Supplementary Information for

Mechano-assisted synthesis of an ultramicroporous metal-organic

framework for trace CO₂ capture

Zhaoqiang Zhang,^a Qi Ding,^a Shing Bo Peh,^b Dan Zhao,^b Jiyu Cui,^a Xili Cui,^{*,a} Huabin Xing^a

^a Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

^b Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore

Experimental section

Materials: All chemicals were commercially available and used as supplied without further purification.

Synthesis of ZU-36-Ni (GeFSIX-3-Ni)

 $(NH_4)_2GeF_6$ (4 mmol), Ni(NO₃)₂ (4 mmol) and pyrazine (12 mmol) were put into 50 mL ballmilling jar with several steel core grinding balls. The mixture was then ground for 10 min in a Retstch PM 100 laboratory ball mill with a speed of 220 rpm to form the precursor. The precursor was then heated at 413 K for 12 h under vacuum condition, leading to ZU-36-Ni. ZU-36-Co was synthesized *via* the same method except replacing Ni(NO₃)₂ by Co(NO₃)₂.

Furthermore, ZU-36-Ni was also synthesized by wet chemical method. Briefly, Ni(BF₄)₂ (1 mmol), $(NH_4)_2GeF_6$ (1 mmol) and pyrazine (1.0 g) were dissolved in 2 ml water and 2 ml methanol, and stirred for 2 days at room temperature to blue powders. The blue powders were heated at 413 K under vacuum conditions for 12 h, leading to ZU-36-Ni material.

Despite extensive attempts, we were not able to obtain single crystals of sufficient size suitable for single crystal diffraction studies and therefore structural determination by powder diffractometry was explored.

Powder X-ray diffraction and structure refinement

Powder X-ray diffraction (PXRD) was carried out at room temperature on a Bruker D8 Advance diffractometer using Cu-K α radiation (λ =1.5418 Å). Data treatment and structure solution were initially performed using FullProf software.^[2] Then the JANA program was used for Rietveld refinements.^[3] CCDC-1887519 and 1967852 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge *via* www.ccdc.cam.ac.uk/conts/retrieving.html.

Low-pressure gas adsorption

The measurements for CO_2 , CH_4 , and N_2 isotherms were performed on a fully automated ASAP 2020 adsorption analyzer (Micromeritics Instruments, USA) at relative pressures up to 1 atm. The bath temperature was controlled using an H_2O re-circulating bath.

Breakthrough tests

The breakthrough experiments were accomplished by a dynamic gas breakthrough set-up (Figure S4). The experiment was conducted using a stainless-steel column (4.6 mm inner diameter \times 50 mm). The column packed with ZU-36-Ni (0.63 g) was firstly activated with He flow (5 ml min⁻¹) for 10 h at 373 K. After activation, the mixed gas (CO₂/N₂ or CO₂/CH₄) was introduced. Outlet gas from the column was monitored using the mass spectrometer After the breakthrough experiment, the column was regenerated with He flow (5 mL min⁻¹) at 373 K for 2 h.

Density-functional theory calculations

First-principles density functional theory (DFT) calculations were performed in Castep software (Materials Studio, Accelrys Software Inc.).^[4] A semi-empirical addition of dispersive forces to conventional DFT was included in the calculation to account for van der Waals interactions.^[4] Vanderbilt-type ultrasoft pseudopotentials and generalized gradient approximation with Perdew–Burke–Ernzerhof exchange correlation were used. A cutoff energy of 590 eV and a $1 \times 1 \times 2$ *k*-point mesh (generated using the Monkhorst-Pack scheme) were found to be enough for the total energy to converge within 0.01 meV atom⁻¹. The structures of the synthesized materials were firstly optimized. Then various guest gas molecules were introduced to various locations of the channel pore, followed by a full structural relaxation. To obtain the gas binding energy, an isolated gas molecule placed in a supercell (with the same cell dimensions as the material crystal) was also relaxed as a reference. The static binding energy (at T = 0 K) was then calculated using: $E_B = E_{(MOF)} + E_{(gas)} - E_{(MOF + gas)}$.

Calculation of IAST separation selectivities

The isotherm data for CO₂, N₂, CH₄ on different materials were fitted with either the Langmuir-Freundlich isotherm model: ^[5]

$$q = q_{sat} \frac{bp^{\nu}}{1 + bp^{\nu}} \tag{2}$$

With T-dependent parameters b:

$$b = b_0 exp^{[i0]}(\frac{E}{RT}) \tag{3}$$

Ideal Adsorbed Solution Theory Model (IAST) Calculations of Adsorption Selectivities: The adsorption selectivity for CO₂/CH₄ separation is defined by: ^[6-8]

$$S_{ads} = \frac{q_1/q_2}{p_1/p_2}$$
(4)

Where q_1 and q_2 are the molar loadings in the adsorbed phase in equilibrium with the bulk gas phase with partial pressures p_1 and p_2 .

Isosteric heat of adsorption calculations

The isosteric heat of adsorption, Q_{st} , defined as

$$Q_{st} = RT^2 \left(\frac{\partial lnp}{\partial T}\right)_q$$

were determined using the pure component isotherm fits. The Langmuir-Freundlich isotherm fits

were	differentiated	with	the	Clausius-Clapeyron	equation.
------	----------------	------	-----	--------------------	-----------

Figure S1. XRD patterns of ZU-36-Ni, the precursor of ZU-36-Ni and precursor of SIFSIX-3-Ni.

Figure S2. The pore structure of ZU-36-Ni.

Figure S3. TGA curves of ZU-36-Ni and SIFSIX-3-Ni. TGA tests were conducted from room temperature to 700 °C under N_2 atmosphere with flow rate of 20 mL min⁻¹.

Figure S4. CO₂ adsorption isotherm on ZU-36-Ni synthesized by different methods at 298 K.

Figure S5. CO₂ adsorption isotherm on ZU-36-Ni at 273 K.

Figure S6. CO₂ adsorption isotherm on ZU-36-Ni at 196 K.

Figure S7. CO₂ adsorption isotherms on ZU-36-Co at 273 K.

Figure S8. Schematic illustration of the apparatus for the breakthrough experiments.

	ZU-36-Co	ZU-36-Ni
Formula	C ₈ N ₄ H ₈ CoGeF ₆	C ₈ N ₄ H ₈ NiGeF ₆
Formula weight (g mol ⁻¹)	405.5	405.46
Crystal system	Tetragonal	Tetragonal
Space group	P4/mmm	P4/mmm
a=b	7.094	6.9838
С	7.560	7.5872
V (Å ³)	390.35	380.28
Z	1	1
R _P , R _{WP}	0.0283, 0.0543	0.0304, 0.0444
GOF	3.50	2.28

 Table S1. Crystallographic data of ZU-36-Co and ZU-36-Ni.

Table S2. The distances between metal ions and pyrazine in porous materials.

Materials	M-N	Distance (Å)		
SIFSIX-3-Ni	Ni-N	2.04		
SIFSIX-3-Zn	Zn-N	2.17		
ZU-36-Ni	Ni-N	2.08		
ZU-36-Co	Co-N	2.09		

		Site A		Site B			
		$q_{A,sat}$	b_{A0}	v_A	$q_{B,sat}$	b_{B0}	v_B
		mol kg ⁻¹	Pa ^{-vA}		mol kg ⁻¹	Pa ^{-vB}	
ZU-36-Co	CO ₂	2.094	3.256	2.416	0.559	0.428	1.057
	N_2	137.1	8.31E-10	3.467			
	CH_4	2.781	0.0007	0.977			
ZU-36-Ni	CO ₂	2.210	13.642	1.061	0.305	0.303	0.482
	N_2	0.354	0.004	1.043			
	CH_4	1.398	0.002	1.013			

Table S3 Single-site Langmuir-Freundlich parameter fits for CO₂, N₂, and CH₄ on ZU-36 materials.

References:

[1] Z. Q. Zhang, Q. W. Yang, X. L. Cui, L. F. Yang, Z. B. Bao, Q. L. Ren, H. B. Xing, *Angew. Chem. Int. Ed.*, 2017, **56**, 16282.

[2] I. Matulková, P. Holec, I. Němec, H. Kitazawa, T. Furubayashi, J. Vejpravová, *J. Mol. Struct.*, 2015, **1090**, 70.

[3] M. Sist, K. F. Fischer, H. Kasai, B. B. Iversen, Angew. Chem. Int. Ed., 2017, 56, 3625.

[4] M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne, *J. Phys.: Condens. Matter*, 2002, **14**, 2717.

[5] V. Barone, M. Casarin, D. Forrer, M. Pavone, M. Sambi, A. Vittanini, *Comput. Chem.*, 2009, **30**, 934.

[6] R. T. Yang, Butterworth-Heinamann, 1986.

[7] K. S. Walton, D. S. Sholl, AICHE J., 2015, 61, 2757.

[8] Z. Z. Yao, Z. J. Zhang, L. Z. Liu, Z. Y. Li, W. Zhou, Y. F. Zhao, Y. Han, B. L. Chen, R. Krishna, S. C. Xiang, *Chem. Eur. J.*, 2016, **22**, 5676.