

HRMS-ESI m/z : $[M-Br]^+$ calcd for $C_{16}H_{17}OS^+$ 257.0995, found 257.0993.

1-(2-(Furan-2-yl)-2-oxoethyl)tetrahydro-1H-thiophen-1-ium bromide (3q)

The titled compound was obtained as white solid in 88% yield (1.22 g, 4.4 mmol).

Melting point: 133-135 °C

¹H NMR (400 MHz, CD₃OD) δ 7.95 (d, *J* = 1.0 Hz, 1H), 7.61 (d, *J* = 3.7 Hz, 1H), 6.77 (dd, *J* = 3.7, 1.6 Hz, 1H), 4.88 (s, 2H), 3.74 - 3.58 (m, 4H), 2.48 - 2.29 (m, 4H).

¹³C NMR (101 MHz, CD₃OD) δ 180.1, 151.5, 150.5, 122.0, 114.3, 44.4, 29.7. IR (neat): v = 3141, 3102, 3074, 2999, 2911, 2822, 1662, 1562, 1468, 1400, 1374, 1338, 1311, 1254, 1207, 1171, 1082, 1048, 1008, 950, 917, 880,852, 773, 718 cm⁻¹ HRMS-ESI m/z : [M-Br]⁺ calcd for C₁₀H₁₃O₂S⁺ 197.0631, found 197.0632.

1-(2-Oxo-2-(thiophen-2-yl)ethyl)tetrahydro-1H-thiophen-1-ium bromide (3r) The titled compound was obtained as white solid in 91% yield (1.33 g, 4.6 mmol). Melting point: 141-143 °C ¹H NMR (400 MHz, CD₃OD) δ 8.05 (t, *J* = 3.6 Hz, 2H), 7.33 – 7.27 (m, 1H), 4.91 (s, 2H), 3.64 (ddt, *J* = 25.3, 12.9, 6.6 Hz, 4H), 2.50 – 2.25 (m, 4H). ¹³C NMR (101 MHz, CD₃OD) δ 185.0, 141.3, 138.2, 137.2, 130.1, 44.4, 29.7. IR (neat): *v* = 3096, 3047, 3004, 2893, 2837, 2162, 1642, 1518, 1463, 1408, 1356, 1327, 1313, 1226, 1178, 1108, 1080, 1062, 956, 908, 863, 851, 779, 755, 734, 708 cm⁻¹ HRMS-ESI m/z : [M-Br]⁺ calcd for C₁₀H₁₃OS₂⁺ 213.0402, found 213.0403.

1-(3,3-Dimethyl-2-oxobutyl)tetrahydro-1H-thiophen-1-ium bromide (3s)

The titled compound was obtained as white solid in 90% yield (1.20 g, 4.5 mmol).

Melting point: 186-188 °C

¹H NMR (400 MHz, CD₃OD) δ 4.91 (s, 2H), 3.63 (dt, *J* = 13.6, 6.8 Hz, 2H), 3.45 (dd, *J* =

12.7, 6.3 Hz, 2H), 2.44 – 2.21 (m, 4H), 1.24 (s, 9H).

¹³C NMR (101 MHz, CD₃OD) δ 209.5, 45.2, 44.1, 29.7, 26.5.

IR (neat): *v* = 2970, 2952, 2906, 2162, 1980, 1705, 1482, 1459, 1446, 1433, 1396, 1363, 1338, 1306, 1271, 1226, 1203, 1167, 1136, 1103, 1065, 1027, 1010, 955, 937, 903, 891, 866, 811, 733 cm⁻¹

HRMS-ESI m/z : $[M-Br]^+$ calcd for $C_{10}H_{19}OS_2^+$ 187.1151, found 187.1150.

1-(2-(Benzyloxy)-2-oxoethyl)tetrahydro-1H-thiophen-1-ium bromide (3t)

The titled compound was obtained as white solid in 92% yield (1.46 g, 4.6 mmol). **3t** is a known compound. [CAS: 1787295-44-6]

¹H NMR (400 MHz, CD₃OD) δ 7.42 (ddd, *J* = 15.7, 10.1, 4.4 Hz, 5H), 5.29 (s, 2H), 4.50 (s, 2H), 3.62 (dtd, *J* = 19.0, 12.8, 6.2 Hz, 4H), 2.45 – 2.24 (m, 4H).

III. Typical Procedure for condition optimization:

In a dry reaction tube, trifluoromethylthiolation reagent **2a** (0.1 mmol, 1.0 equiv) and 1-(2-oxo-2-phenylethyl)tetrahydro-1H-thiophen-1-ium bromide **3a** (0.1 mmol, 1.0 equiv) were dissolved in 1.0 mL anhydrous DMF under the argon atmosphere at the room temperature. Then, DIPEA (0.1 mmol, 1.0 equiv) and H₂O (0.2 mmol, 2.0 equiv) was added to the tube. SOCl₂ (0.1 mmol, 1.0 equiv) was added to the reaction mixture in the end. The mixture kept stirring at the same temperature for 12 hours. The reaction solution was analyzed by ¹⁹F NMR spectroscopy using PhCF₃ as an internal standard.

Table S1. Effect of solvent

	Ph Br 3a	$\begin{array}{c} \textbf{2a} (1.0 \text{ equiv}) \\ \text{SOCI}_2 (1.0 \text{ equiv}) \\ \text{H}_2 O (2.0 \text{ equiv}) \\ \hline \text{DIPEA} (1.0 \text{ equiv}) \\ \text{solvent, rt, Ar, 12 h} \\ \end{array} \xrightarrow{\textbf{O}} \begin{array}{c} \text{O} \\ \text{Ph} \\ \text{SCF}_3 \\ \textbf{4a} \end{array}$	$Ph \xrightarrow{S} \downarrow_{4}^{Cl}$ SCF ₃ 5a
Entry	Solvent	Yield of 4a (%)	Yield of 5a (%)
1	DMF	60	40
2	CHCl ₃	28	20
3	MeOH	11	11
4	DMSO	36	7
5	THF	44	43
6	PhMe	15	24
7	NMP	51	47

Reaction condition: **2a** (0.1 mmol, 1.0 equiv), **3a** (0.1 mmol, 1.0 equiv), H₂O (0.2 mmol, 2.0 equiv), SOCl₂ (0.1 mmol, 1.0 equiv), DIPEA (0.1 mmol, 1.0 equiv) in solvent (1.0 mL) at rt for 12 h. Yields determined by ¹⁹F NMR spectroscopy using PhCF₃ as an internal standard.

	O Image: Second system Image: Second system <thimage: second="" system<="" th=""> Image: Second system</thimage:>	O Ph Cl + F SCF ₃ 4a	S_{4}
Entry	[Cl] source	Yield of 4a (%)	Yield of 5a (%)
1	SOCl ₂	59	39
2	TMSCl	28	20
3	$(COCl)_2$	56	37
4	NCS	20	13
5	AcCl	27	19
6	Bu ₄ NCl	-	-
7	HCl (37% solution in water)	37	26

Reaction condition: **2a** (0.1 mmol, 1.0 equiv), **3a** (0.1 mmol, 1.0 equiv), H_2O (0.2 mmol, 2.0 equiv), Cl source (0.1 mmol, 1.0 equiv), DIPEA (0.1 mmol, 1.0 equiv) in DMF (1.0 mL) at rt for 12 h. Yields determined by ¹⁹F NMR spectroscopy using PhCF₃ as an internal standard.

Ph Ph Br 3a	2a (1.0 equiv) SOCl ₂ (1.0 equiv) additive (2.0 equiv) DIPEA (1.0 equiv) DMF, rt, Ar, 12 h	$\begin{array}{ccc} O & O \\ Ph & CI + Ph \\ SCF_3 \\ 4a \\ 5a$	$rac{S}{4}$
Entry	Additive	Yield of 4a (%)	Yield of 5a (%)
1	H_2O	60	39
2	MeOH	23	37
3	EtOH	58	39
4	tBuOH	51	32
5	AcOH	52	27
6	none	-	-

Reaction condition: **2a** (0.1 mmol, 1.0 equiv), **3a** (0.1 mmol, 1.0 equiv), additive (0.2 mmol, 2.0 equiv), SOCl₂ (0.1 mmol, 1.0 equiv), DIPEA (0.1 mmol, 1.0 equiv) in DMF (1.0 mL) at rt for 12 h. Yields determined by ¹⁹F NMR spectroscopy using PhCF₃ as an internal standard.

Table S4. Effect of sulfonium salt

Ph $F_{\bar{Y}}$ R_{2}	2a (1.0 equiv) SOCl ₂ (1.0 equiv) H ₂ O (2.0 equiv) DIPEA (1.0 equiv) solvent, rt, Ar, 12 h	$\begin{array}{ccc} O & O \\ Ph & Cl + Ph \\ SCF_3 \\ 4a & 5a \\ \end{array}$	SCF ₃
Entry	Sulfonium salt	Yield of 4a (%)	Yield of 5a (%)
1	3 a	60	40
2	1aa	54	-
3	1ab	95	-
4	1ac	>99	-

Reaction condition: **2a** (0.1 mmol, 1.0 equiv), sulfonium salt (0.1 mmol, 1.0 equiv), H_2O (0.2 mmol, 2.0 equiv), SOCl₂ (0.1 mmol, 1.0 equiv), DIPEA (0.1 mmol, 1.0 equiv) in DMF (1.0 mL) at rt for 12 h. Yields determined by ¹⁹F NMR spectroscopy using PhCF₃ as an internal standard.

Table S5. Effect of Lewis acid

Ph Ph Br 3a	H ₂ O (2.0 equiv) Lewis acid (10.0 equ SOCI ₂ (2.0 equiv) DIPEA (1.0 equiv) NMP, rt, Ar, 12 h	$\begin{array}{cccc} \text{iv}) & O & O \\ Ph & Cl & + Ph \\ SCF_3 \\ 4a & 5 \end{array}$	
Entry	Lewis acid	Yield of 4a (%)	Yield of 5a (%)
1	LiCl	15	85
2	NaCl	50	49
3	KCl	47	51
4	$CaCl_2$	18	82
5	MgCl ₂	24	73
6	$BaCl_2$	47	52
7	AlCl ₃	-	-
8	$ZnCl_2$	3	4
9	none	50	49

Reaction condition: Lewis acid (1.0 mmol, 10.0 equiv), NMP (1.0 mL) DIPEA (0.1 mmol, 1.0 equiv), **2a** (0.1 mmol, 1.0 equiv) and **3a** (0.1 mmol, 1.0 equiv), H_2O (0.2 mmol, 2.0 equiv), SOCl₂ (0.2 mmol, 2.0 equiv) added in order at rt for 12 h. Yields determined by ¹⁹F NMR spectroscopy using PhCF₃ as an internal standard.

IV. Isolation of products

General Procedure C: (for disubstituted halo-trifluoromethylthiolation of sulfur ylides)

$$R \xrightarrow{\text{SPh}_2}_{BF_4^-} + \underbrace{V}_{O} \xrightarrow{\text{N-SCF}_3} \xrightarrow{\text{H}_2O(2.0 \text{ equiv})}_{OIPEA(1.0 \text{ equiv})} R \xrightarrow{\text{O}}_{SCF_3} \xrightarrow{\text{CI/Br}}_{SCF_3}$$

In an argon-filled glovebox, a dry reaction tube was charged with **1** (0.5 mmol, 1.0 equiv), **2a** (0.5 mmol, 1.0 equiv), DMF (5.0 mL), DIPEA (0.5 mmol, 1.0 equiv), and H₂O (1.0 mmol, 2.0 equiv), SOCl₂ (0.5 mmol, 1.0 equiv) was added to the reaction mixture at the room temperature in the end. The mixture kept stirring at room temperature for 12 hours. Then, water (5.0 mL) was added to quench the reaction. The resulting mixture was extracted with petroleum ether or ethyl acetate for three times (3 x 8.0 mL) and the combined organic solution was dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 100:1) to afford the desired product.

2-Chloro-1-phenyl-2-((trifluoromethyl)thio)ethanone (4a)

The product (127.3 mg, 97% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 100/1) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 8.09 – 7.97 (m, 2H), 7.69 (t, *J* = 7.4 Hz, 1H), 7.55 (t, *J* = 7.8

Hz, 2H), 6.68 (s, 1H).

¹⁹F NMR (376 MHz, CDCl₃) δ -43.7.

¹³C NMR (101 MHz, CDCl₃) δ 187.7, 135.2, 131.7, 129.7 (q, *J* = 309.2 Hz), 129.7, 129.3, 62.1.

HRMS-EI m/z : for 35 Cl [M+] calcd for C₉H₆ClF₃OS 253.9780, found 253.9784.

MS-EI m/z : for 37 Cl [M+] calcd for C₉H₆ClF₃OS 256.0, found 256.0.

2-Chloro-1-(p-tolyl)-2-((trifluoromethyl)thio)ethanone (4b)

The product (129.0 mg, 96% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 100/1) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 8.1 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 6.67 (s, 1H), 2.44 (s, 3H).

¹⁹F NMR (376 MHz, CDCl₃) δ -43.7.

¹³C NMR (101 MHz, CDCl₃) δ 187.3, 146.6, 130.0, 129.8, 129.8 (q, *J* = 309.1 Hz), 129.1,

62.2, 21.9.

IR (neat): v = IR (neat): v = 2926, 1683, 1607, 1573, 1410, 1318, 1285, 1203, 1103, 999, 841, 829, 757, 729, 701 cm⁻¹.

HRMS-EI m/z : for 35 Cl [M+] calcd for C₁₀H₈ClF₃OS 267.9936, found 267.9943.

MS-EI m/z : for 37 Cl [M+] calcd for C₁₀H₈ClF₃OS 270.0, found 270.0.

2-Chloro-1-(4-methoxyphenyl)-2-((trifluoromethyl)thio)ethanone (4c)

The product (135.2 mg, 95% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 80/1) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 8.9 Hz, 2H), 6.99 (d, *J* = 8.9 Hz, 2H), 6.67 (s, 1H), 3.89 (s, 3H).

¹⁹F NMR (376 MHz, CDCl₃) δ -43.7.

¹³C NMR (101 MHz, CDCl₃) δ 186.2, 165.2, 132.2, 129.8 (q, *J* = 309.1 Hz), 124.2, 114.5,

62.2, 55.7.

IR (neat): v = 2940, 2844, 1674, 1596, 1572, 1513, 1462, 1424, 1313, 1265, 1210, 1162, 1102, 1027, 989, 845, 801, 777, 757, 734 cm⁻¹

HRMS-EI m/z : for 35 Cl [M+] calcd for C₁₀H₈ClF₃O₂S 283.9886, found 283.9892.

MS-EI m/z : for 37 Cl [M+] calcd for C₁₀H₈ClF₃O₂S 286.0, found 286.0.

2-Chloro-1-(4-chlorophenyl)-2-((trifluoromethyl)thio)ethanone (4d)

The product (131.5 mg, 91% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 100/1) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.6 Hz, 2H), 7.50 (d, J = 8.6 Hz, 2H), 6.64 (s, 1H).

¹⁹F NMR (376 MHz, CDCl₃) δ -43.6.

¹³C NMR (101 MHz, CDCl₃) δ 186.6, 141.9, 131.1, 130.0, 129.7, 129.6 (q, *J* = 309.3 Hz),

62.0.

IR (neat): *v* = 1687, 1590, 1570, 1490, 1402, 1311, 1282, 1208, 1105, 1091, 1014, 993, 846, 826, 782, 756, 695 cm⁻¹

HRMS-EI m/z : for 35 Cl [M+] calcd for C₉H₅Cl₂F₃OS 287.9390, found 287.9393.

MS-EI m/z : for 37 Cl [M+] calcd for C₉H₅Cl₂F₃OS 289.9, found 289.9.

1-(4-Bromophenyl)-2-chloro-2-((trifluoromethyl)thio)ethanone (4e)

The product (160.1 mg, 96% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 100/1) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 8.6 Hz, 2H), 7.68 (d, J = 8.6 Hz, 2H), 6.63 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -43.6.

¹³C NMR (101 MHz, CDCl₃) δ 186.8, 132.7, 131.1, 130.8, 130.4, 129.6 (q, *J* = 309.4 Hz), 61.9.

IR (neat): v = 2927, 1688, 1585, 1566, 1487, 1398, 1309, 1286, 1209, 1103, 1070, 1011, 991, 844, 825, 777, 753, 698, 677 cm⁻¹

HRMS-EI m/z : for ³⁵Cl [M+] calcd for C₉H₅BrClF₃OS 331.8885, found 331.8882.

MS-EI m/z : for 37 Cl [M+] calcd for C₉H₅BrClF₃OS 333.9, found 333.9.

2-Chloro-1-(4-nitrophenyl)-2-((trifluoromethyl)thio)ethanone (4f)

The product (139.3 mg, 93% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 50/1) as a light yellow solid.

Melting point: 51-53 °C

¹H NMR (400 MHz, CDCl₃) δ 8.41 (d, J = 8.6 Hz, 2H), 8.27 (d, J = 8.6 Hz, 2H), 6.77 (s, 1H).

¹⁹F NMR (376 MHz, CDCl₃) δ -43.3.

¹³C NMR (101 MHz, CDCl₃) δ 186.3, 151.2, 136.3, 130.9, 129.2 (q, *J* = 309.3 Hz), 124.3,

62.00.

IR (neat): *v* = 3113, 2998, 1696, 1600, 1519, 1493, 1409, 1348, 1323, 1309, 1286, 1218, 1185,

1170, 1133, 1104, 1012, 999, 980, 870, 857, 828, 791, 762, 756, 726, 688, 680 cm⁻¹

HRMS-EI m/z : for ³⁵Cl [M+] calcd for C₉H₅ClF₃NO₃S 298.9631, found 298.9620.

MS-EI m/z : for 37 Cl [M+] calcd for C₉H₅ClF₃NO₃S 301.0, found 301.0.

2-Chloro-1-(4-(trifluoromethyl)phenyl)-2-((trifluoromethyl)thio)ethanone (4g)

The product (153.3 mg, 95% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 100/1) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 7.9 Hz, 2H), 7.82 (d, J = 7.9 Hz, 2H), 6.70 (s, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -43.4, -66.5.

¹³C NMR (101 MHz, CDCl₃) δ 186.9, 136.2 (q, J = 33.1 Hz), 134.6, 130.1, 129.6 (q, J =

309.3 Hz), 126.3 (q, *J* = 3.0 Hz), 123.4 (q, *J* = 272.9 Hz), 62.0.

IR (neat): *v* = 1698, 1583, 1513, 1412, 1327, 1315, 1283, 1103, 1066, 1017, 996, 858, 829,

792, 775, 758, 743, 669 cm⁻¹

HRMS-EI m/z : for 35 Cl [M+] calcd for C₁₀H₅ClF₆OS 321.9654, found 321.9654.

MS-EI m/z : for 37 Cl [M+] calcd for C₁₀H₅ClF₆OS 324.0, found 324.0.

2-Chloro-1-(3-chlorophenyl)-2-((trifluoromethyl)thio)ethanone (4h)

The product (134.4 mg, 93% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 100/1) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 1H), 7.90 (d, *J* = 7.8 Hz, 1H), 7.65 (d, *J* = 8.0 Hz, 1H),

7.50 (t, *J* = 7.9 Hz, 1H), 6.63 (s, 1H).

¹⁹F NMR (376 MHz, CDCl₃) δ -43.6.

¹³C NMR (101 MHz, CDCl₃) δ 186.5, 135.7, 135.1, 133.2, 130.5, 129.6, 129.6 (q, *J* = 309.4

Hz), 127.7, 61.9.

IR (neat): *v* = 1692, 1573, 1474, 1422, 1286, 1266, 1208, 1102, 1021, 999, 901, 880, 812, 757, 693, 674 cm⁻¹

HRMS-EI m/z : for 35 Cl [M+] calcd for C₉H₅Cl₂F₃OS 287.9390, found 287.9381.

MS-EI m/z : for 37 Cl [M+] calcd for C₉H₅Cl₂F₃OS 289.9, found 289.9.

2-Chloro-1-(3-nitrophenyl)-2-((trifluoromethyl)thio)ethanone (4i)

The product (140.8 mg, 94% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 50/1) as a light yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.87 (s, 1H), 8.56 (d, *J* = 7.2 Hz, 1H), 8.40 (d, *J* = 7.8 Hz, 1H),

7.83 (t, J = 8.0 Hz, 1H), 6.73 (s, 1H).

¹⁹F NMR (376 MHz, CDCl₃) δ -43.4.

¹³C NMR (101 MHz, CDCl₃) δ 185.8, 148.6, 135.1, 133.0, 130.7, 129.4 (q, *J* = 309.6 Hz),

129.2, 124.5, 61.9.

HRMS-EI m/z : for ³⁵Cl [M+] calcd for C₉H₅ClF₃NO₃S 298.9631, found 298.9633.

MS-EI m/z : for 37 Cl [M+] calcd for C₉H₅ClF₃NO₃S 301.0, found 301.0.

2-Chloro-1-(2-fluorophenyl)-2-((trifluoromethyl)thio)ethanone (4j)

The product (126.8 mg, 93% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 100/1) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.97 (td, J = 7.7, 1.7 Hz, 1H), 7.67 (tdd, J = 7.2, 5.2, 1.8 Hz,

1H), 7.34 (dd, *J* = 11.2, 4.0 Hz, 1H), 7.22 (dd, *J* = 11.4, 8.5 Hz, 1H), 6.68 (d, *J* = 2.7 Hz, 1H).

¹⁹F NMR (376 MHz, CDCl₃) δ -43.6, -111.7.

¹³C NMR (101 MHz, CDCl₃) δ 185.9 (d, J = 3.6 Hz), 161.5 (d, J = 255.8 Hz), 137.0 (d, J =

J = 23.7 Hz), 65.4 (d, *J* = 11.1 Hz).

IR (neat): v = 2929, 1687, 1610, 1578, 1482, 1454, 1302, 1213, 1104, 996, 845, 815, 794, 756, 704 cm⁻¹

HRMS-EI m/z : for 35 Cl [M+] calcd for C₉H₅ClF₄OS 271.9686, found 271.9688.

MS-EI m/z : for 37 Cl [M+] calcd for C₉H₅ClF₄OS 274.0, found 274.0.

2-Chloro-1-(3,4-dimethoxyphenyl)-2-((trifluoromethyl)thio)ethanone (4k)

The product (147.9 mg, 94% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 80/1) as a white solid.

Melting point: 59-61 °C

¹H NMR (400 MHz, CDCl₃) δ 7.63 (dd, J = 8.5, 1.9 Hz, 1H), 7.49 (d, J = 1.8 Hz, 1H), 6.91 (d,

J = 8.5 Hz, 1H), 6.65 (s, 1H), 3.94 (s, 3H), 3.90 (s, 3H).

 ^{19}F NMR (376 MHz, CDCl₃) δ -43.7

¹³C NMR (101 MHz, CDCl₃) δ 186.3, 155.1, 149.6, 129.7 (q, *J* = 309.1 Hz), 124.7, 124.4,

111.3, 110.3, 62.0, 56.3, 56.1.

IR (neat): *v* = 3025, 2965, 2936, 2842, 1667, 1594, 1584, 1516, 1464, 1449, 1439, 1423, 1355, 1300, 1281, 1260, 1204, 1178, 1157, 1133, 1103, 1021, 891, 874, 815, 807, 775, 764, 757, 732, 718 cm⁻¹

HRMS-EI m/z : for 35 Cl [M+] calcd for C₁₁H₁₀ClF₃O₃S 313.9991, found 313.9989.

MS-EI m/z : for 37 Cl [M+] calcd for C₁₁H₁₀ClF₃O₃S 316.0, found 316.0.

2-Chloro-1-(3,4-dichlorophenyl)-2-((trifluoromethyl)thio)ethanone (41)

The product (153.7 mg, 95% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 100/1) as a white solid.

Melting point: 41-42 °C

¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 1.8 Hz, 1H), 7.85 (dd, *J* = 8.4, 1.9 Hz, 1H), 7.63 (d, *J* = 8.4 Hz, 1H), 6.59 (s, 1H).

¹⁹F NMR (376 MHz, CDCl₃) δ -43.6.

¹³C NMR (101 MHz, CDCl₃) δ 185.7, 140.1, 134.2, 131.5, 131.4, 131.2, 129.5 (q, *J* = 309.4 Hz), 128.5, 61.8.

IR (neat): *v* = 1691, 1583, 1557, 1467, 1391, 1282, 1254, 1208, 1131, 1103, 1031, 1004, 907, 884, 827, 810, 757, 703, 677 cm⁻¹

HRMS-EI m/z : for ³⁵Cl [M+] calcd for C₉H₄Cl₃F₃OS 321.9001, found 321.8996. MS-EI m/z : for ³⁷Cl [M+] calcd for C₉H₄Cl₃F₃OS 323.9, found 323.9.

2-Chloro-1-(2-fluoro-4-methoxyphenyl)-2-((trifluoromethyl)thio)ethanone (4m)

The product (146.8 mg, 97% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 100/1) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.95 (t, *J* = 8.7 Hz, 1H), 6.84 (dd, *J* = 8.9, 1.8 Hz, 1H), 6.73 – 6.56 (m, 2H), 3.91 (s, 3H).

¹⁹F NMR (376 MHz, CDCl₃) δ -43.6, -107.7.

¹³C NMR (101 MHz, CDCl₃) δ 184.4, 166.9 (d, J = 12.4 Hz), 163.4 (d, J = 256.2 Hz), 133.9

(d, *J* = 3.5 Hz), 129.7 (q, *J* = 309.1 Hz), 113.2 (d, *J* = 10.9 Hz), 112.1, 102.0 (d, *J* = 27.6 Hz),

65.3 (d, *J* = 11.6 Hz), 56.3.

IR (neat): v = 2985, 2848, 2621, 1675, 1614, 1571, 1505, 1445, 1344, 1295, 1276, 1234, 1196, 1160, 1116, 1030, 999, 972, 952, 846, 831, 781, 754, 701 cm⁻¹

HRMS-EI m/z : for 35 Cl [M+] calcd for C₁₀H₇ClF₄O₂S⁺ 301.9791, found 301.9787.

MS-EI m/z : for 37 Cl [M+] calcd for C₁₀H₇ClF₄O₂S⁺ 304.0, found 304.0.

2-Chloro-1-(naphthalen-1-yl)-2-((trifluoromethyl)thio)ethanone (4n)

The product (124.9 mg, 82% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 100/1) as a white solid.

Melting point: 63-66 °C

¹H NMR (400 MHz, CDCl₃) δ 8.62 (d, *J* = 8.5 Hz, 1H), 8.04 – 7.78 (m, 3H), 7.65 – 7.40 (m, 3H), 6.78 (s, 1H).

¹⁹F NMR (376 MHz, CDCl₃) δ -43.5.

¹³C NMR (101 MHz, CDCl₃) δ 190.0, 135.4, 134.1, 131.1, 129.8 (q, *J* = 309.2 Hz), 129.5,

129.5, 129.2, 128.9, 127.2, 125.5, 124.2, 64.1.

IR (neat): *v* = 2985, 1980, 1844, 1676, 1619, 1595, 1571, 1508, 1455, 1436, 1399, 1351, 1284, 1238, 1218, 1184, 1155, 1105, 1082, 1026, 982, 967, 941, 924, 877, 839, 822, 780, 761, 753, 735, 705 cm⁻¹

HRMS-EI m/z : for 35 Cl [M+] calcd for C₁₃H₈ClF₃OS 303.9936, found 303.9931.

MS-EI m/z : for 37 Cl [M+] calcd for C₁₃H₈ClF₃OS 306.0, found 306.0.

2-Chloro-1-(naphthalen-2-yl)-2-((trifluoromethyl)thio)ethanone (40)

The product (146.3 mg, 96% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 100/1) as a white solid.

Melting point: 48-51 °C

¹H NMR (400 MHz, CDCl₃) δ 8.44 (s, 1H), 7.96 – 7.77 (m, 4H), 7.56 (dt, *J* = 14.5, 7.0 Hz,

2H), 6.82 (s, 1H).

¹⁹F NMR (376 MHz, CDCl₃) δ -43.5.

¹³C NMR (101 MHz, CDCl₃) δ 187.6, 136.3, 132.2, 132.0, 129.9, 129.8 (q, J = 309.2 Hz),

129.8, 129.2, 128.7, 127.9, 127.4, 124.1, 62.2.

IR (neat): *v* = 3064, 3006, 1666, 1626, 1598, 1506, 1468, 1439, 1393, 1376, 1358, 1300, 1219,

1204, 1169, 1156, 1110, 1023, 993, 943, 914, 867, 823, 807, 781, 767, 757, 741, 721 cm⁻¹

HRMS-EI m/z : for 35 Cl [M+] calcd for C₁₃H₈ClF₃OS 303.9936, found 303.9944.

MS-EI m/z : for 37 Cl [M+] calcd for C₁₃H₈ClF₃OS 306.0, found 306.0.

2-Chloro-1-(furan-2-yl)-2-((trifluoromethyl)thio)ethanone (4p)

The product (110.1 mg, 90% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 100/1) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.75 (s, 1H), 7.50 (d, *J* = 3.6 Hz, 1H), 6.70 (d, *J* = 2.1 Hz, 1H), 6.53 (s, 1H).

¹⁹F NMR (376 MHz, CDCl₃) δ -43.7.

¹³C NMR (101 MHz, CDCl₃) δ 176.2, 148.7, 148.0, 129.5 (q, *J* = 309.3 Hz), 121.8, 113.7,

61.0.

IR (neat): *v* = 3189, 1675, 1567, 1460, 1395, 1303, 1229, 1103, 1041, 1021, 1001, 908, 883, 846, 815, 765, 757, 718 cm⁻¹

HRMS-EI m/z : for 35 Cl [M+] calcd for C₇H₄ClF₃O₂S 243.9573, found 243.9570.

MS-EI m/z : for 37 Cl [M+] calcd for C₇H₄ClF₃O₂S 246.0, found 246.0.

2-Chloro-1-(thiophen-2-yl)-2-((trifluoromethyl)thio)ethanone (4q)

The product (121.2 mg, 93% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 100/1) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 3.9 Hz, 1H), 7.85 (d, *J* = 4.9 Hz, 1H), 7.31 – 7.20 (m, 1H), 6.52 (s, 1H).

¹⁹F NMR (376 MHz, CDCl₃) δ -43.7

¹³C NMR (101 MHz, CDCl₃) δ 180.6, 137.9, 137.4, 135.2, 129.5 (q, J = 309.5 Hz), 129.0,

62.3.

IR (neat): *v* = 3098, 1662, 1515, 1409, 1356, 1294, 1242, 1102, 1065, 978, 947, 862, 820, 770, 757, 724, 700, 661 cm⁻¹

HRMS-EI m/z : for 35 Cl [M+] calcd for C₇H₄ClF₃OS₂ 259.9344, found 259.9338.

MS-EI m/z : for 37 Cl [M+] calcd for C₇H₄ClF₃OS₂ 261.9, found 261.9.

1-Chloro-3,3-dimethyl-1-((trifluoromethyl)thio)butan-2-one (4r)

The product (95.1 mg, 81% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 100/1) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 6.16 (s, 1H), 1.30 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -44.2. ¹³C NMR (101 MHz, CDCl₃) δ 203.2, 129.7 (q, *J* = 309.1 Hz), 59.3, 44.8, 26.6. HRMS-EI m/z : for ³⁵Cl [M+] calcd for C₇H₁₀ClF₃OS 234.0093, found 234.0092. MS-EI m/z : for ³⁷Cl [M+] calcd for C₇H₁₀ClF₃OS 236.0, found 236.0.

Benzyl 2-chloro-2-((trifluoromethyl)thio)acetate (4s)

The product (129.5 mg, 91% yield) was purified with silica gel chromatography (petroleum

ether/ethyl acetate = 100/1) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.37 (s, 5H), 5.73 (s, 1H), 5.30 – 5.20 (m, 2H).

¹⁹F NMR (376 MHz, CDCl₃) δ -44.0.

¹³C NMR (101 MHz, CDCl₃) δ 164.5, 134.1, 129.1, 129.1 (q, J = 309.6 Hz), 128.9, 128.6,

69.4, 57.9.

IR (neat): v = 1744, 1499, 1457, 1378, 1295, 1269, 1138, 1101, 960, 906, 882, 814, 757, 741, 695 cm⁻¹

HRMS-EI m/z : for 35 Cl [M+] calcd for C₁₀H₈ClF₃O₂S 283.9886, found 283.9884.

MS-EI m/z : for 37 Cl [M+] calcd for C₁₀H₈ClF₃O₂S 286.0, found 286.0.

2-(2-(2-Methoxy)ethoxy)ethyl 2-chloro-2-((trifluoromethyl)thio)acetate (4t)

The product (115.9 mg, 68% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 3/1) as a brown oil.

¹H NMR (400 MHz, CDCl₃) δ 5.76 (s, 1H), 4.42 (dd, J = 5.4, 3.9 Hz, 2H), 3.79 – 3.75 (m,

2H), 3.68 – 3.64 (m, 6H), 3.56 (dd, *J* = 5.7, 3.5 Hz, 2H), 3.39 (s, 3H).

¹⁹F NMR (376 MHz, CDCl₃) δ -44.1.

¹³C NMR (101 MHz, CDCl₃) δ 164.8, 129.1 (q, *J* = 309.6 Hz), 72.0, 70.9, 70.7, 68.5, 66.8, 59.2, 57.9 (d, *J* = 3.0 Hz).

IR (neat): v = 2878, 2360, 1746, 1453, 1353, 1300, 1101, 1026, 966, 852, 808, 758 cm⁻¹ HRMS-ESI m/z : for ³⁵Cl [M+H]⁺ calcd for C₁₀H₁₇ClF₃O₅S⁺ 341.0432, found 341.0431. MS-ESI m/z : for ³⁷Cl [M+H]⁺ calcd for C₁₀H₁₇ClF₃O₅S⁺ 343.0, found 343.0.

(*1R,2S,4S*)-2-Isopropyl-4-methylcyclohexyl 2-chloro-2-((trifluoromethyl)thio) acetate (4u)

The product (126.5 mg, 76% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 100/1) as a colorless oil and as an inseparable mixture of diastereoisomers (*d. r.* = 1:1).

¹H NMR (400 MHz, CDCl₃) δ 5.69 (s, 0.5H), 5.67 (s, 0.5H), 4.77 (td, J = 11.0, 3.7 Hz, 1H),

 $2.06 - 2.00 \ (m, 1H), \ 1.97 - 1.86 \ (m, 1H), \ 1.75 - 1.68 \ (m, 2H), \ 1.54 - 1.45 \ (m, 2H), \ 1.06 \ (ddd, 1H), \ 1.06$

J = 16.4, 9.5, 6.8 Hz, 2H), 0.92 (t, *J* = 6.5 Hz, 7H), 0.78 (s, 1.5H), 0.76 (s, 1.5H).

¹⁹F NMR (376 MHz, CDCl₃) δ -44.2, -44.2.

¹³C NMR (101 MHz, CDCl₃) δ 164.3, 164.2, 129.2 (q, *J* = 309.7 Hz), 78.7, 78.6, 58.5, 58.4, 47.0, 47.0, 40.2, 34.1, 31.5, 23.4, 23.3, 22.0, 20.8, 20.8, 16.2, 16.1.

IR (neat): *v* = 2958, 2873, 1741, 1457, 1371, 1296, 1267, 1165, 1138, 1106, 1038, 1008, 979, 964, 942, 911, 847, 815, 757, 721 cm⁻¹

HRMS-DART m/z : for 35 Cl [M+NH₄]⁺ calcd for C₁₃H₂₄ClF₃NO₂S⁺ 350.1163, found 350.1160.

MS-DART m/z : for 37 Cl [M+NH₄]⁺ calcd for C₁₃H₂₄ClF₃NO₂S⁺ 352.1, found 352.1.

2-Bromo-1-phenyl-2-((trifluoromethyl)thio)ethanone (4v)^[8]

The product (136.1 mg, 91% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 100/1) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 8.07 – 8.01 (m, 2H), 7.68 (t, *J* = 7.4 Hz, 1H), 7.55 (t, *J* = 7.8 Hz, 2H), 6.68 (s, 1H).

¹⁹F NMR (376 MHz, CDCl₃) δ -44.3.

General Procedure D: (for halo-trifluoromethylthiolation of sulfur ylides involving ring opening of cyclic thioether)

In an argon-filled glovebox, LiCl (5.0 mmol, 10.0 equiv) and DIPEA (0.5 mmol, 1.0 equiv) were dissolved in 5.0 mL anhydrous NMP at room temperature. Then, **3** (0.5 mmol) and **2a** (0.5 mmol, 1.0 equiv) were added to the tube at the same time, and then H₂O (1.0 mmol, 2.0 equiv) was added. SOCl₂ (1.0 mmol, 2.0 equiv) was added to the reaction mixture at the room temperature in the end. The mixture kept stirring at room temperature for 12 hours. Water (5.0 mL) was added to quench the reaction. The resulting mixture was extracted with petroleum ether or ethyl acetate for three times (3 x 8.0 mL) and the combined organic solution was dried over Na₂SO₄ and concentrated under reduced pressure. The residue was

purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate = 100:1) to afford the desired product.

2-((4-Chlorobutyl)thio)-1-phenyl-2-((trifluoromethyl)thio)ethanone (5a)

The product (140.6 mg, 82% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 100/1) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 7.6 Hz, 2H), 7.65 (t, J = 7.4 Hz, 1H), 7.52 (t, J =

= 12.4, 7.0 Hz, 1H), 1.86 – 1.70 (m, 4H).

¹⁹F NMR (376 MHz, CDCl₃) δ -43.3.

¹³C NMR (101 MHz, CDCl₃) δ 189.7, 134.5, 133.1, 130.1 (d, *J* = 308.6 Hz), 129.2, 129.1,

53.8, 44.3, 31.5, 29.5, 25.8.

IR (neat): v = 2959, 1679, 1601, 1569, 1486, 1456, 1383, 1289, 1259, 1102, 978, 810, 740, 715 cm⁻¹

HRMS-DART m/z : for ³⁵Cl $[M+NH_4]^+$ calcd for $C_{13}H_{18}ClF_3NOS_2^+$ 360.0465, found

360.0461.

MS-DART m/z : for 37 Cl [M+NH₄]⁺ calcd for C₁₃H₁₈ClF₃NOS₂⁺ 362.0, found 362.0.

(2-Chloro-1-((4-chlorobutyl)thio)-2-phenylvinyl)(trifluoromethyl)sulfane (5a')

The product (101.0 mg, 56% yield, E/Z = 2:1) was purified with a reverse phase preparative HPLC (SPD-20A, UV detector, 254 nm), RP C18 column (5 µm, 4.6 × 100 mm), a gradient elution of 80% acetonitrile in water 120 min (flow rate 10.0 mL/min) get product as a colorless oil. The NMR of the *E*-configured product are shown below. ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.27 (m, 5H), 3.58 (t, *J* = 6.4 Hz, 2H), 3.05 (t, *J* = 7.1 Hz, 2H), 2.08 – 1.90 (m, 2H), 1.81 (dt, *J* = 9.8, 7.1 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -44.9.

¹³C NMR (101 MHz, CDCl₃) δ 145.1, 138.2, 129.4, 129.2, 128.4 (q, *J* = 312.4 Hz), 128.3, 121.3, 44.5, 33.2, 31.3, 26.8.

HRMS-DART m/z : for 35 Cl [M]⁺ calcd for C₁₃H₁₃Cl₂F₃S₂⁺ 359.9782, found 359.9785.

MS-DART m/z : for 37 Cl [M]⁺ calcd for $C_{13}H_{13}Cl_2F_3S_2^+$ 362.0, found 362.0.

2-((4-Chlorobutyl)thio)-1-(p-tolyl)-2-((trifluoromethyl)thio)ethanone (5b)

The product (141.0 mg, 79% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 100/1) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 8.2 Hz, 2H), 7.30 (d, *J* = 8.1 Hz, 2H), 5.92 (s, 1H), 3.48 (t, *J* = 6.3 Hz, 2H), 2.79 (dt, *J* = 14.1, 7.1 Hz, 1H), 2.56 (dt, *J* = 12.5, 7.0 Hz, 1H), 2.43 (s, 3H), 1.84 – 1.68 (m, 4H).

¹⁹F NMR (376 MHz, CDCl₃) δ -43.2.

¹³C NMR (101 MHz, CDCl₃) δ 189.4, 145.6, 130.4, 130.1 (q, J = 308.7 Hz), 129.7, 129.2,

53.9, 44.2, 31.4, 29.1, 25.7, 21.8.

HRMS-DART m/z : for ³⁵Cl [M+H]⁺ calcd for $C_{14}H_{17}ClF_3OS_2^+$ 357.0356, found 357.0350. MS-DART m/z : for ³⁷Cl [M+H]⁺ calcd for $C_{14}H_{17}ClF_3OS_2^+$ 359.0, found 359.0.

$\label{eq:constraint} 2-((4-Chlorobutyl)thio)-1-(4-methoxyphenyl)-2-((trifluoromethyl)thio)ethanone~(5c)$

The product (145.1 mg, 78% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 80/1) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 8.9 Hz, 2H), 6.97 (d, *J* = 8.9 Hz, 2H), 5.92 (s, 1H), 3.88 (s, 3H), 3.48 (t, *J* = 6.3 Hz, 2H), 2.80 (dt, *J* = 12.5, 7.1 Hz, 1H), 2.58 (dt, *J* = 12.5, 7.0 Hz, 1H), 1.85 – 1.67 (m, 4H). ¹⁹F NMR (376 MHz, CDCl₃) δ -43.1.

¹³C NMR (101 MHz, CDCl₃) δ 188.4, 164.5, 131.6, 130.1 (q, *J* = 310.1 Hz), 125.6, 114.2, 55.6, 53.9, 44.2, 31.4, 29.1, 25.7.

IR (neat): *v* = 2959, 1663, 1597, 1573, 1511, 1460, 1421, 1312, 1262, 1101, 1028, 992, 910, 844, 798, 777, 755, 731 cm⁻¹

HRMS-DART m/z : for ³⁵Cl [M+H]⁺ calcd for $C_{14}H_{17}ClF_3O_2S_2^+$ 373.0305, found 373.0301. MS-DART m/z : for ³⁷Cl [M+H]⁺ calcd for $C_{14}H_{17}ClF_3O_2S_2^+$ 375.0, found 375.0.

2-((4-Chlorobutyl)thio)-1-(4-chlorophenyl)-2-((trifluoromethyl)thio)ethanone (5d)

The product (128.8 mg, 68% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 100/1) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 8.6 Hz, 2H), 7.48 (d, J = 8.6 Hz, 2H), 5.87 (s, 1H),

3.50 (t, *J* = 6.3 Hz, 2H), 2.79 (dt, *J* = 12.3, 7.1 Hz, 1H), 2.56 (dt, *J* = 12.3, 7.0 Hz, 1H), 1.86 –

1.69 (m, 4H).

¹⁹F NMR (376 MHz, CDCl₃) δ -43.2.

¹³C NMR (101 MHz, CDCl₃) δ 188.5, 140.9, 131.4, 130.6, 130.0 (q, J = 308.8 Hz), 129.4,

53.8, 44.2, 31.4, 29.3, 25.7.

HRMS-DART m/z : for ³⁵Cl [M+H]⁺ calcd for $C_{13}H_{14}Cl_2F_3OS_2^+$ 376.9810, found 376.9805. MS-DART m/z : for ³⁷Cl [M+H]⁺ calcd for $C_{13}H_{14}Cl_2F_3OS_2^+$ 379.0, found 379.0.

`CI SCF3

1-(4-Bromophenyl)-2-((4-chlorobutyl)thio)-2-((trifluoromethyl)thio)ethanone (5e)

The product (157.4 mg, 75% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 100/1) as a light yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.6 Hz, 2H), 7.65 (d, *J* = 8.6 Hz, 2H), 5.87 (s, 1H), 3.50 (t, *J* = 6.3 Hz, 2H), 2.79 (dt, *J* = 12.4, 7.1 Hz, 1H), 2.55 (dt, *J* = 12.3, 7.0 Hz, 1H), 1.85 – 1.68 (m, 4H).

¹⁹F NMR (376 MHz, CDCl₃) δ -43.2.

¹³C NMR (101 MHz, CDCl₃) δ 188.7, 132.3, 131.8, 130.6, 129.9 (q, *J* = 308.7 Hz), 129.7,

53.7, 44.2, 31.4, 29.2, 25.7.

IR (neat): v = 2957, 1675, 1585, 1567, 1485, 1446, 1397, 1308, 1272, 1103, 1070, 996, 844, 771, 756 cm⁻¹

HRMS-DART m/z : for ³⁵Cl [M+H]⁺ calcd for $C_{13}H_{14}BrClF_3OS_2^+$ 420.9305, found 420.9298. MS-DART m/z : for ³⁷Cl [M+H]⁺ calcd for $C_{13}H_{14}BrClF_3OS_2^+$ 422.9, found 422.9.

2-((4-Chlorobutyl)thio)-1-(4-(trifluoromethyl)phenyl)-2-((trifluoromethyl)thio)ethanone (5f)

The product (125.7 mg, 61% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 100/1) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 8.2 Hz, 2H), 7.78 (d, J = 8.2 Hz, 2H), 5.88 (s, 1H), 3.51 (t, J = 6.2 Hz, 2H), 2.87 – 2.76 (m, 1H), 2.62 – 2.51 (m, 1H), 1.79 (ddt, J = 15.6, 8.3, 4.1 Hz, 4H).

¹⁹F NMR (376 MHz, CDCl₃) δ -43.2, -66.5.

¹³C NMR (101 MHz, CDCl₃) δ 188.6, 136.1, 135.5 (q, *J* = 33.0 Hz), 129.9 (q, *J* = 308.8 Hz),

129.6, 126.2 (q, *J* = 3.7 Hz), 123.5 (q, *J* = 272.9 Hz), 53.7, 44.2, 31.5, 29.4, 25.8.

IR (neat): v = 2960, 1683, 1582, 1512, 1410, 1326, 1315, 1272, 1102, 1065, 1017, 1001, 857, 788, 756, 732 cm⁻¹

HRMS-DART m/z : for 35 Cl [M+NH₄]⁺ calcd for C₁₄H₁₇ClF₆NOS₂⁺ 428.0339, found 428.0335.

MS-DART m/z : for 37 Cl [M+NH₄]⁺ calcd for C₁₄H₁₇ClF₆NOS₂⁺ 430.0, found 430.0.

2-((4-Chlorobutyl)thio)-1-(*m*-tolyl)-2-((trifluoromethyl)thio)ethanone (5g)

The product (157.7 mg, 86% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 100/1) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 6.9 Hz, 2H), 7.50 – 7.36 (m, 2H), 5.93 (s, 1H),

3.49 (t, *J* = 6.2 Hz, 2H), 2.80 (dt, *J* = 13.8, 7.1 Hz, 1H), 2.62 – 2.53 (m, 1H), 2.43 (s, 3H),

1.77 (ddd, *J* = 29.5, 13.9, 7.1 Hz, 4H).

¹⁹F NMR (376 MHz, CDCl₃) δ -43.2.

¹³C NMR (101 MHz, CDCl₃) δ 189.8, 139.0, 135.2, 133.1, 130.1 (q, *J* = 308.6 Hz), 129.6, 128.9, 126.3, 53.8, 44.2, 31.5, 29.2, 25.8, 21.4.

HRMS-DART m/z : for ³⁵Cl [M+H]⁺ calcd for $C_{14}H_{17}ClF_3OS_2^+$ 357.0356, found 357.0350 MS-DART m/z : for ³⁷Cl [M+H]⁺ calcd for $C_{14}H_{17}ClF_3OS_2^+$ 359.0, found 359.0.

2-((4-Chlorobutyl)thio)-1-(3-chlorophenyl)-2-((trifluoromethyl)thio)ethanone (5h)

The product (109.8 mg, 58% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 100/1) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 1H), 7.89 (d, *J* = 7.8 Hz, 1H), 7.61 (dd, *J* = 8.0, 0.9 Hz,

1H), 7.46 (t, *J* = 7.9 Hz, 1H), 5.85 (s, 1H), 3.51 (t, *J* = 6.2 Hz, 2H), 2.79 (dt, *J* = 14.1, 7.1 Hz,

1H), 2.56 (dt, *J* = 12.5, 7.0 Hz, 1H), 1.87 – 1.69 (m, 4H).

¹⁹F NMR (376 MHz, CDCl₃) δ -43.2.

¹³C NMR (101 MHz, CDCl₃) δ 188.3, 135.4, 134.7, 134.3, 130.3, 129.9 (q, *J* = 308.8 Hz),

129.2, 127.2, 53.7, 44.2, 31.4, 29.3, 25.7.

IR (neat): v = 2958, 1678, 1571, 1421, 1257, 1196, 1102, 999, 901, 848, 810, 755, 677 cm⁻¹

HRMS-DART m/z : for ${}^{35}Cl [M+H]^+$ calcd for $C_{13}H_{14}Cl_2F_3OS_2^+$ 376.9810, found 376.9804.

MS-DART m/z : for 37 Cl [M+H]⁺ calcd for C₁₃H₁₄Cl₂F₃OS₂⁺ 379.0, found 379.0.

2-((4-Chlorobutyl)thio)-1-(*o*-tolyl)-2-((trifluoromethyl)thio)ethanone (5i)

The product (162.3 mg, 91% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 100/1) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 7.8 Hz, 1H), 7.44 (dd, *J* = 10.8, 4.2 Hz, 1H), 7.30

(d, J = 7.7 Hz, 2H), 5.74 (s, 1H), 3.50 (t, J = 6.2 Hz, 2H), 2.82 (dt, J = 12.4, 7.0 Hz, 1H), 2.62

(dt, J = 12.3, 7.1 Hz, 1H), 2.50 (s, 3H), 1.87 – 1.72 (m, 4H).

¹⁹F NMR (376 MHz, CDCl₃) δ -43.3.

¹³C NMR (101 MHz, CDCl₃) δ 192.4, 140.1, 134.2, 132.7, 132.4, 130.1 (q, J = 309.4 Hz),

128.4, 126.0, 55.4, 44.3, 31.4, 29.6, 25.8, 21.2.

IR (neat): v = 2960, 1679, 1601, 1569, 1486, 1456, 1383, 1289, 1259, 1102, 978, 841, 810, 740, 715 cm⁻¹

HRMS-DART m/z : for ³⁵Cl [M+H]⁺ calcd for $C_{14}H_{17}ClF_3OS_2^+$ 357.0356, found 357.0349. MS-DART m/z : for ³⁷Cl [M+H]⁺ calcd for $C_{14}H_{17}ClF_3OS_2^+$ 359.0, found 359.0.

2-((4-Chlorobutyl)thio)-1-(2-chlorophenyl)-2-((trifluoromethyl)thio)ethanone (5j)

The product (134.3 mg, 71% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 100/1) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 7.8 Hz, 1H), 7.47 (d, *J* = 3.2 Hz, 2H), 7.41 – 7.35 (m, 1H), 5.93 (s, 1H), 3.52 (t, *J* = 6.3 Hz, 2H), 2.79 (dt, *J* = 12.2, 7.0 Hz, 1H), 2.57 (dt, *J* = 12.1, 7.1 Hz, 1H), 1.80 (ddt, *J* = 16.5, 9.6, 4.7 Hz, 4H).

¹⁹F NMR (376 MHz, CDCl₃) δ -43.1.

¹³C NMR (101 MHz, CDCl₃) δ 191.0, 135.5, 133.0, 131.7, 130.9, 130.5, 130.0 (q, *J* = 308.8 Hz), 127.2, 56.5, 44.3, 31.5, 29.2, 25.7.

HRMS-EI m/z : for ³⁵Cl [M+] calcd for $C_{13}H_{13}Cl_2F_3OS_2$ 375.9737, found 375.9731. MS-EI m/z : for ³⁷Cl [M+] calcd for $C_{13}H_{13}Cl_2F_3OS_2$ 378.0, found 378.0.

The product (116.0 mg, 64% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 100/1) as a colorless oil.

2-((4-Chlorobutyl)thio)-1-(2-fluorophenyl)-2-((trifluoromethyl)thio)ethanone (5k)

¹H NMR (400 MHz, CDCl₃) δ 7.95 (td, J = 7.7, 1.7 Hz, 1H), 7.67 – 7.58 (m, 1H), 7.30 (dt, J = 11.0, 2.0 Hz, 1H), 7.23 – 7.15 (m, 1H), 5.94 (d, J = 2.7 Hz, 1H), 3.49 (t, J = 6.3 Hz, 2H), 2.76 (dt, J = 12.5, 7.1 Hz, 1H), 2.51 (dt, J = 12.3, 7.0 Hz, 1H), 1.85 – 1.68 (m, 4H). ¹⁹F NMR (376 MHz, CDCl₃) δ -43.3, -110.7. ¹³C NMR (101 MHz, CDCl₃) δ 187.2 (d, J = 4.6 Hz), 161.4 (d, J = 254.7 Hz), 136.0 (d, J =

9.5 Hz), 131.9 (d, *J* = 1.5 Hz), 130.0 (q, *J* = 309.7 Hz), 125.2 (d, *J* = 3.2 Hz), 122.1 (d, *J* =

11.6 Hz), 117.0 (d, *J* = 24.0 Hz), 57.4 (d, *J* = 9.9 Hz), 44.2, 31.4, 28.7, 25.6.

IR (neat): v = 2959, 1673, 1609, 1577, 1482, 1453, 1290, 1211, 1102, 1000, 841, 818, 794, 756, 729 cm⁻¹

HRMS-DART m/z : for ³⁵Cl [M+H]⁺ calcd for $C_{13}H_{14}ClF_4OS_2^+$ 361.0105, found 361.0089. MS-DART m/z : for ³⁷Cl [M+H]⁺ calcd for $C_{13}H_{14}ClF_4OS_2^+$ 363.0, found 363.0.

2-((4-Chlorobutyl)thio)-1-(3,4-dimethoxyphenyl)-2-((trifluoromethyl)thio)ethanone (5l) The product (176.4 mg, 88% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 50/1) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.67 (dd, J = 8.5, 1.9 Hz, 1H), 7.54 (d, J = 1.9 Hz, 1H), 6.93 (d, J = 8.5 Hz, 1H), 5.92 (s, 1H), 3.97 (s, 3H), 3.95 (s, 3H), 3.50 (t, J = 6.3 Hz, 2H), 2.82 (dt, J = 14.1, 7.1 Hz, 1H), 2.60 (dt, J = 12.5, 7.0 Hz, 1H), 1.87 – 1.70 (m, 4H).

¹⁹F NMR (376 MHz, CDCl₃) δ -43.2.

¹³C NMR (101 MHz, CDCl₃) δ 188.6, 154.4, 149.4, 130.1 (q, *J* = 308.6 Hz), 125.8, 123.9,

111.2, 110.2, 56.2, 56.1, 53.6, 44.2, 31.4, 29.3, 25.8.

IR (neat): v = 2938, 1662, 1583, 1515, 1463, 1418, 1342, 1272, 1102, 1020, 909, 878, 820, 768, 755, 730, 704 cm⁻¹

HRMS-DART m/z : for ³⁵Cl [M+H]⁺ calcd for $C_{15}H_{19}ClF_3O_3S_2^+$ 403.0411, found 403.0404. MS-DART m/z : for ³⁷Cl [M+H]⁺ calcd for $C_{15}H_{19}ClF_3O_3S_2^+$ 405.0, found 405.0.

2-((4-Chlorobutyl)thio)-1-(3,4-dichlorophenyl)-2-((trifluoromethyl)thio)ethanone (5m) The product (124.8 mg, 61% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 100/1) as a white solid.

Melting point: 42-43 °C

¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 2.0 Hz, 1H), 7.84 (dd, J = 8.4, 2.0 Hz, 1H), 7.59 (d, J = 8.4 Hz, 1H), 5.81 (s, 1H), 3.51 (t, J = 6.2 Hz, 2H), 2.79 (dt, J = 12.4, 7.1 Hz, 1H), 2.55 (dt, J = 12.3, 7.1 Hz, 1H), 1.93 – 1.60 (m, 4H).

¹⁹F NMR (376 MHz, CDCl₃) δ -43.2.

¹³C NMR (101 MHz, CDCl₃) δ 187.5, 139.1, 133.9, 132.7, 131.1, 131.1, 129.8 (q, J = 308.9

Hz), 128.1, 53.6, 44.2, 31.4, 29.4, 25.8.

IR (neat): v = 2958, 1678, 1582, 1557, 1466, 1378, 1275, 1249, 1197, 1101, 1030, 1007, 907, 882, 828, 756, 729, 696 cm⁻¹

HRMS-DART m/z : for ³⁵Cl [M+H]⁺ calcd for $C_{13}H_{13}Cl_3F_3OS_2^+$ 410.9420, found 410.9414. MS-DART m/z : for ³⁷Cl [M+H]⁺ calcd for $C_{13}H_{13}Cl_3F_3OS_2^+$ 412.9, found 412.9.

2-((4-Chlorobutyl)thio)-1-(2-fluoro-4-methoxyphenyl)-2-((trifluoromethyl)thio)ethanone (5n)

The product (155.7 mg, 80% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 100/1) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.94 (t, *J* = 8.8 Hz, 1H), 6.82 (dd, *J* = 8.9, 2.2 Hz, 1H), 6.66 (dd, *J* = 13.6, 2.2 Hz, 1H), 5.90 (d, *J* = 2.6 Hz, 1H), 3.89 (s, 3H), 3.49 (t, *J* = 6.4 Hz, 2H), 2.84 – 2.71 (m, 1H), 2.57 – 2.47 (m, 1H), 1.85 – 1.66 (m, 4H).

¹⁹F NMR (376 MHz, CDCl₃) δ -43.3, -106.7.

¹³C NMR (101 MHz, CDCl₃) δ 186.2 (d, J = 5.3 Hz), 166.1 (d, J = 12.4 Hz), 163.1 (d, J

255.0 Hz), 133.5 (d, *J* = 3.8 Hz), 130.1 (q, *J* = 308.5 Hz), 114.4 (d, *J* = 11.6 Hz), 111.8 (d, *J* =

2.1 Hz), 102.0 (d, *J* = 28.0 Hz), 57.5 (d, *J* = 10.4 Hz), 56.1, 44.3, 31.5, 28.6, 25.7.

IR (neat): v = 2955, 1664, 1611, 1571, 1504, 1443, 1343, 1273, 1232, 1198, 1153, 1097, 1032, 997, 953, 840, 778, 755, 735 cm⁻¹

HRMS-DART m/z : for ³⁵Cl [M+H]⁺ calcd for $C_{14}H_{16}ClF_4O_2S_2^+$ 391.0211, found 391.0208. MS-DART m/z : for ³⁷Cl [M+H]⁺ calcd for $C_{14}H_{16}ClF_4O_2S_2^+$ 393.0, found 393.0.

2-((4-Chlorobutyl)thio)-1-(naphthalen-1-yl)-2-((trifluoromethyl)thio)ethanone (50)

The product (187.6 mg, 96% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 100/1) as a white solid.

Melting point: 37-38 °C

¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, J = 8.5 Hz, 1H), 8.05 (d, J = 8.2 Hz, 1H), 7.93 (dd, J = 19.2, 7.3 Hz, 2H), 7.66 – 7.50 (m, 3H), 5.89 (s, 1H), 3.46 (t, J = 6.2 Hz, 2H), 2.87 (dt, J = 13.6, 6.8 Hz, 1H), 2.76 – 2.63 (m, 1H), 1.78 (tdd, J = 16.3, 5.5, 4.1 Hz, 4H). ¹⁹F NMR (376 MHz, CDCl₃) δ -43.3. ¹³C NMR (101 MHz, CDCl₃) δ 192.5, 134.2, 134.1, 132.3, 131.2, 130.1 (q, *J* = 308.8 Hz), 128.9, 128.7, 127.9, 127.1, 125.3, 124.3, 55.9, 44.3, 31.4, 29.7, 25.9. IR (neat): v = 2927, 1674, 1593, 1573, 1508, 1446, 1367, 1279, 1240, 1105, 990, 946, 865, 815, 781, 756, 723 cm⁻¹ HRMS-DART m/z : for ³⁵Cl [M+H]⁺ calcd for C₁₇H₁₇ClF₃OS₂⁺ 393.0356, found 393.0352. MS-DART m/z : for ³⁷Cl [M+H]⁺ calcd for C₁₇H₁₇ClF₃OS₂⁺ 395.0, found 395.0.

2-((4-Chlorobutyl)thio)-1-(naphthalen-2-yl)-2-((trifluoromethyl)thio)ethanone (5p)

The product (155.2 mg, 79% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 100/1) as a white solid.

Melting point: 41-43 °C

¹H NMR (400 MHz, CDCl₃) δ 8.54 (s, 1H), 8.01 – 7.85 (m, 4H), 7.70 – 7.49 (m, 2H), 6.07 (d,

J = 11.7 Hz, 1H), 3.46 (t, *J* = 6.2 Hz, 2H), 2.83 (dt, *J* = 12.4, 7.1 Hz, 1H), 2.59 (dt, *J* = 12.4,

7.0 Hz, 1H), 1.81 – 1.69 (m, 4H).

¹⁹F NMR (376 MHz, CDCl₃) δ -43.1.

¹³C NMR (101 MHz, CDCl₃) δ 189.7, 136.1, 132.4, 131.2, 130.3, 130.2 (q, *J* = 308.7 Hz),

129.9, 129.4, 129.0, 127.9, 127.3, 124.3, 54.1, 44.3, 31.5, 29.3, 25.8.

IR (neat): v = 2957, 1968, 1664, 1623, 1592, 1571, 1507, 1463, 1438, 1387, 1359, 1321, 1281,

1245, 1154, 1099, 1032, 1015, 967, 944, 922, 874, 826, 780, 756, 740, 711, 699 cm⁻¹

HRMS-DART m/z : for 35 Cl [M+H]⁺ calcd for C₁₇H₁₇ClF₃OS₂⁺ 393.0356, found 393.0353.

MS-DART m/z : for 37 Cl [M+H]⁺ calcd for C₁₇H₁₇ClF₃OS₂⁺ 395.0, found 395.0.

SCF3

2-((4-Chlorobutyl)thio)-1-(furan-2-yl)-2-((trifluoromethyl)thio)ethanone (5q)

The product (132.7 mg, 80% yield) was purified with silica gel chromatography (petroleum

ether/ethyl acetate = 100/1) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 0.9 Hz, 1H), 7.41 (d, *J* = 3.6 Hz, 1H), 6.64 (dd, *J* = 3.6, 1.6 Hz, 1H), 5.73 (s, 1H), 3.53 (t, *J* = 6.3 Hz, 2H), 2.85 (dt, *J* = 12.5, 7.0 Hz, 1H), 2.67 (dt, *J* = 12.4, 7.1 Hz, 1H), 1.95 – 1.59 (m, 4H). ¹⁹F NMR (376 MHz, CDCl₃) δ -43.4. ¹³C NMR (101 MHz, CDCl₃) δ 178.6, 149.2, 147.6, 129.8 (q, *J* = 308.9 Hz), 120.1, 113.3, 52.4 (d, *J* = 1.7 Hz), 44.2, 31.4, 29.6, 25.8. IR (neat): v = 3126, 3097, 2964, 1652, 1560, 1463, 1396, 1312, 1246, 1212, 1136, 1101, 1051, 999, 919, 881, 849, 821, 769, 758, 718, 707, 696, 654 cm⁻¹ HRMS-DART m/z : for ³⁵Cl [M+H]⁺ calcd for C₁₁H₁₃ClF₃O₂S₂⁺ 332.9992, found 332.9989. MS-DART m/z : for ³⁷Cl [M+H]⁺ calcd for C₁₁H₁₃ClF₃O₂S₂⁺ 335.0, found 335.0.

2-((4-Chlorobutyl)thio)-1-(thiophen-2-yl)-2-((trifluoromethyl)thio)ethanone (5r)

The product (158.6 mg, 91% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 100/1) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, *J* = 3.9 Hz, 1H), 7.76 (d, *J* = 4.9 Hz, 1H), 7.21 (dd, *J* = 23.1, 19.1 Hz, 1H), 5.72 (s, 1H), 3.51 (t, *J* = 6.2 Hz, 2H), 2.84 (dt, *J* = 12.5, 7.0 Hz, 1H), 2.67 (dt, *J* = 12.4, 7.0 Hz, 1H), 1.89 – 1.72 (m, 4H).

¹⁹F NMR (376 MHz, CDCl₃) δ -43.3.

¹³C NMR (101 MHz, CDCl₃) δ 183.1, 139.1, 135.8, 133.9, 129.8 (q, *J* = 308.9 Hz), 128.6,

54.2, 44.2, 31.3, 29.7, 25.7.

IR (neat): v = 2957, 1652, 1516, 1409, 1355, 1285, 1239, 1101, 1063, 977, 949, 861, 755, 723, 686, 656 cm⁻¹

HRMS-DART m/z : for ³⁵Cl [M+H]⁺ calcd for $C_{11}H_{13}ClF_3OS_3^+$ 348.9764, found 348.9758. MS-DART m/z : for ³⁷Cl [M+H]⁺ calcd for $C_{11}H_{13}ClF_3OS_3^+$ 351.0, found 351.0.

1-((4-Chlorobutyl)thio)-3,3-dimethyl-1-((trifluoromethyl)thio)butan-2-one (5s)

The product (150.1 mg, 93% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 100/1) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 5.36 (s, 1H), 3.55 (t, *J* = 6.3 Hz, 2H), 2.80 (dt, *J* = 12.3, 7.2 Hz,

1H), 2.58 (dt, *J* = 12.3, 7.2 Hz, 1H), 1.92 – 1.73 (m, 4H), 1.29 (s, 9H).

¹⁹F NMR (376 MHz, CDCl₃) δ -43.6.

¹³C NMR (101 MHz, CDCl₃) δ 204.4, 130.0 (q, *J* = 308.5 Hz), 51.2, 44.5, 44.2, 31.5, 29.0, 27.3, 25.8.

IR (neat): v = 2966, 1694, 1478, 1397, 1368, 1285, 1104, 1054, 996, 855, 756 cm⁻¹ HRMS-DART m/z : for ³⁵Cl [M+H]⁺ calcd for $C_{11}H_{19}ClF_3OS_2^+$ 323.0512, found 323.0510. MS-DART m/z : for ³⁷Cl [M+H]⁺ calcd for $C_{11}H_{19}ClF_3OS_2^+$ 325.1, found 325.1.

Benzyl 2-((4-chlorobutyl)thio)-2-((trifluoromethyl)thio)acetate (5t)

The product (170.7 mg, 92% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 100/1) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.36 (s, 5H), 5.25 – 5.16 (m, 2H), 4.82 (s, 1H), 3.48 (t, *J* = 6.2

Hz, 2H), 2.77 (dt, *J* = 13.7, 6.9 Hz, 1H), 2.71 – 2.61 (m, 1H), 1.83 – 1.67 (m, 4H).

¹⁹F NMR (376 MHz, CDCl₃) δ -44.2.

¹³C NMR (101 MHz, CDCl₃) δ 167.3, 134.7, 129.3 (q, *J* = 309.6 Hz), 128.8, 128.7, 128.5,

68.4, 49.0, 44.1, 31.3, 30.8, 25.9.

IR (neat): v = 2959, 1739, 1499, 1456, 1376, 1283, 1213, 1100, 966, 907, 810, 738, 696 cm^{-1}

HRMS-DART m/z : for 35 Cl [M+H]⁺ calcd for C₁₄H₁₇ClF₃O₂S₂⁺ 373.0305, found 373.0298.

MS-DART m/z : for 37 Cl [M+H]⁺ calcd for C₁₄H₁₇ClF₃O₂S₂⁺ 375.0, found 375.0.

2-((4-Bromobutyl)thio)-1-phenyl-2-((trifluoromethyl)thio)ethanone (5u)

The product (133.6 mg, 69% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 100/1) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 8.05 – 7.99 (m, 2H), 7.65 (dd, J = 10.6, 4.3 Hz, 1H), 7.52 (t, J = 7.7 Hz, 2H), 5.92 (s, 1H), 3.36 (t, J = 6.5 Hz, 2H), 2.80 (dt, J = 12.3, 7.3 Hz, 1H), 2.57 (dt, J = 12.3, 7.2 Hz, 1H), 1.95 – 1.86 (m, 2H), 1.78 – 1.69 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -43.3. ¹³C NMR (101 MHz, CDCl₃) δ 189.7, 134.4, 133.1, 130.1 (q, J = 308.6 Hz), 129.2, 129.1, 53.8, 32.8, 31.6, 29.1, 27.0.

HRMS-DART m/z : for ⁷⁹Br [M+H]⁺ calcd for $C_{13}H_{15}BrF_3OS_2^+$ 386.9694, found 386.9692. MS-DART m/z : for ⁸¹Br [M+H]⁺ calcd for $C_{13}H_{15}BrF_3OS_2^+$ 389.0, found 389.0.

2-(Methylthio)-1-phenyl-2-((trifluoromethyl)thio)ethanone (5v)

The product (107.9 mg, 81% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 100/1) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 8.03 – 7.98 (m, 2H), 7.67 – 7.60 (m, 1H), 7.50 (dd, J = 10.7,

4.8 Hz, 2H), 5.97 (s, 1H), 2.13 (s, 3H).

¹⁹F NMR (376 MHz, CDCl₃) δ -43.1.

¹³C NMR (101 MHz, CDCl₃) δ 188.9, 134.4, 133.2, 130.2 (q, *J* = 308.3 Hz), 129.2, 129.1,

54.3 (d, *J* = 1.6 Hz), 12.1.

IR (neat): v = 2923, 1675, 1596, 1580, 1449, 1433, 1320, 1271, 1101, 994, 806, 756, 728, 745, 700, 684 cm⁻¹

HRMS-DART m/z: $[M+H]^+$ calcd for $C_{10}H_{10}F_3OS_2^+$ 267.0120, found 267.1022.

V. Transformation of the product

2-Trifluoromethylthio-2-(tetrahydrothien-1-ylidene)-1-(p-tolyl)ethanone (6)

To a solution of **5b** (0.1 mmol, 35.7 mg) and NaOH (0.25 mmol, 10.0 mg) in 1.0 mL of MeOH/H₂O = 1.0/0.1, and the mixture stirred at room temperature for 24 hours. The mixture was concentrated in vacuo. The product (32.0 mg, 99% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 1/1) as a light yellow solid.

Melting point: 118-122 °C

¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 7.9 Hz, 2H), 3.66 (d, *J* = 5.0 Hz, 2H), 3.29 (dt, *J* = 11.6, 6.0 Hz, 2H), 2.72 (dd, *J* = 9.3, 5.8 Hz, 2H), 2.36 (s, 3H), 2.03 (dd, *J* = 10.4, 5.4 Hz, 2H).

¹⁹F NMR (376 MHz, CDCl₃) δ -53.6.

¹³C NMR (126 MHz, CDCl₃) δ 190.7, 139.3, 137.9, 129.6 (q, *J* = 315.6 Hz), 128.4, 128.2,

54.8, 42.5, 28.6, 21.6.

IR (neat): v = 2951, 1682, 1609, 1575, 1532, 1435, 1409, 1315, 1300, 1282, 1257, 1212, 1181, 1110, 1020, 963, 897, 878, 840, 823, 798, 771, 745, 704 cm⁻¹

HRMS-ESI m/z : $[M+H]^+$ calcd for $C_{14}H_{16}F_3OS_2^+$ 321.0589, found 321.0588.

To a solution of **5b** (0.1 mmol, 35.7 mg) in 1 mL of EtOH at 0 °C was added NaBH₄ (0.2 mmol, 7.6 mg) slowly. The mixture stirred for 1 hour until **5b** was completely transformed. The mixture was concentrated in vacuo. The product (27.5 mg, 82% yield) was purified with silica gel chromatography (petroleum ether/ethyl acetate = 50/1) as a colorless oil.

¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, *J* = 8.0 Hz, 2H), 7.18 (d, *J* = 7.9 Hz, 2H), 5.15 (t, *J* = 3.3 Hz, 1H), 4.37 (d, *J* = 3.3 Hz, 1H), 3.41 (t, *J* = 5.8 Hz, 2H), 2.76 (d, *J* = 4.1 Hz, 1H), 2.66 – 2.49 (m, 2H), 2.36 (s, 3H), 1.74 – 1.63 (m, 3H), 1.59 – 1.46 (m, 1H).

¹⁹F NMR (376 MHz, CDCl₃) δ -43.4.

¹³C NMR (101 MHz, CDCl₃) δ 138.4, 136.4, 130.4 (q, *J* = 309.5 Hz), 129.1, 126.4, 75.9, 59.3, 44.3, 31.3, 31.2, 25.9, 21.3.

IR (neat): v = 3446, 2924, 1514, 1447, 1286, 1146, 1100, 1020, 862, 816, 785, 755, 725 cm⁻¹ HRMS-DART m/z : for ³⁵Cl [M+NH₄]⁺ calcd for C₁₄H₂₂ClF₃NOS₂⁺ 376.0778, found 376.0781.

MS-DART m/z : for 37 Cl [M+NH₄]⁺ calcd for C₁₄H₂₂ClF₃NOS₂⁺ 378.1, found 378.1.

VI. References

- [1] C. Xu, B. Ma, Q. Shen, Angew. Chem., Int. Ed. 2014, 53, 9316-9320.
- [2] K. Kang, C. Xu, Q. Shen, Org. Chem. Front. 2014, 1, 294-297.
- [3] L. Liu, Z. Yuan, R. Pan, Y. Zeng, A. Lin, H. Yao, Y. Huang, Org. Chem. Front. 2018, 5, 623-628.
- [4] Q. Wang, T.-R. Li, L.-Q. Lu, M.-M. Li, K. Zhang, W.-J. Xiao, J. Am. Chem. Soc. 2016, 138, 8360-8363.
- [5] T. A. Podrugina, V. A. Alferova, A. V. Mironov, E. D. Matveeva, R. Gleiter, N. S. Zefirov, *Tetrahedron* 2016, 72, 6955-6962.
- [6] K. Kaya, J. Kreutzer, Y. Yagci, J. Polym. Sci. Pol. Chem. 2018, 56, 451-457.
- [7] A. Biswas, S. De Sarkar, L. Tebben, A. Studer, Chem. Commun. 2012, 48, 5190-5192.
- [8] S. Alazet, L. Zimmer, T. Billard, Chem. Eur. J. 2014, 20, 8589-8593.

VII. Copies of the NMR spectra

S-55

S-58

¹H NMR of compound **4g**

S-64

6.0

4.5

3.0

1.5

0.0

7.5

9.0

11.0

¹H NMR of compound **4i**

O₂N CI SCF₃

---0.00

¹H NMR of compound **4**k

¹³C NMR of compound **4**k

¹H NMR of compound **4m**

¹³C NMR of compound **4m**

¹⁹F NMR of compound **4n**

¹⁹F NMR of compound 4t

¹⁹F NMR of compound **4v**

¹⁹F NMR of compound **5e**

 ^1H NMR of compound $\mathbf{5f}$

 ^{13}C NMR of compound $\mathbf{5f}$

¹H NMR of compound **5h**

¹⁹F NMR of compound **5i**

¹H NMR of compound **5**j

¹⁹F NMR of compound **5**k

¹H NMR of compound **5**l

¹H NMR of compound **5n**

SCF3

CI

		T	
 		L.	

¹³C NMR of compound **5n**

¹⁹F NMR of compound **50**

¹H NMR of compound **5p**

		1000
4	000 40550550000040	ode
ຝ໐໐ຑຑຑຑຑຑຬຬຬຬຩຩຬຬຬຬຬຬຬຬ		RR.
0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		

CI SCF3

¹⁹F NMR of compound **5**s

¹⁹F NMR of compound **5u**

¹H NMR of compound **7**

¹³C NMR of compound **7**

H-H cosy of compound 7

¹H NMR of compound **5a**'

